ORIGINAL ARTICLE

Myrtle improves renovascular hypertension-induced oxidative damage in heart, kidney, and aortic tissue

Sule Arslan¹ · Ozan Ozcan¹ · Begüm Gurel-Gokmen¹ · Zatiye Ayça Cevikelli-Yakut² · Halil Ibrahim Saygı³ · Ali Sen⁴ · **Fatih Göger5 · Gözde Erkanli‑Senturk3 · Goksel Sener6 · Tugba Tunali‑Akbay[1](http://orcid.org/0000-0002-2091-9298)**

Received: 1 October 2021 / Accepted: 7 February 2022 / Published online: 3 March 2022 © The Author(s), under exclusive licence to Plant Science and Biodiversity Centre, Slovak Academy of Sciences (SAS), Institute of Zoology, Slovak Academy of Sciences (SAS), Institute of Molecular Biology, Slovak Academy of Sciences (SAS) 2022

Abstract

Renovascular hypertension is defned as the reduction in renal perfusion resulting in sustained hypertension. This study aims to investigate the possible efects of myrtle leaf extract (*Myrtus communis* L.) on, heart, kidney and aorta tissues in the experimental renovascular hypertension (RVH). 32 male Wistar Albino rats were divided into four groups as control, hypertension, hypertension+ramipril, and hypertension+myrtle leaf extract treatment groups. RVH model was induced by Goldblatt's 2-kidney 1-clip method. 12 weeks later than the treatment blood pressures were recorded and oxidant and antioxidant parameters, tissue factor activity, and histological analysis were determined in the kidney, heart, and aortic tissues. The blood pressure levels of the hypertension group signifcantly increased compared to the control group. Administration of myrtle leaf extract and ramipril signifcantly decreased the increased blood pressure. In the hypertension group, oxidative damage increased in the kidney, heart, and aorta tissues. In the histological evaluation of tissues in RVH, heart muscle fbres degenerated. Bowman capsule and glomeruli dilated and tubules damaged in the kidney. Myrtle leaf extract administration regenerated the damages and degenerations. The administration of myrtle leaf extract restored the impaired oxidant-antioxidant balance in the heart, kidney and aorta tissues of hypertensive rats. Myrtle leaf extract can be considered as an alternative antihypertensive treatment target in the prevention of oxidative stress-induced damage in renovascular hypertension.

Keywords Renovascular hypertension · *Myrtus communis* L · Myrtle leaf extract · Oxidative stress

 \boxtimes Tugba Tunali-Akbay ttunali@marmara.edu.tr

> Sule Arslan diyetisyensulearslan@gmail.com

Ozan Ozcan ozozca13@gmail.com

Begüm Gurel-Gokmen bg.begumgurel@gmail.com

Zatiye Ayça Cevikelli-Yakut zaycacevikelli@trakya.edu.tr

Halil Ibrahim Saygı halil.saygi@istanbul.edu.tr

Ali Sen ali.sen@marmara.edu.tr

Fatih Göger fatihgoger@anadolu.edu.tr

Gözde Erkanli-Senturk gozde.erkanlisenturk@iuc.edu.tr Goksel Sener goksel.sener@fbu.edu.tr

- ¹ Department of Basic Medical Sciences, Dentistry Faculty, Marmara University, İstanbul, Turkey
- ² Department of Pharmacognosy, Pharmacy Faculty, Trakya University, Edirne, Turkey
- ³ Department of Histology and Embryology, Cerrahpaşa Medical Faculty, İstanbul University-Cerrahpasa, İstanbul, Turkey
- Department of Pharmacognosy, School of Pharmacy, Marmara University, Istanbul, Turkey
- Medicinal Plant, Drug and Scientific Research and Application Center (AUBIBAM), Anadolu University, 26470 Eskişehir, Turkey
- ⁶ Department of Pharmacology, Vocational School of Health Sciences, Fenerbahce University, İstanbul, Turkey

Introduction

Hypertension is one of the major risk factors in the development of cardiovascular diseases. It is classifed as primary and secondary hypertension according to its formation mechanism (Mancia et al. [1997\)](#page-11-0). The type of hypertension investigated in this study is related to secondary hypertension. Secondary hypertension is an increase in blood pressure caused by an underlying disease and often with a treatable cause (Textor [2017\)](#page-11-1). The common cause of secondary hypertension is renovascular hypertension (RVH).

RVH is high blood pressure due to occlusive disease of one or both main renal arteries or their branches. Approximately 1% of all hypertension cases are of renovascular origin (Boutari et al. [2020](#page-10-0)). The cause of RVH is renal artery stenosis, and it may also cause renal diseases (Lerman et al. [2001](#page-11-2)). RVH is related to the renin-angiotensin-aldosterone system.

Experimental renovascular hypertension is generated in rats by clamping one of the renal arteries with silver clips. This model is also called as Goldblatt two-kidney, oneclip (2K1C) model (Goldblatt et al. [1934](#page-10-1)). This model has three phases. In the frst phase (frst six weeks) blood pressure rises rapidly as the renin-angiotensin system (RAS) is overactivated and plasma renin activity and circulating angiotensin II (A- II) levels increased. In the second phase (following two weeks) salt and water retention occur. This triggers additional pressor efects besides the stable high blood pressure. In the third phase (the ninth week after renal ischemia) RAS independent high blood pressure occurs (Martinez-Maldonado [1991](#page-11-3); de Oliveira et al. [2012\)](#page-10-2).

The cascade of the renin-angiotensin-aldosterone system begins with angiotensinogen, α -2-globulin secreted from the liver. Renin secreted from kidneys converts this substrate to angiotensin I (A-I). A-I is then converted to A-II via the angiotensin-converting enzyme (ACE) and binds to A-II receptors. Consequently, blood pressure increases through vasoconstriction, renal tubular and glomerular function changes, hypertrophy of the heart, and fbrosis (Basso and Terragno [2001\)](#page-10-3). Recent studies reported some additional mechanisms of A-II that increase vascular resistance including vasoconstriction and endothelial dysfunction related to oxidative stress responsible for sustained increased blood pressure (Garovic and Textor [2005](#page-10-4)).

Angiotensin formation is prevented by ACE inhibitors. These inhibitors control the bradykinin breakdown and may be effective on other members of the renin-angiotensinaldosterone system. These agents have many efects that can also protect coronary and peripheral vascularity. Ramipril is one of these agents that acts on the heart and blood vessels, and it is used in the treatment of hypertension and heart failure (Lonn et al. [2003\)](#page-11-4).

Reactive oxygen species (ROS) cause oxidative damage to kidneys and vessels in renovascular hypertension (Briones and Touyz [2010](#page-10-5)). ROS mediate vasoconstriction by increasing intracellular calcium concentration. Although the role of antioxidant use in the treatment of hypertension remains a question, it is thought that hypertension-related tissue damage can be prevented by treating oxidative damage (Griendling et al. [2021\)](#page-10-6). Targeted treatments against free radicals, either reducing the formation of ROS or increasing antioxidants, may reduce vascular damage and renal dysfunction, thereby preventing or regressing hypertensive end-organ damage (Rodrigo et al. [2011;](#page-11-5) Griendling et al. [2021\)](#page-10-6).

Nowadays, the interest in natural antioxidant products to prevent and treat various complications increases. Although fndings regarding the long-term use of antioxidants in the development of cardiovascular complications of hypertension are not yet clear, there are encouraging fndings regarding the use of antioxidants in restoring endothelial function and blood pressure (Fang et al. [2002;](#page-10-7) Schulz et al. [2004\)](#page-11-6).

Myrtle (*M. communis* L.) is a plant of the Myrtaceae family that is common in Turkey and many other Mediterranean countries. It has been used in folk medicine to treat hyperglycemia, hypertension, anxiety, lung infections like bronchitis, tuberculosis, heartburn, yeast infections and skin warts (Aydın and Özcan [2007;](#page-10-8) Sisay and Gashaw [2017](#page-11-7)). In the chemical content of the leaves and fruits of the myrtle plant, there are volatile compounds or essential oils like α-pinene and 1,8-cineole with terpenoid structure, favonoids like quercetin, and catechin, fatty acids like oleic and linoleic acid, coumarins, galloyl-glucosides, ellagitannins,

gallic and ellagic acids (Hennia et al. [2018](#page-10-9)). The antioxidant/anti-infammatory activity and total phenolic content of myrtle that was used in this study were previously presented (Ozbeyli et al. [2020](#page-11-8)). It is no surprise that myrtle, which has such a rich chemical content, has antimicrobial, hypoglycemic, antihypertensive, hemostatic, antioxidant, anti-infammatory, and anticarcinogenic features (Sumbul et al. [2011](#page-11-9)).

This study aims to examine the possible antihypertensive and antioxidant efects of the myrtle leaf extract on the kidney, heart, and aortic tissues in the experimental hypertension model and to compare them with the effects of ramipril, an antihypertensive agent.

Materials and methods

Plant material and extraction

The myrtle (*M. communis*) leaves were collected from Manisa, Turkey, and identifed by Dr. Gizem Emre, a botanist in the School of Pharmacy, University of Marmara Voucher specimens were deposited in the Herbarium in the School of Pharmacy, Marmara University (MARE no: 13006). The 100 g dried plant leaves were extracted with 96% ethanol via the Soxhlet apparatus. The crude extract was fltered, and the fltrate was dried under a vacuum. The dried ethanol extract was stored at 4 °C.

Animals

Wistar albino rats (male, $200-300$ g, $n=32$) were kept in a humidity (65–70%) and a constant temperature (22 \pm 2 °C) with regulated light and dark (12/12 h) cycles. Standard pellets and tap water was given to all animals ad libitum.

All the experimental protocols were approved by the Marmara University Animal Care and Use Committee (Approval date: 03.12.2018 Certifcation Number:112.2018.mar).

Experimental design

The rats were divided into four experimental groups as control, RVH, RVH + myrtle leaf extract $(RVH + M)$, and $RVH + ramipril$ treatment $(RVH + R)$. The renovascular hypertension (RVH) model was applied intraperitoneally to rats under ketamine (100 mg/kg, intraperitoneally) and chlorpromazine (0.75 mg/kg, intraperitoneally) injection anaesthesia. Two kidneys, one clip (Goldblatt, 2K1C) procedure have been used to induce the RVH model (Cevikelli-Yakut et al. [2020](#page-10-10)). The silver clip (diameter 0.25 mm) was inserted over the left renal artery to form RVH. The rats in the control group underwent similar surgical procedures but no silver clips were inserted. The tail-cuff method was used to measure the blood pressure of the rats. The animals have received either myrtle leaf extract (100 mg/kg, intraperitoneally) or ramipril (10 mg/kg, intraperitoneally) for 12 weeks, starting with the surgery day. Animals in the control and RVH groups were received saline with 1% alcohol intraperitoneally (1 mL/kg/24 s) for 12 weeks. The study of Yakut-Çevikelli et al. was used to determine the antihypertensive dose of ramipril and *M. communis* extract (Yakut et al. [2020](#page-11-10)).

Systolic blood pressures were obtained in all groups before the surgical transactions, and measurement was repeated after three weeks and also at the end of the experiment. At the end of the twelfth week, all blood pressure measurements were done in all animals before they were decapitated. To evaluate injuries in the targeted organs, renal, cardiac, and aortic tissues were excised carefully and stored at -80 °C to determining the malondialdehyde (MDA), glutathione (GSH), nitric oxide (NO) levels, superoxide dismutase (SOD), catalase (CAT), myeloperoxidase (MPO), and tissue factor (TF) activities.

Measurement of blood pressure

Blood pressures were measured indirectly (Biopac MP35 Systems, Inc. COMMAT Ltd., Ankara, Turkey) by the tailcuff method at the end of the third and twelfth weeks following the operations. Animals were placed in the pre-heated (35 °C) chamber. The animals were then placed in individual plastic holders and a cuff with a pulse sensor was wrapped around the tail. Blood pressure values were measured three consecutive times and then averaged.

Determination of malondialdehyde and glutathione

Malondialdehyde (MDA) activities in the kidney, heart, and aorta samples were measured according to the Ledwozyw method (Ledwozyw et al. [1986\)](#page-10-11). Lipid peroxidation results were expressed in MDA nmol/g tissue. Glutathione (GSH) levels were measured using the Ellman method (Beutler [1984](#page-10-12)). The results are expressed as μmol GSH/g tissue.

Determination of superoxide dismutase and catalase activities

Superoxide dismutase (SOD) activity in the tissues of the heart, kidney, and aorta was measured following the Mylorie method (Mylroie et al. [1986\)](#page-11-11). Bovine SOD (Sigma) was used in the preparation of the standard curve.

CAT activity was measured according to the Aebi method, which is based on the decomposition reaction of $H₂O₂$ to give $H₂O$ and $O₂$ (Aebi [1974](#page-10-13)).

Determination of nitric oxide and myeloperoxidase activity

Nitric oxide (NO) levels in the heart, kidney and aortic tissues were determined by the Miranda method (Miranda et al. [2001](#page-11-12)).

Myeloperoxidase (MPO) activity has been assessed by measuring the oxidation of H_2O_2 -dependent o-dianisidine.2HCl. The change in absorbance in 1.0 min−1 at 460 nm is defned as the one unit of MPO enzyme activity (Hillegass et al. [1990\)](#page-10-14).

Determination of tissue factor activity

Tissue factor activity was determined by using blood plasma from healthy subjects and homogenates of heart, kidney, and aorta tissues according to the Ingram method (Ingram [1976](#page-10-15)). Briefy, 0.1 mL tissue homogenate and blood plasma were mixed and incubated at 37 °C for 2 min. The fbrin clot formation time was recorded after the addition of $CaCl₂$ (0.02 M). Tissue factor activity decreases as the time taken for clot formation increases.

Histological evaluation

Kidney, heart, and aorta tissue samples were fxed in formaldehyde for histologic examination. After fxation, they were dehydrated in graded concentrations of alcohol series and embedded in paraffin. Three μm sections were taken from the paraffin blocks and used for Hematoxylin-eosin staining.

Histological evaluation was performed on stained sections by two histologists independently and blindly as described previously (Şener et al. [2005](#page-11-13)). In the evaluation of kidneys, degeneration status was scored in three diferent areas: glomerular, tubular, and vascular areas. For heart and kidney tissues, a whole evaluation was applied and along with degeneration status, infammation was also scored. Scores were assigned from 0 to 3 (0: absent, 1: mild, 2: moderate, and 3: severe), and overall scores were determined by summing these individual scores (a maximum of 9 for kidney tissue, 6 for heart, and aorta tissue) and statistically evaluated.

LC‑ESI‑MS/MS analysis

LC-MS/MS analysis was carried out using an Absciex 3200 Q trap MS/MS detector. Experiments were performed with a Shimadzu 20A HPLC system coupled to an Applied Biosystems 3200 Q-Trap LC-MS/MS instrument equipped with an ESI source operating in negative ion mode. For the chromatographic separation, a GL Science Inertsil ODS - 3250×4.6 mm, 5 µm particle size, analytical column operating at 40 °C has been used. The solvent fow rate was

maintained at 0.5 mL/min. Detection was carried out with a PDA detector. The elution gradient consisted of mobile phases (A) acetonitrile:water:formic acid (10:89:1, v/v/v) and (B) acetonitrile:water:formic acid (89:10:1, v/v/v). The composition of B was increased from 10% to 100% in 40 min. LC-ESI-MS/MS data were collected and processed by Analyst 1.6 software.

Statistical analysis

Statistical analysis of all parameters was performed using Graph Pad statistical package (San Diego; CA, USA). The fndings were expressed as mean and standard deviation. One-way analysis of variance (ANOVA) followed by Tukey's post hoc test was carried out for the evaluation of biochemical data.

Results

Body and tissue weights

At the end of the experiment, no signifcant diference was observed between the groups in terms of body weight measurements. Considering the weight of the tissues, a signifcant reduction was observed in the heart and left kidney tissues in the ramipril treatment group compared to all groups. The right kidney tissues did not change among all groups (Table [1\)](#page-4-0).

Systolic blood pressure levels

The basal systolic blood pressures were recorded before the surgery. There were no signifcant diferences between the groups. In the RVH group, systolic blood pressure signifcantly increased at the third- and twelfth-week readings after the surgery compared to the basal levels. Moreover, myrtle leaf extract treatment to the RVH group caused slight increases in systolic blood pressure at the third- and twelfth-week compared to the RVH group. $RVH + R$ group has also shown a slight increase in systolic blood pressure in both third- and twelfth-week compared to the RVH group after surgery. There were no signifcant diferences in systolic blood pressure levels between the myrtle leaf extract and ramipril treated groups at both third and twelfth weeks (Table [2\)](#page-4-1).

Heart tissue results

Renovascular hypertension increased MDA level, NO level, and MPO activity, and signifcantly decreased GSH level, SOD activity, TF activity compared to the control group. Myrtle leaf extract treatment signifcantly decreased MDA

level, and signifcantly increased GSH level, SOD activity, CAT activity compared to the RVH group. In the $RVH + R$ group, MDA and NO levels, MPO, and CAT activities signifcantly increased compared to the RVH group. When the myrtle leaf extract and ramipril treated RVH groups were compared MDA and NO levels, TF, MPO, and CAT activities were signifcantly higher than the myrtle leaf extract treated RVH group (Fig. [1\)](#page-4-2). Histological evaluation of heart tissues showed that muscle fbres were severely damaged in the RVH group. Moreover, infammatory cell infltrations

Table 1 Tissue weights

SD: Standard deviation. C: Sham-controlled group, RVH: Renovascular hypertension (vehicle-controlled) group, $RVH+M$: Myrtle treatment group, $RVH+R$: Ramipril treatment group, $n=8$

(*): Significant compared to control group $p < 0.05$, (+): Significant compared to RVH group $p < 0.05$, (X): Signifcant compared to RVH+M group

Table 2 Systolic blood pressure levels

SD: Standard deviation. C: Sham-controlled group, RVH: Renovascular hypertension (vehicle-controlled) group, $RVH+M$: Myrtle treatment group, $RVH+R$: Ramipril treatment group, $n=8$

1: Before the surgery, 2: Three weeks after the surgery, 3: Twelve weeks after the surgery

(*): Signifcant compared to control group p<0.05, **(+):** Signifcant compared to RVH group p<0.05

Fig. 1 MDA, GSH, NO levels and MPO, SOD, CAT and TF activities of heart tissue. **C:** Control group, **RVH:** Renovascular hypertension group, **RVH+M:** Myrtle treatment group, **RVH+R:** Ramipril treatment group, **MDA:** Malondialdehyde, **MPO:** Myeloperoxidase

activity, **GSH:** Glutathione, **SOD:** Superoxide dismutase, **CAT:** Catalase **NO:** Nitric oxide, **(*):** p<0.05 compared to control group, **(+):** p<0.05compared to RVH group, **(x):** p<0.05 compared to RVH+M group, $n=8$

were detected in this group. $RVH+M$ and $RVH+R$ groups demonstrated less damage in muscle fbres compared to the RVH group (Fig. [4\)](#page-7-0).

Kidney tissue results

Right kidney Renovascular hypertension significantly increased MDA and NO levels and signifcantly decreased CAT activity. Myrtle leaf extract treatment to RVH group signifcantly decreased MDA level, signifcantly increased GSH level, SOD, and CAT activities compared to RVH group. When the myrtle leaf extract treated and ramipril treated RVH groups were compared; MDA, GSH, and NO levels were significantly higher in the $RVH + R$ group compared to the RVH+M group and, NO level and SOD activity were significantly lower in the $RVH + R$ group. MPO and TF activities did not signifcantly change among all groups (Fig. [2\)](#page-5-0).

Left kidney Renovascular hypertension significantly increased MDA and NO levels and TF and MPO activities and signifcantly decreased SOD activity compared to the control group. Myrtle leaf extract treatment to RVH group signifcantly decreased MDA level and TF activity and signifcantly increased NO compared to RVH and the control group. Ramipril treatment to the RVH group signifcantly increased MDA level and MPO activity and decreased GSH level, SOD activity compared to other groups. TF activity was significantly lower in the RVH+ R group compared to the $RVH + M$ group. NO level was found to be significantly higher than the $RVH + M$ group in the $RVH + R$ group. CAT activity did not signifcantly change among all groups (Fig. [2](#page-5-0)).

The histological evaluation of the kidney revealed degenerated Bowman capsule and glomeruli, dilated tubules and epithelial damage of tubules, and interstitial oedema in the RVH group. These degenerations alleviated in RVH+M and $RVH + R$ groups (Fig. [4](#page-7-0)).

Fig. 2 MDA, GSH, NO levels and MPO, SOD, CAT and TF activities of right and left kidney tissues. **C:** Control group, **RVH:** Renovascular hypertension group, **RVH+M:** Myrtle treatment group, **RVH+R:** Ramipril treatment group, **MDA:** Malondialdehyde,

MPO: Myeloperoxidase activity, **GSH:** Glutathione, **SOD:** Superoxide dismutase, **CAT:** Catalase **NO:** Nitric oxide, **(*):** p<0.05 compared to control group, **(+):** p<0.05compared to RVH group, **(x):** $p < 0.05$ compared to $RVH + M$ group, $n = 8$

Aortic tissue results

MDA and NO levels, and MPO activity significantly increased, GSH level and SOD activity significantly decreased in the RVH group compared to the control group. Myrtle leaf extract treatment signifcantly decreased MDA, MPO, and NO levels and signifcantly increased SOD and CAT activity compared to RVH and the control group. Ramipril treatment to the RVH group did not change the increased MDA and continued to increase MPO activity compared to the RVH group. In the $RVH + R$ group; while SOD, CAT, and TF activities were signifcantly lower than the $RVH + M$ group, NO level and MPO level significantly higher than the myrtle leaf extract treated group (Fig. [3](#page-6-0)).

In histologic evaluation, aorta wall assessment disclosed that in the RVH group, many degenerated smooth muscle cells in tunica media and damaged and lost endothelial cells in tunica intima. In $RVH + M$ group, smooth muscle cells were less damaged and endothelial cells were only partially lost. In $RVH + R$ group both (Fig. [4\)](#page-7-0).

When the damage scores of the heart, left kidney, and aorta were compared, it was found that while the damage score increased signifcantly in the RVH group in all tissues, both myrtle leaf extract treatment, and ramipril were efective in decreasing the damage score (Fig. [4\)](#page-7-0).

Phytochemical characterization of phenolic compounds Myrtle leaf extract by LC‑MS/MS

Seven phenolic compounds including myricetin hexoside, myricetin rhamnoside, ellagic acid, quercetin rhamnoside, myricetin, trihydroxy cinnamic acid derivative, sinapinic acid derivative, were identified by LC/MS-MS (Fig. [5\)](#page-8-0) (Table [3\)](#page-8-1).

Discussion

This study investigated the possible efects of myrtle leaf extract, a medicinal plant with antioxidant properties on kidney, heart, and aortic tissues in experimental renovascular hypertension. The obtained results of the myrtle leaf extract administration were compared with those obtained with ramipril, a second-generation angiotensin-converting enzyme (ACE) inhibitor. The blood pressure levels of rats in which renovascular hypertension was induced by attaching a clip to the left kidney signifcantly increased compared to the control group. When the efects of increased blood pressure on tissue damage were evaluated, it was found that MDA and NO levels in the heart, right and left kidney and aorta were higher than in the control group. These fndings indicate that oxidative damage occurs in the heart, kidney, and aorta and an increased NO was used for the adaptation of these tissues to high blood pressure. Besides, SOD activity increased and GSH level decreased in heart tissue. Heart MPO also increased in the renovascular hypertensive

Fig. 3 MDA, GSH, NO levels and MPO, SOD, CAT and TF activities of aorta tisuue. **C:** Control group, **RVH:** Renovascular hypertension group, **RVH+M:** Myrtle treatment group, **RVH+R:** Ramipril treatment group, **MDA:** Malondialdehyde, **MPO:** Myeloperoxidase

activity, **GSH:** Glutathione, **SOD:** Superoxide dismutase, **CAT:** Catalase **NO:** Nitric oxide, **(*):** p<0.05 compared to control group, **(+):** p<0.05compared to RVH group, **(x):** p<0.05 compared to RVH+M group, $n=8$

Fig. 4 Histological evaluation of heart, kidney, and aorta wall. (**A**) The normal morphology of cardiac muscles in the control group **(1)** severely damaged muscle fbers (arrow) and infammatory cell infltration (arrowhead) in the RVH group **(2)** and less damaged muscle fbers (arrow) in RVH+M and RVH+R groups **(3, 4)** Hematoxylene & Eosine stainings. Scale bar: 20 μm. (**B**) The normal morphology of kidney in the control group **(1)** degenerated Bowman capsule and glomeruli (*), dilated tubules (arrowhead), epithelial damage of tubules (arrow), interstitial edema (>) in RVH group **(2)** less damaged Bowman capsule, and glomeruli (*), epithelium of tubules (arrow), moderate interstitial edema $(>)$ in RVH+M and RVH+R groups $(3,)$ **4).** Hematoxylin & Eosin stainings. Scale bar: 50 μm. (**C**) The nor-

mal morphology of aorta wall in the control group **(1)** degenerated smooth muscle cells in tunica media (arrowhead), damage and loss of endothelial cells in tunica intima (arrow) in RVH group **(2)** less damaged smooth muscle cells in tunica media (arrowhead) and partially lost endothelial cells in tunica intima in RVH+M **(3)** less damaged smooth muscle cells in tunica media (arrowhead) and endothelial cells (arrow) in tunica intima in RVH+R group **(4)** Hematoxylene & Eosine stainings. Scale bar: A) 50 μm, B-D) 20 μm. (**D**) Damage scores of heart left kidney, and aorta wall. **C:** Control group, **RVH:** Renovascular hypertension group, **RVH+M:** Myrtle treatment group, **RVH+R:** Ramipril treatment group. **(*):** p<0.05 compared to control group, $(+)$: $p < 0.05$ compared to RVH group, $n = 8$

D

rats. When the kidney results were evaluated in the present study, it was observed that SOD activity decreased in the left kidney tissue and CAT activity decreased in the right kidney tissue. GSH level decreased in the aortic tissue. In line with these results, it has been determined that while hypertension increases oxidative damage in the heart, kidney, and aortic

Fig. 5 LC-MS/MS chromatogram of ethanol extract of Myrtle

No	tR(min)	m/z [M-H] ⁻	MS ²	Identified as	References
$\mathbf{1}$	8.8	479	316, 287, 271	Myricetin hexoside	D'Urso et al. 2019
2	10.3	463	316, 287, 271	Myricetin rhamnoside	D'Urso et al. 2019
3	10.6	300	284, 245, 217, 201, 161, 145	Elagic acid	Taamalli et al. 2014
4	12.2	447	300, 271, 255	Quercetin rhamnoside	Taamalli et al. 2014
5	13.8	317	179,151	Myricetin	D'Urso et al. 2019
6	20.5	195	177, 151	Trihydroxycinnamic acid derivatives	Torras-Claveria et al. 2007
7	26.9	209	194, 151	Unknown	
8	28.1	237	179, 164, 135	Cafeic acid derivatives	Živković et al. 2014
9	29.3	223	207, 151, 125	Sinapic acid derivatives	Park et al. 2014; Francisco et al. 2009
10	32.8	311	295, 267, 239, 175	Unknown	
11	35.8	419	331, 305, 277, 249	Unknown	
12	38.2	345	207	Unknown	
13	38.2	457	399, 233, 221, 205	Unknown	
14	38.7	413	355, 340, 311	Unknown	
15	40.1	415	371, 345, 301, 261, 233	Unknown	
16	41.3	413	355, 337, 311, 297	Unknown	

Table 3 Analysis of Phenolic Compounds of Myrtle Extract by LC-MS/MS

tissues and due to the use of antioxidant system elements against oxidative damage, the antioxidant defence capacity decreased. The results obtained from the hypertensive rat tissues were compatible with the literature. Agunloye et al. (Agunloye et al. [2021](#page-10-16)) determined the increased cardiac MDA and decreased heart and kidney CAT activity and GSH level in cyclosporine A-induced hypertensive rats.

Similarly, Aekthammarat et al. (Aekthammarat et al. [2019\)](#page-10-17) reported the increased thoracic aorta MDA level and NO activity, decreased SOD and CAT activities in the Nε-nitro-L-arginine methyl ester (L-NAME) induced in rats.

In the present study, TF activity decreased in the heart tissue of rats with hypertension. It also increased in the left kidney tissue and did not change in the right kidney and

aorta. Histological examination results also confrmed the serious damage to heart muscle fbres. The increase in TF activity in the left kidney is related to the attached clip, indicating an increased tendency for clot formation in this tissue.

Today, the most commonly used herbs for hypertension treatment are lemon and garlic (Biçen et al. [2012](#page-10-20)), however, studies are showing that various plant extracts can also treat hypertension through diferent mechanisms. Wang et al. reported that naringenin improves kidney damage in renovascular hypertension by ensuring the balance of renin-angiotensin system components (Wang et al. [2019b](#page-11-18)). Toklu et al. stated that resveratrol, with its antioxidant effect, maintains the oxidant / antioxidant balance and reduces the oxidant damage caused by hypertension in the heart, kidney, and brain tissue in hypertension (Toklu et al. [2010\)](#page-11-19). Talha et al. presented the list of plants containing anti-hypertensive activity (Talha et al. [2011\)](#page-11-20). Çevikelli et al. stated in their study that myrtle protects the brain tissue against oxidative damage in experimental hypertension (Cevikelli-Yakut et al. [2020](#page-10-10)).

In the present study, the possible efects of myrtle leaf extracton heart, kidney, and aortic tissues in experimental renovascular hypertension were investigated. Myrtle leaf extract reduced MDA levels in heart, kidney, and aorta tissues in renovascular hypertension. It was determined that it did not change MPO activity and NO level in heart tissue, and increased heart GSH level, SOD, and CAT activity. Histological analysis also demonstrated less damage in muscle fbres of the heart by the myrtle leaf extract administration to hypertensive rats. It is obvious from these fndings that myrtle leaf extract as a strong antioxidant activity on the heart in hypertension. While myrtle leaf extract decreases MDA and NO levels in the right kidney tissue, it also increases the right kidney GSH level and SOD activity. The protective efect of the myrtle leaf extract plant against oxidant damage was also observed in the right kidney in hypertension. Myrtle leaf extract also decreased TF activity and increased NO level in left kidney tissue. From these results, it was determined that myrtle leaf extract decreased the lipid peroxidation level in the left kidney by a mechanism other than GSH level, SOD, and CAT parameters. Myrtle leaf extract also alleviated the degenerations seen in both kidney tissue. Myrtle leaf extract decreased NO levels in aortic tissue in hypertension and increased SOD and CAT activity. Myrtle leaf extract showed its antioxidant properties by increasing aortic SOD and CAT activity, thus reducing lipid peroxidation. In the histologic examination, smooth muscle cells aorta were less damaged and endothelial cells were only partially lost in the myrtle leaf extract administered hypertensive rats compared to hypertensive rats.

The antioxidant potential of myrtle is attributed to the presence of polyphenolic compounds which may have many benefts in treating oxidative stress-related diseases (Bouaziz et al. [2015\)](#page-10-21). The myrtle leaves in the current study were found to have phenolic compounds such as myricetin hexoside, myricetin rhamnoside, ellagic acid, quercetin rhamnoside, myricetin, trihydroxy cinnamic acid derivative, cafeic acid derivative and sinapinic acid derivative. Similarly, the HPLC analysis of myrtle leaves showed that they contained phenolic compounds rich in myricetin derivatives. In particular, myricetin 3-*O*-rhamnoside has been identifed as one of major compounds in myrtle leaves (Romani et al. [1999\)](#page-11-21). In a previous study, myrtle leaves were reported to have high phenolic content $(472.7 \pm 2.36 \text{ mg/g} \text{ extract as}$ gallic acid equivalent) with signifcant in vitro antioxidant activity (IC_{50 DPPH}: 12.66 and IC_{50 ABTS}: 17.29 μ g/mL) (Ozbeyli et al. [2020](#page-11-8)). Phenolic compounds are generally known for their antioxidant activity (Haminiuk et al. [2012](#page-10-22)). Also, myricetin 3-*O*-rhamnoside have been reported to have antioxidant activity Hayder et al. [2008\)](#page-10-23). Furthermore, phenolic compounds have been reported to act as modulators of NADPH oxidases in hypertension (Yousefan et al. [2019](#page-11-22)). Evidences indicated that myricetin derivative compounds had antihypertensive activity (Calassara et al. [2020](#page-10-24); Wang et al. [2019a\)](#page-11-23).

In this study, the efects of myrtle leaf extract on heart, kidney, and aortic tissues in hypertension were compared with the effects of ramipril, an ACE inhibitor, on hypertension. Administration of ramipril to the hypertensive rat signifcantly increased the MDA level in the heart, left kidney, right kidney, and aorta compared to the myrtle leaf extract given hypertensive group. The MPO activity except for the right kidney also increased heart, left kidney, and aorta compared to the myrtle leaf extract given hypertensive group. The increased MDA level and MPO activity mostly caused low antioxidant responses in the heart, kidney, and aorta. Based on these results, it is thought that ramipril does not have a signifcant antioxidant efect, but it contributes to the antioxidant capacity in the examined tissues by preventing the increase in blood pressure due to its blood pressurelowering effect mechanism.

Conclusions

It was determined that both myrtle leaf extract and ramipril had antihypertensive efects. According to the results obtained, it was determined that myrtle leaf extract is efective on blood pressure due to its antioxidant effect. Although ramipril decreases blood pressure, it was ineffective at reducing the g LPO increase in the heart, kidney, and aorta tissues. These results demonstrate that myrtle (*M. communis*) leaf extract, signifcantly improves the oxidative damage in the heart, kidney, and aorta. Therefore, the ethanol extract of myrtle leaf can be an alternative therapeutic target against renovascular hypertension-induced oxidative stress-based heart, kidney and aorta damages.

Acknowledgments The authors would like to thank Assoc.Prof. Gizem Emre for her help in identifcation of the plant material.

Author contributions Sule Arslan, Begüm Gürel Gökmen, Ozan Özcan: Biochemical analysis of heart, kidney and aorta tissues.

Zatiye Ayca Cevikelli Yakut, Goksel Sener: Conceptualization, experimental model and animal care.

Ali Şen, Fatih Göger: Myrtle leaf extract praparation and characterization.

Halil İbrahim Saygı, Gözde Erkanlı-Senturk: Histological Analysis of heart, kidney and aorta tissues.

Tuğba Tunali-Akbay: Conceptualization, methodology, investigation, manuscript writing and editing.

Funding This study was funded by a grant from Marmara University Scientific Research Project Department (Project ID: SAG-C-YLP-170419-0142).

Declarations

Conflict of interest The authors declare that they have no conficts interests that are relevant to the content of this article.

References

- Aebi H (1974) Catalase. In: HU B (ed.) Methods of enzymatic analysis. Verlag Chemie/Academic Press Inc, Weinheim/Newyork, pp. 673–684
- Aekthammarat D, Pannangpetch P, Tangsucharit P (2019) Moringa oleifera leaf extractlowers high blood pressure by alleviating vascular dysfunction and decreasing oxidative stress in L-NAME hypertensive rats. Phytomedicine 54:9-16. [https://doi.org/10.](https://doi.org/10.1016/j.phymed.2018.10.023) [1016/j.phymed.2018.10.023](https://doi.org/10.1016/j.phymed.2018.10.023)
- Agunloye OM, Oboh G, Bello GT, Oyagbemi AA (2021) Cafeic and chlorogenic acids modulate altered activity of key enzymes linked to hypertension in cyclosporine-induced hypertensive rats. J Basic Clin Physiol Pharmacol 32(3):169–177. [https://doi.org/10.1515/](https://doi.org/10.1515/jbcpp-2019-0360) [jbcpp-2019-0360](https://doi.org/10.1515/jbcpp-2019-0360)
- Aydın C, Özcan MM (2007) Determination of nutritional and physical properties of myrtle (*Myrtus communis* L.) fruits growing wild in Turkey. J Food Eng 79:453–458. [https://doi.org/10.1016/j.jfood](https://doi.org/10.1016/j.jfoodeng.2006.02.008) [eng.2006.02.008](https://doi.org/10.1016/j.jfoodeng.2006.02.008)
- Basso N, Terragno NA (2001) History about the discovery of the reninangiotensin system. Hypertension 38:1246–1249. [https://doi.org/](https://doi.org/10.1161/hy1201.101214) [10.1161/hy1201.101214](https://doi.org/10.1161/hy1201.101214)
- Beutler E (1984) Red cell metabolism: a manual of biochemical methods
- Biçen C, Elver Ö, Erdem E, Kaya C, Karataş A, Dilek M, Akpolat T (2012) Herbal product use in hypertension patients. J Exp Clin Med 29:109–112.<https://doi.org/10.5835/jecm.omu.29.02.005>
- Bouaziz A, Abdalla S, Baghiani A, Charef N (2015) Phytochemical analysis, hypotensive efect and antioxidant properties of *Myrtus communis* L. growing in Algeria. Asian Pac J Trop Biomed 5:19–28. [https://doi.org/10.1016/S2221-1691\(15\)30165-9](https://doi.org/10.1016/S2221-1691(15)30165-9)
- Boutari C, Georgianou E, Sachinidis A, Katsimardou A, Christou K, Piperidou A, Karagiannis A (2020) Renovascular hypertension: novel insights. Curr Hypertens Rev 16:24–29. [https://doi.org/10.](https://doi.org/10.2174/1573402115666190416153321) [2174/1573402115666190416153321](https://doi.org/10.2174/1573402115666190416153321)
- Briones AM, Touyz RM (2010) Oxidative stress and hypertension: current concepts. Curr Hypertens Rep 12:135–142. [https://doi.](https://doi.org/10.1007/s11906-010-0100-z) [org/10.1007/s11906-010-0100-z](https://doi.org/10.1007/s11906-010-0100-z)
- Calassara LL, Pinto SC, Condack CP, Leite BF, Nery LCE, Tinoco LW, Aguiar FA, Leal IC, Martins SM, Silva LL (2020) Isolation and characterization of favonoids from *Tapirira guianensis* leaves with vasodilatory and myeloperoxidase-inhibitory activities. Nat Prod Res:1–4. <https://doi.org/10.1080/14786419.2020.1784170>
- Cevikelli-Yakut ZA, Ertas B, Sen A, Koyuncuoglu T, Yegen BC, Sener G (2020) *Myrtus communis* improves cognitive impairment in renovascular hypertensive rats. J Physiol Pharmacol 71. [https://](https://doi.org/10.26402/jpp.2020.5.07) doi.org/10.26402/jpp.2020.5.07
- D'Urso G, Montoro P, Lai C, Piacente S, Sarais G (2019) LC-ESI/ LTQOrbitrap/MS based metabolomics in analysis of *Myrtus communis* leaves from Sardinia (Italy). Ind Crop Prod 128(23):354– 362.<https://doi.org/10.1016/j.indcrop.2018.11.022>
- de Oliveira JC, Antonietto CRK, Scalabrini AC, Marinho TS, Pernomian L, Corrêa JWN, Restini CBA (2012) Antioxidant protective efects of the resveratrol on the cardiac and vascular tissues from renal hypertensive rats. Open J Med Chem 2(3):61–71. [https://doi.](https://doi.org/10.4236/ojmc.2012.23008) [org/10.4236/ojmc.2012.23008](https://doi.org/10.4236/ojmc.2012.23008)
- Fang JC, Kinlay S, Beltrame J, Hikiti H, Wainstein M, Behrendt D, Suh J, Frei B, Mudge GH, Selwyn AP (2002) Efect of vitamins C and E on progression of transplant-associated arteriosclerosis: a randomised trial. Lancet 359:1108–1113. [https://doi.org/10.1016/](https://doi.org/10.1016/S0140-6736(02)08154-0) [S0140-6736\(02\)08154-0](https://doi.org/10.1016/S0140-6736(02)08154-0)
- Francisco M, Moreno DA, Cartea ME, Ferreres F, García-Viguera C, Velasco P (2009) Simultaneous identifcation of glucosinolates and phenolic compounds in a representative collection of vegetable *Brassica rapa*. J Chromatogr A 1216(38):6611–6619. [https://](https://doi.org/10.1016/j.chroma.2009.07.055) doi.org/10.1016/j.chroma.2009.07.055
- Garovic V, Textor SC (2005) Renovascular hypertension: current concepts. Semin Nephrol 25:261–271. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.semnephrol.2005.02.010) [semnephrol.2005.02.010](https://doi.org/10.1016/j.semnephrol.2005.02.010)
- Goldblatt H, Lynch J, Rf H, Summerville WW (1934) Studies on Experımental hypertension : I. the Productıon of Persıstent elevation of systolic blood pressure by means of renal Ischemıa. J Exp Med 59:347–379.<https://doi.org/10.1084/jem.59.3.347>
- Griendling KK, Camargo LL, Rios FJ, Alves-Lopes R, Montezano AC, Touyz RM (2021) Oxidative stress and hypertension. Circ Res 128:993–1020
- Haminiuk CW, Maciel GM, Plata-Oviedo MS, Peralta RM (2012) Phenolic compounds in fruits–an overview. Int J Food Sci Technol 47:2023–2044. [https://doi.org/10.1161/CIRCRESAHA.121.](https://doi.org/10.1161/CIRCRESAHA.121.318063) [318063](https://doi.org/10.1161/CIRCRESAHA.121.318063)
- Hayder N, Bouhlel I, Skandrani I, Kadri M, Steiman R, Guiraud P, Mariotte A-M, Ghedira K, Dijoux-Franca M-G, Chekir-Ghedira L (2008) In vitro antioxidant and antigenotoxic potentials of myricetin-3-o-galactoside and myricetin-3-o-rhamnoside from *Myrtus communis*: modulation of expression of genes involved in cell defence system using cDNA microarray. Toxicol in Vitro 22:567–581.<https://doi.org/10.1016/j.tiv.2007.11.015>
- Hennia A, Miguel MG, Nemmiche S (2018) Antioxidant activity of *Myrtus communis L*. and *Myrtus nivellei* batt. & Trab. Extracts: a brief review. Medicines 5:89. [https://doi.org/10.3390/medicines5](https://doi.org/10.3390/medicines5030089) [030089](https://doi.org/10.3390/medicines5030089)
- Hillegass L, Griswold D, Brickson B, Albrightson-Winslow C (1990) Assessment of myeloperoxidase activity in whole rat kidney. J Pharm Methods 24:285–295. [https://doi.org/10.1016/0160-](https://doi.org/10.1016/0160-5402(90)90013-B) [5402\(90\)90013-B](https://doi.org/10.1016/0160-5402(90)90013-B)
- Ingram G (1976) Reference method for the one stage prothrombin time test on human blood. Thromb Haemostas 36:237–238. [https://doi.](https://doi.org/10.1055/s-0038-1648029) [org/10.1055/s-0038-1648029](https://doi.org/10.1055/s-0038-1648029)
- Ledwozyw A, Michalak J, Stepień A, Kadziołka A (1986) The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clin

Chim Acta; Int J Clin Chem 155:275–283. [https://doi.org/10.](https://doi.org/10.1016/0009-8981(86)90247-0) [1016/0009-8981\(86\)90247-0](https://doi.org/10.1016/0009-8981(86)90247-0)

- Lerman LO, Nath KA, Rodriguez-Porcel M, Krier JD, Schwartz RS, Napoli C, Romero JC (2001) Increased oxidative stress in experimental renovascular hypertension. Hypertension 37:541–546. <https://doi.org/10.1161/01.HYP.37.2.541>
- Lonn E, Gerstein H, Smieja M, Mann J, Yusuf S (2003) Mechanisms of cardiovascular risk reduction with ramipril:insights from HOPE and HOPE substudies. Eur Heart J Suppl 5:A43–A48. [https://doi.](https://doi.org/10.1016/S1520-765X(03)90063-0) [org/10.1016/S1520-765X\(03\)90063-0](https://doi.org/10.1016/S1520-765X(03)90063-0)
- Mancia G, Sega R, Milesi C, Cessna G, Zanchetti A (1997) Blood-pressure control in the hypertensive population. Lancet 349:454–457. [https://doi.org/10.1016/S0140-6736\(96\)07099-7](https://doi.org/10.1016/S0140-6736(96)07099-7)
- Martinez-Maldonado M (1991) Pathophysiology of renovascular hypertension. Hypertension 17:707–719. [https://doi.org/10.1161/](https://doi.org/10.1161/01.HYP.17.5.707) [01.HYP.17.5.707](https://doi.org/10.1161/01.HYP.17.5.707)
- Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71. <https://doi.org/10.1006/niox.2000.0319>
- Mylroie AA, Collins H, Umbles C, Kyle J (1986) Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol 82:512–520. [https://doi.org/10.1016/0041-008X\(86\)90286-3](https://doi.org/10.1016/0041-008X(86)90286-3)
- Ozbeyli D, Sen A, Cilingir Kaya OT, Ertas B, Aydemir S, Ozkan N, Yuksel M, Sener G (2020) Myrtus communis leaf extract protects against cerulein-induced acute pancreatitis in rats. J Food Biochem 44:e13130.<https://doi.org/10.1111/jfbc.13130>
- Park S, Arasu MV, Jiang N, Choi S-H, Lim YP, Park J-T, Al-Dhabi NA, Kim S-J (2014) Metabolite profling of phenolics, anthocyanins and favonols in cabbage (*Brassica oleracea* var. *capitata*). Ind Crop Prod 60:8–14.<https://doi.org/10.1016/j.indcrop.2014.05.037>
- Rodrigo R, González J, Paoletto F (2011) The role of oxidative stress in the pathophysiology of hypertension. Hypertension Res 34:431–440
- Romani A, Pinelli P, Mulinacci N, Vincieri F, Tattini M (1999) Identifcation and quantitation of polyphenols in leaves of *Myrtus communis* L. Chromatographia 49:17–20
- Schulz E, Anter E, Keaney JF Jr (2004) Oxidative stress, antioxidants, and endothelial function. Curr Med Chem 11:1093–1104. [https://](https://doi.org/10.2174/0929867043365369) doi.org/10.2174/0929867043365369
- Şener G, Toklu H, Ercan F, Erkanlı G (2005) Protective efect of β-glucan against oxidative organ injury in a rat model of sepsis. Int Immunopharmacol 5:1387–1396. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.intimp.2005.03.007) [intimp.2005.03.007](https://doi.org/10.1016/j.intimp.2005.03.007)
- Sisay M, Gashaw T (2017) Ethnobotanical, Ethnopharmacological, and phytochemical studies of *Myrtus communis* Linn: a popular herb in Unani system of medicine. J Evid Based Complement Altern Med 2:1035–1043.<https://doi.org/10.1177/2156587217718958>
- Sumbul S, Ahmad MA, Asif M, Akhtar M (2011) *Myrtus communis* Linn.-a review. IJNPR 2(4):395–402
- Taamalli A, Iswaldi I, Arráez-Román D, Segura-Carretero A, Fernández-Gutiérrez A, Zarrouk M (2014) UPLC–QTOF/MS for a rapid characterisation of phenolic compounds from leaves of *Myrtus communis* L. Phytochem Anal 25(1):89–96. [https://doi.org/10.](https://doi.org/10.1002/pca.2475) [1002/pca.2475](https://doi.org/10.1002/pca.2475)
- Talha J, Priyanka M, Akanksha A (2011) Hypertension and herbal plants. Int Res J Pharm 2:26–30
- Textor SC (2017) Renal arterial disease and hypertension. Med Clin North Am 101:65–79.<https://doi.org/10.1016/j.mcna.2016.08.010>
- Toklu HZ, Sehirli O, Erşahin M, Süleymanoğlu S, Yiğiner O, Emekli-Alturfan E, Yarat A, Yeğen B, Sener G (2010) Resveratrol improves cardiovascular function and reduces oxidative organ damage in the renal, cardiovascular and cerebral tissues of twokidney, one-clip hypertensive rats. J Pharm Pharmacol 62:1784– 1793. <https://doi.org/10.1111/j.2042-7158.2010.01197.x>
- Torras-Claveria L, Jauregui O, Bastida J, Codina C, Viladomat F (2007) Antioxidant activity and phenolic composition of lavandin (*Lavandula* x *intermedia* Emeric ex Loiseleur) waste. J Agric Food Chem 55(21):8436–8443.<https://doi.org/10.1021/jf070236n>
- Wang L, Wu H, Yang F, Dong W (2019a) The protective efects of myricetin against cardiovascular disease. J Nutr Sci Vitaminol 65:470–476.<https://doi.org/10.3177/jnsv.65.470>
- Wang Z, Wang S, Zhao J, Yu C, Hu Y, Tu Y, Yang Z, Zheng J, Wang Y, Gao Y (2019b) Naringenin ameliorates Renovascular hypertensive renal damage by normalizing the balance of renin-angiotensin system components in rats. Int J Med Sci 16:644–653. [https://doi.](https://doi.org/10.7150/ijms.31075) [org/10.7150/ijms.31075](https://doi.org/10.7150/ijms.31075)
- Yakut ZAC, Ertas B, Sen A, Sener G (2020) Efect of *Myrtus communis* extract on serum cytokines in angiotensin dependent hypertensive rats. Medicine 9:404–407. [https://doi.org/10.5455/medsc](https://doi.org/10.5455/medscience.2019.08.9204) [ience.2019.08.9204](https://doi.org/10.5455/medscience.2019.08.9204)
- Yousefan M, Shakour N, Hosseinzadeh H, Hayes AW, Hadizadeh F, Karimi G (2019) The natural phenolic compounds as modulators of NADPH oxidases in hypertension. Phytomedicine 55:200–213. <https://doi.org/10.1016/j.phymed.2018.08.002>
- Živković J, Barreira JCM, Stojković D, Ćebović T, Santos-Buelga C, Maksimović Z, Ferreira ICFR (2014) Phenolic profle, antibacterial, antimutagenic and antitumour evaluation of *Veronica urticifolia* Jacq. J Funct Foods 9:192–201. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.jff.2014.04.024) [jf.2014.04.024](https://doi.org/10.1016/j.jff.2014.04.024)

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.