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Abstract
Although the effect of salinity on phytoplankton community structure has been studied in many coastal lagoons at different 
times, it has not been studied simultaneously in different lagoons that are not on the same delta but are geographically close 
to each other. In the present study, the effect of temporal and spatial changes in salinity on the phytoplankton biovolume, 
species richness, diversity, and species composition was investigated seasonally in 2020 and 2021 in 6 coastal lagoons of 
Marmara Basin (Türkiye). In more saline lagoons, phytoplankton biovolume, species richness, diversity, and the total number 
of species were lower. In lagoons which salinity values were approximate, the species composition was similar. Although 
the salinity in the lagoons did not show significant change seasonally, biovolume values were lower in Mert lagoon in the 
fall of 2020 when the salinity values were higher compared to the spring of 2021. Moreover, the considerable decrease in 
salinity shifted the dominant species structure from high salinity optima species to low salinity optima species in this lagoon. 
Other effective parameters in the seasonal distribution of dominant species were detected as temperature, dissolved oxygen, 
alkalinity, and nitrate nitrogen.
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Introduction

Anthropogenic pressures on aquatic systems have been more 
effective due to increased human population and industri-
alization, especially in the last century. Human-induced 
eutrophication and the effects of climate change are two 

major problems for coastal lagoons (Cloern 2001; Lloret 
et al. 2008) as in other freshwater lakes (Dugan et al. 2017; 
Woolway et al. 2020). Increased temperature and decreased 
precipitation due to climate change cause alterations such 
as salinity, lake water level, lake water temperature, and 
biota, especially in lagoons of arid and semi-arid regions 
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(Angus 2017; Shalby et al. 2021). Particularly salinization 
is becoming a comprehensive environmental problem due 
to its ecological and economic effects (Rochette et al. 2010; 
Odountan et al. 2019). Besides climate change, deicing salts 
usage for safe driving during winter (Corsi et al. 2010), min-
eral fertilizers used for agricultural productivity (Barzegar 
et al. 2017), industrialization, and urbanization (Dugan et al. 
2017) have increased the salinity level of aquatic systems.

Phytoplankton are effective indicators used in the evalu-
ation of water quality, trophic status, and ecological condi-
tions of coastal ecosystems as well as other ecosystems (e.g. 
lakes, open sea) due to their rapid response to environmental 
changes (Lugoli et al. 2012; Garmendia et al. 2013; Allende 
et al. 2019). Previous studies have shown that the response 
of phytoplankton to changing salinity is very diverse (Lan-
celot and Muylaert 2011; Wang et al. 2018). Depending on 
the interspecific differences in salinity tolerances, the change 
in salinity affects the phytoplankton diversity (Kirst 1989; 
Zhong et al. 2016). It has been reported that some species 
can survive with a wide range of salinity levels (Shikata 
et al. 2008; Bergesch et al. 2009). On the other hand, most 
species cannot tolerate increased concentrations or rapid 
changes in salinity, and consequently both species richness 
and diversity index decline with increasing salinity (Ham-
mer 1986; Flöder and Burns 2004; Wang et al. 2018). Spe-
cies number and diversity were detected as low in brack-
ish waters such as lagoons compared with freshwater and 
marine water systems due to their highly variable salinity 
concentrations (Flöder and Burns 2004; Flöder et al. 2010). 
In addition, previous studies have suggested that taxonomic 
groups of phytoplankton shifted from Cyanobacteria and 
Chlorophyta to Bacillariophyta (diatoms) and Miozoa 
(Dinoflagellate) depending on salinity increase (Kies 1997; 
Muylaert and Sabbe 1999; Li et al. 2021). Although many 
studies have shown that salinity reduces phytoplankton bio-
mass due to decreased growth rate (Kirst 1989; Evagelopou-
los et al. 2007; Redden and Rukminasari 2008; Hernando 
et al. 2015), some other studies have shown that the high 
nutrient levels attenuated the inhibitory effect of salinity on 
phytoplankton biomass (Zhong et al. 2016; Yue et al. 2019).

Since the effect of the salinity gradient is more pronounced 
in estuarine systems and lagoons, they have been ideal systems 
for elucidating the effect of salinity on phytoplankton dynam-
ics (Telesh and Khlebovich 2010; Zainol and Akhir 2019). 
Increased, decreased or absent freshwater inflow, increased 
evaporation, and seawater entrance by tidal flow during dif-
ferent hydrological periods cause significant spatial and tem-
poral variability in salinity values (Zainol and Akhir 2019; 
Srichandan et al. 2019; Draredja et al. 2019). Therefore, the 
temporal and spatial distribution in phytoplankton commu-
nity structure was observed as a result of changes in environ-
mental parameters, and more dominantly changes in salinity 
(Haraguchi et al. 2015; Srichandan et al. 2019; Tarafdar et al. 

2021). In most temperate and tropical lagoons, it was observed 
that higher freshwater inflow reduces the salinity concentra-
tion and increases the nutrients, and consequently, triggers the 
biomass increase (Froneman 2004; Gobler et al. 2005; Paerl 
et al. 2018). On the other hand, other studies have also stated 
biomass increases due to low or absent flow rates and discon-
nection with the sea which constitute higher residence time 
(Ortega-Cisneros et al. 2014).

Lagoons are located mostly in delta regions (Kızılırmak, 
Yeşilırmak, Büyük Menderes, Küçük Menderes, Gediz, 
Göksu deltas) in Türkiye. Although there are many lagoons 
in the Marmara Basin, they are not located on the same delta 
(Atalay et al. 2015). In recent years, the seasonal distribution 
of species composition, biodiversity, abundance, and domi-
nant species was investigated for detecting water quality in 
Küçükçekmece (Yilmaz 2015; Yilmaz et al. 2021a)yükçek-
mece (Temel 2002; Aktan et al. 2009; Gülecal and Temel 
2014; Yilmaz 2019) and Terkos (Yilmaz and Gülecal 2012; 
Yilmaz et al. 2021b) lagoons, their inlet streams or outlet 
channels in separate times. Many studies have been con-
ducted on the effects of seasonality, hydrodynamic regime, 
climate change, and anthropogenic disturbance on the salin-
ity and the phytoplankton community structure of a single 
coastal lagoon (Jacquet et al. 2006; Nche-Fambo et al. 2015; 
Caroppo et al. 2018; Derolez et al. 2020). However, there 
is a lack of studies that collectively evaluate the change in 
the salinity levels and its effect on phytoplankton of lagoons 
that are geographically close to each other and have the same 
trophic condition. The present study is the first study con-
sidering the 6 eutrophic lagoons in the Marmara Basin to 
determine the effect of salinity gradients among lagoons 
regarding the phytoplankton species richness, diversity, bio-
volume, the total number of species, taxonomic groups, and 
dominant species. In the present study: (1) We hypothesize 
that phytoplankton species richness, diversity, biovolume, 
the total number of species, and species composition would 
change in accordance with the salinity gradient among the 
6 lagoons. (2) We further hypothesized that besides salinity, 
other environmental factors would also be effective in the 
spatial distribution of phytoplankton biovolume and domi-
nant species. (3) Moreover, we hypothesize that as a result 
of seasonal changes in environmental parameters such as 
salinity, temperature, and nutrients, seasonal changes would 
occur in phytoplankton biovolume, species richness, diver-
sity, and dominant species.

Materials and methods

Marmara Basin and studied lakes

The Marmara Basin with a catchment area of 24,100 km2 
covers the precipitation areas of rivers which mostly pour 
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into the Marmara Sea. Its catchment area comprises 3% 
of the Türkiye. It has boundaries with the Meriç-Ergene, 
Sakarya, Susurluk, and North Aegean basins. The basin 
includes the cities such as İstanbul, Kocaeli, and Bursa 
with the highest population density and industrialization in 
Türkiye (Özhan 2004). Therefore, domestic, and industrial 
wastewater have polluted the aquatic environments in the 
basin (Ergul and Karademir 2020). Due to the large popu-
lation in İstanbul, the demand for usable water is increas-
ing every year, and consequently, forces the existing water 
resources (ISKI 2023).

The Marmara Basin has a mild oceanic climate with 
rainy/snowy days in winter, but a long dry period in sum-
mer. The average precipitation is between 586 and 768 mm, 
and most rainfall occurs in the winter (Serengil et al. 2007). 
In the basin, during the winter period, the average tempera-
tures were 5–6 °C while in the summer period, temperatures 
of 23–25 °C were reported (Directorate General of Water 
Management 2016).

Although there are natural lakes in the basin, many reser-
voirs were constructed due to the increasing water demand. 
There are also lagoons in the basin. The 6 eutrophic lagoons 
of Marmara Basin [Terkos Lagoon (TER), Büyük Çekmece 
Lagoon (BCK), Dalyan Lagoon (DAL), Hersek Lagoon 

(HER), Küçükçekmece Lagoon (KCK), and Mert Lagoon 
(MER)] were studied in the fall and spring of 2020 and 2021 
(Fig. 1) (Table 1).

Terkos Lagoon (TER) which is situated 50 km northwest 
of Istanbul (Yilmaz and Gülecal 2012), was a natural lagoon 
until 1881. However, with the construction of a barrier 
between the lagoon and the Black Sea, it gained a freshwa-
ter status, and it has been used for the drinking water supply 
of Istanbul. It is fed by a lot of streams including Istranca, 
Sivasköy, and Çiftlikköy (Oğuz 1995). Büyük Çekmece 
Lagoon (BCK) has an important place among the surface 
waters within the province of Istanbul in terms of its size. 
It is located on the European side of Istanbul, near Çatalca 
(Yilmaz 2019). It was a natural lagoon due to its formation 
and discharges of its waters into the Sea of Marmara. How-
ever, due to the construction of a barrier at the connection 
point with the Sea of Marmara in 1985 to meet the water 
needs of Istanbul city, it turned into a freshwater lake over 
time (Özuluğ 1999). It is mainly fed by the Karasu Stream 
(Özuluğ 1999). Mert Lagoon (MER) is located in İğneada 
Longoz Forests on the Black Sea coast. This area has been 
announced as a Natural Site and National Park. There are 
three lagoons in the area which are fed by groundwaters and 
streams, and Mert Lagoon is the biggest one. This lagoon 

Fig. 1   Location of sampling lagoons in the Marmara Basin (The full names of the lagoons were given in Table 1)
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is separated from the Black Sea in the east by sandy dunes. 
However, with the rising of the waters, it sometimes merges 
with the sea (Altınsaçlı 2001; Güher 2003; Camur-Elipek 
et al. 2015). Küçükçekmece Lagoon (KCK) is located 15 
km west of Istanbul, and the connection of the lagoon with 
the Sea of Marmara is provided by the Menekşe Stream, 
which is 1.5 m deep and 1 km long (Okumuş 2007). Due 
to the connection channel, lagoon water is saline character. 
The lagoon is fed by Nakkaşdere, Sazlıdere, and Ispartakule 
streams (Demirci et al. 2006). Due to the intense urbaniza-
tion and industrialization around the lagoon, it is affected by 
different pollutants such as domestic and industrial wastes 
(Albay et al. 2005). Dalyan Lagoon (DAL) is situated on the 
Meriç River Delta (Enez district, Edirne) which is one of 
the nationally important wetlands for Türkiye. It is a natural 
habitat for many bird species. This lagoon is temporarily 
connected to the Aegean Sea with two narrow channels, 
therefore, the salinity of the water varies according to the 
seasons (Sezgin 2015; Senel et al. 2020). Hersek Lagoon 
(HER) which is separated from the sea with a sandy ridge, 
is located near to Gulf of Izmit in the eastern part of the Sea 
of Marmara (Dalkıran and Baki 2011). This sandy ridge 
has been reinforced with a concrete dike, but the grooves 
on the dike allow continuous water exchange. The Sea of 
Marmara, rainfall, and runoff are the main water resources of 
the lagoon (Uzun 2014). However, domestic, and industrial 
pollution due to Izmit Bay affected the water quality of the 
lagoon (Tolun et al. 2008).

Analysis of environmental variables

Three different depths were determined as surface (10 
cm below), middle, and near the bottom for sampling and 
measuring physical and chemical variables, and the mean 
values of these three depths were used in the analyses. 
Hach-Lange HQ 40D water quality instrument was used 
for measurement in situ of electrical conductivity (EC), 
salinity (SAL), pH, dissolved oxygen (DO), and water tem-
perature (T). In the laboratory of the Scientific and Tech-
nological Research Council of Turkey, Marmara Research 

Center (TUBİTAK-MAM), it was done measurements of 
the orthophosphate (PO4-P), total phosphorus (TP), nitrate-
nitrogen (NO3-N), total nitrogen (TN), chemical oxygen 
demand (COD) concentrations and alkalinity (ALK) using 
standard methods. Water transparency was measured using 
a Secchi disk. Since sampling was conducted in September 
2020 and April 2021 when the lagoons were in the mix-
ing period, the mixing layer depth (zmix) was determined 
as the average depth of the studied lagoons (Naselli-Flores 
and Barone 2003). The light availability was estimated with 
the mixed layer to the euphotic zone (zmix/zeu) ratio (Jensen 
et al. 1994). Chlorophyll-a concentrations were measured 
with methanol extraction (Youngman 1978) to determine 
the trophic index of lagoons (Carlson and Simpson 1996). 
At the same time, Secchi disk depth and TP values were used 
to calculate the trophic index.

Phytoplankton analysis

A total of 28 samples were collected for phytoplankton 
analysis in September (fall) 2020 and April (spring) 2021. 
Depending on the surface area of each lagoon, two or 
three stations were chosen for sampling (Directorate Gen-
eral of Water Management 2015). Attention was taken to 
ensure that one of the stations was at the deepest point of 
the lagoon. The euphotic depth (zeu) was calculated as 2.5 
times the Secchi depth (Cole 1994). Composite sampling 
was conducted according to the zeu using an integrated sam-
pling tube. Lugol’s and formaldehyde solution was used for 
the fixation of phytoplankton. Diatoms were identified on 
permanent slides while other phytoplankton were identi-
fied from temporary preparations using an Olympus BX51 
microscope (×400, ×600, ×1000) (European Committee for 
Standardization 2004). Cell counting was performed with an 
Olympus IX81 inverted microscope using standard methods 
(Utermöhl 1958). The average of three counting replicates 
was used to determine the final abundance of each species. 
Standard identification books and keys such as Trégouboff 
and Rose (1957), Hendey (1964), Sournia (1986), Round 
et al. (1990), Delgado and Fortuno (1991), Sims (1996), 

Table 1   The general features of the 6 lagoons in the Marmara Basin (zmax denotes the measured minimum and maximum depths at the deepest 
station of each lake during the studied period)

Lakes Station code Number of 
sampling 
stations

Surface area 
(Km2)

zmax (m) Trophic index Altitude (m) Coordinate

Latitude Longitude

Terkos Lagoon TER 3 39 7–8 52.34 (eutrophic) 2 41°20′30″N 28°34′18″E
Büyükçekmece Lagoon BCK 3 43 2–7 57.97 (eutrophic) 2 41°02′22″N 28°34′48″E
Mert Lagoon MER 2 2.22 1-1.5 59.85 (eutrophic) 1 41°51′45″N 27°58′13″E
Küçükçekmece Lagoon KCK 2 14 12–20 61.80 (eutrophic) 1 41°00′39″N 28°44′34″E
Dalyan Lagoon DAL 2 3.4 0.3–0.5 55.09 (eutrophic) 1 40°42′58″N 26°04′23″E
Hersek Lagoon HER 2 1.52 0.3-1 53.75 (eutrophic) 1 40°43′07″N 29°31′05″E
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Throndsen (1997), John et al. (2003), Kramer and Lange-
Bertalot (1986, 1991a, b, 1999), Lange-Bertalot (2001), 
Krammer (2000, 2002, 2003), Lange-Bertalot et al. (2017), 
Komarek and Anagnostidis (2008), Huber-Pestalozzi (1941, 
1950, 1961, 1962, 1969, 1972, 1975, 1982, 1983) were used 
for the identification of algal species. The validity of species 
names and their habitat types were checked on the Algaebase 
website according to Guiry and Guiry (2023). Phytoplankton 
abundance was calculated from biovolume estimations with 
the number of cells and cell size measurements using geo-
metric formulas (Sun and Liu 2003). At least 20 individuals 
were measured for cell size determination of each species in 
all samples (Brierley et al. 2007).

Data analysis

For the statistical analyses of phytoplankton and environ-
mental variables, a total of 28 samples in 6 coastal lagoons 
were considered. The diversity index (H’) for phytoplankton 
was calculated according to Shannon and Weaver (1963). 
Environmental variables were logarithmically transformed 
except for pH. An analysis of variance (one-way ANOVA) 
test was applied to data for determining the statistical differ-
ences in environmental variables, species richness, diversity, 
and biovolume among the lagoons and seasons using SPSS 
20.0 software. Spearman correlations between the environ-
mental variables and the species richness, diversity, and bio-
volume were also determined using the SPSS 20.0 software. 
A linear regression model was also performed in SPSS 20.0 
software between the log (salinity) and the log (species rich-
ness), log (diversity), and log (biovolume). Species that have 
a relative abundance of biovolume greater than 20% in one 
station of the specific lagoon were accepted as dominant 
species. Optimum levels of phytoplankton dominant species 
for salinity were calculated using the weighted averaging 
regression model. Cluster analysis was performed to detect 
the similarity of phytoplankton species among 6 coastal 
lagoons by using PAST 4.03 software. Canonical corre-
spondence analysis (CCA) was carried out on the log-normal 
transformed abundance data using CANOCO software (ter 
Braak and Smilauer 2002) to reveal the relations between the 
biovolume (%) of the dominant species, sampling lagoons, 
and environmental variables since the response data have 
a gradient 4.56 units long. The statistical significance of 
the environmental predictor variables was assessed by 999 
restricted Monte Carlo permutations. To analyze the rela-
tionship between the biovolume (%) of the dominant species 
and 12 environmental variables (T, pH, DO, SAL, EC, TN, 
NO3-N, TP, PO4-P, zmix/zeu, COD, ALK), we performed a 
CCA using biovolume (%) values of the 27 dominant spe-
cies in both of the lagoons. CCA was performed, initially 
on the whole environmental and dominant species datasets. 
Forward selection indicated that 6 of the 12 environmental 

variables made a significant contribution to the variance in 
the biovolume (%) of the dominant species data.

Results

Environmental parameters

The minimum zmax values of the lagoons were measured in 
the fall of 2020, while maximum zmax values were measured 
in the spring of 2021 (Table 1). In Table 2, it was given the 
results of physical-chemical variables in 6 coastal lagoons 
of the Marmara Basin. The mean values of T were higher 
in fall 2020 (f = 319.86, p < 0.01). The mean values of DO 
(f = 42.10, p < 0.01) and NO3-N were higher in spring 2021 
(f = 5.65, p < 0.01). However, T, DO, and NO3-N values were 
not significantly different among the lagoons. Also, some of 
the parameters such as pH, COD, TN, and zmix/zeu were not 
significantly different among the lagoons and the seasons. 
In DAL and HER lagoons, the mean EC and SAL values 
were higher (f = 31.89, f = 43.59, respectively, p < 0.01). The 
mean TP and PO4-P values were higher in the KCK lagoon 
(f = 32.76, f = 179.24, respectively, p < 0.01) as well as the 
mean EC and SAL values. The mean ALK values were dif-
ferent between MER and BCK (f = 3.51, p < 0.05). On the 
other hand, EC, SAL, TP, PO4-P, and ALK were not signifi-
cantly different among the seasons.

Phytoplankton

A total of 247 phytoplankton taxa were identified and the 
numbers of taxa in the TER, BCK, MER, KCK, DAL, 
and HER lagoons were 82, 63, 95, 31, 39, and 34 respec-
tively. Among them, 199 freshwater, 31 brackish water, and 
17 marine taxa were detected. The total percentages (%) 
of brackish and marine species of KCK, DAL, and HER 
lagoons were higher than in the other lagoons (Table 3). 
It was noticed clustering of phytoplankton assemblages of 
DAL and HER lagoons which are mesohaline, and TER 
and BCK lagoons which are freshwater characters (Fig. 2). 
Only species from Cryptophyta were detected in freshwa-
ters, other taxonomic groups were observed in hyposaline 
and mesohaline lagoons, and their abundance (%) did not 
show a remarkable change compared to freshwater lagoons 
(Fig. 3a). However, Charophyta, Chlorophyta and Ochro-
phyta members did not found in the water greater than 36 
ppt salinity concentrations. Relatively high SAL optima 
were observed for Chaetoceros sp., Chlamydomonas spp., 
Cylindrotheca closterium, Dunaliella obliqua, Gyrosigma 
sp., Gyrosigma wansbeckii, Mougeotia sp., Nitzschia acicu-
laris, Prorocentrum micans, Protoperidinium sp., Pin-
nularia sp., and Stephanocyclus meneghinianus (Fig. 3b). 
Relatively low SAL optima were detected for Aulacoseira 
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granulata, Aulacoseira subarctica, Gymnodinium catena-
tum, Gymnodinium inversum, Gyrosigma kuetzingii, Hyme-
nomonas sp., Pediastrum duplex, Peridinium raciborskii var. 
palustre, Staurosira construens, and Trachelomonas man-
ginii (Fig. 3b). The dominant taxa (> 20%) of the 6 coastal 
lagoons in fall 2020 and spring 2021 were summarized in 
Table 4.

The species richness ranged between 4 and 33 during the 
studied periods in the 6 lagoons. Species richness was the 
highest in the MER lagoon (f = 12.77, p < 0.01) as shown 
in Fig. 4a. It was also higher in the TER lagoon. Species 
richness values were not significantly different in the fall 
of 2020 and spring of 2021 (Fig. 5). Species richness was 
negatively correlated with EC (r = -0.49, p < 0.01), and SAL 
(r = -0.47, p < 0.05). Moreover, it was positively correlated 
with diversity index (r = 0.71, p < 0.01) and biovolume 
(r = 0.47, p < 0.05). The Shannon diversity index ranged 
between 0.18 and 3.08 over the two periods. The diversity 
index was the highest in MER lagoon, while the lowest in 
KCK lagoon (f = 8.85, p < 0.01) (Fig. 4a). It was not signifi-
cantly different among the seasons (Fig. 5). The minimum 
phytoplankton biovolume was recorded as 0.11 mm3 L−1, 
while the maximum was found as 27.89 mm3 L−1. Moreover, 
the mean phytoplankton biovolume was the highest in the 
KCK lagoon (7.40 mm3 L−1), while was the lowest in the 
HER lagoon (0.41 mm3 L−1). However, biovolume values 
were not significantly different among the lagoons (Fig. 4a). 
The biovolume was positively correlated with T (r = 0.52, 
p < 0.01), while negatively correlated with NO3-N (r = 
-0.41, p < 0.05). It was not significantly different among the 
seasons. However lower biovolume values were detected in 
spring 2021 of the lagoons except for MER lagoon (Fig. 5). 
The relationships between log (SAL) and log (Species Rich-
ness), log (Shannon Index), and log (Biovolume) were given 
in Fig. 4b. Regression results showed a higher negative rela-
tionship between log (SAL) and log (Species Richness) (r2= 
-0.13, p < 0.05).

Phytoplankton and environmental parameters

The results of CCA using 6 environmental variables 
were given in Fig. 6. The dominant species–environ-
mental correlations of CCA axes 1 and 2 are high, 
and the first two axes account for 94.8% of the vari-
ance in the dominant species–environmental relation-
ships. In the positive part of the first axis, generally, 
DO was correlated with species such as Gomphonema 
sp., Gymnodinium catenatum, Gymnodinium inversum, 
Gyrosigma kuetzingii, Hymenomonas sp., Peridinium 
raciborskii var. palustre and spring period of TER and 
MER lagoons. NO3-N was correlated with species such 
as Chlamydomonas spp., Glenodinium alpestre, Pan-
dorina morum, Protoperidinium sp., Stephanocyclus Ta
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meneghinianus, and spring periods of the BCK, KCK, 
and HER lagoons. On the other hand, in the negative 
part of the first axis, ALK and SAL were correlated with 
species such as Cylindrotheca closterium, Gyrosigma 
wansbeckii, Nitzschia acicularis, Pinnularia sp., Proro-
centrum micans, Trachelomonas manginii and fall peri-
ods of DAL, HER, and MER lagoons. Moreover, species 

such as Aulacoseira granulata, Aulacoseira subarctica, 
Cymatopleura elliptica, Pediastrum duplex, Staurosira 
construens were correlated with T and fall periods of 
TER and BCK lagoons. The last group which was found 
in both periods or correlated with both SAL and PO4-P 
consisted of species such as Dunaliella obliqua, Chae-
toceros sp., Gyrosigma sp., and Mougeotia sp.

Fig. 2   A dendrogram of phyto-
plankton assemblages by cluster 
analysis in 6 coastal lagoons 
of Maramara Basin (The full 
names of the lagoons were 
given in Table 1)

Fig. 3   a Relative abundance 
(%) of phytoplankton taxonomic 
groups along the salinity gradi-
ent (b) Result of the weighted 
average model for salinity in 
the studied 6 coastal lagoons of 
Marmara Basin (Abbreviations 
of the species were given in 
Table 4)
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Discussion

Measured environmental parameters such as EC and main 
nutrients were similar to previous studies in DAL (Alti-
noluk-Mimiroglu and Camur-Elipek 2018), KCK (Yilmaz 
2015), and MER (Altınsaçlı 2001) lagoons compared to 
our study. However, measured nutrients were slightly 
higher in previous studies of BCK (Gülecal and Temel 
2014; Yilmaz 2019), and TER (Yilmaz and Gülecal 2012) 
lagoons. This may be related to the climatic factors which 
determine the water budget and therefore the chemical 
composition of water, or conservation strategies prepared 
to protect these drinking water areas in recent years.

In the lagoons, NO3-N values were generally higher in 
spring 2021. In this period, the increase in zmax values of 

the lagoons compared to fall 2020 indicated an increase 
in precipitation. Therefore, allochthonous inputs carried 
by streams from domestic and agricultural areas cause an 
increase in NO3-N values as observed in many coastal 
lagoons during the flooding period (Serrano et al. 2004; 
Li et al. 2014). Moreover, DO values were higher in spring 
2021 when the precipitation started to increase. The higher 
DO values in spring 2021 might be related to river influx, 
and still low T values (Srichandan et al. 2015; Draredja 
et al. 2019; Akagha et al. 2020), while lower values in 
fall 2020 could be the reason for increased decomposition 
of organic matter due to higher phytoplankton biovolume 
(Domingos et al. 2012; Akagha et al. 2020). EC and SAL 
values in HER, DAL, and KCK lagoons were measured 
high due to their connection with the seawater by channels 
or surmountable dikes. In a lagoon that has a continuous 
or temporary connection with sea water, salinity values 
were reported higher than closed ones (Barnes et al. 2008; 
Navas-Parejo et al. 2020).

Phytoplankton biovolume values were not different sig-
nificantly among lagoons, however, average values were 
lowest in HER lagoon where EC and SAL values were high-
est. Panigrahi et al. (2009) have observed the phytoplank-
ton biomass decrease in seawater exchange areas of Chilika 
Lagoon (India) due to the increase in salinity values. On 
the other hand, the highest average biovolume in the KCK 
lagoon, where SAL values were also high, can be explained 
by the highest TP and PO4-P values in this lagoon. High 

Table 3   The percentage (%) of habitat status of the identified species 
to the total number of species in each lagoon in the 6 coastal lagoons 
of Marmara Basin (The full names of the lagoons were given in 
Table 1)

Lagoons Brackish (%) Marine (%) Freshwater (%)

TER 10.97 4.88 84.15
BCK 14.29 4.76 80.95
MER 14.74 6.32 78.94
KCK 25.81 3.23 70.96
DAL 23.07 10.26 66.67
HER 26.47 5.88 67.65

Table 4   The seasonal 
distribution, mean abundance 
(of stations) and their 
abbreviations of the dominant 
taxa in 6 coastal lagoons of 
Marmara Basin (The full names 
of the lagoons were given in 
Table 1)

Dominant taxa (2020–2021)

Lagoons Fall Spring

TER Aulacoseira granulata (AGR) (16.12%)
Aulacoseira subarctica (ASU) (9.25%)
Gyrosigma wansbeckii (GWA) (9.67%)
Pediastrum duplex (PDU) (10.65%)
Staurosira construens (SCO) (8.65%)
Trachelomonas manginii (TMA) (14.89%)

Gymnodinium catenatum (GCA) (8.62%)
Gymnodinium inversum (GIN) (15.29%)
Hymenomonas sp. (HYM) (10.07%)
Peridinium raciborskii var. palustre (PRA) (8.93%)

BCK Aulacoseira granulata (AGR) (9.06%)
Gyrosigma sp. (GYR) (16.80%)
Gyrosigma wansbeckii (GWA) (11.75%)
Nitzschia acicularis (NAC) (9.51%)
Cymatopleura elliptica (CEL) (30.09%)

Glenodinium alpestre (GAL) (22.70%)
Pandorina morum (PMO) (38.62%)

MER Gyrosigma wansbeckii (GWA) (11.12%) Gomphonema sp. (GOM) (12.49%)
Gyrosigma kuetzingii (GKU) (28.16%)

KCK Chaetoceros sp. (CHA) (75.81%)
Mougeotia sp. (MOU) (20.02%)

Protoperidinium sp. (PRO) (17.48%)
Stephanocyclus meneghinianus (SME) (46.39%)

DAL Cylindrotheca closterium (CCL) (12.38%)
Nitzschia acicularis (NAC) (12.01%)
Prorocentrum micans (PMI) (22.03%)

Gyrosigma sp. (GYR) (34.96%)
Mougeotia sp. (MOU) (22.18%)

HER Gyrosigma wansbeckii (GWA) (24.51%)
Pinnularia sp. (PIN) (37.29%)

Dunaliella obliqua (DUO) (35.69%)
Chlamydomonas sp.1 (CHL1) (11.65%)
Stephanocyclus meneghinianus (SME) (19.78%)
Chlamydomonas sp.2 (CHL2) (11.66%)
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nutrient values may have reduced the inhibitory effect of 
SAL on phytoplankton biovolume (Zhong et al. 2016; Yue 
et al. 2019). Phytoplankton biovolume was slightly higher 
in the fall of 2020 in most of the studied lagoons. As a result 
of higher temperature and higher residence time, biomass 
or biovolume increase was observed during the dry period 
of several coastal lagoons (Anandraj et al. 2008; Ortega-
Cisneros et al. 2014; Srichandan et al. 2015; Tagliarolo and 
Scharler 2018). Only biovolume was lower in the fall 2020 
of MER lagoon compared to the spring of 2021. The very 
high salinity values in this period compared to spring 2021 
(~ 20 times high) might be effective in the reduction of the 
phytoplankton biovolume in this lagoon.

Species richness and diversity were detected as low 
in KCK and HER lagoons compared to other less saline 
lagoons. Moreover, KCK, DAL, and HER lagoons had the 
lowest recorded total numbers of species. Besides, a negative 
correlation was observed between SAL and species richness 
in the lagoons. These lagoons were affected by the wave 
movements and exposed to seawater at certain intervals, 
and consequently, the sudden increase in SAL values dur-
ing these periods caused osmotic stress on the phytoplankton 
and triggered the decrease in species number (Kirst 1996). 
Flöder and Burns (2004) have also stated that intermittent 
salinity inputs into coastal ecosystems at weekly or monthly 

periods depending on the seawater inflow, will reduce the 
species richness compared to under constant freshwater or 
seawater conditions. Moreover, brackish water and marine 
species detected in these three lagoons were higher com-
pared to other less saline lagoons. This finding shows that 
the distribution of both freshwaters, brackish, and marine 
species in the lagoons was affected by SAL gradients. 
Another piece of evidence showing the distribution of spe-
cies affected by SAL was detected in the cluster analysis. 
According to this analysis, species composition was found 
as similar in DAL and HER lagoons which are mesohaline 
characters, while species composition was similar in TER 
and BCK lagoons which are freshwater characters. Many 
studies in coastal lagoons have already stated the important 
effect of SAL on the species composition of phytoplankton 
(Comin and Valiela 1993; López-Flores et al. 2006; Spec-
chiulli et al. 2008). It has been stated in different studies that 
each species has a different SAL optima, and SAL affects 
the phytoplankton growth rate (Braarud 1951; Tyler and 
Seliger 1981). In our study, 12 of the 27 dominant species 
were determined to have high SAL optima and were distrib-
uted in more saline lagoons. In some previous studies, it has 
been stated that taxonomic groups of phytoplankton showed 
variation from Cyanobacteria and Chlorophyta to Bacil-
lariophyta and Miozoa with salinity increase (Kies 1997; 

Fig. 4   a Distribution of Species Richness, Shannon Index (bits), and 
Biovolume (mm3/L ) along the 6 coastal lagoons of Marmara Basin 
(b) Relationships between log (Salinity) and log (Species Rich-

ness), log (Shannon Index), and log (Biovolume), respectively in the 
6 coastal lagoons of Marmara Basin (The full names of the lagoons 
were given in Table 1)
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Muylaert and Sabbe 1999; Li et al. 2021). In our study, the 
individuals of 8 taxonomic groups contributed to the relative 
abundance of phytoplankton at different rates up to 36 ppt. 
However, only individuals belonging to the Cyanobacteria, 
Euglenozoa, Miozoa, and Bacillariophyta were detected over 
36 ppt.

In the studied lagoons, the distribution of dominant spe-
cies was affected by seasonality and was segregated into 
fall and spring periods. In the CCA diagram, the fall of 
2020 period of more saline DAL, HER, and MER lagoons 
and high SAL optima species such as Cylindrotheca clos-
terium, Gyrosigma wansbeckii, Nitzschia acicularis, Pro-
rocentrum micans, and Pinnularia sp. were located near 
to SAL and ALK. It has been stated in different studies 
that these species have a high tolerance to SAL and were 
reported in brackish and marine environments (Mar-
shall et al. 1981; Barillé et al. 2003; Van Bergeijk et al. 
2003; Fatah et al. 2022; Guiry and Guiry 2023). Since 
the salinity values in the MER lagoon were much higher 
in fall 2020 than in spring 2021, the salinity-tolerant G. 

wansbeckii was detected as the dominant species in this 
environment. Species such as C. closterium, N. acicularis, 
and P. micans were reported in highly alkaline environ-
ments (Gosselain et al. 1994; El Gammal et al. 2017). 
The presence of low SAL optima species (Trachelomonas 
manginii) in this group can be explained by the high corre-
lation of this species with ALK. This freshwater eugleno-
phyte was also detected for the first time after the tropical 
cyclone in the outer channel area in the Chilika lagoon, 
where SAL values were measured high in previous stud-
ies (Srichandan and Rastogi 2020). This lagoon has also 
high alkalinity values (Srichandan et al. 2015). On the 
other hand, fall 2020 period of BCK and TER lagoons and 
low SAL optima species such as Aulacoseira granulata, 
A. subarctica, Cymatopleura elliptica, Pediastrum duplex, 
and Staurosira construens were correlated with T. These 
species were reported in many freshwater lakes during the 
early fall periods when the temperature is still high and 
mixing events increase (Padisák et al. 2009; Sevindik et al. 
2017). The presence of benthic pennate diatoms such as 

Fig. 5   Seasonal distribution of Salinity, Species Richness, Shannon 
Index (bits), and Biovolume (mm3/L ) in the 6 coastal lagoons of the 
Marmara Basin (The full names of the lagoons were given in Table 1) 

(average values of the stations for each lagoon were used for deter-
mining Salinity, Species Richness, Shannon Index (bits), and Biovol-
ume values)
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C. elliptica and S. construens in the pelagic environment 
has also indicated wind-induced sediment resuspension 
(Padisák et al. 2009; Aubry et al. 2013; Pednekar et al. 
2014).

In spring 2021, MER and TER lagoons, and low SAL 
optima species found in these lagoons (Gomphonema sp., 
Gymnodinium catenatum, Gymnodinium inversum, Gyro-
sigma kuetzingii, Hymenomonas sp., Peridinium racibor-
skii var. palustre) showed high correlation with DO. Due 
to the SAL decrease in MER lagoon, low SAL tolerant spe-
cies have become dominant. On the other hand, DO values 
were much higher in these two lagoons (> 11 mg L−1) 
compared to other lagoons in the spring period. Ohtake 
et al. (1982) have attributed the high oxygen concentration 
detected in the spring to the vigorous photosynthetic activ-
ity of Gymnodinium spp. in the Nakanoumi lagoon, which 
was previously artificially freshened similar to TER lagoon 
to meet the irrigation need. In spring 2021, BCK, KCK, 
and HER lagoons and species such as Chlamydomonas 
spp., Glenodinium alpestre, Pandorina morum, Protop-
eridinium sp., and Stephanocyclus meneghinianus were 
correlated with NO3-N. These species have been detected 
in nitrate-rich eutrophic lakes (Happey-Wood 1976; Carli 

et al. 1994; Naselli-Flores and Barone 2000; Padisák et al. 
2009; Zhang et al. 2013).

High SAL optima species such as Dunaliella obliqua, 
Chaetoceros sp., Gyrosigma sp., and Mougeotia sp. were 
separated from other groups in the CCA. In these spe-
cies, Chaetoceros sp. and Mougeotia sp. were found in the 
fall of 2020 or spring of 2021 of KCK and DAL lagoons. 
They were correlated with PO4-P. Besides, PO4-P values in 
KCK were measured higher than in other lagoons. Chae-
toceros species were reported in eutrophic coastal environ-
ments (Gotsis-Skretas and Friligos 1990; Annabi-Trabelsi 
et al. 2022), while Mougeotia species were detected in the 
eutrophic saline lake (Reati et al. 1996) with high PO4-P 
content. Dunaliella obliqua, which was detected in spring 
2021 in HER lagoon, was indicated as a marine species 
(Guiry and Guiry 2023).

Conclusion

1)	 Although the phytoplankton biovolume did not change 
significantly due to SAL differences in 6 coastal lagoons, 
the average biovolume values were minimum in the 

Fig. 6   Ordination of the 
samples corresponding to 
the different lagoons, scores 
of phytoplankton biovolume 
by dominant species, and 
environmental variables, along 
the canonical correspondence 
analysis axes. Environmental 
variables: T: water tempera-
ture, DO: dissolved oxygen, 
SAL: salinity, PO4: orthophos-
phate, NO3: nitrate-nitrogen, 
ALK: alkalinity (red: Dalyan 
Lagoon, orange: Hersek 
Lagoon, purple: Mert Lagoon, 
blue: Küçükçekmece Lagoon, 
dark green: Terkos Lagoon, 
green: Büyükçekmece Lagoon) 
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most saline HER. Species richness and diversity were 
detected as low in more saline KCK and HER lagoons. 
Moreover, the total number of species was recorded as 
lowest in most saline KCK, DAL, and HER. In these 
lagoons, higher brackish and marine species were 
detected. Moreover, only individuals belonging to four 
taxonomic groups were detected over 36 ppt. In addition, 
species composition was found as similar in mesohaline 
lagoons, while species composition was similar in fresh-
water lagoons. SAL was also effective in the distribution 
of dominant species and species with higher SAL toler-
ance were found in most saline lagoons. These results 
show that the variation in SAL is the most significant 
factor in shaping the phytoplankton community structure 
among the lagoons.

2)	 Considering other environmental variables except for 
salinity, TP and PO4-P values affected the average bio-
volume in the KCK lagoon. Species distributed in a 
eutrophic environment with high PO4-P content were 
dominant in this lagoon. As a result of higher T, phyto-
plankton biovolume was slightly higher in most lagoons.

3)	 SAL values were not significantly different among the 
seasons. However, in the MER lagoon, high SAL val-
ues tended to decrease phytoplankton biovolume. The 
considerable decrease in SAL shifted the dominant 
species structure from high SAL optima species to low 
SAL optima species in this lagoon. Moreover, T, ALK, 
NO3-N, and DO were the main factors affecting the sea-
sonal distribution of dominant species.

We can conclude that the changes in abiotic factors, 
particularly salinity, affect the spatial and temporal algal 
communities in the lagoons. Also, to better detect the 
effect of salinity on phytoplankton, these lagoons should 
be monitored with periodic studies. Therefore, the effects 
of climate change will be better understood.
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