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classified into glycoside hydrolase families 13 (GH13), and 
57 (GH57), respectively (Drula et al. 2022). These enzymes 
are multi-domain proteins having two to three catalytic 
residues (MacGregor et al. 2001; Satyanarayana and Nisha 
2018; Janeček and Svensson 2022). The GH57 pullulanases 
are evolutionary important due to presence of DOMON 
like glucodextranase domains, which are 110 − 125 residue 
long domains (Aravind 2001) and are known for mediating 
extracellular interactions with heme and sugars (Iyer et al. 
2007). There is a high demand for pullulanases in indus-
trial utilization of biomass, which makes them an attractive 
choice of study (Wang et al. 2019). In particular, pullula-
nases with higher thermostability are of significant interest 
due to their applicability in processes requiring higher tem-
peratures (Lévêque et al. 2000). Keeping this in view, we 
cloned an open reading frame from Pyrobaculum calidifon-
tis, annotated as pullulanase. P. calidifontis is a hyperther-
mophilic archaeon isolated from the terrestrial hot spring in 
the Philippines (Amo et al. 2002b). Several novel and indus-
trially potential thermostable enzymes from this archaeon 
have already been characterized (Ali et al. 2011; Amo et al. 
2002a; Jamroze et al. 2014; Mehboob et al. 2020; Satomura 
et al. 2011; un Naeem et al. 2020). Draft genome sequence 

Introduction

Pullulanases are a class of endo-acting glycoside hydro-
lases (GHs). Pullulanase I primarily acts on α-1,6-linkages 
in pullulan, starch and other glucans such as amylopectin, 
glycogen and limit dextrins. However, it is unable to cleave 
α-1,4-glycosidic bonds. Pullulanase II or amylopullulanase 
hydrolyses both α-1,4- and α-1,6-linkages in starch and 
other polysaccharides, while in pullulan it hydrolyses only 
α-1,6-glycosidic bonds (Ahmad et al. 2014). Both of these 
enzymes possess retaining mechanism of action, which 
means that the anomeric configuration of their reaction 
end products is retained. In the sequence-based classifica-
tion of Carbohydrate-Active enZymes, the CAZy database, 
pullulanase I and pullulanase II (amylopullulanase) are 
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Abstract
In this study, we have cloned and characterized a novel protein, Pcal_0976, annotated as pullulanase in the genome 
sequence of hyperthermophilic archaeon Pyrobaculum calidifontis. Motif search showed two glucodextran_C like domains 
and a domain of unknown function (DUF4134) in Pcal_0976. Multiple alignment with close homologues demonstrated six 
stretches of conserved regions. When the gene encoding Pcal_0976 was expressed in Escherichia coli, the recombinant 
protein was produced in insoluble and inactive form, which was solubilized using guanidine hydrochloride and refolded 
in an active form in the presence of arginine. Refolded Pcal_0976 displayed hydrolysis of glycogen, dextran, dextrin and 
starch. No hydrolytic activity was detected against pullulan. These results indicate that Pcal_0976 may not be a pullulanase 
but a novel glycoside hydrolase. Further studies are needed to establish the role of Pcal_0976 in carbohydrate metabolism 
in this archaeon.
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of P. calidifontis (GenBank; CP000561.1) contains two 
open reading frames, Pcal_0976 (annotated as pullulanase) 
and Pcal_1616 (annotated as pullulanase/α-amylase). They 
exhibit 38% sequence identity with each other. Gene prod-
uct of Pcal_1616 is the closest characterized counterpart 
of Pcal_0976. Pcal_1616 belongs to family GH57 and was 
biochemically characterized as pullulan hydrolase type II 
(Siddiqui et al. 2014; Rehman et al. 2018). After Pcal_1616, 
a characterized amylopullulanase, also belonging to fam-
ily GH57, from Thermococcus kodakarensis (Guan et al. 
2013) displayed 34% sequence identity with Pcal_0976. 
Keeping into consideration the importance of thermostable 
glucan hydrolyzing enzymes and novel sequence features 
of Pcal_0976, the present study describes in silico analysis 
followed by recombinant production and biochemical char-
acterization of Pcal_0976.

Materials and methods

Reagents and chemicals

The reagents and chemicals used in this study were pur-
chased either from Sigma-Aldrich (St. Louis, MO) or 
Thermo Fisher Scientific (Maryland, USA), if not men-
tioned otherwise. The restriction endonucleases, T4 DNA 
ligase, DNA and protein size markers, Taq DNA poly-
merase, RNase, and deoxynucleotide triphosphates (dNTPs) 
were from Thermo Fisher Scientific. Starch, pullulan, gly-
cogen, dextran, dextrin and cyclodextrins (α- and γ-) were 
purchased from Sigma-Aldrich, while β-cyclodextrin was 
from Acros Organics (Maryland, USA).

Strains, plasmids and media

P. calidifontis strain VA1 was used to obtain Pcal_0976 
gene. Escherichia coli DH5-α cells and plasmid pTZ57R/T 
(Novagen Merck, Germany) were used for cloning of the 
target gene. E. coli BL21 CodonPlus (DE3)-RIL cells 
(Stratagene, La Jolla, CA) and pET-21a(+) expression vec-
tor (Thermo Fisher Scientific) were used for heterologous 
expression of the target gene. E. coli strains were routinely 
grown in Luria-Bertani (LB) medium at 37 °C. Recombinant 
E. coli cells containing pET-21a(+) were selected on LB 
agar containing ampicillin (100 µg mL− 1), whereas X-Gal 
(5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside; 40 µg 
mL− 1) and IPTG (isopropyl-β-D-galactopyranoside; 1 mM) 
were added when blue/white screening of recombinant E. 
coli cells containing pTZ57R/T was required.

Phylogenetic analysis and multiple sequence 
alignment

Uniprot-Beta Blast tool, with the target set to UniprotKB 
reference proteomes plus Swiss-Prot, was used to obtain the 
top 100 sequences with maximum identity. The sequences 
were analyzed carefully based on annotation scores and pre-
dicted domains. The sequences were aligned using Clustal-
Omega program (Sievers et al. 2011) freely provided at 
https://www.ebi.ac.uk/Tools/msa/clustalo/ by the European 
Bioinformatics Institute. Following initial alignment, 64 
sequences were eliminated due to the absence of significant 
sequence similarity or momentous disruption of the multi-
ple alignment or phylogenetic tree. Final multiple sequence 
alignment of the selected sequences was performed using 
ClustalW accessory application in BioEdit Sequence Align-
ment Editor (Hall et al. 2011). The alignment file obtained 
was processed in MEGA-X (Kumar et al. 2018) for UPGMA 
phylogenetic tree construction.

Estimation of the signal sequence

The signal sequence in Pcal_0976 was estimated using Sig-
nalP-5.0 Server (Almagro Armenteros et al. 2019) (https://
services.healthtech.dtu.dk/service.php?SignalP-5.0).

Molecular modelling

Three-dimensional structure of Pcal_0976 was obtained 
using Alphafold structure prediction tool (https://alphafold.
ebi.ac.uk/search/text/Pcal_0976), which directly predicts the 
3D coordinates of all heavy atoms for a given protein using 
the primary amino acid sequence and aligned sequences of 
homologues as inputs (Jumper et al. 2021). Visualization of 
models and drawings were made in PyMOL (http://pymol.
org).

Cloning of Pcal_0976 gene

Pcal_0976 gene, without signal sequence, was amplified by 
polymerase chain reaction (PCR) using genomic DNA of P. 
calidifontis strain VA1 as template and a set of sequence-spe-
cific forward (5′-CATATGGCCACAGACCCCACTGGC-
GACTAC) and reverse (5′-CTACTTCCGCCTGGCTGCTG) 
primers. These primers were commercially synthesized by 
Macrogen Inc. (Republic of Korea). An NdeI restriction 
enzyme site (underlined sequence) was incorporated in 
the forward primer. The PCR-amplified gene was inserted 
in pTZ57R/T cloning vector and the resulting plasmid was 
named Pcal_0976-pTZ. Recombinant plasmid, Pcal_0976-
pTZ, was digested with NdeI and EcoRI to liberate the gene 
which was then cloned in pET-21a(+) expression vector by 
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utilizing the same restriction sites. The resulting plasmid 
was named Pcal_0976-pET.

Recombinant production of Pcal_0976 in E. coli

Transformation of E. coli BL21-CodonPlus (DE3)-RIL cells 
was carried out using Pcal_0976-pET recombinant plasmid. 
E. coli cells carrying Pcal_0976-pET plasmid were grown 
in LB medium, containing 100 µg/mL ampicillin, at 37 °C 
until the optical density at 600 nm reached 0.4. Isopropyl 
β-D-1-thiogalactopyranoside (IPTG), at a final concentra-
tion of 0.2 mM, was used to induce the gene expression. 
After 4  h of post-induction incubation at 37  °C, the cells 
were harvested by centrifugation for 10 min at 6000 × g and 
4 °C. The cells, after resuspension in 50 mM Tris-Cl (pH 
8.0), were lysed by sonication using the Bandelin SonoPlus 
HD 2070 sonication system (Bandelin Electronic, GmbH). 
After lysis, soluble and insoluble fractions were separated 
by centrifugation at 11,500 × g. Analysis of proteins was 
done by 12% denaturing polyacrylamide gel electrophoresis 
(SDS-PAGE).

Solubilization and refolding of recombinant 
Pcal_0976

Insoluble fraction, containing inclusion bodies of recom-
binant Pcal_0976, was washed 3 times with washing buf-
fer (50 mM Tris-Cl pH 8.0, 5 mM EDTA, 10 mM NaCl, 1 
mM PMSF, 0.5% Triton X-100) to remove the impurities 
(Singh et al. 2015) and dissolved in solubilization buffer 
containing 6 M guanidine, 10% glycerol, 20 mM DTT and 
50 mM Tris-Cl pH 8.0). For refolding, the solubilized pro-
tein sample (0.5 mg/mL) was diluted in 100 mL of dilution 
buffer (10% glycerol, 20 mM arginine, 50 mM Tris-Cl pH 
8.0) by adding 100 µL sample at a time after every 2 h. The 
refolded protein was concentrated by using 10 kDa MWCO 
ultrafiltration centrifugal devices (ThermoFisher Scientific). 
Protein concentration was estimated by the Bradford assay 
(Harlow and Lane 2006). Known concentrations of bovine 
serum albumin (BSA) were used to draw a standard curve.

Enzyme activity assay

Enzyme activity of recombinant Pcal_0976 was measured in 
terms of the amount of reducing sugars liberated upon incu-
bation with the substrate as described previously (Ahmad et 
al. 2014; Aroob et al. 2019, 2022). The standard assay mix-
ture containing 200 µL of 1% (w/v) substrate in 50 mM Tris-
Cl buffer (pH 8.0) and desired amount of Pcal_0976 was 
incubated at 85 °C. The reaction was stopped by quenching 
in ice water, and the released reducing ends were determined 
by the dinitrosalicylic acid (DNS) method (Bernfeld 1955). 

One unit activity was defined as the amount of enzyme that 
released 1 nmol of reducing sugars in 1 min under standard 
assay conditions.

Biochemical characterization

To estimate the optimum temperature, the enzyme activity 
of Pcal_0976 was measured at different temperatures (60–
90 °C) without changing the pH. Similarly, optimal pH was 
estimated by measuring the activity at various pH (6.0–8.5) 
and keeping the temperature unchanged.

Substrate specificity

The substrate preference and relative hydrolysis rates of 
various polysaccharides, including soluble starch, pullu-
lan, glycogen, dextrin, dextran and cyclodextrins (α, β and 
γ) were determined by incubating each of these substrates 
at a final concentration of 1% (w/v) with recombinant 
Pcal_0976. Substrate solutions were prepared in 50 mM 
Tris-Cl buffer (pH 8.0) and the reaction was carried out at 
85 °C. The relative hydrolysis rates were measured by the 
DNS method.

Results

Sequence analysis

In the draft genome sequence of P. calidifontis, Pcal_0976 
(GenBank accession # ABO08401) has been annotated as 
pullulanase. Analysis of the amino acid sequence showed 
that Pcal_0976 contained a high number of Val (11.9%), 
Thr (11.1%), Ala (9.8%), Gly (8.2%), Pro (8.4%) and Leu 
(7.4%) residues. Overall, these six amino acids constituted 
nearly 59% of the protein. On the other hand, the number 
of His (0.3%), Cys (0.5%), Met (1.3%), Glu (1.6%), Trp 
(2.1%) and Lys (2.4%) were quite low. These six amino 
acids constituted only 8% of the protein. Among all the 
amino acids, the number of valine residues was the highest 
(11.9%) in Pcal_0976. Signal peptide prediction using Sig-
nalP 5.0 server revealed that Pcal_0976 contained a signal 
peptide at the N-terminal comprising 28 amino acids, which 
was predicted to be cleaved between Ala28 and Thr29. Pres-
ence of signal peptide indicates that Pcal_0976 may be a 
protein destined to perform its role extracellularly.

Pcal_0976 showed the highest homology (76% sequence 
identity) with the uncharacterized pullulanase (PAE3090) from 
Pyrobaculum aerophilum. Among biochemically character-
ized enzymes, the highest sequence identity of 38% was found 
with Pcal_1616, a pullulanase from P. calidifontis (Rehman 
et al. 2018), followed by 34% with an amylopullulanase from 
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analysis involved 13 amino acid sequences of glucodextran_C 
domains from Thermoprotei and Thermococci. There were a 
total of 251 positions in the final dataset. Evolutionary analy-
ses, conducted in MEGA X (Kumar et al. 2018), revealed that 
two glucodextran_C domains (Gluc_C I and II) of amylopul-
lulanase from T. barophilus appear to originate from the same 
root, which is an indicative of their evolution possibly due to 
a duplication event of glucodextran_C within the same organ-
ism. Pullulanase I from P. aerophilum (PAE3454, 999 AA) 
shares 71.8% sequence identity with Pcal_1616. Both these 
enzymes contain singular glucodextran_C domains which 
are clustered together (Figs. 3 and 4). Pullulanase II from P. 
aerophilum (PAE3090, 384 AA), similar to its closest homo-
logue Pcal_0976, contains two glucodextran_C domains. 
Gluc_C I and II of Pcal_0976 and P. aerophilum pullulanase 
II appeared into two separate clades which were located very 
near to their singular counterparts within the same organisms 
(Fig.  3). Probably the latter two domains (Gluc_C I and II) 
may have derived from the singular glucodextran_C through 
intragenomic duplication or from gene fission of a full length 
glucodextran_C (Fig.  4). A similar intragenomic duplication 
event of Gluc_C domains was also proposed for Thermococ-
cus gammatolerans amylopullulanase (Jiao et al. 2013).

In order to search for the conserved stretches, sequences 
used for phylogenetic analysis were further screened and 
only the pullulanases, amylopullulanases and glucodextran_C 
domain-containing proteins from archaeal origin were selected. 
The selected sequences were aligned using Clustal Omega 
(Sievers et al. 2011) and searched manually for the consensus 
sequences. Six conserved regions were found among these 
sequences despite overall significant differences in percent 
identity. A significant proportion of conserved residues was 
that of branched amino acids (isoleucine, leucine and valine), 
highlighted in purple in Fig. 5. Since typical signatures of fam-
ily GH57 i.e., five conserved sequence regions, (β/α)7-barrel 
domain and catalytic machinery of GH57 members are miss-
ing in Pcal_0976, therefore it is worth mentioning that the con-
served regions are present in the corresponding glucodextran 
domains. Sequence followed by these domains (residues 285 to 
379) is unique and may be responsible for the catalytic activity 
and rendering the enzyme a unique candidate in glucan inter-
acting enzymes.

T. kodakarensis (Guan et al. 2013). Both of these enzymes 
belong to family GH57 but Pcal_0976 (having 379 amino 
acid residues) has not yet been assigned to any of glycoside 
hydrolase family by the CAZy curators. Amino acid sequence 
analysis using SSDB motif search (Sato et al. 2001) revealed 
the presence of two glucodextran_C domains and a domain 
of unknown function (DUF4134) present at the C-terminus 
in Pcal_0976 (Fig. 1). Previously reported pullulanase from P. 
calidifontis Pcal_1616, which also is the closest characterized 
counterpart, despite having a longer sequence of 1001 amino 
acid residues, contained only a single glucodextran_C domain 
(Rehman et al. 2018). Typical catalytic domain (COG1449) of 
GH57 amylopullulanases was not found in Pcal_0976. The first 
glucodextran_C domain in Pcal_0976 comprised amino acids 
from position 28 to102 and the second included residues from 
146 to 284. Glucodextran_C (Pfam ID: PF09985) is usually 
found as C-terminal domain of glucodextranase-like proteins 
in various prokaryotic membrane-anchored proteins (Mizuno 
et al. 2004).

The evolutionary relationship for phylogenetic tree construc-
tion was inferred using the UPGMA method. The optimal tree 
(Fig. 2) shows closer relatedness of Pcal_0976 (branch with an 
asterisk) with putative archaeal pullulanases and amylopullula-
nases belonging to class Thermoprotei or Thermococci. Little 
farther branches show proteins containing glucodextran_C 
domain and other extracellular or membrane-anchored proteins 
from bacterial or eukaryotic origin. Pcal_0976 can, therefore, 
possibly be assumed to form an evolutionary link between the 
prokaryotic and eukaryotic carbohydrate processing enzymes.

Presence of one or two DOMON like glucodextranase 
domains in addition to catalytic domain (COG1449) is a 
known characteristic of GH57 amylopullulanases (Jiao et al. 
2013). The evolutionary history of glucodextran_C domains, 
either singular or dual, found in the members of Thermoprotei 
and Thermococci, was inferred by using the Maximum Likeli-
hood method and JTT matrix-based model (Jones et al. 1992). 
Initial tree(s) for the heuristic search were obtained automati-
cally by applying Neighbor-Joining and BioNJ algorithms to 
a matrix of pairwise distances estimated using the JTT model, 
and then selecting the topology with superior log likelihood 
value. The tree with the highest log likelihood (-3986.23) was 
selected (Fig.  3). The tree was drawn to scale, with branch 
lengths measured in the number of substitutions per site. The 

Fig. 1  Schematic diagram showing the distribution of signal peptide and various domains in Pcal_0976
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Fig. 2  Phylogenetic tree showing evolutionary relatedness of 
Pcal_0976 with closely related proteins as searched using BLAST 
tool in Uniport-Beta. Branches are labelled according to the putative 
functionality assigned to the protein in that organism. Glu_C refers to 
glucodextran_C domain containing protein. Following are the Uniprot 
accession numbers of the sequences used to construct the tree: Infirmi-
filum uzonense glu_C (A0A0F7FKA6), Infirmifilum lucidum pul-
lulanase (A0A7L9FJR4), Thermofilum adornatum glu_C (S5ZN34), 
Ignisphaera aggregans GH57 protein (E0SSW7), Thermogladius 
calderae pullulanase (I3TCZ1), Desulfurococcus amylolyticus pullu-
lanase (B8D5C4), Thermosphaera aggregans pullulanase (D5U365), 
Pyrobaculum aerophilum pullulanase I (Q8ZT36), Thermococcus 
kodakarensis amylopullulanase (Q5JJ55), Thermococcus barophilus 
amylopullulanase (F0LJB0), Pyrobaculum calidifontis pullulanase 
(A3MUT4), Pyrobaculum aerophilum pullulanase II (Q8ZTU6), Igni-
sphaera aggregans GH 57 protein (E0SSW7), Halanaerobium sac-
charolyticum subsp. saccharolyticum amylopullulanase (M5E3T7), 
Halapricum sp. glu_C (A0A6A9SWG2), Agromyces tardus glucan 
1,4-alpha-glucosidase (A0A3M8AME6), Agromyces ramosus glu-

can  1,4-alpha-glucosidase (A0A4Q7MIT8), Glaciibacter flavus 
glucan 1,4-alpha-glucosidase (A0A4S4FP65), Anaeromyxobacter 
dehalogenans membrane-anchored protein (Q2IH39), Aggregicoc-
cus sp. glu_C (A0A6I2GU60), Alphaproteobacteria bacterium glu_C 
(A0A4Q5WW30), Marinithermus hydrothermalis glu_C (F2NKS8), 
Deinococcus ficus glu_C (A0A221SZK2), Deinococcus sp. glu_C 
(A0A072N8 × 6), Deinococcus koreensis glu_C (A0A2K3UZS4), 
Deinococcus marmoris glu_C (A0A1U7NZL9), Haloterrigena sp. 
Aamy domain-containing protein (A0A7D5GT65), Halapricum sp. 
Aamy domain-containing protein (A0A6A9SYW8), Tetrasphaera jen-
kinsii cell wall anchor domain protein (A0A077MCP5), Skermanella 
aerolata ABC transporter permease (A0A512DN46), Caldivirga 
maquilingensis extracellular solute-binding protein (A8MB36), Caldi-
virga maquilingensis extracellular solute-binding protein I family 5 
(A8M8S2), Caldivirga maquilingensis extracellular solute-binding 
protein II family 5 (A8ME10), Caldivirga maquilingensis extracellular 
solute-binding protein III family 5 (A8MDY2), Exophiala mesophile 
GH18 domain-containing protein (A0A0D1ZED0), Alligator missis-
sippiensis mucin like protein (A0A151N7P2)
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the family GH15 (Mizuno et al. 2004). Glucodextran_C 
domains formed conserved beta sandwich like motifs made 
of antiparallel beta sheets (indicated in dark and light blue 
color) (Fig. 6).

Gene cloning and recombinant production of 
Pcal_0976

PCR using gene-specific primers resulted in amplification of 
nearly 1.1 kbp DNA fragment (Fig. 7 A), matching the size of 
Pcal_0976 gene. The amplified DNA fragment was ligated 
in pTZ57R/T cloning vector and digestion of the resulting 
plasmid, pTZ-Pcal_0976, with NdeI and EcoRI released 
nearly 1.1 kbp DNA fragment indicating the presence of 
Pcal_0976 gene in the recombinant plasmid (Fig. 7 B). Sim-
ilarly, digestion of recombinant pET-Pcal_0976 utilizing the 
same pair of restriction enzymes resulted in the liberation of 
nearly 1.1 kbp DNA fragment indicating cloning of the gene 
in pET-21a(+) expression vector (Fig. 7 C). DNA sequenc-
ing showed absence of any mutation in the cloned gene.

Heterologous gene expression in E. coli BL21-Codon-
Plus (DE3)-RIL at 37  °C resulted in the production of 
Pcal_0976 in insoluble and inactive form (Fig. 8 A). Various 
attempts were made by changing the expression conditions 
to get the recombinant protein in soluble and active form. 
However, neither change in the cultivation temperature nor 
the inducing concentration of IPTG or lactose resulted in 
soluble production of recombinant Pcal_0976.

Tertiary structure prediction

Tertiary structure of Pcal_0976 was obtained from the 
AlphaFold Protein Structure Database (https://alphafold.
ebi.ac.uk/search/text/Pcal_0976). The closest template 
for structural modelling was of glucodextranase from 
Arthrobacter globiformis (PDB ID: 1UG9), belonging to 

Fig. 4  (A) Conservation of 
Gluc_C domain in GH57 pullula-
nases/amylopullulanases from the 
members of Thermoprotei and 
Thermococci. Query sequence 
(P. calidifontis pullulanase, 
Pcal_0976) is indicated by 
asterik. (B) Proposed hypotheti-
cal gene fission/duplication event 
splitting Gluc_C domain into two 
separate Gluc_C domains within 
P. calidifontis

 

Fig. 3  Evolutionary history of glucodextran_C domains from the 
members of Thermoprotei and Thermococci
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case of typical glycogen branching enzymes are determined 
using amylose as substrate and these activities are very low 
ranging from 0.5 − 26 mU/mg (Xiang et al. 2022). Other 
enzymes acting on glycogen include glycogen phosphory-
lase from E. coli (100 mU/mg) (Alonso-Casajús et al. 2006) 
and α-amylase from Bacillus sp. TS-23 (19,700 mU/mg) 
(Lo et al. 2001). Other substrates hydrolyzed by Pcal_0976 
were in the following order of preference: glycogen > dex-
tran > dextrin > potato starch (Fig. 10).

When we examined the effect of glycerol and detergents 
on glycoside hydrolase activity of Pcal_0976, it was found 
that glycerol enhanced the enzyme activity moderately 
whereas a slight inhibition was observed in the presence of 
Triton-X100 (Fig. 11).

Discussion

This study aimed at finding a novel and thermostable carbo-
hydrate processing enzyme. Primary structure comparison 
led us to assume that Pcal_0976 would act as a thermostable 
pullulanase. Thermostability of enzymes of (hyper)thermo-
philic origin comes out of their special structural features 
(Farias and Bonato 2003; Gharib et al. 2016) that are nor-
mally not present in proteins from mesophilic sources. The 
primary structure of Pcal_0976 showed high number of Ala, 
Gly, Leu, Pro, Thr and Val residues, while His, Cys, Met, 

Solubilization and refolding of recombinant 
Pcal_0976

When the inclusion bodies containing recombinant 
Pcal_0976 were solubilized in 6  M guanidine hydrochlo-
ride and refolded by gradual removal of the denaturant by 
fractional dialysis, most of the recombinant Pcal_0976 got 
precipitated below 2 M guanidine hydrochloride. Therefore, 
after solubilizing in guanidine hydrochloride, protein refold-
ing was attempted using dilution method. This method, 
supplemented with the use of arginine in the refolding buf-
fer, was found successful in achieving soluble and active 
Pcal_0976. Homogeneity of the purified Pcal_0976 in the 
soluble form is demonstrated by SDS-PAGE (Fig. 8 B).

Biochemical characterization

To examine the effect of temperature, Pcal_0976 activity 
was assayed at various temperatures. The activity increased 
gradually with an increase in temperature till 85  °C and 
thereafter it started decreasing (Fig. 9 A). When analyzed 
for the optimum pH, Pcal_0976 exhibited highest activity at 
pH 8.0 in Tris-Cl buffer (Fig. 9B).

In order to determine the substrate preference, enzyme 
activity was examined against various carbohydrates. Gly-
cogen was the most preferred substrate of Pcal_0976 with 
a specific activity of 595 mU/mg. Hydrolytic activities in 

Fig. 5  Conserved sequence stretches identified in Pcal_0976 and 
archaeal homologs. Archaeal pullulanases, amylopullulanases and 
closely related glucodextran_C domain containing proteins were 
selected. Uniprot accession numbers used are the same as mentioned 
for the phylogenetic tree. Color key of amino acids is as: red (acidic), 

green (basic), cyan (hydrophobic) and purple (branched). Fully con-
served residues are indicated by an asterisk (*), amino acids with 
strongly similar properties are indicated by a colon (:), while amino 
acids with weakly similar properties are indicated by a dot (.) at the 
bottom of the sequence
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Fig. 7  Ethidium bromide stained agarose gel (1%) demonstrating PCR 
amplification and cloning of Pcal_0976 gene. (A) PCR amplification 
of Pcal_0976 gene. Lane M, standard molecular weight marker; lane 
1, PCR amplified Pcal_0976 gene. (B) Cloning of Pcal_0976 gene in 
pTZ57R. Lane M, standard molecular weight marker; lane 1, recom-

binant Pcal_0976-pTZ digested with NdeI and EcoRI. (C) Cloning 
of Pcal_0976 gene in pET-21a(+) expression vector. Lane M, stan-
dard molecular weight marker; lane 1, recombinant Pcal_0976-pET 
digested with NdeI and EcoRI

 

Fig. 6  Alphafold model of Pcal_0976. The orange region shows the signal sequence, while the light blue and dark blue regions correspond to 
glucodextran_C like domain I and II, respectively. The yellow region is representing the domain of unknown function (DUF4134)
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GH13 are characterized by the presence of a typical (β/α)8-
barrel like catalytic domain, also known as TIM-barrel like 
domain. Other distinguishing features of members of family 
GH13 are activity towards α-glucosidic linkages, presence 
of four conserved regions in their sequences and a catalytic 
triad comprising two Asp and one Glu residues (Janeček and 
Svensson 2022). Members of family GH57 differ from fam-
ily GH13 enzymes on the basis of sequences. Their cata-
lytic domain adopts a pseudo TIM barrel i.e., (β/α)7-barrel 
and they possess only two catalytic residues (Glu and Asp) 
(Janeček and Svensson 2022). Most of the thermostable 
amylopullulanases belong to family GH57 and display rela-
tively higher thermostability as compared to their counter-
parts from family GH13 (Janeček 2005; Kang et al. 2005). 
They possess a highly conserved DOMON_glucodextran-
ase like domain which is usually located at C-terminus, in 
singular or dual format, preceded by the catalytic COG1449 
domain. Thermostable amylopullulanases from family 

Glu, Trp and Lys were present in very low number. Cys, and 
His are usually avoided in thermostable and hyperthermo-
stable proteins (Chohan et al. 2019; Farias and Bonato 2003) 
due to their tendency to undergo deamidation or oxidation 
at high temperatures (Kumar et al. 2000). The very low pro-
portion of such amino acid residues might have contributed 
to the thermal stability of Pcal_0976. A highly thermostable 
L-asparaginase from P. calidifontis (Pcal_0970) also con-
tained higher number of highly hydrophobic amino acids 
and very low number of thermolabile residues like Gln, Asp, 
and Cys (Chohan et al. 2019).

Thermostable pullulanases and amylopullulanases are 
industrially important enzymes required for liquefaction and 
saccharification of starch (Ahmad et al. 2014). In sequence 
based classification system (CAZy classification) pullula-
nases and amylopullulanases are grouped into family GH13 
and GH57, respectively. Some of the amylopullulanases also 
belong to family GH13 (Jiao et al. 2013), one of the largest 
families of glycoside hydrolases. The members of family 

Fig. 9  Effect of temperature (A) 
and pH (B) on the Pcal_0976 
activity. The effect of tempera-
ture on the enzyme activity was 
examined at various temperatures 
ranging from 60–90 °C using 
50 mM Tris-Cl buffer, pH 8.0. 
The effect of pH was analyzed at 
85 °C by determining activity of 
Pcal_0976 in buffers of different 
pH. Buffers used were 50 mM 
sodium phosphate (circles), and 
Tris–Cl (squares). The error bars 
represent the standard deviation

 

Fig. 8  SDS-PAGE (coomassie 
brilliant blue-stained) demon-
strating production of recom-
binant Pcal_0976. (A) Lane M, 
standard marker; lane 1, total cell 
lysate of cells carrying pET-
21a(+); lane 2, total cell lysate 
of cells carrying Pcal_0976-pET; 
lane 3, soluble fraction obtained 
after sonication of cells in lane 
2; lane 4, insoluble fraction 
obtained after sonication of cells 
in lane 2. (B) Solubilization 
and refolding of recombinant 
Pcal_0976. Lane M, standard 
marker; lane 1: refolded and puri-
fied recombinant Pcal_0976
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Fig. 11  Effect of additives on the 
activity of Pcal_0976. Enzyme 
activity was examined in the 
presence of various detergents 
at a final concentration of 1% 
except for glycerol (10%)

 

Fig. 10  Relative substrate prefer-
ence of Pcal_0976 for different 
substrates. The activity was 
determined in terms of liberation 
of reducing ends in Tris-Cl buf-
fer, pH 8.0 at 85 °C
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Presence of unique domains and conserved regions 
make glycoside hydrolases distinct from other hydrolases 
(Janeček et al. 1997, 2003; Janeček 2002). However, identi-
fication of conserved sequence stretches in glucodextran_C 
containing enzymes is an interesting feature which needs 
exploration at structural levels.

When the gene encoding Pcal_0976 was expressed in 
E. coli, recombinant protein was produced in insoluble and 
inactive form. Refolding, after solubilization with denatur-
ants, led us to achieve the protein in soluble and active form. 
However, it did not display any pullulanase activity. The 
highest activity was observed against glycogen followed 
by dextran. These findings were contrary to Pcal_1616, the 
closest characterized homolog (Rehman et al. 2018), and 
pullulanase from Pyrococcus yayanosii (Pang et al. 2019). 
Both of these enzymes contained glucodextran_C domain 
and displayed pullulanase activity. Our results suggest 
that Pcal_0976 may act as a membrane-anchored protein 
involved in carbohydrate transport and metabolism (Fujin-
ami et al. 2017) instead of a typical pullulanase or amylo-
pullulanase. Further studies are needed to understand the 
role of Pcal_0976 in P. calidifontis.
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