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Abstract A new adaptive region-based image fusion
approach is proposed. To implement image segmentation, the
piecewise smooth Mumford-Shah segmentation algorithm is
studied and a fast and simple method is proposed to solve the
energy function. Two complementary functions u+ and u−
of the algorithm, which are respectively looked as objects
and background of the image, are extended into the whole
image domain, and they are computed by linear or nonlin-
ear diffusion. The key to the algorithm is to make optimal
fusion decisions for every segmented region. For this pur-
pose, an evaluation approach has to be given to measure
the performances of the available fusion rules. Therefore an
energy-based evaluation model, derived from the Total Vari-
ation principle, is proposed. By numerical experiment it has
been demonstrated that despite an increase in complexity,
the new approach has shown a number of advantages over
previous ones, for example the ability to preserve all rele-
vant information and remove some of side effects such as
reducing contrast and sensitive to error of registration.

Keywords Image fusion · Energy function ·
Segmentation · Region-based fusion

List of symbols

u the observed image

u+ the object regions of an image

u− the background regions of an image
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e-mail: yjzhang@mail.xjtu.edu.cn

u0 an input image

R2 2D real domains

|∇u| gradient of the image u
∣
∣∇u+∣

∣ gradient of the image u+
∣
∣∇u−∣

∣ gradient of the image u−

℘ a bounded open subset in 2-dimensional real
domains

ω an open curve set

� boundary curves

φ level set curves

∂ω zero level set curves in 2D space

φ0 zero level set curves in 3D space

d distance between point and zero level set

ETV energy of the region of an image from TV model

EMTV energy of the fused region of an image from the
fusion evaluation model

F speed of evolution of curves

δ(φ) delta function in Chan–Vese–Mumford–Shah
model

us a smooth component of the observed image u0

s scale level

ũs resulting image obtained from us by the four-
point averaging method

� segmented regions of an image

uR a reference image with the least value for each
pixel point

λ a positive parameter to control the fidelity in the
energy formulation

µ a positive parameter to control the fidelity in the
energy formulation

k iteration numbers
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1 Introduction

Multiple sensor modalities provide data at different spatial,
temporal and spectral resolutions, which allow for enhanced
performance in a wide range of modern military and civilian
imaging applications. It is the aim of image fusion to inte-
grate different data in order to obtain more information than
can be derived from each of the single sensor data alone.
A good example is the fusion of images acquired by sen-
sors sensitive to visible/infrared (VIR) with data from active
synthetic aperture radar (SAR). The information contained
in VIR imagery depends on the multi-spectral reflectivity
of the target illuminated by sunlight. SAR image intensi-
ties depend on the characteristics of the illuminated surface
target as well as on the signal itself. The fusion of these dis-
parate data contributes to the understanding of the objects
observed. In general, image fusion methods can be grouped
into two classes: color related techniques and statistical or
numerical methods. The first comprises the color composi-
tion of three image channels in the RGB color space as well
as more sophisticated color transformations like the inten-
sity-hue-saturation (HIS) and hue-saturation-value (HSV).
These methods involve the transformation of a three- band
combination of a multi-spectral image to an intensity, hue,
and saturation color space image. The intensity component of
this transformation is replaced with the panchromatic (PAN)
image, and a transformation back into an RGB image is
performed. Unfortunately, as stated by Liu in [1] that the
spectral distortion introduced by these fusion techniques is
uncontrolled and not quantified. Another disadvantage of
these methods is that they are limited to three band
composites.

Statistical approaches are implemented based on chan-
nel statistics including correlation and filters like the PCA
method [2].

The numerical methods follow arithmetic operations such
as image differencing and ratios to add a channel to other
image bands. A sophisticated numerical approach uses wave-
lets in a multi-resolution environment. Wavelet transform is
a linear tool in its original from [3], but nonlinear extensions
of discrete wavelet transform are possible by various meth-
ods like lifting scheme [4]. Wavelet decompression image
merger methods address the limitations described above by
its ability to be performed on individual bands, and a decrease
in the spectral distortion. It shows a good position of a func-
tion (here this function is the image) in spatial and frequency
spaces.

Image information fusion can be carried out at signal, fea-
ture, and symbol levels [5]. Higher-level feature and symbol-
level fusion algorithms combine information in the form of
feature descriptors and probabilistic variables. The lowest
level of signal image fusion fuses image information in its
raw image signal representation by combining multiple input
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Fig. 1 Block diagram of the image fusion approach

image signals into a single fused image output. The objective
of signal-level image fusion is to represent the whole visual
information contained in a set of input images as a single
fused image without distortion or loss of information. How-
ever, it is practically impossible for representation of all the
visual information from an input set of images as a single
image. A more practical approach is based on the faithful
representation in the fused image of which only the most
important input information is generally accepted. A signal-
level image fusion algorithm is therefore required to identify
the most important information in the input set of images
and to transfer, without loss, this information into the fused
image. One way of achieving feature-level fusion is with a
region-based fusion scheme, in which an image is initially
segmented in some way to produce a set of regions. Then var-
ious properties of the regions can be calculated and applied to
determine which features from which images are included in
the fused image. Lewis and O’Callaghan et al. in [6] proposed
a feature level fusion method, in which region segmentation
was performed by a dual-tree complex wavelet transform,
and region based fusion is done in the wavelet domain. Yang
and Blum [7] implemented the region fusion using a rig-
orous application of estimation theory, where a statistical
image formation model using Gaussian mixture distortion is
built for each region and the EM (expectation–maximization)
algorithm is used in conjunction with the model to develop
the region-level EM fusion algorithm to produce the fused
image. The general flow diagram of the region-based fusion
algorithm is shown in Fig. 1.

First, an image should be selected for segmentation. In
order to obtain better segmentation, the selected image should
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be with the most visual information of the input images.
Then the image is segmented to produce a set of regions,
and the valid regions that are with their areas greater than
a given threshold value are located by contour tracing algo-
rithm. The corresponding regions in the other images are
computed by linear mapping, and the small-size versions of
the input images also are computed. Finally, optimal fusion
rules will be made for each region by evaluating all of can-
didates. In our current scheme, only some simple fusion
approaches are included as candidates, but the extension
can be performed easily by adding more complex fusion
approaches like wavelet-based methods into the library. After
that, more computational time needs to be spent in evaluating
processes.

In the region-based fusion methods, however, the use of
more sources of sensor information in imaging systems leads
to “information overload” problems. In response to this,
research attention in the past ten years is focused on tech-
niques which aim to deal with the overwhelming increase of
input data provided by multi-sensor arrays without canceling
out the benefits of additional information. The field of multi-
sensor image fusion represents a plethora of such techniques
designed to reduce the physical amount of input image data
while preserving information.

Note that the previous researches had taken into account
relatively simple methods to combining the source images
over the whole image domain. It is practically impossible
to get the fused image with the best good quality by this
way due to non-homogeneous of images. The purpose of
this paper is to propose a region-based image fusion scheme
for multi-sensor images. As have seen in Fig. 1, an input
image with most important visual information is initially seg-
mented to produce a set of regions. Then, the corresponding
regions on the other images are obtained by linear mapping.
The available fusion rules are stored into a database, and an
evaluation model is proposed to make the best fusion deci-
sions for every region. The final fused image is obtained by
combining the fused regions in which fusion has been per-
formed with their own fusion rules. Despite an increase in
complexity, it has shown a number of advantages over previ-
ous methods, for example the ability to preserve all relevant
information in the fused image and remove some of side
effects such as reducing contrast and sensitive to error of
registration.

The rest of this paper is organized as follows. Section 2
introduces related work and background. Section 3 describes
a new strategy for implementation of image segmentation.
The fusion scheme is described in Sect. 4, and the related
modules are also introduced, which is followed by algorithm
overview and numeric results given in Sect. 5 and Sect. 6.
Finally the conclusions and acknowledgments are given in
Sect. 7 and Sect. 8, respectively.

2 Related work and background

In this section, we briefly mention here some of the most
related relevant works.

2.1 Rudin–Osher–Fatemi energy model

Known from the existing segmentation and denoising
approaches, the energy functional approaches have been
given widely attention. Details regarding the interaction and
close relations among these approaches can be found in [8–
10]. A classical variational denoising algorithm is the total
variation (TV) minimizing process of Rudin–Osher–Fatemi
(ROF) [11].

Let u be an observed image, u0 the input image, and |∇u|
the gradient of u at region boundaries. The ROF algorithm
seeks an equilibrium state (minimal energy) of the energy
functional comprised of the TV norm of the observed image
u and the fidelity of this image to the noisy input image u0,
and a variant of the model is introduced as:

ETV =
∫

�

(

|∇u| + 1

2
λ(u − u0)

2
)

dx, (1)

where λ is a scalar controlling the fidelity of the solution to
the input image (inversely proportional to the measure of de-
noising). In the ROF model (1), the energy is defined over
the image domain and typically processes local maximum
at the intensity edges occurring at object boundaries. The
magnitude of the energy reflects the edge intensity distri-
butions. Thus, the image with more visual information has
larger energy than the image with few one. Based on this
idea, the energy value can be used to evaluate image proper-
ties.

2.2 Level sets and Chan–Vese–Mumford–Shah model

Let ℘ be a bounded open subset of R2, with � as its bound-
ary. Then a two-dimensional image u0 can be defined as
u0 : ℘ → R. In this case ℘ is just a fixed rectangular grid.
Now consider the evolving curve � in ℘, as the boundary
of an open subset ω of ℘. In other words, ω ∈ ℘, and � is
the boundary of ω. This idea is to embed this propagating
curve as the zero level set of a higher dimensional function
φ, which is defined as follows:

φ(x, y, t = 0) = ±d (2)

where d is the distance from (x, y) to ∂ω at t = 0, and the
plus or minus sign is chosen if the point (x, y) is outside or
inside the subset ω.

Now, the goal is to make an equation for the evolution of
the curve. Since the interface � may be represented as the
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zero iso-contour � = {(x, y)|φ(x, y, t) = 0}. The equation
for the motion of the interface is:

∂φ
∂t = F |∇φ|
φ(x, y, 0) = φ0(x, y)

(3)

where the set {(x, y), φ0 (x, y) = 0} defines the initial con-
tour, and F is the speed of propagation.

For certain forms of the speed function F , this reduces to a
standard Hamilton-Jacobi equation. There are several major
advantages to this formulation. The first is that φ(x, y, t)
always remains a function as long as F is smooth. As the
surface φ evolves, the curve � may break, merge, and change
topology.

Chan–Vese [12,13] solved Mumford–Shah energy model
[14] using the level set methods. Considering a two-phases
image in the piecewise smooth Chan–Vese–Mumford–Shah
(CVMS) approach, the object regions are defined as u+
(maybe multi-connected), the background regions as u−, and
φ is the level set function. The pixels in the region of u+ are
with φ > 0, while the pixels in the region of u− with φ < 0,
and the signed distance is applied as the level set function.
Generally, an initial contour, in level set-based approaches,
has to be interactively given by user for the evolution of the
curve. An energy function is defined over the image domain
and typically with local maximum at the object’s bound-
aries. According to definition of the energy function, as the
curve evolves the noises are continuously removed from both
regions of u+ and u− with different speeds. As a result, the
regions of u+ and u− become more and more smooth as time
goes by, and the boundaries of the regions are identified as
zero level set.

3 Image segmentation and region extraction

Segmentation has been very important for the region-based
image fusion approaches. The regions on the image should be
exactly extracted so that adaptive fusion rules can be applied
on them in turn to improve the fusion quality. However, unlike
the previous work in [15,16], each of the regions segmented
is extended to the whole image domain for easy to compute.
Furthermore, the union of segmented regions not only cov-
ers the image domain, but also the range of each region is
extended into the whole image domain. For example, if there
were only an object on the image to be segmented, the final
segmentation would consist of two regions: one covered by
the object and another occupied by the background of the
image. However each of them has values over the whole
image domain with zero on boundaries of the regions, oppo-
site signs in the interior and exterior of regions, respectively.
One of advantages of this approach is that objects would
never be lost, even if segmentation algorithms missed some

of them, since the missed objects would be further processed
in the same way with the regions they lie on.

Inspired by the background subtraction approach [17], a
new approach is proposed to solve the piecewise smooth
CVMS model for region segmentation, which has been dem-
onstrated in [18] detailedly. Unlike definition in the CVMS
algorithm, in our scheme, u+ and u− are directly given by two
smooth versions of the image obtained respectively at differ-
ent scales or resolutions. Assume that u+ is regarded as object
regions of the image, and u− as background regions. u+ is
obtained by edge preserving diffusion, and u− with blurring
operation. Consequently, difference between u+ and u− is
applied to estimate the initial level set.

Note that the gradient terms, i.e.
∣
∣∇u+∣

∣ and
∣
∣∇u−∣

∣ in the
CVMS model, induce the blurring effect and the boundary
length term affects the strength of the model’s rigidity only.
Both of them have little contribution to computation of the
region boundaries. They can be removed for simplicity, and
the energy formulation can be rewritten as:

E(u+, u−, φ) =
∫

inside(φ)

∣
∣u+ − u0

∣
∣

2

dx

+
∫

outside(φ)

∣
∣u− − u0

∣
∣

2

dx . (4)

Then, minimizing (4) described above with respect to φ, we
can obtain the zero level set as (see Appendix for detail):

∂φ
∂t = δ(φ)

(

|u− − u0|2 − |u+ − u0|2
)

= δ(φ)(u− − u+)
(

u++u−
2 − u0

) , (5)

With both time step and δ(φ) fixed, we can easily compute
the values of φ for each point. The regions of u+ or u− may
be respectively located via the sign of φ, and their boundaries
are determined based on the change of the sign of φ.

3.1 Choice of scale level for u+

For obtaining the u+ image, the original image should be
filtered to remove noises and small texture details, while
the object boundaries must be remained. Therefore deno-
ising operators with edge–preserving regularization should
be applied to the computation of u+. Unlike the definition in
CVMS model, here the regions of u+ are extended into the
whole image domain with positive value inside, negative out-
side and zero on its boundaries. However, only the available
parts, i.e. the interior of the regions, are used in the seg-
mentation algorithm. For removal of noises and background
texture, the image frequently is filtered with some scale level.
The choice of scale levels depends on the magnitude of noises
and texture details to be removed. The coarser scale should
be selected for images with the bigger level of texture details
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Fig. 2 Original image and u+ obtained using different filtering parameters

or strong noises, while the finer scale level could be chosen
for “clean” images. All kinds of linear or nonlinear methods
such as Gaussian filtering, isotropic smoothing, and Perona–
Malik regularization can be used for computation of u+. In
our numerical experiment, the four-point averaging has been
applied, which is given as:

u+(k+1)
i, j = 1

4
(u+(k)

i−1, j + u+(k)
i+1, j + u+(k)

i, j−1 + u+(k)
i, j+1), (6)

where k is iteration numbers, and the number of iteration is
equivalent to the scale level. In other words, the results at
coarser scale can be obtained from (6) by selecting the more
number of iteration, while the one at finer scale by the few
number of iteration.

It has been numerically verified that the scale level for u+
has significant effect on the segmentation results, in partic-
ular, for noisy image [18]. Figure 2 shows several results,
which are obtained via the convolution of the original image
with some normalization 2D Gaussian kernels. The origi-
nal image is shown in (a), and the corresponding results
obtained with different filtering parameters are shown in (b)–
(d), respectively.

3.2 Construction of u− or background

For computation of u−, the objective is to obtain an approxi-
mate background image. The original image has to be blurred
enough for the removal of all objects, texture and noises, only
the background left behind. It has been demonstrated that if
the scale level for u− were beyond a threshold, the resulting
segmentation would keep constant. However it is practically
impossible to automatically determine an adaptive thresh-
old for every image. If the threshold were selected too big it
would result in expensive computational cost, or else some
false objects would be remained as shown in Fig. 2b and c
if a smaller threshold were applied. Therefore, one has to
select a bigger threshold in practice for better segmentation.
To reduce computational cost, a fast multiresolution-based
smooth algorithm is studied and applied on the segmenta-
tion. Considering multi-resolution images are the approxi-
mation of the original image at different scales to form a
pyramid, all of them have self-similarity. The similarity is

shown in two aspects: one is intra-scale clustering, where
the similarity features at the same scale show the clustering
property; the other is inter-scale similarity, in which the chil-
dren inherit the features of their parent and have their own
features. Considering the two properties described above, it
could be concluded that the children have features similar
to their parent plus parent’s neighbours across scales and the
finer features can be led by the coarser result. On basis of this
theory [19], one can do smoothing at coarser scale, then the
coarse result is extended to the original image at scale space
for speeding up smooth. The algorithm can be described as
follows:

1. Let us denote a smooth component of the original image
u0, s denotes the selected scale level and a pixel on us

corresponds to 2s pixels of u0.
2. us is calculated from u0 with the bilinear interpolation

approach.
3. ũs is obtained by smoothing us using the four-point aver-

aging method (6) with a few iterations.
4. Prolongating ũs to the original scale as u−.

4 Region-based fusion scheme

As have been pointed out before, most previous fusion meth-
ods apply only one fusion rule. Thus the actual images are
very complex and usually contain a number of non-homoge-
neous regions. For obtaining better fusion quality, adaptive
fusion rules should be respectively applied in each region
on the image. Inspired from the scale space approach, the
image fusion, in our scheme, is performed not directly on
the original image, but on its small-size version, which is
obtained by bilinear interpolation to speed up the evaluation
process.

4.1 Strategy of fusion evaluation

The goal of this paper is to determine an adaptive fusion rule
for each region on the image to get good fusion quality. To
do this, the key is to find out a good evaluation approach. It
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then is used to make region fusion decisions via evaluating
the performances of the available fusion approaches.

Let u denote a fused image, � a segmented region, and
u− the approximate background. uR is defined as a reference
image with the least value for each pixel point, which can
be calculated by the minimum pixel value fusion algorithm.
The energy formula, derived from ROF model, is given by:

EMTV =
∫

�

(|∇u| + λ(u − u−)2 + µ(uR − u−)2) dx, (7)

where λ is a scalar controlling the fidelity of the solution to
the input image, and µ is a positive parameter, which controls
the effect of approximate background on the fused region �.

The first term, i.e. the TV term |∇u|, is applied to measure
the blurring effect of u. It would have larger value if u were
with more details or edges. The second term (fidelity term)
that measures the closeness to u− is used to estimate the vari-
ance of detail level of the region �. The last term is applied to
compensate for the variation of the approximate background
owing to the change of the total energy. For example, theoret-
ically a larger energy value should be obtained from (7) for a
point with higher brightness on the fused image. However a
lower energy value could be obtained from the second term if
the corresponding point of the approximate background u−
were with higher brightness, too. Therefore the total energy
should be adjusted by the last term to maintain a larger value.
In which case described above, the point on u− has higher
brightness, whereas the corresponding one on the reference
image uR is with lower brightness. Consequently, a larger
value is obtained from the last term, and the larger energy
value at the point is maintained as the total energy. On the
contrary, if u− were very close to uR the last term would have
little contribution to the total energy.

Comparing with the TV model, in which the TV term
|∇u| is included to consider the variation of the details of the
image, the fidelity term and the last term in (7) can measure
the information remained and the variation of brightness and
contrasts, respectively. Therefore it will be more effective to
be applied to measure the fusion quality.

4.2 Fusion decision making

In contrast with previous approaches, different fusion rules
are chosen and applied to the segmented regions on an image.
To select best fusion rule for a specified region, all the avail-
able fusion rules in the fusion rule database have to be tried
and evaluate one by one in the region. In our current
implementation, there are a lots of fusion rules in the library,
including average pixel value, PCA, maximum pixel value,
minimum pixel value methods, etc.

Generally speaking, the cost of evaluating depends on the
number of fusion rules in the fusion rule database. The reason

for this is that the fusion rules have to be tried in turn over
each of the regions. As more fusion rules are added into the
database, it will require much more time in evaluating pro-
cesses. To overcome the drawback, one way is to reduce the
number of available fusion rules, which is implemented by
classifying the fusion rules into groups based on applica-
tions. First, likely fusion rules are chosen and arranged in
a group for a specified application, then the evaluation can
be done based on the candidate fusion rules in the group.
Practically it is possible to enumerate all available candidate
rules for a specified application. Some methods like exem-
plar-based evaluation or histogram analysis may be consid-
ered to exclude some non-available candidates; another is to
reduce the evaluating cost by using small-size image based
on the philosophy of scale space. That is, evaluation pro-
cesses are performed on a small-size version of the image.
The resulting fusion in each region, however, is carried out
on the original size image.

5 Results and comparison

The proposed approach has been implemented in Matlab6.5
on Microsoft Windows XP environment and tested on sev-
eral images. The weight coefficients in (7) are with λ = 2.8
and µ = 1 in all our experiments. The results are presented
and compared with previous methods. Figure 3 shows the
fusion of a visual image (a) and a millimeter wave (94 GHz
MMW) image (b), which is employed in concealed weapon
detection. It can be seen that the concealed weapons have
been exposed on the fused image. The segmentation is per-
formed on the original image (a), and the segmented result
is shown in (c) with the number of valid regions 11. The
corresponding results obtained by the maximum pixel value
and the average pixel value methods are also given in (d) and
(e), respectively. The result obtained by proposed method is
shown in (f), where different fusion rules have been applied
on the segmented regions. For example, in contrast (d) with
(f), it is clear that the maximum pixel value method was
applied on the region at the center of the image.

Figure 4 shows the fusion of two multi-focus office images.
The input images are respectively shown in (a) and (b). The
final segmentation, performed on the image (b), is shown in
(c). The number of the valid regions is 21. The results by the
average pixel value and the PCA approaches are shown in (d)
and (e), respectively. The fused image obtained by proposed
method is shown in (f). It can be seen that the result with pro-
posed method is slightly better than those of the other ones,
since different fusion rules are applied for each of the valid
regions.

To demonstrate effectiveness of proposed evaluating
model, the results in Figs. 3 and 4 are evaluated by using
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Fig. 3 Fusion results on visual
and radiometric images

the proposed algorithm and several classical evaluation
approaches, and the evaluating results are analyzed and com-
pared. The evaluation methods include the root mean square
error (RMSE) that is used as the evaluation criterion between
the exemplar image and the fused image, standard deviation
(SD) that is the square root of the variance, which reflects
the spread in the data, the entropy which is used as a mea-
sure of information content, which is the average number of
nits needed to quantize the intensities in the image, the cross
entropy that evaluates the information difference between the
two images to give the grey distribution of them, and the cor-
relation (CORR) between the fused image and the original
image. The evaluated results are listed in Table 1.

It can be clearly seen that the average pixel value method
gave the baseline results for the images in Figs. 3 and 4. The
PCA method gave a better result for the images in Fig. 3,
and an equivalent but a slightly worse result for the images
in Fig. 4. In contrast with the average pixel value and PCA
methods, the maximum pixel value method gave the best

result for the images in Fig. 3. However, these methods have
poor results relatively to proposed method.

6 Conclusions

This paper presented an adaptive region-based image fusion
approach. First, the whole image domain is separated into a
set of regions based on homogeneity of images. The image
fusion then is replaced by the fusion on the regions. For
obtaining good fusion quality, an energy model is proposed
to measure the performances of the candidates in the regions
to make optimal fusion rules for each region. Note that avail-
able fusion rules come from the fusion method library. Only
some simple fusion rules are included now, but more fusion
rules can be easily added into for extension. This extension
would be future works. Since the fusion rules of the library,
however, have to be tried one by one for every region during
evaluating, it would be computationally expensive. Several

123



222 SIViP (2007) 1:215–223

Fig. 4 Fusion of multi-focus
office images

Table 1 Results from variant evaluation methods for the fused images in Figs. 3 and 4

Images Methods Entropy Cross entropy CORR SD RMSE Energy

Figure 3 Average pixel value method 4.7822 1.2894 0.7906 33.3076 25.7100 0.3581

PCA method 4.5917 2.3752 0.8067 65.1407 35.2116 0.3832

Maximum pixel value method 3.9715 0.7345 0.7919 56.1162 33.4767 0.3904

Minimum pixel value method 1.5185 −0.0646 0.3278 14.9178 39.1286 0.1378

Proposed method 4.4995 2.2482 0.8087 65.4615 35.5667 0.4812

Figure 4 Average pixel value method 7.1828 0.1458 0.9964 107.8074 9.1439 0.3081

PCA method 7.1849 0.1347 0.9961 107.6955 9.4462 0.3112

Maximum pixel value method 7.1475 0.0712 0.9935 112.7557 12.5125 0.2947

Minimum pixel value method 7.1293 0.0707 0.9920 103.5971 13.3671 0.3044

Proposed method 7.2450 0.1837 0.9889 113.3761 16.4087 0.3103

efforts had been tried to overcome the drawback, but it would
be holding a candle to the sun if there were much more fusion
rules to be tried. Another difficulty is segmentation. Since one
of the input images is selected for segmentation in our algo-
rithm it is not perfect. A few regions may be missed in some
applications like the fusion of IR images and visible images.
The segmentation based on compounded input images needs
to be researched further.
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Appendix

Let

E� =
∫∫

�

f (x, y) dx dy (I)

The goal is to find out the boundary ∂� of a region � for a
given function f : �2 → � that yields an extreme of the
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energy E�, which can be solved by the Green theorem, and
described as following:

Let

Q = 1

2

x∫

0

f (t, y) dt, and P = 1

2

y∫

0

f (x, t) dt (II)

Known from Green theorem,

E� = ∫∫

�

(
∂ Q
∂x + ∂ P

∂y

)

dx dy = ∮

∂�

(Q dy − P dx)

= ∮

∂�

(

Q · dy
ds − P · dx

ds

)

ds

=
L∫

0

(

Q · dy
ds − P · dx

ds

)

ds

=
L∫

0
F

[

s, x(s), y(s), x ′(s), y′(s)
]

ds

(III)

where s denotes the arc length and L, the length of ∂�. From
variational method, the corresponding Euler–Lagrange equa-
tion is given as
⎧

⎪⎨

⎪⎩

Fx − d

ds
Fx ′ = 0

Fy − d

ds
Fy′ = 0

, (IV)

and it can derivate the following equations:
⎧

⎪⎨

⎪⎩

y′(s)∂ Q

∂x
− x ′(s)∂ P

∂x
+ dP

ds
= 0

y′(s)∂ Q

∂y
− x ′(s)∂ P

∂y
+ dQ

ds
= 0

(V)

where
⎧

⎪⎨

⎪⎩

dP

ds
= x ′(s)∂ P

∂x
+ y′(s)∂ P

∂y
dQ

ds
= x ′(s)∂ Q

∂y
+ y′(s)∂ Q

∂y

(VI)

Substituting (VI) to (V), one could get
⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

−x ′(s)
(

∂ Q

∂x
+ ∂ P

∂y

)

= −x ′(s) · f (x, y) = 0

y′(s)
(

∂ Q

∂x
+ ∂ P

∂y

)

= y′(s) · f (x, y) = 0

(VII)

Using the gradient descent method, one could obtain the
curve evolution equation as:
⎧

⎪⎪⎨

⎪⎪⎩

∂x

∂t
= − f (x, y) · dy

ds

∂y

∂t
= f (x, y) · dx

ds

(VIII)

Known from differential geometry,
→
τ =

(
dx
ds ,

dy
ds

)

is the

unit tangent vector, and
→
N =

(

− dy
ds , dx

ds

)

is the unit inward

normal vector. Therefore one could obtain:

∂C

∂t
= f (x, y) · →

N . (IX)
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