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Abstract
Isopoda, a widely distributed crustacean order, exhibits the unusual biphasic moulting in which the posterior part of the 
exoskeleton constantly sheds before the anterior region. This paper presents a literature review on isopods, emphasizing the 
association of the biphasic mode of moulting with the adaptation of isopods to different habitats and lifestyles. Owing to the 
biphasic pattern of moulting, the two halves of the body take shifts to carry out essential functions such as oxygen consump-
tion, resorption of cuticular calcium, evading the risk of water loss, and compartmentalising the processes of moulting and 
mating. Biphasic moulting is also advantageous for the parasitic isopods to cling to their host, regulate their feeding habitat 
and taxis, resist water flow, withstand strong forces in their microhabitat and synchronize mating. Histology and enzyme-
linked immunosorbent assay (ELISA) experiments conducted in few isopods demonstrated the differential responses of 
anterior and posterior body parts to neurohormones such as ecdysteroids. Taken together, the conserved phenomenon of 
biphasic moulting in isopods should offer several advantages for adapting to diverse environments even though there is no 
direct evidence.
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Introduction

Isopods are crustaceans belonging to the class Malacostraca 
of phylum Arthropoda. Isopoda is possibly the most mor-
phologically diverse order of all the Crustacea (Hickman 
et al. 2006). Isopods comprising over 10,300 species and 
11 suborders have a cosmopolitan distribution worldwide 
(Wilson 2008). Habitat-wise, isopods are marine, fresh-
water, or terrestrial (Kussakin 1979; Kensley and Schotte 
1989; Brusca et al. 2007; Hornung 2011). They have also 
inhabited deep-sea trenches, groundwaters, and deserts 
(Bruce 2004; Hua et al. 2018). Considering the mode of liv-
ing, while many of the isopods are free-living (Oniscidae), 
some are scavengers (Haploniscidae), grazers (Asellidae), 
and temporary parasites (Gnathidae) to obligatory parasites 
(Cymothoidae) (Wetzer 2001).

Habitat and lifestyle‑based phenotypic differences 
in isopods

Isopods from different habitats and lifestyles follow a dis-
tinct pattern in their morphology, growth rates, reproduc-
tive strategies, digestive physiologies, and life spans (Hessler 
et al. 1979). The schematic representation shows the sig-
nificant changes in their morphology and specific structural 
features (Fig. 1). The majority of isopods possess dorso-ven-
trally compressed body with a vaulted dorsum (Cymothoida 
and Sphaeromatidae), some are elongated or worm-like 
(Anthuroidea), or flattened (Serolidae and Sphaeromati-
dae), and some others possess spines and nodules (Valvif-
era and Sphaeromatidae) (Brandt and Poore 2003; Wilson 
2008). Differences in morphology and physiology are appar-
ent between isopods of terrestrial and aquatic inhabitants 
(Schmidt 2008). The terrestrial oniscideans are generally 
oval, broader at the fourth pereonite, and slightly vaulted 
towards the distal end (Brandt and Poore 2003). The other 
key differences include (1) smaller size, (2) water-resistant 
cuticle, (3) diverse surface morphologies, (4) pleopodal 
lungs, (5) water-conducting system, and (6) closed brood 
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pouch (Edney 1954; Bursell 1955; Schmalfuss 1978; Hoese 
1981, 1984; Holdich 1984; Cloudsley-Thompson 1988; 
Schmidt and Wägele 2001; Horiguchi et al. 2007). Studies 
on moulting demonstrated that the terrestrial isopods possess 
sclerotized outer cuticles, unlike those in marine and fresh-
water environments (Csonka et al. 2018). The sclerotized 
tegument assists as the primary protective barrier from their 
environment (Hornung 2011).

A certain level of inter-population morphological diver-
gence is also evident in aquatic isopods. For instance, the 
sub-order Asellota which includes freshwater and marine 
isopods (especially deep sea), exhibits remarkable morpho-
logical diversity (Brandt and Poore 2003; Raupach et al. 
2009). Though most freshwater forms are with a flattened 
body, some are thin and vermiform with legs arising close 
to the dorsal surface (Wilson 2008). According to Brandt 
and Poore 2003, marine isopods are the morphologically 
most diverse among the crustaceans. Shallow-water marine 
species may be cryptically coloured or patterned (Guarino 
et al. 1993). The deep-sea isopods have highly ornamented 
and bizarre shapes to facilitate burrowing, and their antennae 
are prominent (Hessler and Strömberg 1989; Bruce 2004). 
For instance, Haploniscidae are pill-bug-like, Ischnomesidae 
are elongated, Mesosignidae and Dendrotionidae possess 
spines on the body, Nannoniscidae are slender, and Eury-
copidae are fat (Hessler et al. 1979). The deep-sea isopods 
are scavengers with a modified morphology (Wilson and 
Fenwick 1999). They possess large size ingesting organs 
and ambit to cover wider areas for scavenging (Hessler and 
Strömberg 1989). Deepwater isopods do not follow any spe-
cific pattern in colour. Their eyes are rudimentary compared 
to freshwater, marine, and terrestrial habitats (Hessler and 

Thistle 1975). For effective nutrient uptake, extensive modi-
fications in their feeding morphology, including the size of 
the ingesting organs and ambit (the amount of space covered 
during the activity of an individual), are required. Further-
more, these isopods need efficient metabolic approaches 
to cope with the temperature fluctuation in the deep- sea 
environment.

Characteristic differences were also noticed in the struc-
tural features of isopods located in different habitats. Among 
the abdominal appendages, pleopods serve as oxygen uptake 
organs, mainly those belonging to the mesic and xeric habi-
tats. In such isopod lineages, pleopods support the gas 
exchange function and aid the propulsive movement of the 
animals (Alexander 1988; Wägele 1992). In addition, these 
terrestrial inhabitants do not require the water micro-envi-
ronment for any biological activities in any of their devel-
opmental stages (Broly et al. 2013). Instead, they can take 
up moisture from the substratum through the uropods and 
transfer it to their capillary water system, which acts as an 
interface to transport the absorbed moisture from uropods 
to the pleopods (Warburg 1968). All these different traits 
of pleopod are supposed to have evolved during terrestrial 
adaptation (Hoese 1982). In contrast, the capillary water sys-
tem is absent in aquatic isopods, though some transitional 
species (e.g., Ligia) show the signs of developing a capillary 
water system (Barnes 1932). Similarly, the rare forms of iso-
pods adapted to xeric conditions (Armadillo, Venezillo, and 
Hemilepistus) did not possess the capillary water system, 
as they are efficient in water vapour absorption (Warburg 
1968; Harris et al. 2020). Significant differences were also 
found in the brood pouches. In terrestrial isopods, the brood 
pouch, apart from protecting the eggs against desiccation 

Fig. 1  Schematic representation 
of the diverse morphologies and 
structural features of isopods 
inhabiting terrestrial and aquatic 
environments
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and microbes, also ensures an aquatic milieu with sufficient 
fluid and oxygen (Mrak et al. 2012). In unfavourable thermal 
conditions, the females can even remove their brood pouch 
(Linsenmair 1989).

Reports on the morphological adaptations for parasitic 
life are also available in isopods. The attachment site pos-
sibly influences the major changes in the body shape and 
feeding mode of the host. The obligate parasites of the 
sub-order Cymothoidea have a long, slender body tapering 
towards both ends with an efficient contour that offers resist-
ance to water flow, and they can withstand strong forces in 
their micro-habitats (Fig. 2). They possess a very heavily 
thickened and calcified cuticle for protection and sharply 
curved hooks (dactyli) on all pereopods allowing them 
to attach to the host (Nagler et al. 2017; Kottarathil et al. 
2019). Body segments become increasingly smooth, and the 
number of setae is less than that of the free-living species. 
Pereopod morphology changes, and decreasing numbers of 
setae occur as the level of parasitism increases (Smit et al. 
2014). The mouthparts become a distinct buccal cone with 
strongly recurved and robust hooked setae or abrading ser-
rated scales (Poore and Bruce 2012). Unlike free-living iso-
pods, the eyes are more petite in parasitic forms, and the 
body colour varying pale to red-pink (Aegidae) or white 
to pale (Cymothoidae) (Poore and Bruce 2012). Generally, 
the parasitic isopods do not swim, crawl, or leave their final 
host (Poore and Bruce 2012). The aforementioned changes 
in the body form of parasitic isopods from their free-living 
counterparts might be due to the evolution of the former 
from the latter. Further, the parasitic cymothoids were sup-
posed to have invaded from marine to freshwater habitats as 
reflected from the increased body size (Poulin 1995).

Isopods also vary in their feeding habits and taxis. The 
primitive Phreatoicideans feed on decaying leaves; other 
freshwater-inhabiting asellotes are either detritivores or 
omnivores with adjusted feeding morphology (Wilson and 
Fenwick 1999). Isopods belonging to Sphaeromatidae are 
omnivorous, and those of Cirolanidae are carnivorous and 
have been observed with piercing and suctorial mouthparts 

(Wilson 2008). The maxillule of Lanocira has the form of a 
large hook, eminently suited mouthparts to grasp small poly-
chaetes (Poore and Bruce 2012). Oniscideans and Asellidae 
eat decaying leaves combined with bacterial endo-symbiont 
(Zimmer 2002; Zimmer and Bartholmé 2003). Certain ter-
restrial isopods aggregate in dark, moist places, possibly due 
to kinetic and tactic responses (Edney 1954). In some cases, 
isopods can conglobate or curl up their bodies to form a ball 
against various physical stimuli (Warburg 1968).

Habitat and lifestyle‑based genetic differences 
in isopods

Though most species might have undergone considerable 
genetic changes, the biphasic moulting phenomenon is com-
mon to all isopods. The common biological changes (such 
as variation in the moulting duration, seasonality, feeding 
mode, etc.) observed in isopods of different habitats and liv-
ing modes prove this. To further test this, the present study 
investigated the genetic variation of isopods belonging to 
different habitats and modes of living. For this purpose, 16 s 
rDNA sequences of 6–10 individuals representing different 
habitats from marine, freshwater, terrestrial, and deep-sea, 
and marine parasitic/free-living forms were retrieved from 
the NCBI. Phylogenetic relationships inferred from these 
isopod species showed a clear genetic difference between 
the populations inhabiting the deep-sea, marine/freshwater, 
and terrestrial habitats (Fig. 3). Also, it noticed clear genetic 
segregation of the two different forms of marine population, 
leading to parasitic and free-living life (Fig. 4). In order 
to assess the substitution saturation of nucleotides, bioin-
formatics tools of DAMBE (Xia 2018) have been applied. 
For the test of saturation, we followed the methodology by 
Xia et al. (2003) and Xia and Lemey 2009. The assessment 
result yielded Iss = 0.488, which is significantly less than 
Iss.c (= 0.787) (Fig. 3), and Iss = 0.4331, which is signifi-
cantly less than Iss.c (= 0.6459) (Fig. 4), presuming a sym-
metrical topology indicating the sequence saturation. Based 
on previous records, intra-habitat genetic diversity is evident 

Fig. 2  Morphological features 
of marine parasitic isopods from 
the voucher specimen collection 
of our laboratory. a Catoessa 
bosci; b Mothocya renardi; c 
Nerocila depressa; d Nerocila 
longispina; e Nerocila sundaica 
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among the deep-sea isopods, wherein the population was 
grouped into different genetic haplotypes (Barnard 1920; 
Raupach et al. 2009). According to Porres et al. (2018), 
the isopod population belonging to a single habitat showed 
geographical variations. Even though habitat-reliant genetic 

diversity is the prominent one in isopods when compared to 
the geographical differences.

Fig. 3  Phylogenetic tree of 
isopods from different habitats. 
The evolutionary history of 
the isopods was inferred by 
using the Maximum Likelihood 
method and Kimura 2-param-
eter model (Kimura 1980). This 
analysis involved 33 16 rDNA 
sequences collected from NCBI 
Evolutionary analyses were 
conducted in MEGA X (Kumar 
et al. 2018; Sayers et al. 2020). 
16S rDNA from Penaeus mono-
don was taken as outgroup
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Discovery of biphasic moulting in isopods

Unlike monophasic moulting followed by most malacos-
tracan crustaceans (Decapoda, Stomatopoda, Amphipoda, 
Cumacea, Mysidacea, etc.), moulting in isopods is bipha-
sic in which the posterior part of the exoskeleton is con-
stantly shed before the anterior part. Biphasic moulting 
in the isopod was first discovered accidentally by Schobl 
in 1880 while studying the reproduction of Porcellio sca-
ber Latreille, 1804. Following this, many researchers also 
noticed this phenomenon in many isopod genera such as 
Trichoniscus, Haplophthalmus, Porcellio, Oniscus, Armadil-
lidium and Asellus and Ligia (Weber 1881; Friedrich 1883; 
Schonichen 1898; Verhoeff 1901; Pierce 1907; Zuelzer 
1907; Tait 1911; Hankó 1912; Allee 1913). By the twentieth 
century, commendable basic level information on biphasic 
moult was generated in the terrestrial group, Oniscoidea, 
intertidal species (Ligia oceanica (Linnaeus, 1767) and 
Ligia exotica Roux, 1828), and marine genera (Sphaeroma, 
Limnoria, Cirolana, Idotea, and Asellus) (Tait 1917; Numa-
noi 1934). According to Tait (1917), Herold (1913) was the 
first to provide a general description of the biphasic moult. 
In 1914, Aubin (Aubin 1914) explained the moult cycle in 
the terrestrial isopod, Porcellio. Tait (1917) and Nicholls 
(1931) observed the moult-related colour changes and cal-
cium carbonate storage in Ligia.

Characterization of biphasic moulting

As biphasic moulting occurs in two phases, a simple 
microscopic observation of the isopod specimens would 
clearly indicate their moulting status. The digital images 
depicting the external morphology of the marine para-
sitic isopod Norileca indica (H. Milne Edwards, 1840) 
while undergoing biphasic moult are given for reference 
(Fig. 5). However, the proper stage-wise characteriza-
tion of the moult cycle is essential for determining the 
growth rate in many crustaceans (Drach and Tchernig-
ovtzeff 1967; Luxmoore 1982). In isopods, most of the 
moult cycle-related studies were focused on terrestrial 
forms (Montesanto and Cividini 2018). In P. scaber, 
Armadillidium vulgare (Latreille, 1804), Armadillo offici-
nalis Duméril, 1816 moult related differences in shape 
and colour of sternites are common (Steel 1980; Suzuki 
et al. 1996; Zidar et al. 1998; Hagedorn and Ziegler 2002; 
Neues et al. 2011; Montesanto and Cividini 2018). Many 
researchers have documented the moult related ultra-
structural changes in the integument of Oniscus asellus 
Linnaeus, 1758, P. scaber, Titanethes albus (C. Koch, 
1841), Ligia italica Fabricius, 1798 (Price and Holdich 
1980b; Štrus and Compere 1996; Ziegler 1997; Seidl and 
Ziegler 2012; Vittori et al. 2012; Žnidaršič et al. 2012; 
Vittori and Štrus 2014). In L. italica and Ligia pallasii 
Brandt, 1833, biphasic moult identification was made 
using X-ray diffraction and CT scanning (Štrus and Com-
pere 1996; Štrus et al. 2019). In marine parasitic isopods, 
such as N. indica (H. Milne Edwards, 1840), Mothocya 

Fig. 4  Phylogenetic tree of 
parasitic and free-living forms 
of isopods. The phylogenetic 
tree was inferred by using the 
Maximum Likelihood method 
and Kimura 2-parameter model 
(Kimura 1980). The analysis 
involved 15 16 rDNA sequences 
collected from NCBI Evolution-
ary analyses were conducted in 
MEGA X (Kumar et al. 2018; 
Sayers et al. 2020). 16S rDNA 
from Penaeus monodon was 
taken as outgroup
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renardi (Bleeker, 1857), through light microscopic study, 
the moult stage-related characteristic changes in the epi-
dermis and subsequent formation of juvenile appendages 
were described (Sahadevan et al. 2020; Panakkool-Tham-
ban and Kappalli 2020). Stevenson (1961) demonstrated 
the biphasic moult-associated tanning first time in the 
terrestrial isopod A. vulgare based on the changes in the 
level of polyphenol oxidase secreted from the tegumental 
glands. In order to determine the exact moult stage at 
which the polyphenol oxidase was secreted, it was neces-
sary to decipher the moult-related changes happening in 
the two halves of the species. For this, Stevenson (1961) 
followed the methods described by Drach (1939) and 
Charniaux-Legrand (1952) with considerable modifica-
tions. Accordingly, the moult cycle was classified into 
different stages such as A (postmoult stage), B (stage 
soon after the postmoult where the calcification of the 
cuticle is about to begin), C (the stage of progressive 
hardening), and D (preparative stage for moulting). D was 
further divided into  D1 when the new claw is formed;  D2, 
the new claw becomes amber-coloured;  D3, no visible 
change and  D4, when the cuticle is about to shed. In Asel-
lus aquaticus Linnaeus, 1758, the aesthetasc sense organs 
on the antennules were used to identify the moult stages 
(Heimann 1984). According to the recent reports based 
on the light microscopic study of the appendages in the 
marine parasitic isopods, N. indica and M. renardi, the 
precise detection of moult stages is possible (Sahadevan 
et al. 2020; Panakkool-Thamban and Kappalli 2020). In 
N. indica, the maxillule and the exopodite (of the uro-
pod) have been identified as the appropriate appendages 

showing precise moult-related changes from the anterior 
and the posterior parts, respectively, which enables the 
detection of moult stages of both body parts simultane-
ously (Sahadevan et al. 2020). From the studies described 
above, it is understood that there is no universal proce-
dure to characterise the biphasic moult stages in isopods. 
Hence this aspect invites more attention since precise 
moult stage identification is crucial to carry out advanced 
studies on moulting at physiological, endocrinological, 
and molecular levels.

Biphasic moulting pattern is uniform in all isopods 
irrespective of their habitats and lifestyles

All isopods evolved exhibit biphasic moulting irrespec-
tive of their habitats, lifestyle, and different forms (Wil-
son 2009). An exception to this was reported in Antarctic 
isopod Glyptonotus in which moulting was monophasic 
(George 1972). The sub-order Phreatoicidea is consid-
ered as the most primitive isopod group originating in the 
marine environment (Brusca and Wilson 1991); they suc-
cessfully colonized freshwater, and terrestrial ecosystems; 
some are the inhabitants of the groundwaters and others 
of the abyssal benthic region while some live in the desert 
(Wilson and Johnson 1999; Poore and Bruce 2012). To 
invade entirely different habitats, the isopod has undergone 
several morphological and physiological changes (Wetzer 
2001; Wilson and Edgecombe 2003; Broly et al. 2013). 
Despite the morphological and physiological changes, 
no other evidence shows a change in the mode/pattern of 
moulting in any of the isopods beginning from the ancient 

Fig. 5  Cymothoid (Norileca 
indica) undergoing biphasic 
moulting. a Adult male (size 15 
mm) at intermoult stage in the 
anterior half (ah) and posterior 
half (ph) of the body, b adult 
male (size 17 mm) at postmoult 
in the posterior half (ph) and 
late premoult in the anterior half 
(ah) of the body
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Phreatoicidea to the present Cymothoidea. The fossil of 
the cirolanid isopod, Cirolana garassinoi Feldmann, 2009 
lived during the late Cretaceous period showed the pres-
ence of three pairs of dermoliths (sites of mineral/calcium 
storage) at the anterior body part and a thin exocuticle 
which indicate that the isopod was at the premoult stage 
(Feldmann 2009). From this evidence, it is presumed that 
these marine isopods were already equipped with the cal-
cium-storing mechanism to invade the terrestrial habitat 
in the late Cretaceous period itself.

Duration of biphasic moult cycle/ moulting 
is different among the isopods

Although biphasic moulting is common to all the isopods, 
its duration varies among the species. Most of the studies 
reported the shedding of the anterior exoskeleton within 
17–40 h after shedding the posterior part. For instance, 
in the sand beach isopod, Excirolana chiltoni Richardson, 
1905, the reported duration of biphasic moulting is 25 h 
(Klapow 1972). In the terrestrial isopod A. officinalis, the 
duration of the premoult phase is 12 days, and the biphasic 
ecdysis is 1.5 days (Montesanto and Cividini 2018). In the 
common woodlouse (O. asellus), the duration of the biphasic 
moulting is 1.8 days, and in the case of P. scaber the period 
is 17–24 h (George and Sheard 1954; Price and Holdich 
1980b). Marcus (1990) reported that for the freshwater iso-
pod A. aquaticus, the anterior ecdysis occurred only after 
24 h upon the posterior ecdysis.

In the sub-terranean isopod T. albus, the duration of its 
biphasic moult ranges from one day to several days, and the 
anterior ecdysis follows the posterior ecdysis after 3–5 days. 
The duration of the premoult is also extended to approxi-
mately seven weeks (Vittori et al. 2012). Despite the changes 
in the duration of a moult cycle, certain isopods also dis-
play a seasonal-dependent variation in the number of moult 
cycles. In the marine cymothoid N. indica, there is a con-
siderable decrease in moulting events during the monsoon 
season compared to the summer and post-monsoon/winter 
season (Sahadevan et al. 2020).

Behavioural changes related to biphasic moulting 
in isopods

Table 1 listed the behavioural changes associated with bipha-
sic moulting in isopods reported from different habitats.

Physical/ motivational behaviours

During the moulting process, the isopods can move to reduce 
the rate of predation (Price and Holdich 1980a, 1980b). The 
exo-receptors of one-half of the body are always functional 
together with the activity of the tegumental glands (Gorvett 

1956; Price and Holdich 1980a). Biphasic moulting is 
unavoidable in many parasitic isopods as they utilize this 
approach to cling to their host. Pereopods emerging from 
anterior and posterior regions help cling to the host when 
either region is moulting (Kottarathil et al. 2019). On the 
other hand, biphasic moulting is not a requisite in the manca 
stage as the calcification is relatively meager as their exo-
skeleton appears very soft (Mrak et al. 2014).

Isopods exert certain motivational behaviour like pushing 
their body upright by stretching their moulted half upward, 
possibly protecting their newly moulted region, prevent-
ing it from touching the substratum as it may cause some 
damage to the animal (Vittori et al. 2012). In some cases, 
the mating was seen co-occurring with the posterior moult-
ing (Shuster 1989). In females, the oviduct opens outward 
through the base of the 5th or 6th pereopod at the posterior 
part of the body. Though not common, in some terrestrial 
isopods, as soon as the posterior exuvium sheds, the animal 
feeds on the exuviae to cope with the loss of calcium from 
the body (Steel 1993). This behaviour, however, is not seen 
in marine forms (Alikhan 1972). Sparrevik (1999) reported 
cannibalism in Saduria entomon (Linnaeus, 1758), i.e., the 
non-moulting individuals feed on those undergoing moulting 
if they are size-wise smaller than the predators.

Physiological behaviours

Terrestrial isopods face the risk of transpiration, especially 
during the moulting event. For the rapid water loss recov-
ery, they take up either water or water vapour (Hoese 1981; 
Wright and Machin 1990, 1993). Biphasic moulting might 
be helpful to conserve the water content as the cuticle will 
always be present on one-half the body, thereby reducing 
the rate of transpiration. In Idotea balthica Pallas, 1772, two 
peaks of oxygen consumption, one during the posterior ecd-
ysis and another during the anterior ecdysis, were reported 
(Bulnheim 1974). The studies on A. vulgare reported the 
minimum haemolymph pressures and oxygen consump-
tion rates during the moulting period, especially during the 
posterior ecdysis (Alikhan 1983). Through biphasic moult-
ing, the anterior half of the isopod takes the shift to absorb 
the required amount of oxygen while the posterior part is 
undergoing moulting. In another report by Chiang and Steel 
(1986), the activity of the sinus gland in O. asellus increases 
at the postmoult stage in both anterior and posterior regions. 
Whiteley and El Haj (1997) also noted a difference in the 
rate of muscle protein synthesis between the two halves in 
Idotea rescata Stimpson, 1857. Unlike other crustaceans, 
isopods can feed during the period of biphasic moulting. 
For instance, Porcellio laevis Latreille, 1804 continues feed-
ing when it undergoes posterior moulting. However, during 
anterior moulting, it depends on the stored hepatopancreatic 

Biologia (2022) 77:1067–1081 1073



 

1 3

Ta
bl

e 
1 

 L
ist

 o
f b

ip
ha

si
c 

m
ou

lti
ng

-a
ss

oc
ia

te
d 

be
ha

vi
ou

ra
l c

ha
ng

es
 in

 is
op

od
s o

f d
iff

er
en

t h
ab

ita
ts

H
ab

ita
t

Sp
ec

ie
s

Be
ha

vi
ou

ra
l c

ha
ng

es
 &

 sp
ec

ifi
c 

fu
nc

tio
n

R
ef

er
en

ce

Ph
ys

ic
al

/M
ot

iv
at

io
na

l
Fu

nc
tio

na
l s

ig
ni

fic
an

ce
Ph

ys
io

lo
gi

ca
l

Fu
nc

tio
na

l s
ig

ni
fic

an
ce

M
ar

in
e 

pa
ra

si
tic

N
or

ile
ca

 in
di

ca
D

ur
in

g 
po

ste
rio

r m
ou

lt 
th

e 
an

im
al

 a
tta

ch
es

 th
e 

ho
st 

by
 it

s 
an

te
rio

r h
al

f a
nd

 v
ic

e 
ve

rs
a

A
da

pt
at

io
n 

fo
r t

he
 p

ar
as

iti
c 

m
od

e 
of

 li
vi

ng
O

os
te

gi
te

s f
or

m
at

io
n

Re
pr

od
uc

tio
n 

an
d 

m
ou

lti
ng

 
oc

cu
r s

im
ul

ta
ne

ou
sly

Sa
ha

de
va

n 
et

 a
l. 

(2
02

0)
; K

ot
t-

ar
at

hi
l a

nd
 K

ap
pa

lli
 (2

01
9)

; 
Pa

na
kk

oo
l-T

ha
m

ba
n 

an
d 

K
ap

pa
lli

 (2
02

0)

M
ot

ho
cy

a 
re

na
rd

i

M
ar

in
e 

fr
ee

-li
vi

ng
Pa

ra
ce

rc
ei

s s
cu

lp
ta

C
o-

oc
cu

rr
en

ce
 o

f m
at

in
g 

w
ith

 
po

ste
rio

r m
ou

lti
ng

M
ou

lte
d 

fe
m

al
e g

en
ita

ls 
on

 th
e 

po
ste

rio
r p

or
tio

n 
is 

ac
ce

ss
ib

le
 

fo
r r

ep
ro

du
ct

io
n

–
–

Sh
us

te
r (

19
89

)

Id
ot

ea
 re

sc
at

a
–

–
di

ffe
re

nc
e i

n 
th

e r
at

e o
f s

tru
c-

tu
ra

l p
ro

te
in

 sy
nt

he
sis

fa
vo

ur
s t

he
 b

ip
ha

si
c 

gr
ow

th
 

of
 th

e 
an

im
al

W
hi

te
le

y 
an

d 
El

 H
aj

 (1
99

7)

N
at

at
ol

an
a 

bo
re

al
is

–
–

O
os

te
gi

te
s f

or
m

at
io

n
Re

pr
od

uc
tio

n 
an

d 
m

ou
lti

ng
 

oc
cu

r s
im

ul
ta

ne
ou

sly
Jo

ha
ns

en
 (1

99
6)

C
iro

la
na

 g
ar

as
si

no
i

–
St

or
ag

e 
of

 c
al

ci
um

 in
 th

e 
no

n-
m

ou
lte

d 
pa

rt 
by

 
re

-a
bs

or
pt

io
n 

of
 c

al
ci

um
 

fro
m

 th
e 

m
ou

lte
d 

pa
rt

A
vo

id
 c

al
ci

um
 d

ep
le

tio
n

Fe
ld

m
an

n 
(2

00
9)

Te
rr

es
tri

al
O

ni
sc

us
 a

se
llu

s
C

ap
ab

le
 o

f m
ov

em
en

t
Re

du
ce

 th
e 

ra
te

 o
f p

re
da

tio
n

–
Pr

ic
e 

an
d 

H
ol

di
ch

 (1
98

0a
)

Po
rc

el
lio

 sc
ab

er
Pe

rs
ist

en
ce

 o
f t

eg
um

en
ta

l 
gl

an
ds

 in
 th

e 
no

n-
m

ou
lte

d 
pa

rt

Te
gm

en
ta

l g
la

nd
s o

f a
t l

ea
st 

on
e 

ha
lf 

of
 th

e 
bo

dy
 a

re
 

al
w

ay
s f

un
ct

io
na

l

–
G

or
ve

tt 
(1

95
6)

Ti
ta

ne
th

es
 a

lb
us

St
re

tc
h 

th
ei

r m
ou

lte
d 

bo
dy

 h
al

f 
up

w
ar

d
Th

e 
vu

ln
er

ab
le

 m
ou

lte
d 

ha
lf 

m
ay

 b
e 

le
ft 

un
di

stu
rb

ed
 if

 
it 

is
 st

re
tc

he
d 

ou
t f

ro
m

 th
e 

su
bs

tra
tu

m

–
V

itt
or

i e
t a

l. 
(2

01
2)

O
. a

se
llu

s
Ea

t e
xu

vi
ae

A
vo

id
 c

al
ci

um
 d

ep
le

tio
n

–
St

ee
l (

19
93

)

Ar
m

ad
ill

id
iu

m
 

vu
lg

ar
e

–
In

ab
ili

ty
 o

f r
es

pi
ra

tio
n 

at
 th

e 
m

ou
lte

d 
ha

lf
N

on
-m

ou
lte

d 
ha

lf 
is

 
av

ai
la

bl
e 

fo
r c

ut
an

eo
us

 
Re

sp
ira

tio
n

A
lik

ha
n 

(1
98

3)

G
en

et
al

ia
 re

co
ns

tru
ct

io
n 

af
te

r n
on

-p
ar

tu
ra

l m
ou

lt-
in

g 
of

 th
e 

po
ste

rio
r r

eg
io

n

M
ou

lti
ng

 a
nd

 re
pr

od
uc

tio
n 

ar
e 

no
t o

ve
rla

pp
ed

 R
ep

ro
-

du
ct

io
n 

oc
cu

rs
 in

 th
e 

po
ste

rio
r d

ur
in

g 
th

e 
pe

rio
d 

be
tw

ee
n 

pa
rtu

ra
l a

nd
 n

on
-

pa
rtu

ra
l m

ou
lti

ng

Su
zu

ki
 (2

00
2)

O
. a

se
llu

s
–

C
ha

ng
e 

in
 th

e 
el

ec
tri

c 
ac

tiv
-

ity
 o

f s
in

us
 g

la
nd

Si
nu

s g
la

nd
 lo

ca
te

d 
in

 th
e 

an
te

rio
r p

ar
t c

on
tro

ls
 th

e 
pr

op
or

tio
n 

of
 e

cd
ys

te
ro

id
s 

an
d 

m
ou

lt-
in

hi
bi

tin
g 

ho
r-

m
on

es
 d

ur
in

g 
th

e 
bi

ph
as

ic
 

m
ou

lt

C
hi

an
g 

an
d 

St
ee

l (
19

86
)

Biologia (2022) 77:1067–10811074



1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

H
ab

ita
t

Sp
ec

ie
s

Be
ha

vi
ou

ra
l c

ha
ng

es
 &

 sp
ec

ifi
c 

fu
nc

tio
n

R
ef

er
en

ce

Ph
ys

ic
al

/M
ot

iv
at

io
na

l
Fu

nc
tio

na
l s

ig
ni

fic
an

ce
Ph

ys
io

lo
gi

ca
l

Fu
nc

tio
na

l s
ig

ni
fic

an
ce

Po
rc

el
lio

 la
ev

is
–

C
on

tin
uo

us
 fe

ed
in

g 
ev

en
 

du
rin

g 
th

e 
m

ou
lt 

(p
os

te
rio

r 
m

ou
lt)

C
ar

bo
hy

dr
at

e 
re

se
rv

e 
is

 
en

su
re

d 
by

 th
e 

co
nt

in
u-

ou
s f

ee
di

ng
 th

ro
ug

h 
th

e 
ex

po
se

d 
m

ou
th

 p
ar

ts
 a

t t
he

 
an

te
rio

r h
al

f

A
lik

ha
n 

(1
97

2)

Ar
m

ad
ill

o 
offi

ci
na

lis
–

St
or

ag
e 

of
 c

al
ci

um
 in

 th
e 

no
n-

m
ou

lte
d 

pa
rt 

by
 

re
-a

bs
or

pt
io

n 
of

 c
al

ci
um

 
fro

m
 th

e 
m

ou
lte

d 
pa

rt

A
vo

id
 c

al
ci

um
 d

ep
le

tio
n

M
on

te
sa

nt
o 

an
d 

C
iv

id
in

i 
(2

01
8)

Fr
es

hw
at

er
 fr

ee
-

liv
in

g
As

el
lu

s a
qu

at
ic

us
–

St
or

ag
e 

of
 c

al
ci

um
 in

 th
e 

no
n-

m
ou

lte
d 

pa
rt 

by
 

re
-a

bs
or

pt
io

n 
of

 c
al

ci
um

 
fro

m
 th

e 
m

ou
lte

d 
pa

rt

A
vo

id
 c

al
ci

um
 d

ep
le

tio
n

G
re

en
av

va
y 

(1
98

5)

Biologia (2022) 77:1067–1081 1075



 

1 3

lipids (Alikhan 1972) and epithelial cell glycogen reserves 
for the energy requirements (Štrus and Compere 1996).

According to Vernet and Charmatier-Daures (1994), 
biphasic moulting favours calcium saving through recy-
cling; when the posterior half is at premoult, the integu-
mental calcium from this part is withdrawn and store at the 
anterior sternites. When the posterior half completes moult-
ing, the calcium is re-absorbed from the anterior half and 
re-calcify the posterior part. This physiological behaviour 
is much essential for terrestrial isopods (Montesanto and 
Cividini 2018). In Ligia, the calcium present in the endo-
cuticle is cycled between the anterior and posterior parts 
(Numanoi 1942). Studies in T. albus showed the signs of 
sternal calcium deposits in the apical plasma membrane of 
their epidermal cells during cuticle formation (Vittori et al. 
2012). Similar reports are also available in other terrestrial 
isopods (Price and Holdich 1980a; Ziegler 1997; Štrus and 
Blejec 2001). In the haemolymph of P. scaber, the amount 
of  Ca2+ is significantly increased by 13%, 19%, and 18% dur-
ing premoult, intermoult, and postmoult, respectively, which 
might be due to the resorption of cuticular calcium (Ziegler 
and Scholz 1997). But in some isopods, either gastroliths or 
hepatopancreas act as the storehouse or supplier of calcium 
(Numanoi 1942). In freshwater isopods, biphasic moulting 
may be more beneficial to meet the calcium demand as this 
shows wide fluctuation in freshwater (Greenavvay 1985). 
Biphasic moulting may also favour reproductive function: 
in Natatolana borealis Lilljeborg, 1851, N. indica, and M. 
renardi, the oostegites are formed during biphasic partial-
parturial ecdysis (Johansen 1996; Kottarathil and Kappalli 
2019; Panakkool-Thamban and Kappalli 2020). Females can 
rejuvenate their genitalia after the biphasic moult without 
interfering their reproduction (Suzuki 2002).

Biochemical and molecular factors defining 
the mechanism of biphasic moulting – Future 
perspectives

Studies on the neuronal and hormonal control of biphasic 
moulting are limited, and most of the available reports are 
based on a terrestrial isopod O. asellus. Matsumoto (1959) 
suggested the homologous nature of beta cells identified 
from this species with the X organ of decapod crustaceans. 
Carefoot (1993) demonstrated the connection of beta cell 
with the sinus glands. Chiang and Steel (1984, 1985) histo-
logically demonstrated the presence of neuro- secretory ter-
minals in this species (O. asellus). They (Chiang and Steel 
1989) also found a decreased level of action potential from 
the sinus gland while the animal was at the late premoult 
stage with maximum moulting hormone, ecdysteroids. This 
supports the fact that the moult-inhibiting hormone secreted 
from the sinus gland is inversely correlated with the ecdys-
teroids (Martin et al. 1979; Lachaise et al. 1993). Despite 

this information, no satisfactory explanation is available on 
the question of how it controls the biphasic moulting.

According to the researchers, the resorption of calcium 
from the old cuticle is under the control of the ecdyster-
oids (McWhinnie et al. 1972; Kleinholz and Keller 1979). 
But the role of this hormone in the calcification of the post-
moulted part is not clear. However, the role of ecdyster-
oids in triggering the premoulting and ecdysis events was 
experimentally proven by measuring its titre with respect 
to moult cycle stages. Reports are available for free-living 
terrestrial isopods A. vulgare (Suzuki et al. 1996) and O. 
asellus (Steel and Vafopoulou 1998), and also for a parasitic 
isopod N. indica (Sahadevan et al. 2020). Steel and Vafo-
poulou (1998) in their experiments in O. asellus showed 
that when the ecdysteroids level was maximum, there occurs 
cuticle deposition in the posterior part indicating the dif-
ferential response of anterior and posterior body parts to 
the ecdysteroids released at one time. They speculate that 
even though both the anterior and posterior epidermal cells 
receive the signal for simultaneous secretion of the cuti-
cle, the response might be consecutive. According to Steel 
(1977), this calcium translocation is controlled by the brain 
hormones stored in the sinus gland for timely release as they 
could record the increased electrical activity of this gland 
after each partial ecdysis.

In a marine parasitic isopod (N. indica), the level of 
ecdysteroids is maximum when the posterior half is at the 
late premoult stage. The titre, however, showed a dramatic 
decrease when the anterior part attains late premoult, indi-
cating that ecdysteroid receptor activity was initiated at 
the posterior half first, then at the anterior half (Sahadevan 
et al. 2020). This time difference in the hormone receptivity 
of the two halves might be one of the reasons for biphasic 
moulting. This also indicates that the nervous system does 
have only the initial control over ecdysteroids production 
when the posterior part undergoes premoult agreeing with 
the observation of Steel and Vafopoulou (1998). Since the 
isopods possess the open haemocoel, released ecdysteroids 
may be accessed equally by anterior and posterior body 
parts. To demonstrate this hypothesis, more research in this 
line is required. Studies also showed that cellular uptake of 
ecdysteroids involves the activity of  Na+/K+-ATPase (Spin-
dler and Spindler-Barth 1989). Presumably, the animal con-
trols the expression of the  Na+/K+-ATPase differently in the 
two halves. Since as a steroid hormone, ecdysteroids need 
no pump to enter the target cell. So a comprehensive study 
related to the expression of ecdysteroid receptors during 
biphasic moulting is also necessary.

During the biphasic moult of N. indica the posterior half 
becomes wider first, followed by the anterior part indicating 
the differential growth of muscle (Sahadevan et al. 2020). 
The differential growth of the muscle in two halves of the 
isopod body and its hormonal control also needs attention. 
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According to Whiteley and El Haj (1997), the rate of pro-
tein synthesis in the anterior part is higher than that of the 
posterior part; once the animal completes postmoult in the 
anterior half, the rate of protein synthesis becomes equal 
in both halves. They found that mRNA level of actin and 
myosin remained the same over the biphasic moult, which 
leads to the conclusion that the change in expression might 
have occurred only at the translation level, not in the tran-
scription rate. More clearly, though mRNA for the muscle 
protein is synthesised in equal amounts, its translation into 
protein happened at two different times when the two halves 
moulted. The question remains: why is the protein synthesis 
rate higher in the anterior part compared to the posterior? 
A molecular-level study about the translation mechanism is 
also needed for answering these questions. Another impor-
tant finding was that in I. rescata, the rate of protein syn-
thesis increased with a rise in temperature; i.e., transcrip-
tion and translation are directly proportional to temperature 
(Whiteley and El Haj 1997). This may be the reason behind 
the seasonal moulting in some isopods. Cymothoid-like N. 
indica shows a higher moulting rate in the summer than in 
the monsoon season (Kottarathil et al. 2019).

Conclusions

Reviewing the biphasic moulting in isopods enabled us to 
reach the following conclusions. 1) Isopods belonging to 
different habitats and lifestyles varied both phenotypically 
as well as genetically. 2) Despite the minor moult-related 
changes in the physical and physiological behaviours, the 
general pattern of biphasic moulting is conserved in all iso-
pods, either in aquatic (including the parasitic) or terrestrial 
inhabitants. 3) The conserved biphasic moulting phenom-
enon has varying functional significance to favour the suc-
cessful adaptation of isopods inhabiting a wide range of hab-
itats and lifestyles. The application of advanced molecular 
studies would help address the exact mechanism of biphasic 
moulting and its control in isopods.
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