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Abstract Independent component analysis (ICA) and
Gabor wavelets extract the most discriminating features for
facial action unit classification by employing either a cosine
similarity measure (CSM) classifier or support vector
machines (SVMs). So far, only the ICA approach, which
is based on the InfoMax principle, has been tested for facial
expression recognition. In this paper, in addition to the Info-
Max approach, another five ICA approaches extract features
from two facial expression databases. In particular, the Exten-
ded InfoMax ICA, the undercomplete ICA, and the nonlinear
kernel-ICA approaches are exploited for facial expression
representation for the first time. When applied to images, ICA
treats the images as being mixtures of independent sources
and decomposes them into an independent basis and the
corresponding mixture coefficients. Two architectures for
representing the images can be employed yielding either
independent and sparse basis images or independent and
sparse distributions of image representation coefficients.
After feature extraction, facial expression classification is
performed with the help of either a CSM classifier or an SVM
classifier. A detailed comparative study is made with respect
to the accuracy offered by each classifier. The correlation

I. Buciu · C. Kotropoulos · I. Pitas
Department of Informatics, Aristotle University of Thessaloniki,
Box 451, 541 24, Thessaloniki, Greece
e-mail: costas@aiia.csd.auth.gr

I. Pitas
e-mail: pitas@aiia.csd.auth.gr

I. Buciu (B)
Electronics Department, Faculty of Electrical Engineering
and Information Technology, University of Oradea,
Universitatii 1, 410087 Oradea, Romania
e-mail: ibuciu@uoradea.ro

between the accuracy and the mutual information of inde-
pendent components or the kurtosis is evaluated. Statistically
significant correlations between the aforementioned quanti-
ties are identified. Several issues are addressed in the paper:
(i) whether features having super- and sub-Gaussian distribu-
tion facilitate facial expression classification; (ii) whether a
nonlinear mixture of independent sources improves the clas-
sification accuracy; and (iii) whether an increased “amount”
of sparseness yields more accurate facial expression recogni-
tion. In addition, performance enhancements by employing
leave-one-set of expressions-out and subspace selection are
studied. Statistically significant differences in accuracy bet-
ween classifiers using several feature extraction methods are
also indicated.
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1 Introduction

Human facial expression analysis has captured an increasing
attention from psychologists, anthropologists, and computer
scientists [1]. Surveys on automatic facial expression analysis
can be found in [2–4]. Generally speaking, facial expression
recognition methods can be classified into appearance-
based methods and geometry-based ones. In the first cate-
gory, fiducial points of the face are selected either manually
[5] or automatically [6]. The facial images are convolved
with Gabor filters and the extracted Gabor filter responses
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at the fiducial points form vectors that are further used for
facial expression classification. Alternatively, Gabor filters
can be applied to the entire facial image instead of speci-
fic facial regions. Regarding the geometry-based methods,
the coordinates of the fiducial points form a feature vector
that represents facial geometry. Although the appearance-
based methods yield a reasonable facial expression recogni-
tion accuracy, the highest recognition rate has been obtained
when both the responses of Gabor wavelets and the coor-
dinates of fiducial points are combined [5,7,8]. The ana-
lysis can be performed either on still images [5] or image
sequences, where temporal information is considered [9].
Gabor and Independent Component Analysis (ICA) repre-
sentations were used for the recognition of 6 single upper
facial action units (AUs) and 6 lower face AUs in [10]. The
AUs correspond roughly to the movement of the individual 44
facial muscles. The best recognition rates were achieved by
both Gabor wavelets and ICA representations [10]. The local
properties of ICA representation were found to be important
for identity recognition [11]. Identity and facial expression
recognition performance were also investigated by directly
comparing ICA versus principal component analysis (PCA)
in [12], where it was found that ICA outperformed PCA.
On the contrary, insignificant performance differences bet-
ween ICA and PCA were reported on the same database
in [13]. Guo and Dyer addressed facial expression classifi-
cation, when a small number of training samples was only
available [14]. In particular, a new linear programming-based
technique was developed for both feature extraction and clas-
sification and a pairwise framework for feature selection was
designed instead of considering all classes simultaneously.
Gabor filters were used to extract facial features and large
margin classifiers such as support vector machines (SVMs)
and AdaBoost were employed for facial expression classifi-
cation. Susskind et al. studied the nature of emotional space
[1], where evidence is presented justifying that emotion cate-
gories are not entirely discrete and independent, but they vary
along underlying continuous dimensions.

The facial expression recognition accuracy reported by
Donato et al. in [10] was obtained by applying the InfoMax
approach [15]. Taking this ICA approach as baseline for fea-
ture extraction, five additional ICA approaches, namely, the
extended-InfoMax [16], the joint approximate diagonaliza-
tion of eigen-matrices (JADE) [17], the fastICA [18] , the
undercomplete ICA (uICA) [19], and the nonlinear kernel-
ICA [20] are investigated in this paper. By employing the
aforementioned ICA approaches, we extend Donato’s work.
Additional issues are addressed, such as whether sub-
Gaussian facial feature extraction through the extended-
InfoMax facilitates facial expression classification; whether a
nonlinear mixture of independent components (ICs) through
the nonlinear kernel-ICA influences the classification accu-
racy. Moreover, we assess the effect of sparseness on the

classification accuracy. It is worth mentioning that the results
reported in [10] refer to the recognition of facial actions deri-
ved from the Facial Action Coding System (FACS), while,
in this paper, we are interested in the classification of facial
expressions that are combinations of facial action units. Each
ICA approach has its own advantages over the others. For
example, the original InfoMax approach [15] is not able to
recover signals having a sub-Gaussian distribution. To alle-
viate this deficiency, the Extended InfoMax approach has
been developed that can extract the sub-Gaussian sources
[16]. The strength of each ICA approach is investigated with
respect to the facial expression classification accuracy, when
the extracted features feed either a CSM classifier or an SVM.

The rest of the paper is organized as follows. ICA is vie-
wed as a feature extraction method in Sect. 2. Section 3 brie-
fly summarizes each ICA approach investigated in the paper
and the rationale for its use in feature extraction within the
framework of facial expression recognition. Section 4 des-
cribes two ICA architectures for feature extraction. The facial
expression image databases used in the experiments are intro-
duced in Sect. 5. Section 6 presents two classifiers applied to
the feature vectors obtained by ICA for facial expression clas-
sification. Experimental results are reported in Sect. 7, where
issues such as independent basis images or independent coef-
ficients, their mutual information, their sparseness, and how
these characteristics are correlated with the classification
accuracy are addressed. In addition, performance enhance-
ments by employing leave-one-set of expressions-out and
subspace selection are studied. Statistically significant diffe-
rences in accuracy between classifiers using several feature
extraction methods are also indicated. Finally, conclusions
are drawn in Sect. 8.

2 ICA as a feature extraction method

In pattern classification, feature extraction represents an
important processing step, because one looks for features that
incorporate sufficient class information and possess reliable
discriminating power in order to obtain a satisfactory clas-
sification accuracy. Frequently, dimensionality reduction is
performed as a first step, aiming at removing any redundant
information, whilst preserving the information which contri-
butes more to the classification accuracy. One of the most
popular techniques for dimensionality reduction is PCA. This
technique is based on second-order statistics of the data and
performs dimensionality reduction by retaining components
that correspond to the largest eigenvalues of the covariance
matrix, while discarding components that have insignificant
contribution to the trace of the covariance matrix. In prin-
ciple, PCA yields uncorrelated components. When the data
have a Gaussian distribution, the uncorrelated components
are independent as well. However, if the data are mixtures of
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non-Gaussian components, PCA fails to extract components
having a non-Gaussian distribution. On the contrary, ICA
takes into account the higher-order statistics of the data
in an attempt to recover non-Gaussian components. For
completeness, we mention that under certain conditions,
non-Gaussian components could be recovered by applying
Exploratory Projection Pursuit (EPP) [21] as well.

From a statistical point of view, the least interesting struc-
ture is the Gaussian one. In one dimension, two moments,
the mean and the variance, completely define the probabi-
lity density function (pdf). Moreover, the Gaussian distribu-
tion has the highest entropy among all distributions with a
given covariance matrix [22]. Taking the Gaussian distribu-
tion as a reference, any quantity that measures the level of
‘interestingness’ of the data, is a quantity that measures the
non-Gaussian structure of the data. A principled measure
of nongaussianity is the negentropy. The negentropy of a
standardized random variable (i.e. one that has zero-mean
and unit variance) can be approximated by the third-order
moment and the fourth-order cumulant (i.e. the kurtosis)
in a computationally simple manner. Therefore, we need
moments and cumulants of order higher than 2 to capture the
non-Gaussian structure of data [22]. Seeking non-Gaussian
components is related to looking for statistical independence
[22]. A measure of non-Gaussianity of a random variable
(RV) s is its normalized kurtosis estimated as:

kurt(s) =
∑

i (si − s)4

[∑
i (si − s)2

]2 − 3 (1)

where si are observations of s and s denotes the sample
mean of s. The normalized kurtosis of a Gaussian RV is
zero. Super-Gaussian RVs have a positive kurtosis. A typi-
cal super-Gaussian RV is the Laplacian one. Sub-Gaussian
RVs have a negative kurtosis with a typical example being a
uniform RV in the interval [−α, α] ∈ R.

ICA can be formulated by considering the following sta-
tistical model:

x = A s (2)

where s = (s1, s2, . . . , sn)T is a latent random vector with
ICs that are combined via a p × n mixing matrix A to form
a zero-mean observation vector x = (x1, x2, . . . , x p)

T . ICA
estimates a demixing matrix W of dimensions n× p that will
recover the original components of s as:

u =W x =W A s (3)

where u = [u1, u2, . . . , ui , . . . , un] is an estimate of s.
Given a batch of m observation data x j , j = 1, . . . , m we
can form X whose columns are x j . Then (3) becomes:

U =W X =W A S (4)

where X and U are p×m and n ×m matrices, respectively.
Usually, we call the columns of U (and implicitly the
columns of S) independent sources. The columns of X are
measurements from a number of sensors that capture the
sources. Usually, the number of observed components is
equal to the number of ICs (p = n). There are ICA methods
that cope with cases p < n or p > n, called overcom-
plete or undercomplete ICA, respectively. Basically, the ICA
algorithms attempt to obtain an estimate of W by using an
objective (contrast) function that must be maximized or mini-
mized, depending on the formulation.

3 ICA approaches

Let p = n. The InfoMax approach performs ICA based on
the information maximization approach proposed by Bell and
Sejnowski [15]. This approach relies on the maximization
of the entropy of the joint distribution f (u). The demixing
matrix W is updated through an iterative process. At iteration
k + 1, W is updated according to:

Wk+1 =Wk + η[I+ (1− 2zk) uT
k ]Wk, (5)

where η is the learning rate controlling the convergence speed
of (5), 1 is a n×1 vector of ones, I is the n×n identity matrix,
and z is a n × 1 vector having elements:

zi = g(ui ) i = 1, . . . , n (6)

with g(.) being a component-wise nonlinearity applied to all
elements of the demixer output u, at each iteration k. The
form of the nonlinearity must be chosen to match the cumu-
lative distribution function of the input. In the InfoMax algo-
rithm [15], this non-linearity is approximated by the logistic
transfer function:

g(ui ) = 1/(1+ e−ui ) i = 1, . . . , n. (7)

The just described approximation works well when it
comes to recover super-Gaussian components, but fails to
extract the components having a sub-Gaussian distribution if
such components exist in the mixture of non-Gaussians. To
remedy this drawback, Lee et al. have extended the InfoMax
approach to the Extended InfoMax approach by employing
a new learning rule that is able to separate both sub- and
super-Gaussian distributions [16]. The learning rule, that is
able to switch between these distributions, iteratively updates
the demixing matrix as follows:

Wk+1 =Wk + η[I−� tanh(uk)uT
k − ukuT

k ]Wk, (8)

where � is an n×n diagonal matrix whose i i-th element, ξi i ,
takes the value 1 for a super-Gaussian source and the value
−1 for a sub-Gaussian one, and tanh() denotes the hyperbolic
tangent function that is applied to the elements of uk in a
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component-wise fashion. The adaptation of ξi i is given by:

ξi i = sign(E{sech2(uki )}E{u2
ki } − E{[tanh(uki )]uki }), (9)

where i = 1, . . . , n, uki is the i-th element of uk , and sign()

and sech() denote the sign and hyperbolic secant functions,
respectively.

Another approach for separating sources, the so called
Joint Approximate Diagonalization of Eigen-matrices
(JADE) was proposed by Cardoso and Souloumiac [17]. The
main advantage of JADE is the fact that it does not employ
any learning step. Its drawback is the relatively small number
of components that can be extracted making it inadequate for
a large number of mixture components.

The fourth approach is fastICA developed by Hyvarinen
[18], which maximizes negentropy. The fastICA steps for
estimating several ICs with deflationary orthogonalization
are the following [22]:

1. Center the data to zero their mean.
2. Choose the number n of ICs to be estimated. Set p = 1.

Whiten the data to obtain z = Vx = VAs.
3. Choose randomly an initial vector of unit norm for wp.

4. Let ŵp,k+1 = E
{

zk g(wT
p,kzk)

}
−E

{
g
′
(wT

p,kzk)
}

wp,k ,

where g(ξ) = (1/a)log (cosh(aξ)) is the contrast func-
tion and its derivative is given by g

′
(ξ) = tanh(aξ).

5. Do the following orthogonalization w̃p,k+1 = ŵp,k+1−
∑p−1

j=1

(
ŵT

p,k+1w j

)
w j .

6. Let wp,k+1 = w̃p,k+1

‖w̃p,k+1‖
.

7. If wp has not converged, go back to step 4.
8. Set p←− p + 1. If p ≤ n, go back to step 3.

A major advantage of fastICA is its speed, making it even
100 times faster than the previously described approaches.

For all ICA approaches described so far, it has been assu-
med that the number of components equals the number of
sensors. If the number of sources is very large, the applica-
tion of ICA is limited by memory constraints. Therefore, the
preprocessing PCA step is not only intended to decorrelate
the data, but also to lower their dimension. By keeping only
l < p appropriately chosen dimensions the demixing matrix
W becomes of size l× l. When discarding the (p− l) dimen-
sional subspace with the smallest variance, there is a risk
to throw away the ICs that might be contained in this sub-
space, since there is no guarantee that ICs exist only in the l
dimensional subspace defined by the principal components
(PCs) with the largest eigenvalues. For instance, an IC with a
very small variance was found to be associated with the form
of the “on-off” experimental protocol when analyzing fMRI
data [23]. To address the weakness of the previously descri-
bed ICA approaches, Stone and Porrill have developed the
undercomplete Independent Component Analysis (uICA) for

preserving the information that might be lost during PCA and
established the following contrast function for maximizing
the entropy [19]:

h(W) = 1

2
log|WDx WT | + E

⎧
⎨

⎩

n
∑

i=1

log

(
∂zi

∂ui

)
⎫
⎬

⎭
, (10)

allowing to have a non-square n× p demixing matrix without
applying PCA for data dimensionality reduction. Dx is the
sample covariance matrix of the input data x. If zi = g(ui ) =
tanh(ui ), (10) can be maximized using, for example, the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton
method. The derivative of (10) is given by:

∂h

∂W
=W#T − 2E{uxT }, (11)

where W# = (Dx WT )(WDx WT )−1 is the pseudoinverse
of W with respect to the positive definite sample covariance
matrix Dx . However, when considering the whitened data, the
covariance matrix equals the identity matrix, simplifying the
first term of (10) to 1

2 log|WWT | and W# to WT (WWT )−1.
All the aforementioned approaches treat the mixture X of

ICs S as a linear one. It may happen to have components
that are mixed through nonlinear functions. A kernel Hilbert
space is used by Bach and Jordan to come up with the so
called kernel-ICA approach in order to extract such nonli-
nearly mixed sources [20]. Two contrast functions that rely
on canonical correlations in this reproducing space have been
defined namely the kernel ICA-KCCA (where KCCA stands
for Kernel Canonical Correlation Analysis) and the ICA-KGV
(where KGV stands for Kernel Generalized Variance). Kernel
ICA-KCCA minimizes the first kernel canonical correlation
that depends on the data x j , j = 1, . . . , m only through the
centered Gram matrices for l ICs. Kernel ICA-KGV mini-
mizes the kernel generalized variance. The interested reader
may consult [20] for more details.

4 Two architectures for performing ICA on facial
expression images

Donato suggests that ICA features contain suitable and
powerful discriminative information for classifying facial
action units [10]. Facial expressions are combinations of such
facial action units. Hence, ICA features may also be sui-
table for facial expression classification. In this paper, ICA
is applied to facial images for feature extraction towards
facial expression classification. We have m images contai-
ning human facial expressions, each image being of size r×c
pixels, vectorized into a p = rc-dimensional vector by lexi-
cographic ordering. ICA can be applied to facial images for
expression classification in two ways known as Architectures
I and II, respectively [24].
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4.1 Architecture I

The observation matrix X is formed by treating the facial
images as row vectors. Thus X is an m× p matrix. By doing
so, ICA recovers m independent images.

First, PCA is applied. Let Dx be the covariance matrix of
the original images, Dx = 1

m X̃T X̃ = P�PT , where X̃T =
[x1 − ψ | . . . |xm − ψ] with ψ = 1

m

∑m
k=1 xk . Let us choose

l < p eigenvectors of Dx (those with the largest eigenvalues)
and form Pl ∈ R

p×l whose columns are the eigenvectors.
Each training face image xk can be projected to the eigen-
vectors (called here eigenfaces) and be represented by yk =
PT

l (xk −ψ). Let us construct YT = [y1| . . . |ym]. Then Y =
X̃Pl . The original images can be reconstructed as linear com-
binations of the basis images Pl as XrecPCA = YPT

l . In the

following, we assume that ψ = 0 and accordingly X̃ = X.
Next, ICA is applied to PT

l . A number of l ICs can be
recovered into the rows of basis U:

U =WPT
l . (12)

Hence, we have PT
l =W−1U, provided that W is invertible

and the ICA reconstruction of X is given by the approxima-
tion:

XrecICA = YPT
l = Y(W−1U) = (XPlW−1)U. (13)

The rows of B = XPlW−1 contain the ICA coefficients
of the linear combination of rows (basis vectors) in U, where
the training images are represented by the matrix X. The rows
of B are used further for classification. The ICA coefficients
of a zero-mean test image xtest are obtained as:

bT
test = xT

testPlW−1. (14)

To perform classification based on distances or angles bet-
ween bT

test given by (14) and the rows of B, the basis vec-
tors should be orthonormal. Accordingly, U should be a row
orthonormal matrix (i.e. UUT = I) or equivalently WWT = I.
This implies that W is a rotation matrix. An ICA approach
that returns a rotation matrix for W is fastICA. Accordin-
gly, the ICA coefficients (14) do not offer more information
than those derived by PCA coefficients for the aforementio-
ned classifiers as it was also pointed out in [25]. To address
this point, we perform ICA subspace selection. If U is not
orthonormal, then it should undergo a Gram-Schmidt ortho-
gonalization (i.e. a QR decomposition) before classification
that is based on distances or angles.

4.2 Architecture II

Now consider XT . In this case, the pixels are assumed to be
independent [24]. The columns of X are linear combinations
of basis vectors obtained from the columns of matrix W.
In Architecture II, ICA is performed on the projected data

YT = PT
l XT . Therefore, the basis images obtained by per-

forming PCA and ICA can be represented as PlW−1 and the
coefficients needed for ICA reconstruction are expressed by
the columns of U =WYT . The reconstructed images are:

XT
recICA = (PlW−1)(WYT ). (15)

A zero-mean test image is represented as:

utest =WPT
l xtest. (16)

To perform classification based on distances or angles bet-
ween utest given by (16) and the columns of U, the basis
images should be orthonormal. This implies that W should
be an orthonormal matrix, i.e. WT W = I. In such a case, the
ICA coefficients (16) do not offer any additional information
than the coefficients derived by PCA in this case as well.

5 Data description

The experiments have been performed using two databases
of facial expression images. The first database has been deri-
ved from the Cohn-Kanade (C-K) AU-coded facial expres-
sion database [26] that contains single or combined action
units. Facial action units have been converted to emotions
according to [27]. Thirteen persons (expressers) who are able
to express the six basic emotions create the database. Each
subject from C-K database delivers an expression over time
starting from a neutral pose and ending with a very intense
expression, thus having several frames with different expres-
sion intensities. We picked up three poses with low (close to
neutral), medium, and high (close to the maximum) intensity
of facial expression, respectively. By doing so, the statistical
variability of facial emotions is roughly captured. Therefore,
the total number of images is 234 in the first database. The
second database contains 213 images of Japanese female
facial expressions (JAFFE) [28]. Ten expressers produced
three or four examples for each of the six basic facial expres-
sions (anger, disgust, fear, happiness, sadness, surprise) plus
a neutral pose, thus producing a total of 213 images of facial
expressions. Let us enumerate the seven facial expressions in
JAFEE by j = 1, . . . , 7. In the case of the C-K database, we
have only six expressions, therefore the enumeration ends at
six. Table 1 summarizes the details for the two databases.

Each raw image x has been manually aligned with respect
to the upper left face corner. The registration was performed
by clicking the eyes - thus retrieving the eyes coordinates,
followed by rotating the image to horizontally align the face
according to eyes, cropping the face to remove the image
borders and, finally, downsampling the image to a final size of
60× 45 pixels for computational purposes. Figure 1 presents
samples of facial expressions of one person from the JAFFE
database posing 7 facial expressions and another person from
the C-K database posing 6 facial expressions.
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Table 1 Details of the two
databases Details C-K database JAFFE database

Expressers 13 10

Emotions 6 7

Instances per emotion 3 2, 3 or 4

Total number of facial images 234 213

Number of training images 164 150

Number of test images 70 63

Fig. 1 An example of one
expresser from the JAFFE
database posing 7 facial
expressions (first row) and
another one from the
Cohn-Kanade database posing 6
facial expressions (second row)

6 Classifiers

In the experiments, two different classifiers are employed. We
used the Cosine Similarity Measure (CSM) classifier, since
such a classifier was reported to yield a good classification
performance [10]. The classification method is based on the
nearest neighbor rule and uses the angle between a test vector
btest and the facial expression class center b j as a similarity
measure:

d j = bT
testb j

‖btest‖‖b j‖ j = 1, . . . , Ne, (17)

where Ne = 7 for JAFFE (Ne = 6 for C-K database) and
chooses the class that corresponds to the maximal cosine
similarity

arg max j=1,...,Ne
{d j }. (18)

In the case of Architecture II, b is replaced by u. From (17)
it is seen that CSM is an 1-nearest neighbor classifier for
normalized feature vectors.

SVMs [29] were employed for facial expression recog-
nition, too. The sequential minimal optimization technique
developed by Platt [30] was used to train SVMs having b
and u as input, respectively. Since classical SVM theory was
intended to solve a two class classification problem, we chose
the decision directed acyclic graph (DDAG) learning archi-
tecture proposed by Platt et al. to cope with the multi-class
classification [31]. It is worth noting that CSM and SVMs are

the most popular classifiers for facial expression recognition,
as they have been extensively used in [9,10,12].

The classifier accuracy, defined as the percentage of the
correctly classified test images, is used to assess the per-
formance of the facial expression recognition systems that
employ the six ICA approaches in order to extract features,
which subsequently feed the aforementioned classifiers.

7 ICA assessment

The six ICA approaches were applied to create feature vectors
b j , btest or u j , utest. We split the data into disjoint training
and test sets. We used 164 and 150 images for training and we
left out 70 and 63 images for testing in the C-K and JAFFE
database, respectively. Both training and test set images were
chosen randomly from the database. However, we ensured
that both training and test data sets contain samples from
all expressers and expressions. In the case of SVMs, five
kernels were used namely the linear kernel, the polynomial
kernel of degree 2, 3, and 4, and the radial basis function
(RBF). For all SVMs the penalizing parameter was set to 10
and the width of RBF kernel was set to 0.005. Among the
five kernels only the two kernels, which yield the highest
accuracy, are retained. However, for the JAFFE database and
Architecture II, three kernels are retained, because the linear
kernel has performed equally well to the polynomial kernel of
degree 3.
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The first objective is to find which ICA image represen-
tation performs best with respect to the classifier accuracy.
Experiments were conducted by varying the number of prin-
cipal components (PCs) from 5 to 160 (for the C-K database)
and from 5 to 145 (for the JAFFE database) accounting from
24 to 99.8% of the trace of the covariance matrix. Due to the
limited memory capacity and the algorithmic complexity, we
were able to extract up to a maximum of 80 components in
the JADE and the kernel-ICA approaches.

In order to see if the accuracy differences are statistically
significant, we apply the approximate analysis described in
[32]. We have examined if accuracy differences are statisti-
cally significant for pairs of the same classifier fed by fea-
tures extracted by two different ICA approaches as well as for
pairs of different classifiers fed by the best performing ICA
approaches. The analysis is repeated for each database and
architecture. Let us assume that the accuracies p1 and p2 are
binomially distributed random variables. Let p̂1, p̂2 denote
the empirical accuracies, and p = p̂1+ p̂2

2 . The hypothesis
H0 : p1 = p2 = p is tested at 95% level of significance.
The accuracy difference has variance β = var(p1 − p2) =
2 p(1−p)

N , where N is the number of test facial expression
images. If

p̂1 − p̂2 ≥ 1.65
√

β (19)

we reject H0 with risk 5% of being wrong. Then, we may
claim that the accuracy difference is statistically significant
at 95% level of significance.

The second issue investigated in the paper is related to the
variation of recognition accuracy with respect to the mutual
information of the basis images or their coefficients. The
statistical dependencies of facial expression representations
were measured by computing the average mutual informa-
tion between pairs of basis images that yield the maximum
recognition accuracy. The mutual information of two RVs
u1, u2 is given by:

I (u1, u2) = H(u1)+ H(u2)− H(u1, u2) (20)

where H(u) is the differential entropy of the RV u [24]. The
average mutual information calculated over all possible pairs
of basis images is a good measure of the independence of
basis images.

The nature of ICs and the influence of discarded PCs in
the recognition accuracy are investigated as well. The super-
and sub-Gaussian nature of basis images was tested by mea-
suring their normalized kurtosis (1). Furthermore, non-linear
mixtures of ICs were also investigated.

To obtain a better quantitative insight on how well the
accuracy is correlated to the mutual information and the
kurtosis over the number of PCs, we have computed the cor-
relation coefficient and the corresponding p value. Mutual
information, kurtosis, and accuracy were computed for

various numbers of components from the set {5, 10, 20, 30,

40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160}
for the C-K database and {5, 10, 20, 30, 40, 50, 60, 70, 80,

90, 100, 110, 120, 130, 140} for the JAFFE database. Accor-
dingly, we have 17 (15) values of the aforementioned quan-
tities (mutual information, kurtosis, accuracy) for varying
numbers of components that are stored in three 17(15)-
dimensional vectors. The correlation was then calculated
between the elements of the vector comprising the mutual
information values and the vector comprising the accuracy
values as well as between the vector having as elements the
kurtosis values and the vector of accuracies.

7.1 Cohn-Kanade database

7.1.1 Architecture I

The experimental results are presented in Table 2. The num-
ber of PCs varies between 5 and 160 and admits the values in
the set {5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120,
130, 140, 150, 160}. For each number of PCs, features were
extracted by the several ICA approaches and the classifier
accuracy is measured over the test facial expression images.
The highest accuracy obtained along with the corresponding
number of PCs are listed in columns numbered by “1” and
“2”. For both the CSM classifier and the SVM with a poly-
nomial kernel of degree 3, a small number of PCs yields a
close to the best classification accuracy. The classification
accuracy obtained by the CSM classifier, when it employs
features extracted by the InfoMax, the JADE, the fastICA,
and the kernel-ICA was found to be identical. A decrease
of approximately 3% in accuracy was found, when features
extracted by the Extended InfoMax and the uICA. Overall,
the best recognition accuracy was 82.9% and was obtained
by the linear SVM with fastICA, when 110 PCs were used.
While such a large number of PCs is needed for the linear
SVM in order to achieve the highest accuracy, 30 PCs are
adequate for the SVM with a polynomial kernel of degree
3 in order to attain an accuracy of 81.43%, which is rea-
sonable compromise between accuracy and dimensionality
reduction. In Table 2, the highest accuracy appears in bold.

For each classifier, the accuracy differences due to dif-
ferent ICA approaches are not statistically significant at 95%
level of significance. The accuracy differences between the
several pairs of classifiers that employ the best performing
ICA approaches, such as (CSM & fastICA, SVM linear &
fastICA), (SVM linear & fastICA, SVM cubic & extended
ICA) etc., are not statistically significant at 95% level of
significance as well.

One merit of ICA is that it produces independent and
sparse basis images or coefficients depending on the archi-
tecture employed. For Architecture I, the basis images are
expected to be independent and sparse. Their independence
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Table 2 Experimental results for the C-K database and Architecture I

Classifier Approach 1 (%) 2 3 4 5 6 7 8 9

InfoMax 74.3 10 0.0758 4.1 NA −0.03 0.91 0.01 0.95

Extended InfoMax 71.4 10 0.0794 3.4 −0.8 −0.44 0.14 0.42 0.16

JADE 74.3 30 0.0332 14.1 NA −0.44 0.22 0.27 0.47

CSM FastICA 74.3 30 0.0341 13.8 −0.5 −0.44 0.14 0.36 0.24

uICA 71.4 50 0.0082 32.9 −0.7 −0.31 0.38 0.27 0.31

Kernel-ICA 74.3 30 0.0628 1.38 NA −0.55 0.12 0.82 0.006

InfoMax 80 110 0.0013 34.8 NA −0.97 0 0.84 0.0006

Extended InfoMax 81.4 130 0.0014 46.3 −1.5 −0.98 0 0.80 0.0001

JADE 78.6 70 0.0067 27.6 NA −0.99 0 0.92 0.0003

SVM FastICA 82.9 110 0.0023 49.9 0 −0.97 0 0.78 0.0002

linear uICA 82.7 140 0.0318 1.2 NA −0.78 0.0002 0.68 0.002

Kernel-ICA 78.6 70 0.0440 1.4 NA −0.80 0.007 0.67 0.012

InfoMax 80 20 0.0480 8.4 NA −0.56 0.053 0.34 0.27

Extended InfoMax 81.4 30 0.0353 13.6 −0.9 −0.63 0.026 0.40 0.19

SVM JADE 80 20 0.0505 9.2 NA −0.60 0.020 0.56 0.28

polynomial FastICA 80 20 0.0480 8.6 −0.7 −0.47 0.12 0.26 0.39

(q = 3) uICA 78.3 100 0.0430 1.0 NA −0.49 0.10 0.38 0.21

Kernel-ICA 80 20 0.0743 1.1 NA −0.50 0.28 0.52 0.30

The columns numbered from 1 to 9 represent: (1) classification accuracy (%), (2) Number of PCs, (3) average basis image mutual information, (4)
and (5) normalized average positive and negative kurtosis of the basis images, (6) and (7) correlation coefficient between the classification accuracy
and the mutual information with its corresponding p value, (8) and (9) correlation coefficient between the classification accuracy and the positive
kurtosis with its corresponding p value
Bold value indicates the highest accuracy value

is measured by the average mutual information listed in the
third column of Table 2.

The presence of a super- or a sub-Gaussian distribution in
the basis images is tested in columns “4” and “5” of Table 2.
These columns show the average positive and negative
kurtosis of the basis images indicating a super-Gaussian and a
sub-Gaussian distribution, respectively, and constitute a mea-
sure of sparseness of the basis images. “NA” in the column
“5” stands for “Not Available”, i.e. when a sub-Gaussian dis-
tribution of basis images is not detected. The average nega-
tive kurtosis listed in column “5” shows that the presence of
sub-Gaussian components does not necessarily enhance the
classifier performance.

Ten basis images extracted from the C-K database during
training with each method in the case of Architecture I are
depicted in Fig. 2. As one can notice from Fig. 2, the basis
images for JADE, fastICA, and uICA are more sparse than
the basis images derived by the remaining methods.

Columns “6” and “7” in Table 2 record the correlation
coefficient between the accuracy and the average mutual
information over all possible pairs of basis images extracted
for each number of PCs (mutual information for short, hereaf-
ter) and the corresponding p value. The last two columns list
the correlation coefficient between the classification accu-
racy and the average positive kurtosis of the basis images

(positive kurtosis for short, hereafter). The strongest correla-
tion between accuracy and mutual information was found for
the linear SVM. The minus sign achieved for all classifiers
indicates a negative correlation, meaning that a decrease in
mutual information (hence greater independence) correlates
with an increase of the classifier accuracy. The correlation is
weak in the case of the CSM classifier and the SVM with a
polynomial kernel of degree 3. Indeed, for the CSM classifier,
the p value exceeds 0.05, a fact that indicates that the corre-
lation coefficient is not statistically significant. For the SVM
with a polynomial kernel of degree 3, the Extended InfoMax
and the JADE exhibit a correlation coefficient between accu-
racy and mutual information that is statistically significant.
A similar behavior was observed for the correlation between
the basis image sparseness and accuracy. For an SVM with
a linear kernel, a strong statistically significant correlation
between accuracy and the positive kurtosis values is found.

The uICA was used in order to avoid discarding PCs
having a small variance, but might contain ICs. The uICA
was not able to improve the accuracy by processing the ori-
ginal image data. On the contrary, for the CSM classifier
and the SVM with a polynomial kernel of degree 3, applying
PCA for input dimensionality reduction is found to be a good
practice, since it yields a high accuracy for a small number
of PCs.
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Fig. 2 First ten basis images
for Architecture I obtained by
InfoMax (first row), Extended
InfoMax (second row), JADE
(third row), fastICA (fourth
row), undercomplete ICA (fifth
row), and kernel-ICA (sixth
row). The images are depicted in
decreasing order of normalized
kurtosis

The linear SVM is the only classifier for which the details
count, since a large number of PCs is needed in order to obtain
the highest accuracy. However, this is due to the linear sepa-
rating hyperplane which performs best in high-dimensional
spaces.

To assess the descriptive power of nonlinear IC mixtures,
Kernel-ICA is applied. It is observed that the nonlinear ICA
does not enhance the classification accuracy.

The classification accuracy reported in Table 2 has been
averaged over all test facial expression instances. To obtain a
better insight into the performance of the linear SVM, which
employs fastICA for feature extraction in the C-K database,
we have computed the confusion matrix during testing shown
in Table 3. The rows of the confusion matrix refer to the actual
(correct or ground truth) expression labels and its columns
refer to the predicted expression labels by the classifier. Its
diagonal entries correspond to the number of facial expres-
sions correctly classified, while its off-diagonal entries record
the numbers of misclassified test facial expression instances.
It is seen that more errors are committed when angry and sad
facial expressions are processed. This result is not surprising
as the two expressions look similar and can be easily confu-
sed by humans too. We must note that, having the confu-
sion matrix at disposal, a multiclass ROC analysis might be
derived [33].

7.1.2 Architecture II

The experimental findings are summarized in Table 4. All
ICA approaches with the CSM classifier yield the same accu-
racy (72.9%), as one can see from column “1”. The best accu-
racy (80%) was obtained by the SVM with an RBF kernel that
employs features extracted by the Extended InfoMax. Howe-
ver, the accuracy difference between 80 and 72.9% is not sta-
tistically significant for 95% level of significance. Moreover,
the pairwise performance differences within each classifier
due to different ICA approaches are not statistically signifi-
cant at the same level of significance. This is also valid for
all pairs of classifiers that employ the ICA approach yielding
the highest accuracy.

The second architecture derives coefficients that are as
independent and sparse as possible. The mutual information
and the average positive and negative kurtosis was measured
for coefficients, as shown in columns “3”–“5” of Table 4.
Ten basis images corresponding to C-K database which are
obtained after training each method in Architecture II are
depicted in Fig. 3. They have a rather holistic appearance
compared with the sparse basis images of Fig. 2.

As for Architecture I, a weak correlation between the
CSM classifier accuracy and mutual information was found.
Only InfoMax and Extended InfoMax yield a statistically
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Table 3 Confusion matrix for
the test images from C-K
database, when a linear SVM in
Arcitecture I with fastICA is
employed

Anger Disgust Fear Happiness Sadness Surprise

Anger 5 0 0 0 3 0

Disgust 2 10 1 0 0 0

Fear 1 0 10 0 0 0

Happiness 1 0 1 15 0 0

Sadness 2 0 0 0 8 0

Surprise 0 0 0 0 1 10

Table 4 Experimental results for the C-K database and Architecture II

Classifier Approach 1 (%) 2 3 4 5 6 7 8 9

InfoMax 72.9 40 0.0260 14.7 NA −0.70 0.01 0.26 0.41

Extended InfoMax 72.9 10 0.1363 2.3 −1.3 −0.57 0.049 0.64 0.02

JADE 72.9 10 0.1311 1.1 NA −0.49 0.176 0.09 0.08

CSM fastICA 72.9 10 0.0884 3.5 −1.7 −0.21 0.50 0.08 0.78

uICA 72.9 60 0.0002 0.1 −1.8 −0.21 0.49 0.32 0.308

Kernel-ICA 72.9 10 0.1311 1.1 −0.5 −0.36 0.337 0.03 0.92

InfoMax 75.7 90 0.0050 38.6 NA −0.91 0 0.60 0.003

Extended InfoMax 72.8 110 0.0005 5.2 −1.5 −0.98 0 0.80 0.001

JADE 72.8 60 0.013 42.1 NA −0.94 0.0004 −0.06 0.88

SVM fastICA 75.2 110 0.006 30.2 0 −0.98 0 −0.9 0.005

linear uICA 73.3 100 0.008 10.5 −0.5 −0.70 0.1 0.65 0.02

Kernel-ICA 75.7 40 0.020 0.4 −0.8 −0.75 0.1 0.48 0.4

InfoMax 71.4 20 0.0049 8.9 NA −0.11 0.73 0.71 0.008

Extended InfoMax 74.3 10 0.1363 2.3 −1.3 −0.08 0.79 0.03 0.91

SVM JADE 75.7 20 0.0432 0.8 NA −0.10 0.80 0.40 0.09

polynomial fastICA 75.7 20 0.0001 8.5 −0.3 0.27 0.38 0.76 0.004

(q = 3) uICA 75.7 90 0.0013 9.1 −0.3 −0.23 0.46 0.76 0.47

Kernel-ICA 75.7 20 0.0440 0.8 −0.5 −0.20 0.3 0.45 0.10

InfoMax 74.3 30 0.0192 12.1 NA −0.54 0.069 0.10 0.75

Extended InfoMax 80 120 0.0038 6.8 −1.4 −0.96 0 0.88 0

JADE 75.7 70 0.0534 51.8 NA −0.78 0.008 0.74 0.009

SVM fastICA 78.6 100 0.0659 76.3 0 −0.99 0 0.74 0.005

RBF uICA 71.8 60 0.0002 0.1 −1.8 −0.17 0.59 0.65 0.019

Kernel-ICA 75.7 70 0.0070 1.7 −0.3 −0.41 0.3 0.57 0.09

The columns numbered from 1 to 9 represent: (1) classification accuracy (%), (2) Number of PCs, (3) average coefficient mutual information, (4)
and (5) normalized average kurtosis of super- and sub-Gaussian coefficients, (6) and (7) correlation coefficient between the classification accuracy
and the mutual information with its corresponding p value, (8) and (9) correlation coefficient between the classification accuracy and the positive
kurtosis with its corresponding p value
Bold value indicates the highest accuracy value

significant correlation. In contrast, strong statistically signifi-
cant correlations between the accuracy of the SVM classifier
with an RBF kernel and mutual information were measured.
In this case, 3 out of the 6 ICA approaches yield statisti-
cally significant correlations and the best performing clas-
sifier (i.e., SVM-RBF with Extended InfoMax) shows the
second highest correlation. The linear SVM shows a strong

correlation between mutual information and accuracy at least
for 4 out of the 6 ICA approaches (i.e., Informax, Extended
InfoMax, JADE, fastICA) consistently in Tables 2, 3, 4, 5.
This suggests that independence is associated with a more
linearly separated feature space.

Overall, the Architecture II yields a smaller classification
accuracy than the Architecture I.
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Fig. 3 First ten basis images
for Architecture II obtained by
InfoMax (first row), Extended
InfoMax (second row), JADE
(third row), fastICA (fourth
row), undercomplete ICA (fifth
row), and kernel-ICA (sixth
row). The images are depicted in
decreasing order of normalized
kurtosis

7.2 JAFFE database

7.2.1 Architecture I

The experimental results are summarized in Table 5. The
facial expressions in JAFFE database are a little bit harder to
be recognized than those recorded in the C-K database due to
the fact that the human expressers in the former database were
less expressive than those in the latter database. As a conse-
quence, a larger number of PCs had to be retained in order to
obtain the maximum recognition rate of 66.67% for the CSM
classifier. This rate was obtained by all ICA approaches with
Architecture I. However, the accuracy differences between all
possible classifier pairs employing different ICA approaches
are not statistically significant at 95% level of significance.

In JAFFE database, a statistically significant correlation
coefficient between mutual information and the accuracy
of the CSM classifier for all ICA approaches was found
except uICA. Moreover, the correlation coefficient between
the accuracy of the CSM classifier and kurtosis was found
to be statistically significant for all ICA approaches. This
was not the case for the correlation coefficient between the
accuracy of the CSM classifier and either mutual information
or kurtosis for the C-K database. The linear SVM classifier
yields the highest accuracy 79.4%, when the extended Info-
Max and the fastICA approaches are employed. From the
inspection of Table 5, it is seen that very strong statistically
significant correlations between the classification accuracy

and the mutual information of basis images as well as the
classification accuracy and the positive kurtosis of the basis
images are measured for the best performing ICA approaches
with the linear SVM. Table 6 depicts the confusion matrix for
test images from JAFFE when a linear SVM in Architecture-
I with fastICA is employed. It is seen that “fear” is the most
difficult expression to be recognized, which is confused 2
times with “neutral”, another 2 times with “sadness”, once
with “anger” and another time with “disgust”. We note that
the expressers from the JAFFE database are less expressive
compared to those from the C-K database.

7.2.2 Architecture II

The highest accuracy of 79.4% was obtained with the linear
SVM and fastICA. For the SVM-RBF classifier, it is worth
mentioning that the accuracy difference when Extended Info-
Max is employed instead of uICA is statistically significant
at the 95% level of significance. All other pairwise accuracy
differences either within the same classifier due to different
ICA approaches employed or across different classifiers are
statistically insignificant at the same level of significance.

In the case of the SVM with a linear kernel, a statisti-
cally significant strong correlation between the classification
accuracy and the mutual information was found for features
extracted by InfoMax, Extended InfoMax, JADE, and fas-
tICA. The negative correlation between the accuracy of the
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Table 5 Experimental results for the JAFFE database and Architecture I

Classifier Approach 1 (%) 2 3 4 5 6 7 8 9

InfoMax 66.7 40 0.0077 15.5 NA −0.75 0.004 0.62 0.030

Extended InfoMax 66.7 50 0.0043 16.4 NA −0.85 0.0004 0.66 0.017

JADE 66.6 50 0.0014 19.8 NA −0.81 0.007 0.68 0.040

CSM fastICA 66.7 50 0.0041 17.0 −0.5 −0.88 0 0.70 0.010

uICA 66.7 60 0.0066 5.6 −0.2 −0.41 0.183 0.69 0.011

Kernel-ICA 66.7 50 0.0179 2.2 NA −0.84 0.003 0.72 0.027

InfoMax 76.2 60 0.0013 19.6 NA −0.98 0 0.92 0

Extended InfoMax 79.4 110 0.0095 29.5 NA −0.99 0 0.92 0

JADE 73.2 80 0.0089 31.8 NA −0.77 0.008 0.74 0.09

SVM fastICA 79.4 110 0.0095 27.4 NA −0.97 0.001 0.91 0

linear uICA 77.2 110 0.0113 1.4 NA −0.83 0.001 0.62 0.009

Kernel-ICA 76.2 80 0.0097 2.3 NA −0.60 0.3 0.26 0.2

InfoMax 71.4 70 0.0028 22.6 NA −0.92 0 0.83 0.007

Extended InfoMax 60.3 20 0.0289 7.4 NA −0.51 0.08 0.74 0.005

JADE 63.4 20 0.0263 8.7 NA −0.62 0.36 0.71 0.09

SVM fastICA 63.4 20 0.0266 8.1 NA −0.42 0.17 0.14 0.65

RBF uICA 62.5 40 0.0122 22.9 −0.2 −0.39 0.20 0.21 0.50

Kernel-ICA 63.5 20 0.0396 1.9 NA −0.45 0.09 0.40 0.19

The columns numbered from 1 to 9 represent: (1) classification accuracy (%), (2) Number of PCs, (3) average basis image mutual information, (4)
and (5) normalized average positive and negative kurtosis of the basis images, (6) and (7) correlation coefficient between the classification accuracy
and the mutual information with its corresponding p value, (8) and (9) correlation coefficient between the classification accuracy and the positive
kurtosis with its corresponding p value
Bold value indicates the highest accuracy value

Table 6 Confusion matrix for the test images from the JAFFE database when a linear SVM in Arcitecture I with fastICA is employed

Anger Disgust Fear Happiness Neutral Sadness Surprise

Anger 7 0 0 0 0 0 0

Disgust 0 8 0 0 0 0 0

Fear 1 1 6 0 2 2 0

Happiness 0 0 0 9 1 2 0

Neutral 0 0 0 0 7 1 0

Sadness 1 0 0 0 0 7 0

Surprise 0 0 0 0 2 0 6

linear SVM and mutual information indicates again that per-
formance increases as mutual information decreases.

7.3 Performance enhancement using leave-one-set
of expressions-out

One possible way of improving accuracy is by exploiting
maximally the available data set. To do so, we repeated the
experiments by employing the leave-one-set of expressions-
out (leave-one-out for short, [LVO]) strategy. That is, one set
of expressions was left out for test in a cyclic fashion. During
one rotation, the number of training images is 228 and the
number of test images is 6 and by performing 39 rotations
overall 234 test images are produced for the C-K database.

In a similar way, the rotations yield 214 test images for the
JAFFE database.

For both databases, the accuracy of all classifiers
employing different ICA approaches was increased substan-
tially, as can be seen in Table 7. For example, an impressive
performance enhancement was noticed for the kernel-ICA
with the linear SVM in Architecture I applied to the C-K
database. Its accuracy was raised from 78.6 to 86.6% with
LVO.

The statistical significance of accuracy differences at 95%
level of significance was studied for each Architecture and
each database: (i) within the same classifier for all possible
pairs due to different ICA approaches; (ii) across different
classifiers employing the best performing ICA approaches.
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Table 7 Averaged accuracy obtained with leave-one-out. (NA stands for accuracy results that are not available)

Classifier Approach C-K database JAFFE database

Architecture I Architecture II Architecture I Architecture II

InfoMax 81.4 77.3 69.6 72.6

Extended InfoMax 82 80 69.6 70

JADE 79 81.5 69.6 71

CSM FastICA 81.3 81.5 69.6 71

uICA 80.1 81.5 69.6 68.3

Kernel-ICA 81.1 80 69.6 67.8

InfoMax 81.3 NA 80.3 77.5

Extended InfoMax 81.3 NA 83.5 80

SVM JADE 82.3 NA 82.5 78

linear FastICA 84.6 NA 84 81

uICA 83.3 NA 82.6 66

Kernel-ICA 86.6 NA 82.1 78

InfoMax 83.7 80 NA NA

Extended InfoMax 84.6 77 NA NA

SVM JADE 82.4 80 NA NA

polynomial FastICA 87.6 80 NA NA

(q = 3) uICA 83.3 77.3 NA NA

Kernel-ICA 85.7 78.2 NA NA

InfoMax NA 81.5 79 79

Extended InfoMax NA 83.8 64.7 81

SVM JADE NA 80 68.3 77.5

RBF FastICA NA 84 69.3 74

uICA NA 70 65.2 72.5

Kernel-ICA NA 79 68.3 77

Bold value indicates the highest accuracy value

For the C-K database and Architecture I, the only statisti-
cally significant accuracy difference is that between the accu-
racy of the CSM classifier that employs InfoMax (81.4%)and
the SVM with a cubic kernel that employs fastICA (87.6%).
For the C-K database and Architecture II, the use of fastICA
instead of uICA within the SVM classifier with an RBF ker-
nel yields statistically significant performance improvement.
The reader can verify that the accuracy differences between
84 and 77.3% as well as between 84 and 77% are also statis-
tically significant.

For the JAFFE database and Architecture I, it can easily
be checked that the accuracy differences between the CSM
classifier and the SVM linear classifier are statistically signi-
ficant irrespective of the ICA approach employed for feature
extraction. Similarly, the InfoMax within the SVM classifier
employing an RBF kernel yields a statistically significant per-
formance than the other ICA approaches. The accuracy dif-
ferences between the CSM classifier and the SVM classifier
with an RBF kernel, when InfoMax is used, are also statisti-
cally significant. However, there is no statistically significant
performance difference between the SVM classifier with a

linear kernel that employs fastICA and the SVM classifier
with an RBF kernel that employs InfoMax. For the JAFFE
database and Architecture II, the use of fastICA instead of
uICA within the SVM classifier with a linear kernel yields
a statistically significant accuracy difference. Similarly, sta-
tistically significant gains exist between the SVM classifier
with a liner kernel and fastICA (or the SVM classifier with
an RBF kernel and Extended InfoMax) and the CSM clas-
sifier irrespective of the ICA approach that feeds the latter
classifier.

7.4 Comparisons with PCA

To assess the removal of higher-order correlation captured
by ICA, the CSM classifier was directly applied to the eige-
nimages extracted by PCA. The experiments were ran only
for the CSM classifier on the test set and the results are listed
in Table 8. The LVO method, which is detailed in Sect. 7.3,
was also used with PCA and the corresponding results are
included in Table 8.
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Table 8 Experimental results for the C-K and JAFFE databases when PCA is used for feature extraction and the CSM classifier is applied to the
same training and test sets

C-K database
No. of PCs 5 10 20 30 40 50 60 70 80 90 100 110

Accuracy (test set) 57.1 75.7 70 71.4 71.4 72.8 71.4 71.4 72.8 71.4 71.4 68.5

Accuracy (LVO) 67.7 80.7 80.7 78.6 81.2 81.6 81.6 81.6 82 81.6 81.6 81.6

JAFFE database

Accuracy (test set) 38.1 60.3 65 66.7 66.7 66.7 66.7 66.7 69.8 69.8 69.8 69.8

Accuracy (LVO) 50 67.4 72.7 71.4 71 70.5 71.8 71.8 72.7 73.2 73.2 73.2

The accuracy estimated by using the leave-one-out method (LVO) is also recorded
Bold value indicates the highest accuracy value

In the C-K database, the highest accuracy on the test set
(i.e. 75.71%) is achieved with only 10 PCs. For CSM, the
accuracy difference due to PCA instead of the best perfor-
ming ICA approach in Architecture I (74.3%), as is recorded
in Table 2, is not statistically significant at 95% level of signi-
ficance. Nor is statistically significant at the same level of
significance, the accuracy difference due to PCA instead of
the best performing ICA approach for CSM in Architecture
II (72.9%), as is recorded in Table 4. When PCA is used for
feature extraction, the accuracy of CSM is improved by LVO
reaching 82%. For the CSM classifier, Table 7 reveals that
its highest accuracy obtained with ICA approaches in either
Architecture I or Architecture II is 81.4 or 81.5%, respecti-
vely. Obviously, the accuracy differences are not statistically
significant at 95% level of significance.

In the JAFFE database, the same maximum accuracy for
the CSM classifier (69.8%) was obtained by both PCA and
ICA with Architecture II in the test set. ICA in Architec-
ture I within the CSM classifier yields accuracy 66.7% in
the test set. It can easily be verified that the accuracy diffe-
rences on the test set are not statistically significant. When
PCA is used for feature extraction, the accuracy of CSM is
improved by LVO reaching 73.2%. For the CSM classifier,
Table 7 reveals that its highest accuracy obtained with ICA
approaches in either Architecture I or Architecture II is 69.6
or 72.6%, respectively. The accuracy differences are not sta-
tistically significant at 95% level of significance, in this case
as well.

7.5 Subspace selection

Unlike PCA, there is no inherent ordering into the ICs [10].
An ordering parameter could be the class discriminability of
each component [24] defined as the ratio

r = σbetween(k)

σwithin(k)
(21)

where

σbetween(k) =
∑

j

(b
j
k − bk)

2 (22)

σwithin(k) =
∑

j

∑

i

(bi j
k − b

i
k)

2 (23)

with bk denoting the gross mean of coefficient bk , b
j
k being

the j th facial expression class mean of coefficient bk , and bi j
k

standing for the kth coefficient of the i th training image in
the j th facial expression class.

It has been found that, by ordering the ICs with respect
(21), ICA can outperform the PCA approach [10]. We have
repeated the experiments with the CSM classifier in Archi-
tecture I, when feature selection is done according to (21)
and compared the resulted accuracy with that reported pre-
viously (i.e. without subspace selection). We conducted the
experiments for the maximum number of components and
then we selected as many ICs according to (21), so that the
maximum accuracy was obtained. The results are summari-
zed in Table 9. By comparing the results in Table 9 and those
in Table 5, one can see that, in JAFFE database, the accuracy
obtained by each ICA approach after subspace selection is
higher than that reported without subspace selection with
the extended ICA being an exception. By cross-examining
Tables 2 and 9 this observation is roughly valid for the accu-
racy obtained by each ICA approach with the exception of
kernel-ICA in C-K database. However, accuracy differences
are not statistically significant for neither the C-K database
nor the JAFFE one.

We should also mention that a supervised ICA technique,
the so called ICA-FX [34], was developed in order to obtain
features that are not only independent from each other, but
also convey class information, contrary to the other ICA
approaches studied in this paper, which are unsupervised
(i.e. they do not utilize the class information). Unlike the
method described in [24], ICA-FX allows an intrinsic class
information embedding. To examine to what extent the clas-
sification performance is affected by incorporating the class
information inside the training procedure, we ran the ICA-
FX approach on the C-K database and compared it with the
classical ICA approach previously exploited. Due to the fact
that the Architecture I does not allow us to make a compa-
rison against ICA-FX, since ICA is performed on the PCA
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Table 9 Accuracy (%) for the CSM classifier in Architecture I on both databases along with the number of components corresponding to the
maximum accuracy (in parenthesis and italics), retrieved by employing subspace selection

Database Approach

InfoMax Extended InfoMax JADE fastICA uICA Kernel-ICA

C-K 77.1 (80) 77.1 (90) 74.2 (40) 78.5 (110) 72.5 (80) 70 (30)

JAFFE 69.8 (70) 66.6 (80) 68.2 (50) 69.8 (130) 67.7 (40) 68.2 (50)

Table 10 Accuracy results by employing subspace selection with the
help of the ICA-FX approach

C-K database, Architecture II

Classifier CSM SVM RBF

Accuracy 84.28 78.8

The results are shown for the Architecture II on C-K database using the
CSM and the SVM classifiers

projection matrix implying loss of the class label, we chose
ICA Architecture II, where class label is preserved. Table 10
shows that the CSM classifier yields a higher accuracy when
it is fed by features extracted by ICA-FX than those extracted
by the other six ICA approaches. The difference in accura-
cies is found to be statistically significant at 95% confidence
level.

8 Discussion and conclusions

A systematic comparative study of six ICA approaches was
performed for facial expression classification in order to
select the one which provides the best classification accuracy
using two databases, two facial feature extraction architec-
tures, and two classifiers. Regarding the classification perfor-
mance, overall, the fastICA combined with SVMs yields a
reasonable compromise between accuracy and fast run time
for feature extraction. In our study we addressed the follo-
wing issues:

1. Performance variation with the number of PCs: We found
that a small number of PCs can produce a reasonable
recognition performance for a CSM classifier. Although
the present paper exhibits many common issues with the
work described in [10], we must notice that the present
study differs in too many aspects with that in [10] that
does not allow for a fair comparison between the results
reported here and in [10].

2. Implications of applying PCA prior to ICA to reduce data
dimensionality: We found that the use of uICA does not
yield a higher classification accuracy than preprocessing
observations by PCA.

3. Features having super- and sub-Gaussian distribution
did not improve facial expression classification accu-
racy.

4. Independent features obtained by non-linear unmixing
of observations using kernel-ICA, do not improve the
classification performance. This fact indicates that either
there is no such a non-linear mixture in the data, or, if any
non-linear mixture exists, its contribution to the classifi-
cation performance is minimal.

5. The main conclusion drawn from the experiments is that,
overall, as can be seen from Tables 2, 3, 4, 5, there is a
strong correlation between the average mutual informa-
tion of ICs and accuracy. A similar finding was obtai-
ned for sparseness. For the linear SVM classifier, this
relationship is consistently statistically significant, when
InfoMax, Extended InfoMax, or fastICA is used for fea-
ture extraction. However, the degree of the correlation
varies with the classifier and database involved.

ICA yields an efficient coding by performing a sparse
image representation and removing the higher order corre-
lations. Whether this is necessary for efficient image repre-
sentation and pattern recognition purposes, it is still an open
problem. It seems (and this is known to the scientific commu-
nity) that SVMs are more affected by the outliers and noise
which is the case of holistic representation. The outliers and
“noise” are characterized by those parts of the face that are
not essential for facial expression recognition and are present
in a holistic representation that has a low degree of sparse-
ness. As more localized features are obtained by ICA by
employing more PCs and reducing the mutual information,
thus increasing the degree of sparseness, the “noise” is eli-
minated and the performance of SVM improves. In many
cases, we found that obtaining more sparse basis images
(or coefficient) does not necessarily lead to a more accurate
facial expression classification. These results can be related
to the work conducted by Petrov and Li [35]. They investiga-
ted local correlation and information redundancy in natural
images and they found that the removal of higher-order cor-
relations between the image pixels increased the efficiency
of image representation insignificantly. Accordingly, their
results suggest that the reduction of higher-order redundan-
cies than the second-order ones is not the main cause of
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receptive field properties of neurons in V1. It is worth mentio-
ning that there are other sparse image representations such
as Sparse Component Analysis [36], Non-negative Matrix
Factorization [37] and Local Non-negative Matrix Factori-
zation [38], for example, which, unlike ICA do not assume
component independence.

Although we do not deny the role of sparse image repre-
sentations in visual cortex, we argue that a more important
characteristic of an efficient image representation is
feature orientation. Thus, a sparse representation alone does
not seem to be sufficient in achieving the maximum recogni-
tion performance. This observation comes from [39], where
ICA and Gabor filter representation applied to facial expres-
sion recognition were compared. Both ICA and Gabor filters
approaches gave sparse representations and a highly kurto-
tic (non-Gaussian) feature distribution. However, the Gabor
images that contain important spatially oriented features led
to a higher accuracy than the ICA features. Another impor-
tant aspect is normalization. Brady and Field showed that the
entropy of Gabor responses to natural scenes does increase
when a V1 response normalization model is applied [40].
This normalization model decreases the high-order depen-
dencies between the Gabor responses in natural scenes, as
also shown by Wainwright et al. [41], where relationships
between Gabor filters, ICA, and sparse coding are investi-
gated. However, while Gabor filters and ICA may be highly
related, Gabor filters have an advantage over ICA when the
amount of training data is limited. Contrary to ICA, where
the features are learned through learning algorithms invol-
ving large set of training samples whose size influences the
results, Gabor filtering does not actually involve a training
procedure [39].

It is worth noting that Vicente et al. recently investigated
PCA and ICA [25] by comparing their performances for face
recognition when simple classifiers (such as 1-NN classi-
fiers) are involved. Their main conclusion does not contradict
ours evidence: no significant performance gains exist bet-
ween ICA and PCA when no feature selection is performed
prior to classification for these classifiers. However, our work
differs in many aspects from [25] that deals with face recog-
nition only. First, they compared only InfoMax against fas-
tICA, while we compared several linear and non-linear ICA
approaches. Second, we used SVM, which was not employed
and compared in their work. Third, they manually projected
the data either onto one ICA direction or over one eigenvec-
tor direction, while we employed an intrinsic selection based
on class information [34].

Finally, some experiments have been performed by Yang
et al. [42] who found that the whitening step is responsible
for increasing face recognition accuracy not the pure ICA.
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