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different spatial and temporal scales, daily and seasonal 
activity patterns, and changes in habitat use (Bauwens et al. 
1996; Maia-Carneiro and Duarte-Rocha 2013; Muri et al. 
2015). However, this thermal and microhabitat dependence 
on the environment could be compromised given the effects 
of climate change (Böhm et al. 2016; Winter et al. 2016) and 
habitat modification (Block et al. 2013; French et al. 2018).

Environmental transformation by human activities is 
generally perceived as posing a serious threat to biodiver-
sity (McKinney 2006; Hamer and McDonnell 2010). Rural 
and urban landscapes were both originally natural environ-
ments that have been fragmented or transformed into areas 
of economic development for human populations (Fahrig 
2003). In rural landscapes, certain species that are resilient 
to anthropogenic changes are commonly dominant (Blair 
2001; Zipperer and Guntenspergen 2009). One of the great 
challenges in the science of ecology and behavior is to 
understand how these resilient species can be non-sensitive 
to changes in their habitat and survive within these new 

Introduction

Thermal and microhabitat ecology are two topics that have 
often been studied independently in many ectothermic taxa. 
For example, in reptiles, thermal and microhabitat charac-
teristics are closely related to behavioral abilities and are 
pivotal features for survival (Martín-Vallejo et al. 1995; 
Melville and Schulte II 2001; Scheffers et al. 2014; Chuk-
wuka et al. 2021). Reptiles can respond to variations in the 
availability of thermal and microhabitat resources across 
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Abstract
Thermal and microhabitat resources are two fundamental requirements that affect the life history of any ectotherm. Fur-
thering our understanding of how reptilian species meet these ecological requirements is crucial for assessing the impact 
of environmental and anthropogenic changes on populations. Here, we explored some fundamental aspects of the thermal 
and microhabitat ecology of Conopsis biserialis, a small, burrowing, and endemic earthsnake of central Mexico. The study 
was conducted during the rainy season in a montane site disturbed by rural activities. The mean field body temperature 
(Tb) of C. biserialis was 26 ± 0.6 ºC. Field Tb did not differ significantly between sex and development stages. However, 
we found that Tb was positively correlated with substrate, air, and under-rock temperatures (Ts, Ta, and Tr) in the rural 
microhabitat. Regression analysis showed that substrate and under-rock temperatures (Ts and Tr) were the parameters 
that best explained Tb variability in the individuals. The temperature and relative humidity under shelter did not differ 
significantly among shelter types and/or rock sizes. In addition to these thermal traits, earthsnakes selected and utilized 
six common biotic and physical elements of the rural microhabitat. Most individuals used high proportions of large and 
medium rocks for sheltering, and these rocks were selected around crop fences and cleared grasslands where the soil can 
be either covered with low vegetation or bare. Our results suggest that, during the rainy season, individuals of C. biserialis 
use and select some biotic and structural resources of the rural microhabitats, and were capable of actively regulating their 
temperature by using shelters with high values of microclimatic homogeneity.
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anthropogenic environments (synanthropic phenomenon: 
Guetté et al. 2017).

Although many species of reptiles (e.g., resource special-
ists) can be vulnerable to extirpation caused by the transfor-
mation or destruction of their natural environment (Garden 
et al. 2007; Mitchell et al. 2008; French et al. 2018), there 
are other ecologically versatile and habitat generalist rep-
tiles (i.e., euryecious species) that cope better with anthro-
pogenic changes (Zappalorti and Burger 1985; Powell and 
Henderson 2008).

The ecology of many species of burrowing snakes that 
inhabit transformed sites has been poorly studied (How and 
Shine 1999; Castañeda-Gonzalez et al. 2011). The highly 
secretive and small burrowing earthsnake Conopsis bise-
rialis (Taylor & Smith, 1942) is an ambush-hunter species 
with a mean snout-vent length (SVL) of 200.3 mm and 
geographic distribution in the Trans-Mexican volcanic belt 
(Goyenechea and Flores-Villela 2006; Castañeda-Gonzalez 
et al. 2011). Frequently, these earthsnakes are found shelter-
ing under rocks or fallen trunks in pine-oak forests (con-
served habitat) and in transformed environments such as 
mosaics of agricultural and small patches of reforested land 
(Castañeda-Gonzalez et al. 2011; Raya-García et al. 2019). 
According to the ecological characteristics and life history of 
their populations (Castañeda-Gonzalez et al. 2011; Arteaga-
Tinoco 2018; Raya-García et al. 2016), C. biserialis seems 
to mainly be a hemisynanthropic species (species that typi-
cally occur in both synanthropic and natural environments).

Although ecological and behavioral knowledge of C. 
biserialis has been increasing (Castañeda-Gonzalez et al. 
2011; Raya-García et al. 2020), the influence of transformed 
habitats and the resilient characteristics that allow this spe-
cies to survive in modified environments remain unknown. 
Here, we studied the basic thermal ecology and microhabi-
tat selection of C. biserialis individuals inhabiting a rural 
montane site. The main objective was to evaluate the use 
of thermal and microhabitat resources during the rainy sea-
son when the species presents its highest abundance. We 
hypothesized that, within this montane rural environment, 
the earthsnakes will select and use microhabitats that pro-
vide stable microclimatic conditions suitable for their ther-
moregulatory activities.

Materials and methods

Study site and snakes

We conducted fieldwork during the rainy season (July-
September: summer) of 2018 in the locality of Ichaqueo, 
municipality of Morelia, Michoacán, Mexico (19°56’86’’N, 
101°13’10’’ W; elevation 2500 m a.s.l). The rainy season 

is the time of peak abundance of this species and few or no 
individuals can be observed/captured during the dry season 
of the year (Castañeda-Gonzalez et al. 2011). Ichaqueo is a 
rural town located within the Transversal Neovolcanic Axis 
region of Mexico and is characterized by the presence of 
farming and forestry activities (Arteaga-Tinoco 2018). Data 
from the National Meteorological System of Mexico (San 
Miguel del Monte Meteorological Station: 16,114) showed 
that the regional environmental temperatures during the 
rainy seasons from 2015 to 2018 were (average: 18.6 °C, 
max: 29.8 °C, min: 8.5 ºC) and total annual rainfall was 
2550.1 mm. The natural vegetation of Ichaqueo is domi-
nated by pine-oak associations (Rzedowski 1978). Since the 
highest number of observations of C. biserialis comes from 
both abandoned and productive farming fields (Arteaga-
Tinoco 2018), we defined the study area around crop and 
livestock grazing fields.

We manually collected all earthsnakes found under rocks 
or bark fragments via the method of visual encounter survey 
(VES). From each individual, we recorded body mass using 
a Pesola 20 g scale and body size (SVL in mm) using a 
tape measure. We also determined the sex of each individual 
using probing techniques for small snakes (Raya-García et 
al. 2017), while development stages were estimated based 
on the SVL value (Castañeda-Gonzalez et al. 2011). The 
minimum SVL of adult individuals is 190 mm and we there-
fore assumed that an individual with SVL ≥ 190 mm was an 
adult and SVL < 190 mm was a juvenile (Castañeda-Gonza-
lez et al. 2011). To avoid resampling the same individuals, 
all captured earthsnakes were marked by ventral scale clip-
ping and released at the point of capture.

Thermal and microhabitat data

The body temperature of snakes, microclimatic conditions, 
and structural traits of the used and available microhabitats 
were recorded in the field with a sampling time of 09:00–
19:00 h. We measured the following thermal characteristics: 
(1) earthsnake body temperature (Tb), directly from the clo-
aca with a digital thermometer (Fluke model 51-II) and a K 
thermocouple (± 0.1 °C) immediately after capture (< 10 s); 
(2) microenvironmental temperatures at the observation site 
(substrate temperature (Ts), with the probe of the thermom-
eter slightly buried in the soil, air temperature (Ta), at height 
5 cm above the ground, and under-rock temperature (Tr), 
approximately at the center of the bottom face of the rock); 
and relative humidity of the substrate under each shelter, 
recorded with a weather microstation (Kestrel 4000).

For microhabitat use (presence vs. absence), we cat-
egorized the type and size of shelter into small rocks 
(< 20 cm in diameter), medium rocks (20–40 cm in diam-
eter), large rocks (> 40 cm in diameter), and bark fragments 
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(> 25 × 65 cm in area). Shelter position was categorized into 
three available areas: close to crop fences (< 1 m), close to 
cattle fences (< 1 m), and in cleared grasslands. Finally, we 
recorded the presence or absence of the following variables 
around the shelter: trees, shrubs, ground vegetation, and bare 
soil. The previous categorization of the shelters, biotic, and 
structural resources corresponded to those observed during 
fieldwork in the study site. To determine the microhabitat 
used by the earthsnakes, we took a circular area of 50 cm in 
radius around the point at which the individual was found.

To determine whether the selection of microhabitats by 
the earthsnakes is non-random, data were collected from 
86 random refuge sites. Microhabitat availability in the 
study area was estimated along a series of random transects 
covering the whole area. A sample was taken every 10 m, 
choosing the nearest rock to a given transect point as the 
center of the sampling area. We then followed the same 
procedures to measure the microhabitat variables as those 
used when encountering earthsnakes. We visited the field 
site regularly (two times per month) from July to Septem-
ber of 2018. We walked over the site covering all available 
fallen objects (rocks, logs, barks, etc.) as possible terrestrial 
microhabitats, subterranean microhabitats (Raya-García 
2024) were not evaluated in this study. Walks were con-
ducted on warm sunny days at between 09:00 and 19:00 h 
(GMT-6). We lifted all visible rocks and bark fragments 
searching for earthsnakes, which were fully active under 
these shelters (Raya-García et al. 2019). Most of these rural 
shelters are abandoned by the earthsnakes during the dry 
season (Arteaga-Tinoco pers. comms.). All animals found 
were processed and released at the exact point of capture.

Data analysis

We performed a multiple regression analysis to examine 
the associations between field body (Tb) and microenvi-
ronmental (Ts, Ta, and Tr) temperatures and used Spearman 
correlation analyses (Zar 1996) to determine whether there 
were significant relationships between these thermal vari-
ables. Assumptions of normality and homoscedasticity in 
the multiple regression were confirmed with Shapiro-Wilk 
and Breusch-Pagan tests. Collinearity and autocorrelation 
were evaluated with the Variance Inflation Factor (VIF) 
and the Durbin-Watson test, respectively. We selected the 
best model using the mixed stepwise strategy and validation 
by AIC values. To determine if the Tb temperatures differ 
according to the development stage and sex of the snakes, 
comparisons were made using the non-parametric Mann-
Whitney test. An ANOVA was implemented to assess differ-
ences among substrate temperatures (Ts) and the four types 
of shelters used by snakes. In the case of the temperatures 
Tb, Ta, Tr, and the percentage of relative humidity (RH) in 

the shelters, we used a Kruskal-Wallis test (Zar 1996). Post 
hoc pair-wise comparisons were tested for significance, 
where the p-value was adjusted by Dunn’s method with 
Bonferroni correction (non-parametric) or Tukey test (para-
metric), as appropriate. We used a chi-square test to assess 
whether there were significant differences between the fre-
quency of individuals and the type of shelter used, and a 
Fisher’s test of independence to assess whether there is an 
association between the use of different shelters and the sex 
of the snakes (Zar 1996).

Finally, we estimated Manly’s Selection ratios (Manly et 
al. 2007) with the adehabitatHR R package (Calenge 2023) 
to analyze the selection of structural and biotic attributes 
in the microhabitat of C. biserialis. This index considers 
the proportion of all used and available microhabitat sites 
and computed the resource selection ratios (wi index) for 
design I, II, and III data types, with resources defined by 
several categories (Manly et al. 2007). An index value of -1 
indicates that a particular microhabitat was totally avoided, 
while + 1 indicates maximum preference. Significant differ-
ences associated with the level of preference were evaluated 
using a log-likelihood chi-square test (Khi2L) for overall 
microhabitat selection. All analyses were performed using 
R software v4.0.5 (R Core Team 2013).

Results

We collected 54 individuals of C. biserialis, of which 
42 were adults with a mean snout-vent length (SVL) of 
220.7 mm (± 3.7 mm), with a range of 190–260 mm, and a 
mean body mass of 13.03 g (± 0.4 g), with a range of 7.3–
22 g. Twelve individuals were juveniles with a mean snout-
vent length (SVL) of 156.2 mm (± 4.5 mm), with a range of 
115–185 mm, and a mean body mass of 4.5 g (± 0.2 g), with 
a range of 2.2–6.9 g. The highest capture rate per month was 
in August (n = 24). The higher peak of observations occur-
ring between 10:00 and 16:00 h during the field search.

On the four types of temperatures recorded in the field, 
mean Tb was 26 ºC, Ts was 21.6 ºC, Ta was 20.1 ºC, and 
Tr was 26.8 (Online resource: Table S1). Body tempera-
ture (Tb) did not differ significantly between the sex (Tb: 
W = 360, p = 0.894) and development stage of the earth-
snakes (Tb: W = 187, p = 0.176). The Tb of the earthsnakes 
was positive and significantly correlated with microenvi-
ronmental temperatures (Fig. 1). The best regression model 
found that 89.7% of the variance observed in Tb is explained 
by the contribution of Ts and Tr (F = 222, p < 0.001), with 
Tr being significant within the model (t = 15.86, p < 0.001). 
Correlations of Tb and Tr were also positive and signifi-
cant between sex and development stages (Online resource: 
Figs. S1 and S2). Throughout the day, earthsnakes generally 
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resource: Figs. S3 and S4). The small and medium-sized 
rocks have higher Ts (p = 0.02, p = 0.04, respectively) and 
higher Ta (p = 0.02, p = 0.001, respectively) than the large 
rocks. The bark fragments and large rocks did not differ in 
terms of Ts (p = 0.26) and Ta (p = 0.14).

The frequencies for the use of shelters differed signifi-
cantly (χ2 = 10.148, df = 3, p = 0.01735). Most individuals 
were found sheltering under rocks (90.7%, Fig. 4) with rela-
tively few found under bark fragments (9.3%, Fig. 4). The 
observed sex ratio in the studied population was 1:1.5 (male: 
female) and the sex ratios according to each shelter type was 
close to 1.1 under bark fragments, small and medium rocks, 
but 1:2 under large rocks. There were no associated signifi-
cant differences between the use of different shelters and the 
sex of the individuals (FET, all p ≥ 0.797, Fig. 4).

In the rural microhabitat of this small snake, most indi-
viduals used high proportions of medium and large rocks for 
sheltering (Figs. 4 and 5). These rocks were located around 
crop fences and on cleared grassland where the soil can be 

present Tb fluctuating with Tr more than with the tempera-
tures of the substrate (Ts) or air (Ta) recorded at the time of 
capture (Fig. 2).

We found no significant differences in Tb (χ2 = 4.15, 
p = 0.24), Tr (χ2 = 3.97, p = 0.26) or RH (χ2 = 3.28, p = 0.34) 
among the different shelters used by the snakes (Fig. 3). 
However, the Ts (F3,50 = 4.03, p = 0.012) and Ta values 
(χ2 = 14.89, p = 0.001) differed among shelter types (Online 

Fig. 5 Resource selection ratios (± SE) from a Manly selectivity analy-
sis on biotic and abiotic components of rural microhabitat used by C. 
biserialis eathsnakes

 

Fig. 4 Frequencies of male and female C. biserialis occupying four 
different shelters. Numbers under the bars indicate the total number of 
observed individuals

 

Fig. 3 Body temperatures (Tb), under rock temperatures (Tr) and rela-
tive humidity (RH) under four different shelters used by C. biserialis 
earthsnakes. Bars and points on the line show mean ± SE.

 

Fig. 2 Average variation of field body temperature (Tb) and microenvi-
ronmental temperatures (Ts, Ta, Tr) throughout the sampling hours by 
day for C. biserialis earthsnakes

 

Fig. 1 Multiple regression analysis of field body temperature (Tb) 
against substrate temperature (Ts), air temperature (Ta) and under rock 
temperature (Tr) of C. biserialis earthsnakes
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fields, the earthsnakes chose mainly larger shelters (big and 
medium rocks) with low thermal heterogeneous character-
istics, that were closer to crop fences and cleared grasslands 
and where the soil could be either covered with low veg-
etation or bare. All the results and patterns observed here 
are for the rainy and summer seasons, but it is necessary to 
implement inter-seasonal and habitat comparisons for a bet-
ter understanding of the use of resources in transformed and 
conserved environments.

In reptiles, the response to habitat change is complex and 
diverse, both within and among all scales of ecological orga-
nization (French et al. 2018; Gainsbury et al. 2022). This 
has caused the effect of habitat fragmentation on reptiles to 
be a topic that generates constant debate among scientists 
(French et al. 2018). Some studies find inert or even positive 
effects of habitat transformation (Araujo 2003; Luck 2010; 
Roe et al. 2011), while others show the opposite (Todd et al. 
2010; Hunt et al. 2013; Lazić et al. 2015). This variability 
in results is partly due to the heterogeneity of transformed 
landscapes and the diversity of biological responses in the 
species (French et al. 2018).

Thermoregulation indices were not calculated in this 
work due to the lack of records of selected and operative 
temperatures. However, we can make an approximation of 
thermoregulatory or thermoconformist tendencies using the 
criterion of Huey and Slatkin (1976). The slope values of 
the linear regression of Tb on environmental air tempera-
tures were close to zero, suggesting that C. biserialis is a 
thermoregulatory species. Regarding the acquisition of heat 
by C. biserialis, we observed that the correlation between 
Tb vs. Tr was higher than that of Tb vs. Ta. As a result, a 
tendency for C. biserialis to be thigmothermic is assumed.

Frequently, fossorial and thigmothermic reptiles have 
lower body temperatures and thermal preferences than other 
basking and heliothermal reptiles (Brattstrom 1965; Matias 
and Verrastro 2018). In amphisbaenias (full subterranean 
reptiles), body temperatures are related to variations in the 
surrounding habitat substrate (López et al. 2002). We found 
a similar pattern in C. biserialis, with a wide range of body 
temperatures throughout the day that vary with the tempera-
tures occurring under the shelter. This wide range of body 
temperatures is a eurythermic characteristic that probably 
allows C. biserialis to inhabit cold environments, as has 
been observed in other mountain species (Jaramillo-Alba et 
al. 2020). In addition, Paternina-Cruz and Calderón-Espi-
nosa (2022) reported that snakes with similar environmen-
tal conditions such as Atractus crassicaudatus (Duméril, 
Bibron & Duméril, 1854) has different thermoregulatory 
strategies to deal with daily and seasonal temperature varia-
tions (Paternina-Cruz and Calderón-Espinosa 2022). Here, 

either covered with low vegetation or bare (Fig. 6). While 
small rocks and bark fragments were used as shelter in lesser 
proportion, these shelters were often located near cattle 
fences with lower proportions of trees and shrubs (Fig. 6). 
The following five structural and biotic resources of the 
microhabitat are more widely available in the rural environ-
ment but are used to a significantly lesser extent by snakes 
(Fig. 6): small rocks (p = 0.037), bark fragments (p = 0.018), 
cattle fences, trees, and shrubs (p = 0.025, for all).

There is a significant degree of selection for some of 
the structural and biotic resources of the rural microhabi-
tat (Khi2L = 130.2985, df = 10, p < 0.0001). The two struc-
tural resources of large rocks and crop fences were highly 
selected, followed by medium rocks and bare soil (Fig. 5). 
The biotic elements that were slightly preferred were cleared 
grassland and ground vegetation (Fig. 5). In all six of these 
selected resources, there were no differences between biotic 
or structural components, indicating that all were selected 
equally (> 1, Fig. 5). The non-preferred structural and biotic 
resources (< 1, Fig. 5) were those that of highest availability 
in the environment (Fig. 5).

Discussion

Our results show evidence of low thermal heterogeneity and 
similar humidity conditions under the shelters occupied by 
the burrowing earthsnake C. biserialis in a cool, modified 
rural microhabitat. Variation in Tb is explained by micro-
environmental temperatures under shelters (mainly Tr) but 
not by shelter size and type or earthsnake sex and develop-
ment stage. Findings in microhabitat occupancy indicate a 
combined influence of the physical features of shelters, such 
as size and spatial distribution, in determining microhabitat 
selection by these small and cryptic earthsnakes. In the rural 

Fig. 6 Mean proportion (± SE) of biotic and abiotic components of 
rural microhabitat available and used by C. biserialis earthsnakes
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