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Abstract Biometric traits offer direct solutions to the
critical security concerns involved in identity authentication
systems. In this paper, a systematic analysis of the electrocar-
diogram (ECG) signal for application in human recognition is
reported, suggesting that cardiac electrical activity is highly
personalized in a population. Features extracted from the
autocorrelation of healthy ECG signals embed considerable
diacritical power, and render fiducial detection unnecessary.
The central consideration of this paper is the evaluation of an
identification system that is robust to common cardiac irregu-
larities such as premature ventricular contraction (PVC) and
atrial premature contraction (APC). Criteria concerning the
power distribution and complexity of ECG signals are defi-
ned to bring to light abnormal ECG recordings, which are not
employable for identification. Experimental results indicate
a recognition rate of 96.2% and render identification based
on ECG signals rather promising.

Keywords Electrocardiography · Discriminant analysis ·
Complexity measure · Cosine transform

1 Introduction

Automatic, reliable and accurate validation of human’s iden-
tity is required in numerous civilian applications, such as cri-
minal investigations, access authorization and surveillance.
Traditional strategies for identification rely on entities
(tokens, ID cards) or passwords. However, such strategies
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are based on something that the user knows or possesses and
are vulnerable to certain security attacks.

Biometrics are characteristics extracted directly from
human subjects to form signatures for identity verification
systems. By designing the authentication key to be highly
correlated to physiological or behavioral features of an indi-
vidual’s identity, this class of strategies offers airtight secu-
rity [1]. Several biometrics modalities have been used so far,
among which are fingerprints, the iris, the face, the voice, the
keystroke and the gait. Although most of them have gained
wide acceptance, the main limitation in their application is
their defenseless nature against falsification.

According to [1], there are few criteria that a biometric
feature has to meet. First, it must be universal i.e., applicable
to all individuals. Also, it must be significantly reliable over
the enrollees population, and stable over a sufficiently long
period of time. Finally, the feature must be quantitatively
measurable.

Lately, attention has been drawn in the employment of
a new biometric trait, the electrocardiogram (ECG) [2–7].
ECG signals reflect the cardiac electrical activity and subse-
quently, have been studied for medical diagnostic purposes
thoroughly. The idea of identifying subjects with the ECG
is relatively young but it embraces considerable advantages.
The key benefit is the robustness against falsified credentials
as it is hard to steal ECG and impossible to mimic it. In
addition, ECG itself is a liveness indicator, suggesting that
potential applications will have a way to reassure that the
subject who is offering the biometric is indeed the one who
is carrying it. This is not the case with conventional biome-
trics such as fingerprint, iris, face and so on where additional
mechanisms are needed to guarantee liveness.

To date, most of the reported methodologies, use features
which picture morphological attributes of heart beat cycles
(i.e. amplitude and temporal distances of successive fiducial
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points) [2–7]. Such methods rely heavily on the localization
of wave boundaries among heart beats. Current fiducial detec-
tion algorithms are used in the medical field solely, where a
rough approximation of their position is adequate for diag-
nosis. This is not the case with biometric applications, where
in order to extract reliable features from heart beats, they
have to be isolated and perfectly synchronized. Furthermore,
there is no universally acknowledged rule to define fiducial
points with precision [8], which often limits the effectiveness
of underlying biometric systems.

The remainder of this paper is organized as follows.
Sections 2 and 3 provide a brief introduction to ECG wave-
forms, to the sources of inter-individual variability and to
common cardiac disorders. Section 4 reports existing
approaches on ECG based identification. The proposed iden-
tification methodology is discussed in Sect. 5, and the ECG
based authentication technique is described in Sect. 6. Our
experimental results are reported in Sect. 7.

2 Inter-individual variability of ECG

In order to satisfy the requirements for universality and per-
manence, it is crucial to examine the uniqueness of ECG
signals. When monitoring a population, different cardiac
electrical signals conform to roughly the same repetitive pat-
tern. However, further analysis of ECGs can reveal remarka-
bly correlated trends among multiple recordings of a subject.
Paradigms of ECG inter-individual distinctions can be found
in the literature [9–15].

Electrophysiological and geometrical variations of the
heart are embedded in ECG signals. Model studies have
shown that physiological factors such as the heart mass orien-
tation, the conductivity of various areas of the cardiac muscle
and the activation order of the heart, can introduce significant
variability among subjects [14,15].

Furthermore, geometrical attributes such as the exact posi-
tion and orientation of the myocardium, and torso shape desi-
gnate ECG signals with particularly distinct and personalized
characteristics. Other attributes that operate on ECG signals
are the timing of depolarization and repolarization and lead
placement. In addition, except for the anatomic idiosyncrasy
of the heart, unique patterns are related to physical attributes
such as the body habitus and gender [9,13–16]. The electrical
map of the area surrounding the heart may also be affected
by variations of other organs in the thorax [15].

Various methodologies have been suggested to eliminate
the differences among ECG recordings. The idea of clearing
off inter-individual variability is standard when seeking to
establish normal rates of the ECG morphology [10]. Auto-
matic diagnosis of pathologies via the ECG becomes more
feasible when the level of variability among healthy people
is lower [14]. In such algorithms, personalized parameters of

every subject are treated as random variables and a number of
criteria have been defined to quantify the degree of subjects’
similarities on a specific feature basis.

However, a critical consideration is the vulnerability of
ECG waveforms to rhythm anomalies, referred to as cardiac
arrhythmias. Several types of arrhythmias can be met, some
of which are life-threatening [such as ventricular tachycardia
(VT) or fibrillation (VF)]. Most often, a cardiac arrhythmia
disrupts the healthy representation of the signals. Therefore,
the invariance of an ECG biometric system to rhythm distor-
tions is a basic prerequisite.

In this paper, motivated by both the cardiac irregularities
problems and the fiducial detection inaccuracies, a new fra-
mework is presented for identification via the ECG. A win-
dowing technique is adopted to eliminate the shortcomings
of localizing fiducial points. A new approach capable to iden-
tify malignant ECGs by means of an irregularity screening
process is proposed.

3 ECG waves and cardiac disorders

For the ECG to be recorded, electrodes are attached on the
surface of the body in multiple configurations that provide
representation of typical aspects of the heart cycle. The first
ECG recorder apparatus was developed by the physiologist
Wiliam Einthoven in the twentieth century. Up to now, the
traits of heart’s electrical behavior have been under analysis
for clinical applications.

The ECG is a non periodic but highly repetitive signal that
is mainly composed of three waves. Figure 1 shows the most
significant components of an ECG signal i.e., the P wave,
QRS complex and the T wave.

The P wave has usually positive polarity and a duration of
120 ms. This wave mainly reflects the depolarization of the
right and left atria. The QRS complex describes the depola-
rization of right and left ventricles. In normal sinus rhythms,
its duration varies between 70–110 ms. Finally, the T wave
reflects a depolarization of the ventricles and is usually

Fig. 1 Salient components of an ECG signal
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observed about 300 ms after the QRS complex. However, its
exact position relies on the heart rate and appears closer to
the QRS complex at rapid rhythms [17].

The spectral characteristics of ECG waves are central to
the application of signal processing algorithms. A healthy P
wave is considered to contribute to the low frequency compo-
nents at about 10–15 Hz. On the other hand, a QRS complex
has a spectrum of comparately high frequencies due to its
steep slopes. The spectral content of this complex is usually
found in the 10–40 Hz band.

In ECG monitoring, commonly encountered types of pre-
mature heart beats are the premature ventricular contraction
(PVC) and the atrial premature contraction (APC). These
kinds of irregularities are not lethal but they indicate abnor-
malities of the heart.

In addition, there are cases refered to as arrhythmias,
where the structure of the signals undergos severe alterations
and require immediate medical assistance. Examples of this
type of anomalies are the atrial or VT, atria flutter and VF.

4 Related works

Analysis of the ECG signal has been in the spotlight for
clinical study and research for the past two decades. Only
lately have ECGs been considered for biometric applications.

Biel et al. [2] were among the first to manifest the applica-
bility of ECGs as biometric. Their approach is to extract a set
of temporal and amplitude features from heart beats that are
normally used in clinical diagnosis. The features were obtai-
ned directly from a SIEMENS ECG equipment and their
dimensionality was reduced by simple analysis of the cor-
relation matrix. Further selection was based on experiments.
The experimental setup involved 20 subjects of varying ages.
An 100% human identification rate was achieved but the
major drawback of the method was the lack of automatic
recognition, since specific apparatus was used for feature
extraction.

Israel et al. [3] introduced an ECG based identification sys-
tem where only temporal features were employed. An input
ECG was filtered to eliminate the effects of noise and the
signal’s peaks were detected in the time domain by finding
local maxima in the regions surrounding each of the P, R and
T complexes. Then, 15 features were extracted that denote
the time distances between detected features. Wilks’ Lamda
was used for feature selection and linear discriminant analy-
sis (LDA) was used for classification. The system achieved
100% subject recognition and 81% heartbeat recognition rate
for a total of 29 subjects. In a later work by Israel et al. [4], a
framework that fuses face and ECG traits was reported. This
method offers automatic identification, however, it may still
experience shortcomings due to sensitivities in the localiza-
tion of fiducial points.

Shen et al. [5] reported another method for one lead ECG
identity verification. First, template matching was used to
compute the correlation coefficient among QRS complexes
in order to verify possible candidates. A decision based neural
network (DBNN) was then used to strengthen the validation
of the identity resulting from the first step. The experimental
results of this system, tested on 20 subjects have provided
a recognition rate of 95% for template matching, 80% for
the DBNN and 100% for the combination of the two. This
methodology was later extended by Shen [6] with a larger
database containing 168 healthy subjects. The highest iden-
tification rate achieved in that work was 95.3%.

Wang et al. [7] suggested an integration of analytic and
appearance features from heart beats. The preprocessed ECG
signal was subjected to fiducial points detection to measure
temporal and amplitude distances. The classification perfor-
mance showed that even though amplitude features have dis-
criminative ability, analytic features are not sufficient for
identification. Experiments were conducted on the extrac-
tion of appearance related characteristics with the help of
either the principal component or LDA. When the two types
of features were combined in a hierarchical scheme, a 100%
subject and 98.9% heart beat recognition rates were reported
for 13 subjects.

In summary, the main drawback of the above systems
is the low accuracy in the automatic detection of fiducial
points. Healthy abnormalities of ECG recordings can lead
to rejection of heart beats due to poor localization of their
components. Figure 2a illustrates ECG heart beats collected
from the same subject and synchronized at the QRS complex,
revealing large variation around the P and T waves. Figure 2b
shows an example of inaccurate detection of T wave’s boun-
daries.

In addition, these works did not account for cardiac irre-
gularities. This can be a limiting factor for such technologies.
There are some kinds of abnormalities (PVC, APC) caused
by every day factors such as caffeine consumption or stress,
which affect the ECG. Previously proposed ECG identifi-
cation systems did not address this issue. Furthermore, the
recognition features considered in [2–7] are themselves vul-
nerable to common cardiac irregularities.

Among the earliest works on arrhythmia detection is Chen
et al. [19]. The suggested methodology makes use of the
quantitative differences between the autocorrelation (AC) of
healthy and arrhythmia records. A regression test was applied
on the peak magnitudes of autocorrelated ECGs to reveal the
aperiodic nature of VF and tachycardia signals. Even though
the system achieved high detection rates it did not address
irregularity types such as PVC and APC.

To improve the identification accuracy including abnor-
mal heart beat scenarios, we propose a new technique for
ECG recognition. We suggest that classification features are
derived from the AC of ECG windows [20,21]. A power
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Fig. 2 a Waterfall diagram of ECG pulses collected from the same subject of the MIT-BIH Normal Sinus Rhythm database [18]. b Ambiguous
localization of fiducial points

criterion for the autocorrelated ECG is applied in conjunction
with a complexity measure (Cm), to distinguish and discard
those irregular segments not suitable for recognition. Auto-
matic detection of cardiac disorders is a very active area of
research. However, in order to control complexity, our frame-
work for arrhythmia detection is based once more on AC to
seek for malignant ECG segments. As a final step, classifica-
tion is carried out among healthy recordings brought to light
by LDA. The proposed approach completely eliminates the
need for fiducial point localization and provides improved
operability.

5 Identification methodology

Human identification is essentially a pattern recognition
problem involving three main steps: preprocessing, feature
extraction and classification. The framework described in
this paper is graphically depicted in Fig. 3. Preprocessing
can be regarded as a noise and artifact removal step. Feature
extraction operates directly on the AC of a few seconds of
ECG to form distinctive personalized signatures for every
subject. As in most pattern recognition problems, classifica-
tion among a gallery set is the last step of the identification
process.

The AC of repetitive signal like the ECG, exhibits diacri-
tical characteristics in a population. However, before extrac-
ting features for classification, it is essential to examine
various windows from the ECG records and verify only those
with healthy AC structure. This step reassures the robustness
of the system to the presence of pathological records. During
screening, the algorithm discards those segments that have
abnormal AC, through a careful detection of irregular heart
beats.

5.1 Preprocessing

The ECG data in raw format contain a lot of noise which
has to be eliminated. The most common types of noise in
ECGs are the baseline wander and the powerline interference.
Baseline wander is caused by low frequency components
that force the signal to extend away from the isoelectric line.
The source of this kind of artifacts is the respiration, body
movement or inadequate electrode attachment. Furthermore,
power line interference is generated by poor grounding or
conflicts with nearby devices [17].

To reduce these effects, a Butterworth band pass filter of
order 4 is used in the current experimentation. The cutoff fre-
quencies of the filter are 1–40 Hz based on empirical results.

5.2 PVC Screening

The repetitive property of the ECG signal is not distorted in
cases where atrial premature contraction heart beats appear.
An APC results in pulses that are morphologically healthy but
occur earlier in time than expected. Since the signal preserves
its quasi-periodic property the structure of the AC does not
change significantly (Fig. 4) and thus the ECG is suitable for
identification. The methodology used for screening is tolerant
to APC ECG windows.

On the other hand, a PVC results in beats whose appea-
rance deviates substantially from healthy heart beats. A PVC
usually inhibits the next normal beat and introduces a pause of
almost twice the length of a cycle [17]. This kind of irregular
heart beats force the AC to deviate from that of a repetitive
signal as illustrated in Fig. 5, where a healthy and a PVC
ECG segment along with the respective ACs are plotted. It
is crucial to detect and dismiss PVC ECG segments before
proceeding to the identification stage.
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Fig. 4 a Lead II healthy ECG segment from a subject in the MIT-BIH Arrhythmia database [22]. b Lead II ECG segment with APC around the
second from the same subject. c Normalized autocorrelations of the ECG windows from a to b

PVC screening acts complementary to the identification
module. In the remainder of this paper we will refer to ECG
windows with PVCs (and not APCs) as irregularities, sug-
gesting that they are not qualified for identification.

A window based method is adopted for feature extraction
both to extract identity related features and to detect mali-
gnant segments. This releases the need for fiducial points
detection. Windowing is allowed to blindly cut the recording
even in the middle of a pulse. The only restriction is for the
window length to be greater than the average heart rate so
that multiple pulses are included.

The AC of ECG segments has been reported to contain dis-
tinctive information of individuals [20,21]. The motivation

behind the use of AC is to capture the repetitive property
of the ECG and to operate on ECG samples which would
otherwise need to be scanned by a fiducial detector.

PVC screening encapsulates two modules. As a first step, a
power criterion is placed on the AC spectrum. For those ECG
windows that meet this criterion, a second process based on
an entropy measure which indicates the degree of complexity
in the AC is then applied.

Both the arrhythmia screening and identity verification
processes depend on the AC of ECG windows. This commo-
nality allows to better control the overall computational effort
of the system. The AC is computed for every ECG window to
provide a shift invariant representation of similarity features
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Fig. 5 a Lead II healthy ECG segment from a subject in the MIT-BIH Arrhythmia database [22]. b Lead II ECG segment with PVC from the same
subject. c Normalized autocorrelations of the ECG windows from a and b

over multiple heart cycles. The AC coefficients ̂Ryy[m] are
computed as:

̂Ryy[m] =
N−|m|−1

∑

i=0

y[i]y[i + m] (1)

where y[i] is the windowed ECG for i =0, 1, . . . (N−|m|−1),
and for different time lags m = 0, 1, . . . (M − 1); M � N .
To normalize, the AC ̂Ryy is divided by its maximum value at
zero lag. Normalization is necessary because even though the
major contributors to the AC distribution are the P, T waves
and the QRS complex, large variations in amplitudes might
appear even among the heart beats of the same subject.

5.2.1 Power criterion

When exposing an ECG window to a premature ventricular
heart beat, the morphology of the AC is distorted as illustrated
in Fig. 5. The regularity of the AC peaks is strongly affec-
ted, and the spectrum of the signal is penetrated by smaller
frequencies. The discrete cosine transform (DCT) is used at
this point, to define a criterion for the power distribution. The
frequency coefficients of the AC are estimated as follows:

Z [u] = G[u]
N−1
∑

i=0

z[i] cos
(2i + 1)uπ

2N
(2)

where N is the length of the signal. For the screening algo-
rithm z[i] is the autocorrelated ECG obtained from Eq. 1.
The G[u] is given by:

G[u] =
⎧

⎨

⎩

√

1
N , u = 0

√

2
N , 1 ≤ u ≤ N − 1

(3)

Figure 6a demonstrates the normalized ACs of 24 healthy
and PVC diagnosed ECGs, while Fig. 6b shows the corres-
ponding frequency distribution with DCT.

To distinguish between healthy and malignant DCT wave-
forms, the criterion considered in this paper measures the
concentration of power. It has been observed that the AC of
arrhythmic ECG segments has half of its total power concen-
trated in the frequency interval 0.5–7.2 Hz. For any power dis-
tribution, the DCT coefficient where half of the total power
is contained can be found by:

k = min

(

|
k

∑

i=1

Z(i)−
N

∑

i=k

Z(i)|
)

(4)

where Z(i) are the coefficients of the DCT.
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Fig. 6 a Normalized autocorrelation (zoomed) of healthy and PVC ECG windows. b Frequency spectrum of healthy and PVC ECG windows with
the discrete cosine transform

In principle, the Discrete Fourier Transform (DFT)
can be used instead of DCT. However, a criterion concer-
ning the distribution of the power spectrum applies better
to DCT coefficients, because of the energy compaction pro-
perty of DCT. In addition, experimental results have shown
that the DFT is less distinctive between normal and abnormal
signals.

5.2.2 Complexity measure

The Cm of finite sequences has been proposed by Lempel
and Ziv [23]. Few works have been reported about its appli-
cability in analyzing ECG signals [24–26]. In this paper, Cm
is associated to the AC of ECG signals because it is compu-
tationally efficient.

A Cm reveals the number of patterns that are hidden in
a finite sequence, to describe the degree of disarrangement.
In this work, Cm is used to capture essential morphological
structures of the autocorrelated ECG. By acknowledging that
the AC of quasiperiodic or repetitive signals has peaks recur-
ring periodically, Cm is expected to reveal their frequency of
appearance.

Prior methodologies have utilized the Cm to detect VF
and VT arrhythmias [24–26]. In this class of arrhythmias,
not only the rhythm but the total of the ECG’s physiological
properties may change.

On the other hand, premature atrial and ventricular
contractions result in isolated abnormal heart beats, while
healthy pulses also appear. The Cm cannot be used to detect
localized differences between healthy ECGs and PVC or
APC, however, it is suitable for the detection of VT
and VF.

To apply this measure on the AC, with the mathematical
definitions provided by Lempel and Ziv [23], it needs to be
translated into a binary sequence. In this binary projection,
local maxima are represented by ones while all the remaining
samples by zeros. For peak detection, AC waveforms are
passed through a lowpass filter with a cutoff frequency at
5 Hz so that small peaks of less interest are eliminated. Our
expectations that the complexity of arrhythmic AC will be
higher than that of healthy records are verified by the results
of Fig. 7.

According to [23], the algorithm for the computation of
the Cm proceeds as demonstrated in Fig. 8 and the following
definitions:

123



336 SIViP (2009) 3:329–343

0  1.3 3 4.16
−10

−5

0

5

10
Healthy Window of Subject A 

Time (sec)

V
ol

ta
ge

 (
m

V
)

0  1.3 2.7 4 5.5 7 8.3

0  1.3 2.7 4 5.5 7 8.3 0  1.3 2.7 4 5.5 7 8.3

−0.2

−0.1

0

0.1

0.2

0.3
Autocorrelation of A   

Time (sec)N
or

m
al

iz
ed

 P
ow

er

0
0.2
0.4
0.6
0.8

1
AC Peaks (Complexity Measure: 0.0293) 

 

Time (sec)

0  1.3 3 4.16
−10

−5

0

5

10
Irregular Window of Subject A 

Time (sec)

V
ol

ta
ge

 (
m

V
)

0  1.3 2.7 4 5.5 7 8.3
−0.4

−0.2

0

0.2

0.4

0.6
Autocorrelation of B   

Time (sec)N
or

m
al

iz
ed

 P
ow

er
0

0.2
0.4
0.6
0.8

1
AC Peaks (Complexity Measure: 0.0515)  

Time (sec)

(a) (b)

(c) (d)

(e) (f)

Fig. 7 a–b A healthy and a malignant ECG window (Lead II). c–d The corresponding normalized ACs after filtering. e-f Binary sequences showing
the peaks of the autocorrelated ECGs

• x is the binary AC sequence
• S and Q are two binary strings
• SQ is the concatenation of S and Q
• l(SQ) is the length of sequence SQ
• SQπ is SQ where the last character is deleted
• v(SQπ ) is the vocabulary of SQπ , i.e. different substrings

that SQπ embeds

When the algorithm begins, the Cm is set to one. S and Q
are set to be the first and second characters of the sequence
x, respectively. In the midst of the computations, if Q is an
existing word in the v(SQπ ) vocabulary, then Q is appended
with the next symbol of x, while Cm and S remain the same.
However, if Q does not exist in v(SQπ ), Cm is augmented by
one, SQ is assigned to S, and Q becomes the next character
of the x sequence. This process stops when the sequence x is
scanned.

Lempel and Ziv [23] have also shown that the upper limit
of Cm for a binary sequence x of length l(x) = n is:

lim
n→∞ Cm(n) = b(n) ≡ n

log2(n)
(5)

A normalized complexity measure C which is independent
of the sequence length is utilized instead:

C = Cm(n)

b(n)
= Cm(n)

log2(n)

n
(6)

Q  v( SQ  ) 

( ) ( )l SQ l x

S SQ 

1Cm Cm

i+1Q x
i+1Q Qx

Cm Cm

S S

YES NO

YES

Cm

NO

Fig. 8 Block diagram depicting the steps of the algorithm for the com-
putation of Cm

Note that 0 ≤ C ≤ 1 with values closer to one indicating
higher complexity.

5.3 Feature extraction and identification

Having acquired an optimal set of suitable windows for iden-
tification, the next step toward recognition is to design fea-
ture vectors and classify. As mentioned earlier, features for
identification are based on the AC coefficients. However the
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Table 1 (A) Variance matrices,
mean and projection of linear
discriminant analysis. (B)
Covariance matrix, ensemble
mean and projection of principal
component analysis

(A) (B)

Sb = 1

N

U
∑

i=1

Ui (zi − z)(zi − z)T Scov = 1

N

U
∑

i=1

Ui
∑

j=1

(zi j − z)(zi j − z)T

Sw = 1

N

U
∑

i=1

U
∑

j=1

(zi j − zi )(zi j − zi )
T

zi = 1

Ni

Ui
∑

j=1

zi j z = 1

N

U
∑

i=1

Ui
∑

j=1

zi j

y = ψT z yi j = ψT (zi j − z)

dimensionality of such a feature space is considerably high
and inappropriate for cost efficient systems.

To reduce the dimensionality, the LDA is utilized. LDA is a
well-known statistical method for feature extraction. Super-
vised learning is performed in a transform domain so that
eventually the feature space is projected in lower dimensions
and the classes are better distinguishable.

Given a training set Z = {Zi }U
i=1, containing U classes

with each class Zi = {zi j }Ui
j=1 containing a number of auto-

correlated windows zij a set of K feature basis vectors
{ψm}K

m=1 can be estimated by maximizing Fisher’s ratio.
Maximizing this ratio is equivalent to solving the following
eigenvalue problem:

ψ = arg max
ψ

|ψT Sbψ |
|ψT Swψ | (7)

where ψ = [ψ1, . . . , ψK], and Sb and Sw are the between
and within class scatter matrices respectively, computed as
shown in Table 1(A). LDA finds ψ as the K most significant
eigenvectors of (SW )

−1Sb which correspond to the first K
largest eigenvalues. A test input window z undergoes the
linear projection y = ψT z, prior to classification [27].

6 Authentication

Identity authentication (or verification) is a very critical pro-
cedure performed by biometric systems other than identifi-
cation. The major difference between identification and veri-
fication is the state of knowledge in which the system stands
concerning the identity of the subject.

During the identification mode, the purpose is to find the
best match between someone’s biometric characteristic and
all subjects stored in the gallery set. However, during the
verification procedure the person to be verified claims an
identity and the system decides on the validity of the claim.

In the present work, authentication is accomplished by set-
ting a threshold with respect to the distance between an input
subject and the gallery set. When applying LDA the similarity
measure employed is the Euclidean distance, and a threshold

is selected for that metric. In cases where the resemblance
of a pair is unacceptable (higher in distance than allowed)
the system denies the validation of the so claimed identity.
On the other hand, an individual is positively authenticated
when there is an adequately small distance between a pair.

LDA is a supervised learning technique and is thus appro-
priate for identification as this is a difficult one to many pro-
blem. Authenticating, on the other hand, is an one to one
process and class-dependent methodologies are not required.

A well known unsupervised technique to provide optimal
projection in lower dimensions, is the principal component
analysis (PCA). PCA does not engage class information,
while managing to retain useful data (principal components)
and eliminate redundancies. The route of computations is
depicted in Table 1(B) following the notation for LDA.

When PCA is applied for authentication, the cosine dis-
tance is used to associate input ECG windows and windows
belonging to the target identity. By applying a threshold on
this measure, validation or rejection decisions can be made.
It is expected that the LDA will outperform PCA, because
class information is not embedded in the latter. However, the
computational effort of PCA is smaller compared to that of
the LDA. This makes PCA more appropriate for real time
applications.

7 Experimentation

An evaluation of the proposed framework is reported in this
section. The experimentation proceeds as depicted in Fig. 9.
The electrode configuration used to test this method corres-
ponds to Lead II. However, all lead signals can be used and
combined as they have approximately equal discriminative
power [28].

The similarity measure considered is the Euclidean dis-
tance. Classification is performed with the nearest neighbor
(NN) classifier. The PVC screening performance is mea-
sured in (healthy/malignant) classification rates. The ove-
rall identification performance is measured in window or
multiple window recognition rates. The difference is that
when measuring window recognition rates, an individual is
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LDA

Feature Extraction

Classification

Euclidean Distance

Identity

Criteria met Criteria not met

ECG Windows 
Discarded

PVC Screening

Input ECG
Autocorrelation

Filtering

Preprocessing

Fig. 9 Flow chart of the experimentation procedure

identified based on only one ECG recording, while for mul-
tiple window recognition more than one readings are consi-
dered using voting.

7.1 ECG data

To evaluate the performance of the proposed framework in
healthy and arrhythmia settings, a series of experiments was
conducted on three public databases: the MIT-BIH Normal
Sinus Rhythm [18], the MIT-BIH Arrhythmia database [22]
and the PTB database [29].

The MIT-BIH Arrhythmia database contains 48 ECG
signals that were recorded between 1975 and 1979 at the Beth
Israel Hospital Arrhythmia Laboratory. Each of the records is
around 30 min long, and they show various kinds of arrhyth-
mias. The sampling frequency of this database is 360 Hz. For
our experimental setup, 30 subjects were selected to form a
subset of the MIT-BIH Arrhythmia database. This selection
was performed in a way that the subset is consisted of ECGs
which show mostly PVC and APC. Since the database offers
only one recording for every subject, we partitioned the ECG
signals into two halves, one for the gallery set and one for
testing.

The MIT-BIH Normal Sinus Rhythm database contains 18
ECG recordings from subjects that did not exhibit significant
arrhythmias. The recordings were collected at the Laboratory

of Boston’s Beth Israel Hospital and the sampling frequency
is 128 Hz. For our experimental setup, a subset of the database
containing 13 subjects was composed. The selection of the
subjects for our experiments was based on the length of the
recordings. The waveforms of the remaining recordings had
many artifacts that reduced the valid heart beat information
and for this reason they were not used in our experiments.
Once again, the signals were partitioned into two halves, one
to build the gallery set, along with the arrhythmia records,
and one to test the system. In order to provide comparative
results between the two databases, the records of the MIT-
BIH Normal Sinus Rhythm Database were re-sampled to
360 Hz.

The PTB database is offered from the National Metro-
logy Institute of Germany and it contains 549 ECG recor-
dings from 294 subjects. This database contains ECG signals
diagnosed with a variety of clinical conditions (myocardi-
tis, valvular diseases, myocardial infraction and so on). The
recordings that match the requirements of the current simula-
tions are those marked as healthy. Every record includes the
conventional 12-leads and 3 Frank leads ECG. The sampling
frequency of these recordings is 1 kHz and it was resam-
pled to 360 Hz for our experiments. In addition, for every
subject in the PTB database, at least two recordings are avai-
lable which were collected a few years apart. A subset of
13 healthy subjects was formed from the PTB database for
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our experiments. The criteria for the selection of the records
were, to demonstrate healthy ECG waveforms and to have at
least two recordings for every subject. The older recording of
every subject was used to built the gallery set and the newer
one to test the performance of the method.

7.2 Identification experimental results

For the experimental setup, the window length examined is
approximately 10 s. Since the available datasets offer longer
recordings, a number of ECG windows is acquired from every
subject’s recording.

Autocorrelation. The normalized AC is computed for every
window using Eq. 1. Out of this sequence, only a segment
beginning at zero lag is retained for further analysis. The
length of this segment is approximately equal to the duration
of a QRS complex (the average for all recordings).

A longer AC segment can be used, however, we suggest a
length corresponding to the main pulse complex. The rational
is that the QRS complex exhibits the less variability in time
under different heart rate scenarios [3,30]. Such a prearran-
gement makes the system more robust in cases where anxiety,
stress and exercise increase the average heart rate.

Power criterion. To apply the power criterion as introduced
in the methodology section, the DCT of every AC segment
is computed. For each DCT feature vector the power conver-
gence is approximated through Eq. 4. Analyzing a test set,
it was observed for malignant ECG segments that 7.2 Hz is
roughly the frequency where half of the total power of the
distribution is reached. By adjusting a threshold for classi-
fication, and by categorizing a subject as non-healthy if at
least one of his/her windows meets the PVC standards, 80%
of the subjects are classified correctly. When this principle is
combined with the identification procedure, a 94.7% window
recognition rate is achieved.

Complexity criterion. Another option for isolating healthy
ECG segments is to apply the Cm as discussed earlier. Fil-
tering the autocorrelated ECGs makes the AC peaks easier
to detect and convert them into a binary sequence. To cap-
ture information about the uniformity of AC peaks, the Cm is
evaluated on the entire AC waveform and not just a segment.

For the Cm a classification threshold of 0.048 signifies
arrhythmic and healthy records. Figure 10 demonstrates the
system’s performance in detecting non-healthy subjects. Fol-
lowing the definition for the power criterion, a subject’s ECG
is considered to be malignant if at least one of the corres-
ponding ECG windows have AC complexity higher than the
threshold. By employing the Cm, 78% of the subjects are
correctly classified as healthy or not. Moreover, when the
Cm alone is combined with the identification mechanism, a
92.5% window recognition rate is achieved.

Integration of the two principles enhances the precision
of system. To integrate the two criteria a rule is introduced
to dictate that healthy ECG segments are those for which
both criteria agree. Roughly speaking, two criteria in stead
of one reassure that the treated ECGs have indeed healthy AC
structures. By applying strict thresholds for both of them, a
more accurate assessment for ECG windows is obtained.

Linear discriminant Analysis. The final phase of the recog-
nition procedure is to assign inputs to clusters. By applying
the above mentioned procedure, a set of 2,905 healthy ECG
windows is formed. These windows serve for testing the
LDA, which is previously trained on a separate but equal
amount of healthy training ECGs. For identification among
C subjects, LDA can reduce the dimensionality down to C-1
which corresponds to 55 samples for the current experimen-
tal setup. A feature vector of that length forms the signature
of every testing subject.

Having acquired personalized signatures for the testing
subjects, the system proceeds to classification. The window
recognition rate accomplished is 96.2% which indicates that
a finer selection took place in the screening step, when the
two criteria were integrated. Finally, multiple window recog-
nition is estimated with majority voting, to offer an identifi-
cation performance of 54 subjects out of 56 (26 healthy and
30 arrhythmic).

The overall performance of the described framework is
presented in Fig. 11. In this Figure, the classification percen-
tages between every subject in the gallery set and the rest of
the subjects including himself is demonstrated in terms of
window recognition rates. Cases of misclassified ECG win-
dows appear mostly among non-healthy subjects. More spe-
cific, Figs. 11d and e illustrate the recognition performance
for healthy and malignant ECG cases independently.

The screening algorithm is highly efficient in detecting and
discarding inappropriate windows for identification. Howe-
ver, the misclassification error at that step is propagated
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Fig. 11 Classification percentages of every subject against all subjects
in the gallery set. a Identification performance when only the power
criterion is applied during PVC screening. b Performance on the com-
plexity measure for screening. c Identification performance of the ove-
rall system (combined criteria) both for healthy and malignant subjects.

d Contingency matrix of the overall system tested on healthy subjects
only (PTB and MIT-BIH Healthy database). e Contingency matrix of
the overall system tested on subjects with cardiac irregularities only
(MIT-Arrhythmia Database)

to the identification phase, affecting the performance of the
system.

Nevertheless, the experimental results demonstrate that
ECG based human identification in heart beat disorder
scenarios is feasible. A comparison of the current scheme
with other frameworks found in literature is summarized in
Table 2. The confidence of the decision made by the recogni-
zer can potentially increase if more than one instances of a
subject’s ECG is stored in the database. In such a case, a
K-nearest neighbor K > 1 technique or simple majority
voting can be employed.

7.3 Authentication experimental results

Both the linear discriminant and principal component ana-
lyses have been tested for identity authentication purposes.
The selection of a threshold for the Euclidean and cosine dis-
tances can be performed empirically based on results from
a small training set, however this section presents results for
various threshold choices.

Figure 12a shows the validation performance of the
system i.e., the rate at which legitimate subjects are verified
when reducing dimensionality via discriminant analysis.
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Table 2 Table associating the performance of the current approach with other works in the field

Israel et. al Biel et. al Shen et. al Wang et. al Proposed
method

Feature extraction Fiducial
detection

� � � � X

Feature origin Heart beats Heart beats Heart beats Heart beats ECG windows

Feature specifics Temporal Temporal +
amplitude +
slopes

Temporal +
amplitude

Temporal +
amplitude +
appearance

autocorrelation

Extraction
method

Automatic Machine based Automatic Automatic Automatic

Feature selection Wilks’ Lamda Inspection of the
correlation
matrix

– PCA or LDA LDA

Classification LDA and
Majority
voting

SIMCA model
based on PCA

Prescreening
and distance
classification

Nearest centre,
nearest
neighbor,
LDA

Nearest
neighbor on
Euclidean
distance

Electrode orientation Neck, chest limb leads
(I, II, III)

Lead I Lead II Lead II

Special experiments (1) Electrode
configurations

Different
operators

Analysis of the
effects of age,
gender weight,
height and
BMI

Integration of
analytic and
appearance
features

Arrhythmia
scenarios

(2) Anxiety
conditions

Performance Subject rates 100% 100% 95, 30% 100% 96.42%

Heart
beat/window
rates

82% – – 98, 90% 96.2%

Number of
subjects

29 20 168 13 56 (2905
windows)

Correspondingly, Fig. 13a demonstrates the verification rates
with PCA. The validation rates achieved support the perspec-
tive of application in larger ECG databases.

However, authentication has undesired effects, such as
false rejections and acceptances. A false rejection takes place
when the system denies an identity claim made by a legiti-
mate user. False acceptance is the case where the system
verifies the identity of an intruder. The false acceptance and
false rejection rates (FAR and FRR) are plotted against dif-
ferent distance thresholds in Figs. 12b and 13b for LDA and
PCA features, respectively. It is usually up to the designer to
choose a distance threshold for the system. For instance, if a
system has a means to reassure that no intruders will claim
an identity, a larger selection of the distance threshold seems
more appropriate.

According to a related NIST internal report [31], an accu-
rate face recognition system of 1% FAR corresponds to a
verification rate of 90.3%. Furthermore, a fingerprint reco-
gnizer with 1% FAR offers a verification rate of 99.9%.
For the current LDA based system, the verification rate is
87% when FAR is 1%. These findings suggest that ECG can

potentially be a powerful biometric characteristic, analogous
to more traditional and advanced biometrics.

8 Conclusion

In this paper, an identity recognition system based on ECG is
reported and evaluated. It is demonstrated that human iden-
tification via the ECG is feasible and highly effective. The
ECG’s robust nature against falsification makes it rather pro-
mising for security systems, as it offers airtight security in
all situations. it has been found that although using multiple
heart beats of an individual can increase the accuracy of the
decision, identification can still be carried out by using just
a 10 s ECG recording.

To completely eliminate the need for fiducial points detec-
tion, the AC of ECG segments is utilized as a source of highly
distinctive signatures among subjects. Discriminant analysis
operates on the AC signals to project the features into a lower
dimensional space while preserving significant information.
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Fig. 13 Principal componet analysis a Window verification performance for different cosine distance thresholds. b Corresponding false acceptance
and rejection rates

No pulse synchronization is needed, keeping this way the
computational effort of the system in low levels.

The major novelty of the current work lies in addressing
identification in presence of cardiac irregularities which are

often encountered and which would otherwise jeopardize
recognition. The methodology discussed is invariant to the
presence of atrial premature heart beats, while an arrhythmia
screening algorithm is proposed to discard windows which
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involve ventricular originated heart beats. It is suggested that
a power and a Cm criterion constitute a strong combination
in isolating pathological ECG segments and resulting in a
recognition performance of 96.2%.

It is expected that the ECG will soon find the niche in the
biometric world. Future works will investigate the potential
of applying ECG based identification under nonfunctional
factors, such as stress aging and drug usage.
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