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Abstract
The implementation of exotic pastures is responsible for significant deforestation in the Amazon rainforest. The pasturelands in 
the Amazon are created through both legal and illegal means, and are responsible for major biodiversity loss. In this study, we 
evaluated the effect of an anthropogenic habitat type (i.e., exotic pasture) on native dung beetle assemblages (Coleoptera: Scara-
baeidae: Scarabaeinae) – an excellent bioindicator group for measuring biodiversity-loss. We analyzed dung beetle diversity and 
assemblage structure in a large and well-conserved forest fragment and in an exotic pasture (Urochloa brizantha cv. Marandu; 
Poaceae) that is used for cattle-ranching activities, both located in the Southwestern Brazilian Amazon. A total of 569 individu-
als belonging to nine genera and 31 species of dung beetles were collected. From the sampled species, 13 were collected in both 
habitats, 16 species were exclusive to the native forest, and only two were found exclusively in the exotic pasture. Species richness 
as a whole and specifically of paracoprid dung beetles was higher in the forest fragment. Our findings also revealed a distinct 
assemblage structure between native forest and exotic pasture. In conclusion, our results provide evidence that the dung beetle 
assemblage in exotic pasture is a subset of the assemblage present in native forest, with a poor richness of species, indicating that 
dung beetles are drastically affected by the opening of new areas for implementation and expansion of pasturelands in the Amazon.
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Introduction

Tropical ecosystems feature as one of the most discussed 
regions in the world with regards to current novel conserva-
tion strategies because although they harbour a high species 

diversity, they are also one of the most threatened ecosys-
tems (Myers et al. 2000; Hoang and Kanemoto 2021). There 
have been public and private initiatives aiming to understand 
and mitigate the effects of converting natural landscapes into 
anthropogenic ones (Melo et al. 2014; Erbaugh et al. 2019; 
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Drummond et al. 2021). Through the assessment of biodi-
versity in tropical ecosystems, and their response towards 
different disturbance regimes, conservation ecologists 
aim to understand the levels of tolerance of the ecological 
communities to these novel and challenging systems that 
have been occuring during the Anthropocene (e.g., Garcia-
Moreno et al. 2014; Martínez-Ramos et al. 2016; Erbaugh 
et al. 2019). Although there is a clear unidirectional response 
(i.e., anthropogenic landscapes impoverish tropical biodi-
versity, see Gardner et al. 2009), it is crucial to understand 
the reasons behind the success of some biological groups in 
the disturbed environments. In addition, by analyzing how 
ecological communities and their particular subsets respond 
to habitat transformation, we may predict the outcomes of 
novel future scenarios triggered by human activities.

The Amazon is a continental biome that occupies 
almost the entire Midwest of South America, and is the 
main source of Neotropical biodiversity, as well as one 
of Earth’s greatest biological treasures, providing crucial 
ecosystem goods and services to humanity (e.g., Myers 
1997; Foley et al. 2007; Antonelli et al. 2018). However, 
despite its invaluable ecological and economic impor-
tance, the Amazon rainforest has been drastically defor-
ested in recent years (e.g., Matricardi et al. 2020; Stropp 
et al. 2020; Lapola et al. 2023). One of the current main 
threats to the Amazon rainforest is from cattle-ranching 
activities, which comprises the conversion of native veg-
etation into exotic pastures (Neate-Clegg and Şekercioğlu 
2020; Paiva et al. 2020). From the introduced pasturelands 
in the Amazon, one of the grass species most commonly 
used is the African Urochloa spp. (Syn. Brachiaria) (Rao 
et al. 1996; Galdino et al. 2016; IBGE 2017). Exotic pas-
ture implementation is responsible for a significant rise 
in deforestation in the Amazon. The deforestation stems 
from the center of South America towards the north of the 
continent, which results in the presently termed `Amazo-
nian arc of deforestation` (Durieux et al. 2003; Cavalcante 
et al. 2019). As a consequence of this novel Amazonian 
landscape, biodiversity in this biome is facing a challeng-
ing scenario, encompasing habitats markedly different 
from the native ones. The implementation and expansion 
of pasturelands in the Amazon, which comes from legal 
and illegal means, causes drastic negative impacts on its 
biodiversity and physical structure (Pereira et al. 2000; 
Fearnside 2002; Makewitz et al. 2004).

Over the last decade, dung beetles (Coleoptera: Scarabaei-
dae: Scarabaeinae) have gained a notable importance as a bio-
monitoring group in tropical anthropogenic landscapes (Gard-
ner et al. 2008; Scholtz et al. 2009; Silva et al. 2017). Abiotic 
and biotic factors, such as climate and mammal presence, are 
intrinsecally linked to dung beetle diversity (e.g., Davis et al. 
2002; Scholtz et al. 2009). Shifts in environmental conditions 
tend to directly change dung beetle species composition and 

assemblage structure (e.g., Silva et al. 2014, 2017), allowing 
the assessment of finer nuances in the effects of habitat change 
on biodiversity. Thus, the dung beetles show direct responses 
to anthropogenic activities, such as deforestation and the alter-
ation of native habitats (e.g., Halffter et al. 1992; Halffter and 
Favila 1993; Louzada et al. 2010; França et al. 2016; Silva 
et al. 2017; Correa et al. 2020). Moreover, in dung beetle com-
munities, each functional group interacts with the environment 
in a particular manner, presenting single responses towards 
recent habitat transformations in the tropics (e.g., Salomão 
et al. 2019; Correa et al. 2020).

Previous studies indicate that the conversion of Amazon 
native forests into pastures are harmful for dung beetle diver-
sity (e.g., Klein 1989; Quintero and Roslin 2005; Scheffler 
2005; Quintero and Halffter 2009; Silva et al. 2016, 2017). 
Nonetheless, these studies are regional and large portions of 
the Amazon biome lack studies of this process, such as the 
Southwest of Brazilian Amazon (state of Rondônia), in which 
so far only one study focused on assessing such dynamics 
(Silva et al. 2014). The Southwest Brazilian Amazon has an 
important role regarding the dynamics of conversion of native 
forests into exotic pastures, since it is located exactly in the 
ecotone that comprises the Amazonian arc of deforestation. In 
this study, we evaluated the effect of the anthropogenic habitat 
type (i.e., exotic pasture) on native dung beetle assemblages. 
In order to analyze the effect of land use change, we studied 
dung beetles from a large and well-conserved forest fragment, 
as well as from an exotic pasture that is used for cattle-ranching 
activities. More specifically, we analyzed the whole dung bee-
tle assemblages (dung beetle diversity and assemblage struc-
ture), as well as each functional group separately. By analyzing 
ecological responses under these two perspectives, we may 
attain a more complete and detailed scenario regarding groups 
of dung beetles that are most affected by habitat types.

Materials and methods

Study sites

This study was carried out in the municipality of Itapuã do 
Oeste, state of Rondônia, Northern Brazil (09°18' S, 63°11' 
W; elevation of 119 m) (Fig. 1). This region is located in 
the Southwestern Amazon region, with a characteristic 
ombrophilous dense forest that is typical of the Amazon 
biome (IBGE 2006). According to the Köppen classification 
system, the climate of the study region is Am, tropical wet 
(tropical monsoon climate) (Alvares et al. 2014). The dry 
season corresponds to the months of June, July and August 
(mean monthly rainfall: 31.8 mm), while the other months 
comprise the rainy season, with 229.5 mm of mean monthly 
rainfall (Tejas et al. 2012). The region has an average annual 
temperature of 26.9 ºC (ranging from 20.9 to 33.8 ºC) and 
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average annual precipitation of 2,161 mm (ranging from 
1,592 to 2,670 mm) (Tejas et al. 2012).

The landscape of the study area is representative of the 
current drastic Amazon transformation due to agricultural 
practices being located in the transition between the con-
served portion of the ecosystem and the arc of deforestation 
between Amazon and Cerrado biomes (Fig. 1). Northern-
most of the study area, the continuous Amazon forest occurs, 
while the Itapuã do Oeste municipality surroundings and its 
southernmost portion comprise a mosaic of forest fragments 
and agricultural matrix (Fig. 1). This mosaic is located near 
on the banks of the Jamari River, being surrounded by frag-
ments of the Amazon rainforest and extensive exotic pasture-
lands for livestock (Fig. 1).

This study was performed in the two most representative, 
and contrasting, habitat types of the region:

1)	 Amazon forest fragment (terra firme vegetation) which 
is ca. 120 ha in size. This fragment comprises a primary 
forest with low levels of anthropogenic activity, such as 

selective logging and extraction of native fruits (Brazil 
nuts – Bertholletia excelsa Humb. & Bonpl.; Lecythi-
daceae and açaí – Euterpe olerecea Mart.; Arecaceae). 
Plant species are dominated by the families Arecaceae, 
Melastomataceae, Fabaceae, Lauraceae, Lecythidaceae, 
and Meliaceae. Studies conducted in forest fragments in 
the state of Rondônia indicate the presence of medium 
and large-sized mammals, such as jaguar (Panthera onca 
(L., 1758); Felidae), giant anteaters (Myrmecophaga tri-
dactyla L. 1758; Myrmecophagidae), the nine-banded 
armadillo (Dasypus novemcinctus (L., 1758); Dasy-
podidae), and marmosets (Leontocebus spp.; Cebidae) 
(Medeiro et al. 2019; Silva et al. 2021), meaning these 
are the species to be expected to inhabit the study region. 
The studied forest fragment is ca. 6 km away from the 
neighboring continuous Amazon forest (Fig. 1);

2)	 A 30-ha exotic pasture composed of the grass Uroch-
loa brizantha (syn. Brachiaria brizantha) cv. Marandu 
(Poaceae), which was introduced 16 years ago and is con-
stantly used for cattle ranching activities (1.7 cattle·ha−1). 

Fig. 1   Geographic location of 
the study area. The state of Ron-
dônia located in the Southwest 
of the Brazilian Amazon (a); 
the municipality of Itapuã do 
Oeste located to the North-
east of the state of Rondônia 
(b); and the sampling sites: 
Amazon forest fragment (terra 
firme vegetation), and exotic 
pasture (Urochloa brizantha cv. 
Marandu; Poaceae) (c)
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This pasture is subdivided in five plots of 6 ha each with a 
rotational grazing management structure. In such manage-
ment regimes, the cattle remains between five and seven 
days in each plot, returning after a period between 25 and 
35 days. In order to control cattle endo- and ectopara-
sites, synthetic veterinary products (mostly abamectin, 
doramectin, and ivermectin) are used readily in the live-
stock of the studied pasture, as well as in neighboring 
ones. The surroundings of this pasture are composed 
of a mosaic of agricultural crops, forest fragments, and 
other pastures (Fig. 1). This anthropogenic landscape was 
established about ca. 50 years ago in the study region.

Experimental protocol and dung beetle trapping

In the center of each habitat type (native forest and exotic pas-
ture), five linear transects of 400 m were established, 200 m 
apart from each other. In each transect, four sampling units 
were established, each one 100 m apart from the others (see 
Larsen and Forsyth 2005; da Silva and Hernandéz 2015). We 
performed a Mantel test to investigate a possible spatial auto-
correlation between sampling units and the dung beetle assem-
blages (see Moctezuma 2021), using the ‘vegan’ package in 
the R software version 4.2.1 (R Core Team 2023). Because we 
found a spatial autocorrelation (r = 0.54; p < 0.01), our sam-
pling units should be treated herein as being pseudoreplicates. 
In each sampling unit, we installed two pitfall traps (2 m apart 
from each other), one baited with ca. 40 g of fresh pig dung 
and the other baited with ca. 40 g of carrion (decaying bovine 
meat). We used traps baited with different bait types in order 
to ensure an accurate representation of the local dung beetle 
functional and trophic groups (see Correa et al. 2016, 2023). 
This sampling method has been successfully used in ecologi-
cal studies comprising tropical dung beetles (e.g., Ferreira 
et al. 2020; Correa et al. 2021a). To avoid any bias caused by 
seasonality on dung beetle assemblages (see seasonality in da 
Silva et al. 2013; Correa et al. 2021b; Araújo et al. 2022) we 
repeated this sampling across three months (December 2018, 
January and August 2019), representative of the different peri-
ods of the year. In total, this study encompases a sampling 
effort of 20 spatial replicates per habitat type and 240 pitfalls 
installed (i.e., 20 replicates × 2 traps × 2 habitats × 3 months).

Pitfall traps consisted of 15 cm diameter × 9 cm height-
plastic pots, which were buried at soil surface. Each trap was 
filled with a ca. 300 mL-solution of salt (30 g) and detergent 
(6 mL) to capture and preserve the collected specimens. The 
baits were placed in small plastic cups (50 mL) at the center 
of each trap using a wire as a bait holder. To avoid bait desic-
cation and damaging of the traps by leaf litter and rainfall, a 
plastic lid was inserted in the top of each pitfall trap. Traps 
were removed 48 h after their installation in the field. Collected 
specimens were kept in plastic bags with ethanol 70% for pres-
ervation until dung beetle sorting and taxonomic identification.

Taxonomic treatments

After the sorting of all collected material, the dung beetle 
specimens were identified to the genus level (Vaz-de-Mello 
et al. 2011) and then sent to the Universidade Federal de 
Mato Grosso (UFMT; Cuiabá, Mato Grosso, Brazil). At 
UFMT, dung beetles were identified to species level by two 
of the authors (i.e., CMAC and FZVM). Voucher specimens 
are deposited in the Entomological Section of the Zoological 
Collection at the UFMT (CEMT).

Data analysis

Inventory completeness was evaluated using a sample cover-
age analysis (see Chao et al. 2014; Hsieh et al. 2016), which 
comprises an individual-based approach. This analysis 
ensures that our sampling adequately represented the dung 
beetle assemblages of the native forest and exotic pasture 
studied herein. Sample coverage was performed using the R 
package iNEXT (Hsieh et al. 2016), in R software version 
4.2.1 (R Core Team 2023). In addition, we plotted species 
rank-abundance distributions to visually compare patterns of 
species dominance in the two studied habitats.

To estimate dung beetle diversity in native forest and 
exotic pasture, we used the Hill numbers’ approach to calcu-
late species richness (0D), exponential of Shannon diversity 
(1D) and the inverse of Simpson (2D), using the R pack-
age iNEXT (Hsieh et al. 2016). 0D is equivalent to species 
richness and is not sensitive to the species abundance (Jost 
2006); 1D accounts for the most common species in a com-
munity (Jost 2006); and 2D accounts for the dominant spe-
cies, giving more weight to them compared to 0D and 1D 
and being impervious to rare species (Jost 2006; Chao et al. 
2014). Hill numbers are widely used in ecological studies 
(Chao et al. 2020). In this study, Hill numbers were cal-
culated for the whole dung beetle assemblages and each 
functional group, according to their resource removal strat-
egies (i.e., endocoprids, paracoprids and telecoprids; as pro-
posed by Tonelli 2021). To compare dung beetle diversities 
between native forest and exotic pasture, ± 95% confidence 
intervals were used (Hsieh et al. 2016).

To verify differences of assemblage structure between 
native forest and exotic pasture sites, we used Permutational 
Multivariate Anova (PERMANOVA; p < 0.05), with 999 per-
mutations (Anderson 2001). To test heterogeneity of multi-
variate dispersions between native forest and exotic pasture 
sites, we used Permutational Multivariate Analysis of Disper-
sion (PERMDISP; p < 0.05) (Anderson 2001). To graphically 
represent the changes in dung beetle assemblage structure 
between native forest and exotic pasture sites, we used a Non-
Metric Multidimensional Scaling analysis (NMDS) with 999 
random restarts (Anderson and Willis 2003). PERMANOVA, 
PERMDISP and NMDS analyses were performed based on 
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Bray–Curtis dissimilarity matrix, and data of species abun-
dance were standardized and square root transformed. All 
these statistical approaches were run in the Primer software 
version 6 with PERMANOVA + (Clarke and Gorley 2006).

Results

We collected 569 individuals belonging to 31 species in nine 
genera of dung beetles. Ateuchus Weber, 1801 and Canthid-
ium Erichson, 1847 were the most diverse genera (S = 7 spe-
cies in each genus), while Deltochilum Eschscholtz, 1822, 
Pseudocanthon Bates, 1887, Coprophanaeus Olsoufieff, 
1924, and Phanaeus Macleay, 1819 were the least diverse 

genera (S = 1) (Table 1). In the native forest, we captured 29 
species (n = 496), whereas in exotic pasture, we collected 
15 species (n = 73) (Table 1). From the total species col-
lected, 13 species were found in both habitats, 16 species 
were found exclusively in native forest, and only two spe-
cies (namely Canthon sp. and Pseudocanthon xanthurus 
(Blanchard, 1846)) were found exclusively in exotic pasture 
(Table 1). The sample coverage estimator revealed a high 
sampling efficiency, ranging from 98% in native forest to 
90% in exotic pasture (Table 1), indicating that the dung 
beetle survey representatively captured the true diversity of 
the local assemblage.

We found a higher number of species (0D) and abundant 
species (1D) in native forest compared to exotic pasture 
(Fig. 2a, b). Nonetheless, the number of dominant species 

Table 1   Abundance, species 
richness, sample coverage, 
and functional groups of dung 
beetles collected in native forest 
and exotic pasture in Itapuã 
do Oeste, state of Rondônia, 
Southwest of the Brazilian 
Amazon. *Reported for the first 
time for the state of Rondônia, 
Northern Brazil (for a list of 
dung beetle species reported for 
the state of Rondônia, see Silva 
et al. 2022; Silveira et al. 2023)

Taxon Forest Pasture Total Funcional Group

Ateuchus aeneomicans (Harold, 1868) 13 13 Paracoprid
Ateuchus substriatus (Harold, 1868) 27 27 Paracoprid
Ateuchus sp. 1 2 2 Paracoprid
Ateuchus sp. 2 1 1 2 Paracoprid
Ateuchus sp. 3 11 3 14 Paracoprid
Ateuchus sp. 4 11 11 Paracoprid
Ateuchus sp. 5 1 1 Paracoprid
Canthidium aff. barbacenicum Preudhomme de Borre, 1886 3 3 Paracoprid
Canthidium aff. dohrni Harold, 1867 8 8 Paracoprid
Canthidium aff. lentum Erichson, 1847 3 1 4 Paracoprid
Canthidium aff. melanocephalum (Olivier, 1789) 1 1 2 Paracoprid
Canthidium sp. 1 32 3 35 Paracoprid
Canthidium sp. 2 20 20 Paracoprid
Canthidium sp. 3 7 7 Paracoprid
Canthon conformis Harold, 1868 5 6 11 Telecoprid
Canthon histrio (Lepeletier & Serville, 1828) 5 8 13 Telecoprid
Canthon aff. simulans (Martínez, 1950) 6 25 31 Telecoprid
Canthon xanthopus Blanchard, 1846* 2 2 Telecoprid
Canthon sp. 1 1 Telecoprid
Coprophanaeus lancifer (Linnaeus, 1767) 9 9 Paracoprid
Deltochilum sp. 27 1 28 Telecoprid
Dichotomius aff. batesi (Harold, 1869) 48 10 58 Paracoprid
Dichotomius aff. lucasi (Harold, 1869) 8 8 Paracoprid
Dichotomius mamillatus (Felsche, 1901) 1 1 Paracoprid
Dichotomius worontzowi (Pereira, 1942) 3 3 Paracoprid
Eurysternus arnaudi Génier, 2009 162 1 163 Endocoprid
Eurysternus atrosericus Génier, 2009 62 1 63 Endocoprid
Eurysternus caribaeus (Herbst, 1789) 15 3 18 Endocoprid
Eurysternus wittmerorum Martínez, 1988 2 2 Endocoprid
Phanaeus chalcomelas (Perty, 1830) 1 1 Paracoprid
Pseudocanthon xanthurus (Blanchard, 1846) 8 8 Telecoprid
Number of individuals (Abundance) 496 73 569
Number of species (Richness) 29 15
Sample coverage (%) 98 90
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(2D) did not differ between the two studied habitats (Fig. 2c). 
When analyzing diversity separated by functional groups 
according to resource removal strategy, the effects of habitat 
type on dung beetle diversity varied depending on the group 
analyzed (Fig. 3). For paracoprid dung beetles, native forest 

presented higher diversity (0D, 1D, and 2D) than exotic pasture 
(Fig. 3). For endocoprid and telecoprid dung beetles, native 
forest and exotic pasture harbored similar diversities (Fig. 3).

From the total individuals collected in the native forest, 
the three most abundant species were Eurysternus arnaudi 
Génier, 2009 (32.7%), Eurysternus atrosericus Génier, 2009 
(12.5%) and Dichotomius aff. batesi (Harold, 1869) (9.7%) 
(Fig. 4). In the exotic pasture, the most abundant species 
were Canthon aff. simulans (Martínez, 1950) (34.2%), D. 
aff. batesi (13.7%), Canthon histrio (LePeletier & Serville, 
1828) (11.0%), and Pseudocanthon xanthurus (Blanchard, 
1846) (11.0%) (Fig. 4). Eight of the species recorded in 
native forest (28% of the forest species) were rare (i.e., sin-
gleton or doubleton), whilst seven species were considered 
rare in exotic pastures (47% of the pasture species). Inter-
estingly, two of the eight rare species observed in the native 
forest habitat (namely Ateuchus sp. 1 and Canthidium aff. 
melanocephalum (Olivier, 1789)) are also rare in exotic pas-
ture, and the other six species are absent from exotic pasture. 
In this habitat type, three of the seven rare species are abun-
dantly found in native forest (E. arnaudi, E. atrosericus and 
Deltochilum sp.).

The NMDS analysis organized sites into distinct groups, 
corresponding to the two types of habitats (Fig. 5), with 
assemblage structure differing significantly between native 
ecosystem (forest) and the introduced one (pasture) (PER-
MANOVA, Pseudo-F = 7.30, p < 0.01). Habitat types 
showed differences in the multivariate dispersion of points 
(PERMDISP, F = 9.53, p = 0.01), where exotic pasture had 
the highest dispersion value (Native Forest = 20.69 ± 1.46; 
Exotic Pasture = 42.76 ± 6.99).

Discussion

In the tropical ecosystems of America, the expansion of cat-
tle ranching activity has led to alarming landscape transfor-
mation, which has been boosted since the second half of 
the twentieth century (Goodman and Hall 1990; Guevara 
et al. 2000; Pendrill et al. 2019). The Amazon region has a 
particular context regarding the expansion of cattle ranch-
ing activities: the conversion of conserved forest to pasture 
is relatively recent and has been a crucial debate topic in 
South American conservation policies (Goodman and Hall 
1990; França et al. 2021). According to our results, the pas-
ture habitats established in the Amazon rainforest has drastic 
negative consequences for biodiversity, since dung beetle 
diversity was markedly lower in pastures compared to forest 
habitat and assemblage structure was found to be completely 
distinct between native forest and the exotic pasture. Fur-
thermore, the effect of habitat type on diversity depends on 
the functional group analyzed, suggesting that the effects of 
habitat transformation on diversity of dung beetles is group 

Fig. 2   Diversity numbers presenting mean species richness (a), expo-
nential of Shannon entropy (b), and inverse of Simpson (c) of dung 
beetles sampled from native forest and exotic pasture in Itapuã do 
Oeste, state of Rondônia, Southwest of the Brazilian Amazon. Dif-
ferent letters indicate significant differences (± 95% confidence inter-
vals)
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Fig. 3   Diversity numbers presenting mean species richness (a–c), 
exponential of Shannon entropy (d–f), and inverse of Simpson (g–i) 
of dung beetle functional groups separated according to their resource 
removal strategies (endocoprid, paracoprid and telecoprid), which 

were sampled from the native forest and exotic pasture in Itapuã do 
Oeste, state of Rondônia, Southwest of the Brazilian Amazon. Dif-
ferent letters indicate significant differences (± 95% confidence inter-
vals)

Fig. 4   Rank-abundance 
distribution in log (X + 1) of 
dung beetle species sampled 
in the Amazon forest (white 
bar) and exotic pasture (grey 
bar), in Itapuã do Oeste, state 
of Rondônia, Southwest of the 
Brazilian Amazon. Black bars 
represent exclusive species of 
each habitat type
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dependent. Such results reinforce the trend of biodiversity 
decline due to anthropogenic activities in tropical American 
landscapes.

The conversion of tropical forests into pastures generates 
abrupt shifts in environmental conditions (e.g., canopy cover, 
temperature, soil physical and chemical properties; Reiners 
et al. 1994; Pedrinho et al. 2018; Oliveira and Schmidt 2019), 
which are determinant for species establishment. Different 
from other forested ecosystems, in which there are species 
that clearly benefits from the open environments (higher 
temperatures, more sunlight) (Urbina-Cardona et al. 2006; 
Martínez-Falcón et al. 2018; Conover et al. 2019), we found 
that Amazon forests harbor dung beetle structures mark-
edly distinct from those that inhabit neighboring pastures, in 
which dung beetle assemblages are a subset of those observed 
in forest. Most of the species that were recorded in the exotic 
pasture were less abundant than equivalent populations 
recorded in forests. The spatial distribution and abundances 
of species in each environment type represents a proxy of 
their habitat affinity (McGeoch et al. 2002). Thus, our results 
may allow us to propose two hypotheses: (1) dung beetles are 
using the pasture to move between forest fragments, rarely 
occurring in open areas; and (2) open areas maintain subsets 
of dung beetle populations. Both hypotheses are plausible 
and have been observed in other ecosystems. For example, in 
the Deltochilum and Dichotomius Hope, 1838 genera, there 
are species that use non-native habitats (e.g., pastures) to 
move across forested ecosystems (Cultid-Medina et al. 2015; 
Barretto et al. 2021), thus being more often observed in forest 
than in pastures. In addition, Canthon cyanellus LeConte, 
1859 comprises of populations that segregate among different 

habitat types (forests, pastures, live fences) according to their 
sex, maturation stage, and age (Salomão et al. 2021). As spe-
cies traits play an important role on dung beetles’ spatial dis-
tribution, diurnal activity of dung beetles could drive species 
movement across landscapes. For example, considering the 
crepuscular/nocturnal activity of Dichotomius species (Ian-
nuzzi et al. 2016), such beetles could move between forest 
fragments during the periods in which pastures have cooler 
temperatures. Our results and previous data support the idea 
that Amazonian pastures are highly hostile environments for 
dung beetle diversity of the region (e.g., Silva et al. 2017). 
Apparently, only two species (namely C. aff. simulans and P. 
xanthurus), which are broadly distributed in different ecosys-
tems and prefer open habitats (Matavelli et al. 2013; Iannuzzi 
et al. 2016; Nazaré-Silva and Silva 2021), can successfully 
thrive in this new habitat type in the Amazon.

When analyzing the entire dung beetle assemblages, diver-
sity was lower in exotic pasture compared to native forest. 
Regarding the dung beetle diversity, habitat quality (e.g., 
temperature, humidity, soil properties), resource availability 
(quality and quantity) and evolutionary history of a region are 
determinants for species establishment (Hanski 1991; Scholtz 
et al. 2009). Since the Amazonian region of this study was 
originally covered and dominated by closed-canopy rainforest, 
we believe that originally there were few species that suc-
cessfully inhabited open habitats. Subtropical and temperate 
ecosystems harbour a considerable diversity of dung beetles 
species that successfully uses open areas (Martínez-Falcón 
et al. 2018; Conover et al. 2019). For example, in mountain 
landscapes in Central Europe, open ecosystems (pasturelands) 
harbor a considerable higher diversity than native forested 
ecosystems (Tocco et al. 2013), which may have a marked 
importance for decision makers regarding the landscape future 
in this region. This is not only the case of Central Europe, but 
also for the temperate mountain (e.g., Escobar et al. 2007; 
Barragán et al. 2014; Moctezuma et al. 2016) and xeric pla-
teau landscapes (e.g., Verdú et al. 2007) from North Amer-
ica. On the other hand, the scenario of the Amazon region is 
clearly distinct. Few species successfuly occupy the niches 
available in pastures, resulting in a low diversity compared 
to forests. Nonetheless, while the number of species (0D) and 
abundant species (1D) were higher in forest than pasture, dom-
inant species (2D) was similar between both habitats. Such a 
trend can be related to the assemblage dynamics established 
in both conserved and disturbed environments, in which a few 
species dominate the local assemblage (e.g., Halffter et al. 
1992; Filgueiras et al. 2015; Correa et al. 2021a). In conclu-
sion, although we observe an impoverished diversity in the 
Amazon pasture studied herein, it is important to consider that 
these landscapes were established recently (16 years). Dung 
beetle assemblages change throughout time (e.g., Escobar 
et al. 2008; Audino et al. 2014), and dung beetle species from 
conserved open ecosystems may invade recently established 

Fig. 5   Distribution patterns (NMDS) of the sampling points compar-
ing assemblage structure (Bray–Curtis dissimilarity) of dung beetles 
between native forest and exotic pasture, and dispersion of points to 
centroid (lines), in Itapuã do Oeste, state of Rondônia, Southwest of 
the Brazilian Amazon
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pastures in tropical rainforest (Maldaner et al. 2021). There-
fore, it is important to keep monitoring the novel agriculture-
scenario that comes together with pasture expansion in the 
Amazon arc of deforestation.

Interestingly, habitat type affected each functional 
group differently, with paracoprid dung beetles being the 
most sensitive. Paracoprids feature the most diverse group 
among dung beetles (e.g., Escobar et al. 2008; Filgueiras 
et al. 2015; Correa et al. 2021a), with its species present 
different strategies and responses to environmental condi-
tions. In a previous study conducted in Amazonian lowland 
forests, soil physical properties determined that paracoprid 
dung beetles are the most sensitive group due to their high 
diversity of strategies and behaviors (Salomão et al. 2022). 
Since tunnelling activity among dung beetles takes long 
time periods, which may take hours for tunnel building 
(Halffter and Edmonds 1982), we believe that long-term 
exposure to the harsh climatic conditions of open pasture 
strongly restrain paracoprid species. Following this ration-
ale, telecoprid dung beetles usually present rapid food relo-
cation behaviors (Latha and Thomas 2020), thus reducing 
the time length exposed to the environmental conditions 
compared to paracoprids. Considering the predominant 
closed-forest structure of tropical rainforests, the distinct 
environmental usage by paracoprid and telecoprid dung 
beetles may result in stronger environmental selection pres-
sures of open habitats against paracoprid species.

The similar diversity patterns of endocoprid dung beetles 
between native forest and exotic pasture needs to be ana-
lyzed with care. Since we had a reduced number of species 
from this group (S = 4), we believe that the current statistical 
approach could have masked the differences in abundances 
observed between endocoprid groups collected in exotic pas-
tures (n = 5) and native forest (n = 241), which were clearly 
distinct. In our opinion, the analysis of different functional 
groups with respect to the response of ecological assem-
blages to environmental conditions is fascinating but remains 
scarcely studied to date. Among dung beetle studies, there are 
a huge number of papers analyzing the effect of habitat type 
on their diversity in the tropics (e.g., Nichols et al. 2007; Fil-
gueiras et al. 2015; Correa et al. 2020, 2021a). Thus, future 
meta-analysis studies could aid in proving whether there are 
general trends encompassing the role of habitat type on the 
different functional groups of dung beetles.

Agricultural expansion and the consequent conversion of 
tropical forests in pasturelands and other agriculture fields 
is inevitable. Nonetheless, by analyzing how such landscape 
transformation modifies biodiversity in different ecosystems, 
we can disentangle the resilience levels of native ecologi-
cal communities to novel habitats such as pastures. In this 
study, pastures established in the Amazon region contained 
impoverished dung beetle assemblages when compared to the 
native forests. It is noteworthy that the conversion of tropical 

rainforest ecosystem into non-native land-uses causes dras-
tic negative impacts on biodiversity (Nichols et al. 2007; 
Santos-Filho et al. 2012; Pedrinho et al. 2018; Oliveira and 
Schmidt 2019). Nonetheless, while landscape transformations 
in many tropical rainforests comprise centuries of an intense 
process, Amazonian forests have been deforested intensely 
in recent decades. We believe that tropical ecological studies 
have achieved relatively advanced knowledge regarding long-
term effects of deforestation on biodiversity (e.g., Bennett and 
Saunders 2010; Haddad et al. 2015), as well as landscape 
ecology (e.g., Arroyo-Rodríguez et al. 2020; Fahrig 2020). 
The relatively recent expansion of pasturelands in this portion 
of the Amazon is supported by our data. The absence of the 
widespread exotic paracoprid dung beetle Digitonthophagus 
gazella (Fabricius, 1787) (Pokhrel et al. 2020), reinforce the 
idea that this Amazonian region is facing a recent deforesta-
tion dynamic due to livestock. Having identified this trend 
early, we still have a chance to maintain Amazonian forest as 
the largest and most diverse tropical rainforest in the world, 
with public policies that allow unification of both the sustain-
able-use and the ecosystem conservation of the region.

Finally, because our sampling units were spatially autocor-
related (Moctezuma 2021), resulting in pseudoreplicates for 
each habitat type, we need to interpret the current results care-
fuly, since we have a limited comprehension of the effects of 
habitat type on dung beetles’ diversity in this region. Although 
our study is part of a scenario also recorded in other Amazo-
nian landscapes, with abrupt losses in the diversity of dung 
beetles in exotic pastures compared to the native forest (e.g., 
Silva et al. 2017), a stronger sampling effort (i.e., sampling 
more spatially independent replicates) in future studies could 
reinforce and confirm the observed patterns.
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