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Abstract
We investigated the population structure, reproduction, growth parameters and total mortality of Fragillianassa fragilis. 
Sampling was performed monthly from July 2017 to July 2018 at Casa Caiada Beach, Pernambuco, northeastern Brazil. The 
overall sex ratio was 1:1 but with a dominance of juvenile males and adult females. The carapace length (CL) ranged from 
1.36 to 6.59 mm for males, 1.7 and 6.05 mm for females and 3.07 and 6.14 mm for ovigerous females. Reproduction was 
seasonal, with peaks during the warmest months of the year. The number of eggs ranged from 20 to 259. Growth parameters 
for males (L ∞ = 7 mm, K = 0.95  year–1, C = 0.4, and WP = 0.5) and females (L ∞ = 6.5 mm, K = 1.0  year–1, C = 0.9, and 
WP = 0.75) were quite dissimilar when compared to other ghost shrimps. Mortality was considered high for males and females 
(2.66 and 3.41, respectively), while the Growth Performance Index (Φ’) was similar for males (1.668) and females (1.626). 
This study provides new ecological information on ghost shrimp life-history strategies, as well as subsidies for conservation 
measures for this group, which is an important component of secondary production in coastal ecosystems.

Keywords Decapoda · Population structure · Growth · Mortality · Fecundity

Introduction

Recently, a new classification of the family Callianassidae 
was published based on the results of a molecular phylo-
genetic analysis with morphological support. The family 

currently has 26 genera, 12 of which are recently proposed. 
Fragillianassa, one of the new genera included in this 
review, includes three species, F. fragilis (Biffar, 1970) and 
F. debilis (Hernández-Aguilera, 1998), previously belong-
ing to the genus Biffarius; and the recently described F. joeli 
Pachelle and Tavares, 2020 (Poore et al. 2019; Pachelle and 
Tavares 2020). Of these three species, only two occur in 
Brazil, F. fragilis and F. joeli. The former extends from 
the USA (Florida), through the Gulf of Mexico, Puerto 
Rico, Antigua, and Venezuela to Brazil (Pernambuco and 
Ceará) (Botter-Carvalho et al. 2012; Pachelle et al. 2016); 
and the latter is known only from Trindade Island (Pachelle 
and Tavares 2020). Fragillianassa debilis occurs along the 
Pacific coasts of Mexico (Hernández-Aguilera 1998) and 
Costa Rica (Dworschak 2013; Vargas-Zamora et al. 2019).

These species are small-bodied, with the cephalothorax 
generally less than 5 mm long in adult F. debilis (Hernández-
Aguilera 1998), not exceeding 7 mm. The main character-
istics used to differentiate these species from other genera 
of the family Callianassidae are: the male and female major 
cheliped merus with a prominent truncate hook armed with 
serrations along the lower margin, excavated laterally at the 
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base, with a deep notch at the base of the fingers. Pleopod 1 
is present in males, while pleopod 2 is absent. The uropodal 
endopod is without facial spiniform setae (Poore et al. 2019).

The new genus is little studied, with only records of occur-
rence and information about morphological characteristics avail-
able, but no ecological information. Some studies have treated 
species of similar sizes, such as Arenallianassa arenosa (Poore, 
1975) (formerly Biffarius arenosus), whose population struc-
ture (Butler et al. 2009), diet (Boon et al. 1997), and burrow 
morphology (Bird and Poore 1999) were studied in Australia; 
and Biffarius biformis (Biffar, 1971) whose larval stages were 
studied by Sandifer (1973) in the USA.

Fragillianassa fragilis preferentially inhabits the inter-
tidal zone of sandy beaches, generally close to rivers and 
estuaries, such as the three beaches where they were found in 
Brazil (Forte Orange Beach, Itamaracá, Pernambuco; Casa 
Caiada Beach, Olinda, Pernambuco; and Pedra Rachada 
Beach, Paracuru, Ceará).

The members of the infraorder Axiidea have been studied 
extensively in recent decades, due to their importance to 
marine ecosystems. The bioturbation and bioirrigation that 
occur in the process of constructing and maintaining their 
burrows cause changes in sedimentary conditions, providing 
shelter to numerous organisms and consequently influencing 
the composition of benthic communities (Bird et al. 2000; 
Berkenbusch and Rowden 2003; Butler et al. 2009; Pillay 
and Branch 2011).

Analyses of population structure, reproduction, growth, 
longevity, and other length-frequency variables allow for 
comparison of this species with other species of ghost 
shrimps from different geographic areas. Here, we provide 
the first information on the population structure, reproduc-
tion, growth, longevity, mortality, and recruitment of F. 
fragilis, as well as information to aid in understanding the 
differences from other ghost shrimps.

Materials and methods

Samples of F. fragilis were collected monthly from July 2017 to 
July 2018, during low spring tides, in the municipality of Olinda 
on a sand-mud bank at Casa Caiada Beach (07°58’59.87” S 
and 34°50’6.08” W), Pernambuco, Brazil (Fig. 1). The bank, 
located in an area sheltered by breakwaters, is partly covered 
with macroalgae patches (Ulva, Halodule, Bryopsis, Caulerpa, 
and Cladophora) during part of the year and is completely cov-
ered from January to May (Fig. 2) (for more information about 
abiotic data see Botter-Carvalho et al. 2015; Costa et al. 2020a). 
About 80 shrimp were captured each month, using a manual 
suction pump. The specimens were individually packed in sea-
water and later preserved in 70% ethanol.

Species were identified, sexes determined based on the 
presence (female) or absence (male) of pleopod 2, and 

individuals were measured: carapace length (CL), tip of the 
rostrum to the end of the carapace; total length (TL), tip of 
the rostrum to the end of the telson; and propodus length 
of the major cheliped (PL), from the vertical projection of 
the proximal articulation to the vertical projection of the 
distal articulation, using a stereomicroscope with an ocular 
micrometer or digital caliper, to the nearest 0.01 mm.

Population structure

Size-frequency distributions were constructed using 0.5-mm 
CL size classes. The sex ratio (males to females) was compared 
to the total population, per rainy/dry season and size class, 
using chi-square tests. In this region the rainy season extends 
from April to September and the dry season from October to 
March (Pereira et al. 2016). Sex as a function of size was ana-
lyzed by Wenner’s curve, plotted with data for males and using 
the percentage of individuals by size class (see Wenner 1972).

To examine sexual dimorphism in terms of body size and 
chelipeds, we compared the CL and the PL between males 
(M) and females (F), using a Mann-Whitney test since the 
distribution was normal, but variances were not homogenous 
even with data transformation. The Mann-Whitney test was 
carried out in the program BioEstat 5.0 (Ayres et al. 2007).

The size at morphological maturation was calculated from 
the point of discontinuity of the regression line between the 
PL and CL. This point was defined by the smallest value 
obtained from the residual sum of squares (SQR) in the lin-
ear regression (Felder and Lovett 1989).

The breeding period was defined as those months with a 
maximum percentage of ovigerous females (OF), calculated 
based on the total number of adult females. Only females 
incubating embryos without eyes were used to estimate 
fecundity. The egg mass was mechanically removed from 
the pleopods and the eggs counted. Linear regressions were 
applied for the biometric relationships between fecundity 
and CL.

Growth, longevity, mortality, and recruitment

Growth was analyzed separately for males and females, 
using the von Bertalanffy seasonal growth function (VBGF) 
(Somers 1988; Soriano and Jarre 1988). Size–frequency 
distributions (0.5-mm intervals of CL) were recorded for 
each month. Growth parameters were calculated using the 
ELEFAN I tool contained in the program package FISAT 
(FAO-ICLARM Stock Assessment Tool) (Gayanilo et al. 
2005). The values of t0 were calculated for both sexes from 
the equation proposed by López Veiga (1979), where hatch-
ing length was based on the 2.60-mm TL size of Biffarius 
biformis (Sandifer 1973). Maximum longevity (tmax), con-
sidered as the time necessary to reach 95% of L∞, was esti-
mated using the formula proposed by Taylor (1958).
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Graphical representations of von Bertalanffy growth 
curves with seasonal variations for males and females are 
according to de Graaf and Dekker (2006). To compare the 
growth performance between populations, the Growth Per-
formance Index of Munro (Φ’) was applied (Munro and 
Pauly 1983; Pauly and Munro 1984).

Total mortality (Z) was estimated for males and 
females, using the length-converted catch curve method, 
considering that growth shows annual oscillations (C > 0) 

(Pauly 1984). As the population is not subject to exploi-
tation, we assumed that the instantaneous mortality rate 
resulting from fishing (F) is zero and that the coefficients 
M and Z are equal, since Z = F + M (Paloheimo 1958; 
Pauly 1980).

The seasonal recruitment of F. fragilis was obtained using 
a time series of restructured length frequencies as input 
parameters for the best estimates of L∞, K, C, WP, and t0 
(Pauly 1987; Moreau and Cuende 1991).

Fig. 1  Location of the study site 
on Casa Caiada Beach, north-
eastern coast of Brazil
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Results

Population structure

In total, 498 males (380 adults and 118 juveniles) and 489 
females (386 adults, 67 juveniles, and 94 OF) were col-
lected; 47 shrimp were damaged and therefore excluded 
from the morphometric analysis. Males ranged in size from 
1.36 to 6.59 mm CL (3.79 ± 1.11), females (F) from 1.7 to 
6.05 mm CL (3.88 ± 0.90), and ovigerous females from 3.07 
to 6.14 mm CL (4.64 ± 0.64) (Fig. 3). Males and females 
showed a unimodal size distribution. When separated into 
size classes, the most dominant size classes for males (M) 
were 3–3.5 (N = 89), for females (F) 4–4.5 (N = 90), and for 
OF 4.5–5 (N = 30).

The overall sex ratio was 0.98 M : 1 F and did not dif-
fer significantly from 1 : 1 (X² = 0.096, p > 0.05). The 
juvenile population was male-biased (2.81 M : 1 F; X² = 
56.47, p < 0.001) but was skewed toward females for the 
adult population (0.72 M : 1 F; X² = 19.43, p < 0.001). Sex 
ratio as a function of size class indicated a predominance 
of males in the smallest (1.0 to 3.5 mm) and largest (5.5 to 
7.0 mm) size classes, while females predominated in the 
intermediate classes (4.0 to 5.5 mm) (Fig. 4a). Significant 
differences were found between the sex ratio in the 2–2.5 
and 3–3.5 mm size classes, with a predominance of males; 
and in the 4–4.5 and 4.5–5 mm classes, with a predomi-
nance of females (Fig. 4b). No seasonally significant dif-
ferences were found between males (rainy season = 252 

and dry season = 245; X2 = 0.787; p > 0.05) and females 
(rainy season = 254 and dry season = 244; X2 = 0.686; 
p > 0.05).

The CL and PL differed between males and females 
(CL: median = 3.66  mm for M and 4.13  mm for F; 
U = 105856.0; p < 0.0001; PL: median = 2.92 mm for M 
and 2.8 mm for F; U = 83736.5; p < 0.0001).

Size at maturity for males was approximately 3.3 mm 
CL, while females reached maturity at a slightly shorter 
length (2.9 mm CL).

Ovigerous females were found mostly during the dry 
season. The reproductive period was seasonal, with peaks 
on 2 January 2018, 30 January 2018, and 4 March 2018, 
when 79%, 81%, and 73% of adult females were ovigerous, 
respectively (Fig. 5). Females with uneyed embryos were 
observed over the months of the reproductive period, and 
females with eyed embryos were more abundant only on 
18 November 2017.

Fecundity ranged from 20 to 259 embryos 
(mean = 91.86 ± 59.88) (N = 44) and was positively cor-
related with female size (R² = 0.33; F = 21.10; p < 0.001) 
(Fig. 6).

Growth, longevity, mortality, and recruitment

Regarding the growth curve parameters, males showed a 
larger asymptotic length (L∞) (7) than females (6.5). The 
growth coefficient (K) and amplitude of seasonal oscil-
lations (C) were higher for females (K = 1.0 and C = 0.9) 

Fig. 2  Macroalgae in Casa Caiada Beach (northeastern coast of Brazil). a, b, c November 2017, appearance of macroalgae patches. d January 
2018, bank completely taken over by macroalgae
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compared to males (K = 0.95 and C = 0.4). The period of 
slowest growth occurred in June (WP = 0.5) and September 
(WP = 0.75) for males and females, respectively. The good-
ness-of-fit index was  Rn = 0.407 for males and  Rn =0.511 
for females. The estimated maximum longevity was around 
three years for both sexes (3.02 males and 2.95 females). 
The Growth Performance Index (Φ’) was similar for males 
(1.668) and females (1.626). Length converted to age, using 
a mathematical approach through the von Bertalanffy growth 
function with seasonal variations (from de Graaf and Dekker 
2006), is shown in Fig. 7. Total mortality (Z) was estimated 
as 3.41  year–1 for females (r = − 0.999; IC = 3.03 ≅ 3.78) and 
2.66  year–1 for males (r = − 0.979; IC = 1.65 ≅ 3.67). The 
recruitment patterns for males and females showed similar 
peaks, with higher percentages between April and June for 
both sexes. The highest percentages in these months ranged 
between 15 and 25% for males and 13–20% for females.

Discussion

The sex ratio for the overall population did not dif-
fer from the expected 1:1, but when juveniles and adults 
were separated, males predominated among juveniles and 
females among adults. For burrowing shrimps generally, a 
male-biased ratio is commonly reported among juveniles, 
while for adults, a female-biased ratio is the general rule 
(Dworschak 1988; Dumbauld et al. 1996; Rodrigues and 
Shimizu 1997; Shimizu 1997; Botter-Carvalho et al. 2007; 
Rosa et al. 2018; Costa et al. 2020b).

Wenner (1972) described four patterns of differences in 
the sex ratios of crustacean populations divided into size 
classes: (A) The “Pattern”, where the distribution does not 
differ from 1:1 in most classes, except the largest, which 
are dominated by males; (B) Reversal pattern (S-shaped 
curve), where the sex ratio changes inversely as the class size 

Fig. 3  Monthly frequency distribution of carapace length (CL) size classes for Fragillianassa fragilis males (black bars), non-ovigerous females 
(gray bars), and ovigerous females (white bars) (N = sample size)
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increases, which is common in populations with sex reversal; 
(C) Intermediate pattern, an intermediate state between the 
previous two, due to the inclusion of juvenile individuals; 
and (D) Anomalous pattern, where in the smallest classes 
the pattern is 1:1, and females are more abundant in the 

intermediate classes and males in the larger classes. More 
recently, Terossi and Mantellato (2010) suggested a fifth pat-
tern, called the “Predominance Pattern”, which describes a 
population with a predominance of one sex in almost all size 
classes. The authors also suggest the possible existence of 
other patterns, especially in tropical and subtropical regions.

Fragillianassa fragilis appears to show an anomalous pat-
tern (Fig. 4b). Anomalous patterns in the sexual proportions 
of crustaceans can be explained by factors such as longevity, 
differential migration, differential mortality, and differences 
in growth rates (Wenner 1972). In the present study, the 
variation of the 1:1 ratio in the smaller size classes may be 
due to the collection method, which is inefficient in cap-
turing small organisms. The concentration of intermediate-
sized females could indicate a differential growth rate, when 
females nearing sexual maturation (≅ 3 mm), would be con-
centrated in these classes. The decrease in the proportion 

Fig. 4  a Frequency distribution of carapace length (CL) size classes 
of Fragillianassa fragilis for males (black bars) and females (white 
bars). Arrows indicate significant differences in sex ratio by size 
class. b Percentage of males in total individuals of F. fragilis by size 
classes (CL). Open circles indicate significant differences

Fig. 5  Temporal variation of the percentages of ovigerous Fragillia-
nassa fragilis females

Fig. 6  Linear regression between carapace lengths (CL) of ovigerous 
females and the number of eggs (uneyed embryos) of Fragillianassa 
fragilis 

Fig. 7  Seasonal oscillations of von Bertalanffy growth curves for 
Fragillianassa fragilis males (black line) and females (gray line)
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of males in the 3.5-mm class (males reach sexual maturity 
at ≅ 3.3 mm) could also result from a differential mortality 
rate caused by combat, due to their agonistic and territorial 
behavior (Felder and Lovett 1989; Dumbauld et al. 1996; 
Rodrigues and Shimizu 1997; Shimoda et al. 2005).

Regarding the CL, the smallest individuals caught were 
smaller than those of A. arenosa (Butler et al. 2009), a cal-
lianassid species with lengths similar to F. fragilis, with 
the smallest individuals ranging between CL 2–3 mm for 
females and between 1–2 and 2–3 mm for males, while ovi-
gerous females were similar in size, i.e., more than 3 mm. 
This value is also similar to that obtained through the SQR 
in the linear regression, which is considered the transition 
point between the juvenile and adult phases (males = 3.3 mm 
and females = 2.9 mm), very close to that defined by Butler 
et al. (2009) (CL > 3 mm).

Several studies have found continuous reproduction for 
burrowing shrimps in tropical regions, e.g. Callichirus 
major (Say, 1818) (Rodrigues and Shimizu 1997; Botter-
Carvalho et al. 2007; Peiró et al. 2014), Lepidophthalmus 
sinuensis Lemaitre and de Almeida Rodrigues, 1991 (Nates 
and Felder 1999) and Upogebia omissa Gomes Corrêa, 1968 
(Costa et al. 2020a), in contrast to populations in temper-
ate regions, which tend to have short seasonal reproductive 
periods (Dumbauld et al. 1996; Kevrekidis et al. 1997; Tam-
aki et al. 1997). Fragillianassa fragilis did not follow the 
“tropical” pattern, indicating seasonal reproduction (October 
to May), corresponding to the dry season in northeastern 
Brazil, during the period with the highest temperatures of 
the year (maximum mean of 32 °C), low rainfall (mean of 
83 mm) (Inmet 2018), and the highest salinities measured 
in the study period (39 and 38 in November and January).

Although temperature is a determining factor for the 
reproduction of many crustaceans, other variables may 
directly affect reproductive periods, such as salinity and 
nutrient variations (Rodrigues and Shimizu 1997; Nates 
and Felder 1999; Peiró et al. 2014). Casa Caiada Beach has 
a relatively constant high temperature throughout the year, 
indicating that temperature is not the determining factor 
stimulating the beginning of reproduction. From November 
2017, we observed a gradual increase in the presence of 
macroalgae in the study area, with a peak in January 2018 
when the bank was completely taken over, and a subsequent 
decrease in May 2018. This highly heterogeneous area has a 
mosaic of algae, with species of Ulva, Halodule, Bryopsis, 
Caulerpa, and a large Cladophora carpet. Thus, we suggest 
that the temporal increase in food availability, together with 
the plankton bloom, would likely trigger the beginning of 
the reproductive period for this species, when high concen-
trations of food would be available to females and to larvae 
after hatching.

Compared to other ghost shrimps, F. fragilis has rela-
tively low fecundity, with a maximum of 259 eggs. For C. 

major, Costa et al. (2020b) found a maximum egg number of 
11,460. Other studies have also found high egg numbers for 
C. major: 9931 (Peiró et al. 2014), 6600 (Souza et al. 1998), 
6478 (Rosa et al. 2018), and 3530 (Botter-Carvalho et al. 
2007). For Neotrypaea japonica (Ortmann, 1891; Tamaki 
et al. 1997) found 962 eggs. However, A. arenosa, a species 
of similar size, showed similar fecundity, with the number of 
eggs ranging from 31 to 216 (Butler et al. 2009). The differ-
ence in the number of eggs produced is most likely related 
to female size (Hill 1977; Thessalou-Legaki and Kiortsis 
1997), since F. fragilis is much smaller than the other spe-
cies. Other authors have related this low fecundity to more 
egg-laying in the same reproductive period (Dworschak 
1988; Kevrekidis et al. 1997; Tamaki et al. 1997), but this 
cannot be proven from the present data for F. fragilis.

The relationship between egg number and female size 
was found to be significant, indicating that egg number is 
correlated with female size. Arenallianassa arenosa (Butler 
et al. 2009) produced a mean of 96 ± 54 eggs, with a signifi-
cant relationship between egg number and size (R² = 0.51 
and p < 0.001), similar to the present results. This pattern is 
common for burrowing shrimps and has been reported in 
several studies (Souza et al. 1998; Berkenbusch and Rowden 
2000; Botter-Carvalho et al. 2007, 2015; Rotherham and 
West 2009; Peiró et al. 2014; Costa et al. 2020b).

The growth parameters (L ∞ and K) were quite different 
from those reported for other ghost shrimps (Shimizu 1997; 
Pezzuto 1998; Souza et al. 1998; Botter-Carvalho et al. 2007; 
Simão and Soares-Gomes 2017; Rosa et al. 2018; Costa et al. 
2020b). This discrepancy may be directly correlated to animal 
body size. The estimated L ∞ for males and females was very 
close to the longest CL found during the study period (6.59 
and 6.14 mm), and the K values, which are inversely propor-
tional to the L ∞ value, were relatively high.

The linear regression between the growth parameters 
found here and for C. major (Shimizu 1997; Souza et al. 
1998; Botter-Carvalho et al. 2007; Simão and Soares-Gomes 
2017; Rosa et al. 2018; Costa et al. 2020b) and Audacal-
lichirus mirim (de Almeida Rodrigues, 1971) (Pezzuto 
1998), indicated a strong and significant relationship (r² 
= 0.71, p < 0.001) (Fig. 8). Comparison of growth perfor-
mance using the Growth Performance Index (Φ’) indicated 
a similarity between species. This comparative approach has 
the additional advantage of allowing inferences about the 
growth of these organisms, given these growth characteris-
tics (Munro and Pauly 1983).

The estimated longevity for males and females was 
around 3 years, similar to previous estimations for other 
ghost shrimps: between 2 and 2.5 years for Lepidophthal-
mus louisianensis (Schmitt 1935) (Felder and Lovett 1989); 
from 2 to 3 years for Filhollianassa filholi (Milne-Edwards, 
1879) (Berkenbusch and Rowden 1998); and for C. major, 
3 years (Botter-Carvalho et al. 2007), 3.16 years (Simão and 
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Soares-Gomes 2017), 3.45 years (Rosa et al. 2018), and 3.5 
years (Costa et al. 2020b).

The period of least growth for females (WP) occurred in 
September, one month before the reproductive period which 
occurred from October to May, showing a mobilization of 
energy for vitellogenesis rather than body growth (Tamaki 
et al. 1997; Pezzuto 1998). For males, WP occurred in June, 
coinciding with low mean temperatures (21 °C) and lower 
salinity (30).

Total mortality (Z/year) was relatively high, with similar 
levels to exploited populations such as C. major by Botter-
Carvalho et al. (2007) (Z = 3.92 and Z = 3.08) and Costa 
et al. (2020b) (Z = 2.42 and Z = 3.19) for males and females, 
respectively. There was a strong relationship between mor-
tality and body size, where high mortality rates were gener-
ally correlated with small L ∞ sizes; however, this is due 
primarily, to the relationship between low L ∞ values and 
high K values (Pauly 1980). Another factor affecting mor-
tality is the environmental quality of an area, which, when 
degraded, can also negatively affect the local population, 
boosting natural mortality (Conides et al. 2012). The mean 
temperature in the study area was 28.5 °C, relatively high, 
mainly because breakwaters in the area trap water and sedi-
ment. This urban beach is also subject to solid waste dump-
ing, constituting a major problem of environmental degrada-
tion, which could directly influence species mortality.

Overall, F. fragilis, compared to other ghost shrimp, 
showed differences in growth parameters, reproductive strat-
egy, and mortality. These differences were mainly due to 
the difference in size, since other species reach much larger 
sizes. The population characteristics of F. fragilis, such as 
its short life cycle, rapid growth and development, and high 

mortality rates indicate that the species is quite resilient 
and that its population stock continues steady, even in an 
extremely degraded environment. This study provides the 
first information on population structure and reproductive 
aspects of F. fragilis, which is the only species of the new 
genus studied. New ecological information on ghost shrimp 
life-history strategies is vitally important to develop con-
servation measures for this group, which is an important 
component of secondary production in coastal ecosystems.
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