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Abstract
Brassinosteroids have been identified as polyhydroxylated steroidal plant hormones which are known for their response against
stress and development processes like flowering, germination and crop production. Because of their multiple properties,
brassinosteroids occupy a significant place among hormones. These naturally occurring plant hormones induce tolerance against
abiotic and biotic stresses such as temperature variation (extreme cold/hot), salinity, water scarcity or drought, injury, fungal
infection and metal toxicity. As a result of these stresses free radicals, like superoxide ions and peroxide are produced which
cause damage to the plant system. Exogenous application of brassinosteroids at appropriate time can save plants from oxidative
stresses. Brassinosteroids enhance carbon dioxide assimilation capacity, chlorophyll contents, antioxidants including ascorbate,
carotenoids and proline under adverse environmental conditions. Besides inducing resistance against stresses, brassinosteroids
also regulate growth, increase seed germination and ripening of fruits. It has been also noticed that the brassinazole-resistant-
dependent brassinosteroid signaling up-regulates the expression of autophagy-related genes and autophagosome formation under
stress. We have summarized, in this review, the information available until 2021, the impact of BRs application on plant growth
and development under abiotic stress.
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Introduction

All stresses experienced by the agricultural crops/plants result
in decreased grain yield and reduced plant growth. Under
biotic and abiotic stresses, the plants are forced to make adap-
tation to combat with the environmental changes which lead
to changes in their physiological, metabolic and molecular
functions (Cramer et al. 2011; Husen et al. 2014; Jeandroz
and Lamotte 2017; Yurchenko et al. 2018; Chi et al. 2019;
Wang 2020). Hormones are known to protect and improve the
physical development of plants under water scarcity, soil sa-
linity, temperature variation and metal toxicity (Kagale et al.
2007; Bajguz and Hayat 2009; Divi and Krishna 2009; Siddiqi

and Husen 2017, 2019; Podlešáková et al. 2019; Heidari et al.
2020; Nolan et al. 2020) (Fig. 1).

Brassinosteroids (BRs) and their derivatives occupy a
prominent place among plant steroidal hormones owing to
their multifunctional role in the development and protection
of plants. Bajguz and Tretyn (2003) have reported over 69
different BRs and their derivatives in various plants. They
are produced by the plants themselves under abiotic/biotic
stress in order to survive and maintain normal life cycle
(Hussain et al. 2020). These hormones are not toxic and hence
they can be safely used to increase resistance and crop yield
even under abnormal weather conditions. Grove et al. (1979)
first purified the most active brassinolide (BL) from rapeseed
(Brassica napus) pollen and its structure was determined by x-
ray analysis. They are effective at very low concentration and
widely distributed in lower as well as higher plants (Bajguz
and Hayat 2009). They have been classified as per the pres-
ence of number of carbons in their structure such as C27, C28
or C29 BRs. The frequently used BRs in experimental inves-
tigation under abiotic stress in various plant species are 28-
homobrassinolide (28-HBL), 24-epibrassinolide (24-EBL)
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and 24-epicasterone (Fig. 2 and Table 1). They alone promote
the growth of plants but in combination with other growth
promoting hormones the effect is enhanced manifold
(Clouse et al. 1992; Sun et al. 2010; Bai et al. 2012). Plants
are sensitive to stresses and respond to them quickly (Getnet
et al. 2015; Embiale et al. 2016; Husen et al. 2016, 2017).
Even though, BRs respond to all stresses, they are very sensi-
tive to injury and wounds. Plants with BR deficiency exhibit
stunted growth, short and dark green leaves, delayed
flowering, and improper development of reproductive organs
and fertilization (Sasse 2002). Adaptation against stresses in-
crease crop yield followed by changes in plant morphology,
physiology and overall development strategies (Bohnert et al.
1995). As a consequence of adaptation to stresses, many sub-
stances such as polyols, sugars, proline and betaines get accu-
mulated (Munns and Tester 2008; Iqbal et al. 2011).

Like other BR analogs, castasterone is also widely distrib-
uted in plants. It was first isolated from the insect gall of the
chestnut tree (Yokota et al. 1982). Kanwar et al. (2012) have
investigated the role of BRs under heavy metal stress, for
instance nickel on Brassica juncea plants. They have found
that exposure to nickel accelerates the BRs biosynthesis such

as castasterone, typhasterol, EBL and dolicholide in Brassica
juncea.

Several attempts have been made to understand how BRs
modulate overall plant growth, development and adaptation
under changing environmental conditions (Bajguz and Hayat
2009; Nolan et al. 2020; Hwang et al. 2021; Kothari and
Lachowiec 2021). BR biosynthesis and signaling pathways
in which numerous genes are involved have also been report-
ed (Wang et al. 2006; Guo et al. 2013; Wang et al. 2014;
Belkhadir and Jaillais 2015; Nolan et al. 2017). Sahni et al.
(2016) have observed that the BR-related genes are key targets
for enhancing the plant productivity under abiotic and biotic
stresses. Recently, Zhang et al. (2021) have reported that the
exogenous EBL treatment of plants increased the leaf size and
expansion by promoting the cell expansion and division via
BR modulation, auxin, and gibberellin contents and the up-
regulation of cell growth-related genes in tobacco seedlings. It
has been also reported that BR regulated the transcript expres-
sion of nitrate transporter genes to promote nitrogen uptake in
maize plants. In addition to BRs biosynthetic pathway, other
associated plant growth and developmental processes have
also been discussed. The major objective of this review is to

Fig. 1 Role of plant hormones
under major abiotic stresses, their
consequences and the
components of plant defense
system. SOD – Superoxide dis-
mutase; CAT – Catalase; GPX –
Glutathione peroxidase; GP –
Guaiacol peroxidase; Prxs –
Peroxiredoxins; APX – ascorbate
peroxidase; MDAR –
monodehydroascorbate reduc-
tase; DHAR – dehydroascorbate
reductase; and GR – glutathione
reductase
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explore the impact of exogenous application of BRs on crops
and plants under different stresses.

BRs biosynthetic pathway, plant growth and
development processes

Sakurai and Fujioka et al. (1997) initially reported the BR bio-
synthetic pathways in vivo using Catharanthus roseus cell
lines. They were analyzed by the endogenous levels of BRs
in BR-deficient mutants by several researchers (Fujioka et al.
1997; Choe et al. 1999a; Choe et al. 1999b; Klahre et al. 1998).
There are a number of proteins and enzymes involved in sig-
naling process which are interdependent and are activated only
in presence of BRs. Generally, BR regulated genes are involved
in synthesis of hormones and plant development (Vert et al.
2005). Major work on the mechanistic pathway has been done
on Arabidopsis, rice and tomato (Noguchi et al. 2000). A dia-
grammatic representation for BR synthesis (Fig. 3) clearly in-
dicates two pathways (Noguchi et al. 2000; Ohnishi et al. 2006;
Divi and Krishna 2009) where oxidation involving cytochrome
P450 facilitates the biosynthesis. Further, Chung and Choe
(2013) illustrated the BRs biosynthetic pathway in
Arabidopsis, with campesterol as the key precursor of the three
BR biosynthetic pathways, two derived from the conversion of
campesterol to campestanol and the third one is a campestanol-
independent pathway. They have reported that conversion of
BRs biosynthetic pathways are mainly mediated by
ROTUNDIFOLIA 3 (ROT3), CYP85A1 and CYP85A2.

BRs regulate many biological functions and development
in plants. Exogenous application of BR leads to molecular
changes, in order to save the plant from multiple stresses by
activating antioxidant enzymes. Crops give better yield under
stress perhaps due to enhanced activity of hormones, photo-
synthesis and gene expression in response to adverse condi-
tions (Vert et al. 2005). As a consequence of a number of
physical and chemical stresses plants are forced to produce
excessive reactive oxygen species (ROS) which oxidize many
essential phytochemicals in cells and damage them. In
response to these damaging effects of ROS plants produce
antioxidants as a secondary metabolite such as phenols,
lignin and BRs. Oxidation reduction reactions occur and
accumulation of ROS is prevented to a greater extent.
Bartwal et al. (2013) have stated that water molecule is oxi-
dized by photosystem II complex producing molecular oxy-
gen which can be reduced to superoxide radical. It is true that
plants produce oxygen during photosynthesis after a series of
complicated chemical reactions but molecular oxygen re-
leased is never reduced to superoxide ion or superoxide radi-
cal. The following reactions show the mechanism of the for-
mation of molecular oxygen by the splitting of water mole-
cule.

H2O → Hþ þ OH‐ ð1Þ
OH‐ → OHþ 1e‐ ð2Þ
2OH → H2Oþ O ð3Þ

Brassinolide 28-homobrassinolide

24-epibrassinolide 24-epicasterone

Fig. 2 Most frequently used
brassinosteroids
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Table 1 Some of the studies associated with the impact of different types of brassinosteroids on different plant species in abiotic stress conditions

Stress conditions Type of
brassinosteroids

Plant species Key references

Salinity Brassinosteroids Lycopersicon esculentum
Cucumis sativus seedlings
Cucumber seedlings
Triticum aestivum
Cucumber
Trifoliumalexandrinum
Oryza sativa
Mentha piperita

Ali et al. (2006)
Shang et al. (2006)
Song et al. (2006)
Shahbaz and Ashraf (2007)
Wang et al. (2011)
Daur and Tatar (2013)
Sharma et al. (2013)
Çoban and Baydar (2016)

Brassinolide Medicago sativa
Zea mays
Vigna unguiculata
Oryza sativa

Zhang et al. (2007)
El-Khallal et al. (2009)
El-Mashad and Mohamed (2012)
Das et al. (2013)

24-Epibrassinolide Triticum aestivum
Pisum sativum
Cucumis sativus
Cajanus cajan
Capsicum annuum
Lactuca sativa
Solanum melongena
Phaseolus vulgaris
Pisum sativum
Cajanus cajan
Fragaria x ananassa
Triticum aestivum
Hordeum vulgare
Triticum aestivum
Eucalyptus urophylla
Zea mays
Glycine max

Talaat and Shawky (2013)
Fedina (2013)
Fariduddin et al. (2013a)
Dalio et al. (2013)
Abbas et al. (2013)
Ekinci et al. (2012)
Ding et al. (2012)
Rady (2011)
Shahid et al. (2011)
Durigan et al. (2011)
Karlidag et al. (2011)
Avalbaev et al. (2010)
Tabur and Demir (2009)
Shahbaz et al. (2008)
de Oliveira et al. (2019)
Rattan et al. (2020)
Soliman et al. (2020)

28-Homobrassinolide Cicer arietinum
Zea mays
Vigna radiata
Triticum aestivum
Brassica juncea
Zea mays

Ali et al. (2007)
Arora et al. (2008)
Hayat et al. (2010b)
Yusuf et al. (2011)
Alyemeni et al. (2013)
Rattan et al. (2020)

Drought/Water stress Brassinosteroids Phaseolus vulgaris
Sorghum vulgare
Lycopersicon esculentum
Solanum lycopersicum
Carica papaya
Raphanus sativus

Upreti and Murti (2004)
Vardhini and Rao (2005)
Behnamnia et al. (2009)
Yuan et al. (2010)
Gomes et al. (2013)
Mahesh et al. (2013)

Brassinolide Robinia pseudoacacia
Glycine max
Xanthoceras sorbifolia
Arachis hypogaea

Li et al. (2008)
Zhang et al. (2008)
Li and Feng (2011)
Savaliya et al. (2013)

24-Epibrassinolide Capsicum annuum
Brassica napus
Cucumis sativus
Glycine max
Capsicum annum
Vitis vinifera
Triticum aestivum
Carthamus tinctorius

Hu et al. (2013)
Mousavi et al. (2009)
Kang et al. (2009)
dos Santos Ribeiro et al. (2019) & Pereira et al.

(2019)
Kaya et al. (2019)
Wang et al. (2019)
Avalbaev et al. (2020)
Zafari et al. (2020)

28-Homobrassinolide Brassica juncea Fariduddin et al. (2009a)

Flooding Brassinolide Cucumis sativus
Glycine max

Liu et al. (2006)

High temperature Brassinosteroids Lycopersicon esculentum Ogweno et al. (2008)
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2O → O 2 ð4Þ
2Hþ þ 2e → H 2 ð5Þ

The overall reaction can be shown as:

2H2O → 2H 2 þ O2 ð6Þ

Hydrogen, thus produced represents the reducing power
(not the free hydrogen molecule) which is used in the reduc-
tion of carbon dioxide in presence of sunlight during photo-
synthesis producing starch or carbohydrate. Experimentally,
oxygen can be trapped in vitro but hydrogen is utilized and
does not escape. If a plant produces superoxide radical/ion it

will damage the system before it is removed. The O2− is
commonly formed because it has s2p4 configuration and
can accept two electrons into its half-filled p orbital to
complete its octet. However, all these electronic transfers
are made during complex formation. Free singlet oxygen
or free superoxide ions are not easily available as they are
highly reactive. However, enzymes and hormones mini-
mize the damaging effect of ROS which are produced as a
consequence of environmental variation. It has also been
reported that during stressed condition ROS and Ca2+ are
released more quickly in absence of BRs than in its pres-
ence (Gilroy et al. 2014).

Table 1 (continued)

Stress conditions Type of
brassinosteroids

Plant species Key references

Low temperature Vigna radiata
Brassica napus
Solanum lycopersicum
Cucumis sativus

Huang et al. (2006)
Janeczko et al. (2007)
Aghdam et al. (2012)
Jiang et al. (2013)

28-Homobrassinolide Cucumis sativus Fariduddin et al. (2011)

Low temperature Brassinolide Campsicum annum
Solanum lycopersicum
Oryza sativa

Wang et al. (2012)
Aghdam and Mohammadkhani (2014)
Wang et al. (2014)

High temperature Brassica napus Kurepin et al. (2008)

24-Epibrassinolide Camellia sinensis Li et al. (2018)

Low temperature Capsicum annuum Yang et al. (2019)

Cd Brassinosteroids Raphanussativus
Brassica juncea
Lycopersicon esculentum Triticum

aestivum
Solanum lycopersicum
Helianthus tuberosus
Solatium nigrum

Anuradha and Rao (2007)
Hayat et al. (2007)
Hayat et al. (2010a) & Hasan et al. (2011)
Kroutil et al. (2010)
Hayat et al. (2012)
Gao et al. (2013)
Zhao et al. (2013)

24-Epibrassinolide Brassica napus
Raphanus sativus
Phaseolus vulgaris

Janeczko et al. (2005)
Anuradha and Rao (2009)
Rady (2011)

28-Homobrassinolide Cicer arietinum
Raphanus sativus

Hasan et al. (2008)
Sharma et al. (2010)

Al Brassinosteroids Vigna radiata Ali et al. (2008b)

Ni Brassinosteroids Brassica juncea Kanwar et al. (2012)

24-Epibrassinolide Brassica juncea
Raphanus sativus

Kanwar et al. (2013)
Sharma et al. (2011b)

Cu Cucumis sativus Fariduddin et al. (2013a)

28-Homobrassinolide Brassica juncea Fariduddin et al. (2009b)

Zn 24-Epibrassinolide Brassica juncea
Raphanus sativus

Arora et al. (2010)
Ramakrishna and Rao (2013)

28-Homobrassinolide Raphanus sativus Ramakrishna and Rao (2013)

Pb
Fe

24-Epibrassinolide Brassica juncea
Oryza sativa
Oryza sativa

Soares et al. (2020)
Guedes et al. (2021)
Tadaiesky et al. (2021)

Zinc oxide nanoparticles induced
toxicity

24-Epibrassinolide Solanum lycopersicum Li et al. (2016)
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Plants use defensive mechanism against stresses and acti-
vate a number of enzymes, for instance superoxide dismutase
(SOD), catalase (CAT), ascorbate peroxidase (APX),
guaiacolperoxidase (GP) glutathione peroxidase (GPX)
(Ruley et al. 2004; Simonovicova et al. 2004; Sarker and
Oba 2018; Nikoleta-Kleio et al. 2020; Kumar et al. 2021)
and many non-enzymatic antioxidants (Özdemir et al. 2004;
Sarker and Oba 2020). After a series of redox reactions, the
ROS are converted to non-toxic compounds which are harm-
less to plants. BRs actually modify the pathway of enzymes
when plants are exposed to stress. Li et al. (1998) have dem-
onstrated that maize seedlings treated with BR and placed
under water stress had shown an increase in SOD, APX and
CAT activities. Obviously, the activity of some of the
enzymes is enhanced and in others it is decreased. Oxidation
and reduction occur simultaneously, but only one pathway is
followed so that oxidizing species are reduced and
subsequently removed as harmless substances. Similar
results were obtained by Vardhini and Rao (2003) in case of
sorghum. Under salinity, BR exposure to rice seedlings also

exhibits an increased SOD, CAT, GR and APX activities
(Nunez et al. 2003). It has been reported that EBL seed prim-
ing and optimal nitrogen supply improves salt tolerance in
soybean (Soliman et al. 2020). Chakma et al. (2021) primed
cotton seeds with EBL alone or in combination with other
hormones and examined for germination and early seedling
growth. They have noticed that the EBL promoted
germination under control as well as under salinity and heat
stress. However, other tested hormones were found to be
ineffective under stress conditions. They have also found
that the EBL promoted cotyledon opening and the
development of lateral roots in germinated seedlings.
Further, Liu et al. (2020a) have found that EBL at certain
concentration worked as an active BR, and promoted the tol-
erance of canola under high-salt stress, nonetheless the same
concentration was disadvantageous under low-salt stress. In a
recent experiment, it was found that the BR-mediated lignin
accumulation plays an important role in garlic adaption to salt
stress (Kong et al. 2021). BRs generally enhance the activity
of enzymes of plants under stress. Studies on Chlorella

Fig. 3 The biosynthesis pathway
of brassinosteroids. CPD – con-
stitutive photomorphogenesis and
dwarfism; DET2 – deetiolated2;
DWF4 – DWARF4; CYP –
Cytochrome P450; Br6ox – Br-6-
oxidase (adopted from Divi and
Krishna 2009)
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vulgaris and tomato support the above results (Bajguz and
Hayat 2009; Mazorra et al. 2002). Peroxidases are calcium
ion dependent enzymes because the activity depends on their
equilibrium (Hu et al. 2007; Bhattacharjee 2008) which is
induced by BR. They increase the yield of seeds and biomass
as a whole and regulate the expression of genes.

BRs application (presoaking at 10−8 or 10−10 M) has
enhanced the percentage of seed germination in Brassica
juncea, Orobanche minor and Cicer arietinum seeds
(Takeuchi et al. 1995; Ali et al. 2008a; Sirhindi et al.
2009). They also enhance the activity of pigments which
in turn, increase the rate of photosynthesis that depends on
the type and quantity of chlorophyll pigments. For in-
stance, plants devoid of green pigments such as croton
plant, showed decreased rate of photosynthesis. Thus,
there is a relationship between the activity, rate of photo-
synthesis and the chlorophyll pigments (Gomez 2011).
Bjornson et al. (2016) have shown that while BRs signal-
ing not only causes an increase in oxylipin synthesis but it
also causes changes in the jasmonates response transcrip-
tion factors (Müssig et al. 2000). Under extreme stress
conditions, plants slow down the transpiration by closing
the stomata to prevent the loss of water. They also produce
amino acids, polyols and some proteins which prevent the
oxidation of cellular components such as nucleic acid
(Rontein et al. 2002). BRs are activated at this stage and
upregulate defensive genes (Kwak et al. 2006) nevertheless
the enzymes and hormones are universally known to be
more active against salinity stress. Major function of these
responsive genes is to help scavenge ROS and relieve the
plant from additinal stress. It has been noticed that the
opening and closing of stomata in leaves and their devel-
opment is controlled by BR although, abscisic acid (ABA)
and auxins are also involved in this activity (Kim et al.
2012; Le et al. 2014). They have been found to suppress
the development of stomata in Arabidopsis plant leaves
(Kim et al. 2012; Tanaka et al. 2013) but Gudesblat et al.
(2012) have observed negligible effect on the development
of stomata in cotyledons. There is a close relationship be-
tween BRs and sugar signaling (Zhang and He 2015).
Sugar level and expression level of BRs related genes in
many plants are linked to each other. BR contents are
linked to the increase/decrease of sugar concentration in
Arabidopsis (Schröder et al. 2014).

BR½ � → Sucrose → Flowering ð7Þ

Both, sugar and BR are required for flowering in
Arabidopsis (Schröder et al. 2014). It has been found that
BR deficient plants flower late but when they are treated with
BR, flowering occurs in time (Laxmi et al. 2004). Specific
type of BR (BZR1 and BZR2) transcription factors are

involved in signaling (Matsoukas 2014) pathways which also
interact with sugars. It has been noted that shoots are more
efficiently involved in the synthesis of BR than other parts of
the plant. Synthetic BRs are quite expensive, and possibly
their application in agriculture to boost crop yield may not
be economical. It is therefore essential to modify biosynthetic
pathway to produce its own BR derivatives to improve the
quality of grain and increase the crop production. Like gibber-
ellins modification to increase rice and wheat production, BR
activity can also be enhanced through modification of genes
involved in the BR synthesis (Choe et al. 2001). BRs have
been found to increase not only crop yield of gram but also
increase florescence, plant biomass and plant length. As a
result of enhanced activity of BRs, the rate of is also
increased which produce more glucose/starch in plants.
However, BRs accelerate photosynthesis and overall produc-
tivity in many plant species.

Clouse (2016) have reported that ABA acts as antagonist of
BR in rice and inhibits their vegetative growth. Some
A. thaliana mutants have been found to be insensitive to
BRs, although a variety of plants respond to BR even under
stress (Sasse 1991). Since BRs regulate gene expression, the
mutants are rescued by their exogenous application (Evans
1988). In a detailed experiment on Cucumis sativus, Yu et al.
(2004) have shown that besides other progresses and devel-
opments, absorption and complete assimilation of carbon di-
oxide leading to increased photosynthesis occurs when the
plant was sprayed with 24-EBL. Different concentrations of
BR were tested but maximum increase of 210%, in photo-
synthesis was observed at a concentration of 0.1 mg/L after
which the rate declined which suggests that BR concentra-
tions above 0.1 mg/L has no beneficial effect. Accordingly,
an upsurge in sucrose, sugars, starch and many enzymes also
occur. Similar treatment of BR on Arabidopsis mutants did
not show any positive result perhaps due to defective genes.
Zhu et al. (2015) have thoroughly examined the effect of BL
on tomato ripening and ethylene production. Ethylene regu-
lates fruit ripening, and any substance that catalyses the gen-
eration of ethylene can also accelerate the ripening of fruits
by influencing many enzymes (Hamilton et al. 1990; Oeller
et al. 1991). Application of BR to tomato fruit increased the
evolution of ethylene and lycopene with a consequent lower-
ing of chlorophyll pigments (Liu et al. 2014). BR regulates
the biosynthesis of ethylene and lycopene via ACS and ACO
enzymes (Barry et al. 2000; Klee and Giovannoni 2011)
which help in ripening of tomato with the reduction of chlo-
rophyll after they were plucked green and stored at 25 °C.
BRs also increase the synthesis of jasmonates (Müssig et al.
2000) besides providing tolerance against biotic/abiotic
stresses to plant species (Koca and Karaman 2015).
Application of naturally occurring BRs also decrease the
quantity of pesticides in fruits and vegetables by degrading
them to harmless residues (Zhou et al. 2015).
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Plant response to BRs application under abiotic stress

Application of BRs enhanced plant production during stress
and abrupt environmental changes, although they are useful
even under normal conditions. Any deviation from normal
condition is felt by the plants and reflected from their bio-
chemical changes which are connected to their growth and
development. These responses are triggered in plants as a
signal similar to reflex action in mammals. The changes in
antioxidants, up-regulation and down-regulation of proteins
cause changes in protein pathways. The harsh environmental
conditions force the plants to make adaptations in order to
survive (Smirnoff 1995; Fujita et al. 2006). BRs application
in plants and their response under changing environment have
been discussed under the following subheadings.

Salinity stress

Phytohormones are synthesized to enhance the yield of fruits,
cereals, crops and regulate the biological function of plants
(Iqbal et al. 2014) during salinity stress. BRs under normal
conditions are engaged almost in all physical and chemical
activities but under stress they protect the plants to maintain
their normal functioning. BL treatment of Lucerne seed under
salinity has been shown to enhance the dry weight and anti-
oxidant activity (Zhang et al. 2007b). It has been observed by
Tanaka et al. (2003) that BRs increased the growth of hypo-
cotyls and cotyledonous leaf-blades in a dose-dependent man-
ner. BRs also catalyse the efficiency of other hormones (gib-
berellins and auxin) and plant growth promoters (Tanaka et al.
2003). Increased salinity or water scarcity produces oxidative
stress which in turn, reduces the crop production, photosyn-
thesis, protein synthesis, respiration and overall growth of
many plant species (Xiong and Zhu 2002; Hussain et al.
2013; Husen et al. 2016, 2017). Substantial quantity of ROS
is produced due to salinity stress. Thus, superoxide anion O2

−,
hydrogen peroxide H2O2 and hydroxyl radicals OH• are gen-
erated (Mittler 2002; Masood et al. 2006). In order to prevent
the damage by these species, plants produce enzymes namely
SOD, APX and GRX in defense (Munns and Tester 2008)
which act as antidote against them. Besides BRs, there are
many more hormones which control several functions of the
plant. These phytohormones are produced by rhizobacteria
(Ahmad et al. 2005; Babaloa 2010) under adverse situation
of salinity, high temperature or excess of water together with
antibiotics to protect plants from pathogenic microbes.
Phytohormones are produced to sustain the harsh environ-
mental conditions so that the normal functioning of the plant
continues. Exogenous application of BR on sorghum cultivars
and sugar beet plants under stress showed positive effect in
terms of increased root length, biomass and germination
(Vardhini and Rao 2003). Unlike drought stress, salinity dis-
turbs the exchange and translocation of cations and anions in

the plant system. In order to reduce the concentration of the
ions either the intake of salt is minimized or the common ions
are exchanged with another ion which is essential for the
plant. For instance, Ca2+ ions may be replaced by Mg2+ ions
as their exchange is chemically favored since they both are
divalent metal ions and belong to the same group of elements.
Similarly, Na+ ion may be replaced by K+ ion, the concentra-
tion of which is relatively lower than that of Na+ ion. Under
salinity stress, EBL treatment decreased proline accumulation
to prevent the damage of seedlings (cv IR-28 rice) and thus
allows normal growth (Özdemir et al. 2004). Conflicting re-
sults have been reported about accumulation of proline and
enhanced activity of antioxidant enzymes in salt sensitive
plants/crops (Ali et al. 2007; Hayat et al. 2007). However,
degradation of proline and plant growth is the main focus of
study. There is however, consensus on the ameliorating effect
of EBL on salt stressed plants. These results are supported by
work done on Cicer arietinum (Ali et al. 2007) Vigna radiata
(Hayat et al. 2010b) and A. thaliana (Kagale et al. 2007). BR
application in salt stressed rice plant increases the activity of
nitrate reductase, which in turn, increases the crop production.
Since ROS damage the plant metabolites, the plants modify
mechanistic pathway to scavenge the ROS so that the plants
grow and produce fruit/ crop in usual manner (Vardhini and
Anjum 2015). It has been observed almost in all salt stressed
crops that BL application improves germination and growth of
seedlings (El-Khallal et al. 2009; Shahbaz and Ashraf 2007).
The stress produced by a combination of two substances (cop-
per and sodium chloride) has been reported to be mitigated by
epi-BL application in two varieties of Cucumis sativus
(Fariduddin et al. 2013b). Besides increasing the activity of
antioxidant enzymes, the rate of photosynthesis was also en-
hanced. It may be a good effort to explore the combined effect
of two substances on plant development but an appropriate
reason for doing such experiment is required. The other metals
of copper group (silver and gold) have altogether different
chemical behavior which has not been tested. Application of
BR analog, DI-31 showed improvement in growth in lettuce
plant under salt stress (Serna et al. 2015). Salinity is known to
decrease plant growth and increase ethylene production
(Siddikee et al. 2012). Increased ethylene production causes
more stress which reduces plant growth. The BR analog treat-
ed lettuce plant showed tolerance to salinity in terms of fresh
weight (Zeng et al. 2010; Shahid et al. 2014). The rate of
respiration in roots and shoots of lettuce increased under sa-
linity stress (Zapata et al. 2007) to overcome the effect of
stress. This is a defensive response of the plant. Since NaCl
is completely dissociated as Na+ and Cl− ions they have higher
mobility than other essential ions. They block the passage for
them which cause deficiency of essential ions as a result of
which the plants have to respire more rapidly than usual. BR
application normalizes the respiration. K+ ion treatment of
saline stressed plants showed reduction in ethylene emission
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(Amjad et al. 2014). The BRs increase the growth of the plant
but K+ alone responds to tolerance against stress. The K+ ion
is relatively larger than Na+ ion and hence its mobility is lower
than that of Na+. Perhaps it can make up for the loss of essen-
tial nutrients in plants. If a combination of K+ and BR is
applied to the plant/crop the rate of vegetative growth may
be enhanced several fold. All adverse effects produced by
NaCl stress are directly proportional to its concentration.
Initially, the aerial parts of the plants show a decrease in
growth, and at a reasonably higher concentration of NaCl
the plant dies if appropriate measures are not taken.

Effect of NaCl and BRs concentration on peppermint
(Mentha piperita) revealed that salinity is the main cause of
plants to perish. In the beginning, yellowing of leaves occurs,
as a result of which, quantity of chlorophyll pigments de-
creases which reduces the rate of photosynthesis. Weight of
aerial parts of the plant significantly decreased. There was a
marked reduction in essential oil production of mentha and an
increase in lipid peroxidation, phenols and antioxidant en-
zymes with increasing NaCl concentration (Khorasaninejad
et al. 2010; Çoban and Baydar 2016). Salinity causes overall
reduction in growth of plants. BR application reduces the sa-
linity stress and prevents the damage. In tomato and geranium,
BR treatment enhanced their growth (Hayat et al. 2010b;
Hayat et al. 2010c; Swamy and Rao 2009). Çoban and
Baydar (2016) have reported that, under saline condition
NaCl ionizes to produce free Na+ and Cl− ions which are
deposited on the surface of cell membrane. They further re-
ported that it decreases the pH of the cell surface as a conse-
quence of which the protein breaks down. The acidic medium
damages the plant. This proposal is hypothetical and chemi-
cally impossible. NaCl is a salt of strong acid (HCl) and a
strong base (NaOH) which is completely ionized in aqueous
medium. The sodium ions are always in equilibrium with
chloride ions and their recombination will give neutral NaCl
salt and hence the pH of the medium will never change.
Ionization of NaCl and reaction of Na and Cl ions are shown
below:

NaCl → Naþ þ C1‐ Ionization ð8Þ
Naþ þ H–OH → NaOH Combination of Na ion with OH of water

ð9Þ
Cl‐ þ Hþ → HC1 Combination of Cl ion with Hþof water

ð10Þ

Assuming damage of cell membrane by lowering the pH
due to free Cl ions producing HCl, is improbable. Ion leakage
may be due to excessive accumulation of Na and Cl ions
around the cell membrane. Excess sodium ions are toxic to
all living beings because they trigger the impulses through
Na+/K+ pump. Chloride ions have bleaching effect and grad-
ually damage the chlorophyll pigments. A NaCl solution in

aqueous medium is neutral and all such assumptions that it
produces acidity and damages the crop are baseless. Large
excess of NaCl is harmful to plants due to toxicity of Na+ ions.
They are transferred from intracellular fluids to extracellular
fluids through carrier proteins. Conversely, K+ ions are trans-
ferred from extracellular fluids to intracellular fluids. During
salinity, excess Na+ ions are transferred to extracellular fluid
which produces a charge gradient on one hand and concentra-
tion gradient on the other, across the cell membrane. This
potential difference accounts for the trigger of impulses in
plants and mobility of ions through osmosis. Sodium and
potassium pump also maintains the volume of the cells with-
out which volume increases uncontrollably and the cell bursts.
Excess of Na ions during salinity also causes imbalance be-
tween Na and K ions which disturbs the metabolism.

It has been reported that salt stressed Oryza sativa treated
with BR exhibited increased growth and development
(Anuradha and Ram Rao 2003). Also, it induced the activity
of nitrate reductase in salt stressed rice crop. BRs regulate the
activity of antioxidant enzymes, chlorophyll pigments, rate of
photosynthesis and carbohydrate metabolism to upsurge plant
growth under stress. Exogenous application of BR enhances
the biosynthesis of endogenous hormones and regulates signal
transduction pathways to different stresses (Anwar et al.
2018). Salinity is also increased by the presence of other alkali
metals (Li, Na, K) and alkaline earth metals (Be, Mg, Ca)
chlorides, bicarbonates and sulfates in the soil. BRs provide
tolerance against all stresses and improve the quality of fruits
and grains by increasing the photosynthesis and enzyme ac-
tivity (Anwar et al. 2018).

BR application has shown tolerance against salt stress
in Eucalyptus urophylla. ROS is produced due to large
quantity of Na ions deposited which decreases chlorophyll
pigments as a consequence of which rate of photosynthe-
sis is decreased (Kim et al. 2016). K+/Na+ pump balances
the ionic concentration of these ions within the cells in
plants through symport and antiport but extremely large
excess of sodium ions during salt stress causes imbalance.
At this point foliar application of EBR improves overall
development in E. urophylla (de Oliveira et al. 2019) and
reduces salt stress. K+/Na+ equilibrium was maintained
which led to an increase in CAT and APX enzymes.
Very recently, Liu et al. (2020b) have shown the impact
of EBR/EBL application on plants under different stages
of development increasing their tolerance against salt
stress. It has been noticed that all concentrations of hor-
mones are not equally effective in mitigating the influence
of salinity, drought or extreme temperature variation. At
low level of salinity, a certain BR concentration was ef-
fective, however with increase in salinity the same BR
concentration does not work. Therefore, emphasis must
be given to prevent excessive sodium ion accumulation,
because it induces the ROS production. Zea mays under
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salinity stress, exposed to 28-HBL and 24-EBL have
shown to withstand the abrasive effect of NaCl (Rattan
et al. 2020). In this experiment, the quantity of saline
solution added has not been mentioned which could mea-
sure the amount of salt. Further, the equilibrium between
K+/Na+, antioxidant enzymes and phytochemicals were
measured in maize plants. The sodium ions were de-
creased with a consequent increase in potassium ion con-
centration. In fact, it is the concentration gradient that
accelerates the mobility of Na ions out and K ions inside
the cell maintaining the normal functioning of K+/Na+

pump. Thus, antioxidant enzyme activity enhanced with
a consequent decrease in malondialdehyde accumulation.
With the removal of free radicals, the enzyme activity is
enhanced which maintains the normal functioning of
plants under salt stress. Treatment of soybean with EBL
coupled with nitrogen, further enhances the tolerance of
plant by NaCl stress (Soliman et al. 2020). Nitrogen acts
as a nutrient which synergises the photosynthesis in
plants.

Water/drought stress

Photosynthesis is essential for a plant to survive even
under different stresses. Water, carbon dioxide, sunlight
and moderate temperature are required for chlorophyll to
produce carbohydrate/sugar. During drought or water
scarcity the process of photosynthesis is retarded or even
completely arrested. It is a general phenomenon for all
plants to slow down metabolic processes. The stomata
remain closed to prevent the loss of water as the growth
of the plant as a whole is retarded. It has been observed
that when Arabidopsis and Brassica napus seedlings were
grown in very dilute solution of EBL (1 μM) and placed
under artificial drought for 96 and 60 h respectively, their
tolerance for drought was increased (Kagale et al. 2007).
In response to EBL application some modification in the
activity of antioxidant enzymes and defense genes occurs
which stimulates the normal functioning of plants (Li
et al. 2012). It has also been found that BR treated
Cucumis sativus increases the reduction process of carbon
dioxide in presence of glutathione which was indirectly
involved in activating the process (Jiang et al. 2012).
However, HBL treatment of mustard plant under drought
enhanced CAT, POX, SOD activities and proline content.
BRs and BL have also been found to increase the biomass
and crop yield in soybean and mustard (Zhang et al. 2008;
Fariduddin et al. 2009a). It has been reported (dos Santos
Ribeiro et al. 2019) that water scarcity diminishes seed
germination, biomass and root growth in soybean plants
which can be ameliorated by 24-EBL application. Under
water stress the oxidative damage is prevented through
antioxidants (SOD, CAT, APX and POX) before it

damages the plant morphology (Cruz de Carvalho 2008).
Drought like condition is inversely proportional to the
production of RO. The increased amount of antioxidants
produced more tolerance in plants toward water deficien-
cy. Water stressed plants showed improvement in growth
after they were treated with BR. However, this effect was
synergized by endogenous application of NO specifically
in Capsicum annum (Kaya et al. 2019). Pereira et al.
(2019) examined the role of 24-EBL on soybean plants
under water deficiency and observed that quantum yield
of PSII photochemistry, electron transport and net photo-
synthetic rates were reduced. However, exogenous appli-
cation of EBR (at 100 nM) has mitigated the negative
effect of water stress on the studied features. The EBR
also decreased the superoxide and hydrogen peroxide
and prevented cell membrane damage.

It has been noticed that the ABA controls a wide range
of RAB (responsive to ABA) genes coding for the pro-
teins concerned to the cell protection against dehydration
injuries in Manihot esculenta (Feng et al. 2019). Avalbaev
et al. (2020) have shown the ability of 24-EBL to stimu-
late additional synthesis of wheat germ agglutin under
normal conditions. Severe water scarcity partially dam-
ages the aerial parts which is clearly visible. It has been
reported in the case of grapevine (Vitis vinifera) under
drought condition that, the production of H2O2 and super-
oxide radicals is enhanced with a consequent reduction in
ascorbic acid and glutathione (Wang et al. 2019). After
the exogenous BR application these symptoms were re-
versed, viz., the production of H2O2 and O2− were de-
creased and those of ascorbic acid and antioxidants were
enhanced. It has been shown that there is a close relation-
ship between ABA and drought stress. BRs reduce the
adverse symptoms and increase the tolerance of grapevine
to drought. All antioxidants and genes related to their
production are activated by BR application. Activity of
enzymes and proteins increased after EBL was sprayed
on Echinacea purpurea under severe drought condition
(Hosseinpour et al. 2020). Despite substantial increase in
total protein, SOD, CAT, POX, proline and H2O2 a large
reduction in plant biomass was observed. It is interesting
that the substances needed for plant development were
increased which suggests tolerance of E. purpurea to
drought. A slight deviation from normal behavior of plant
and an increase in ROS is an indication of abiotic stress.

Temperature stress

Both, extremely low and high temperature disturb the
normal functioning of plants. At very high temperature
the loss of water and increased permeability of plasma
membrane decrease the rate of photosynthesis which is
vital for all green plants. It has been found that when
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the plants under temperature stress are treated with EBL
the proteins responsible for heat shock protect the plant as
a result of which the photosynthesis efficiency is en-
hanced as has been found in tomato plant (Singh and
Shono 2005). Plants/seedlings treated with EBL prior to
exposure to high temperature for few hours (1–4 h)
showed delayed adverse symptoms relative to untreated
ones (Kagale et al. 2007). This is quite obvious but such
short time exposure does not show any meaningful result
which may be generalized because plants can recover
such losses by their own immune system. High tempera-
ture and chilling cold also have damaging effect on plants
which are clearly visible. For instance, reduced growth,
yield (Sheehy et al. 2005) shortening and wilting of
leaves, necrosis and reduction in development of repro-
ductive organs occur (Kang and Saltveit 2002).

Photosynthesis is always hampered at abnormally low tem-
perature, particularly when sudden change occurs (for in-
stance, snowfall). Absorption of carbon dioxide, enzyme ac-
tivities and osmosis are reduced to minimum. EBL treatment
at this stage helps to recover the loss in dicots (Huang et al.
2006). However, a slight variation in temperature (20 ± 5 °C)
does not show any noticeable change in treated/untreated
plant (Kagale et al. 2007). BR treated wheat leaves under
thermal stress (43 °C) showed normal development indicating
normal protein synthesis. The untreated ones had shown a
nearly threefold (Kulaeva et al. 1991) fall in the process.
BRs and indole acetic acid (IAA) separately induce the plant
growth under temperature stress. This effect is synergized if a
combination of BRs and IAA is applied to plants. BR in-
creases the rate of germination in seasonal crops (He et al.
1991). Some BR derivatives protect the plants even at 7 °C
while others do the same at abnormally high temperature
(González-Olmedo et al. 2005). BR (24 epi-BL) application
shows very low tolerance to Bromus inermis development at
low temperature (3–5 °C), but at high temperature (40–45 °C)
the tolerance is appreciably high (González-Olmedo et al.
2005). BRs also increase the fruit yield in tomato under heat
stress (Singh and Shono 2005).

Yang et al. (2019) have studied the chilling effect in
BR pretreated and control pepper seedlings. Foliar spray
of EBR on pepper leaves showed an increase in plant
growth, rate of photosynthesis, maximum quantum effi-
ciency and photochemical quenching coefficient. Plants
also showed an increase in free amino acids and enzyme
activity (glutamine synthase, nitrate reductase, glutamate
synthase etc.) which enhanced nitrogen metabolism in
leaves. Chilling stress produces ROS but treatment with
EBR reduces the accumulation of H2O2 and superoxide
anion showing increasing tolerance toward falling temper-
ature below normal. In recent years, it has been noticed
that the autophagy process is important for the degrada-
tion of dysfunctional cellular components at some stage of

development under negative environmental situations
(Qin et al. 2007; Liu and Bassham 2012). So far, more
than thirty autophagy-related genes (ATGs) have been
recognized (Yoshimoto 2012; Marshall and Vierstra
2018). In plant system, the role of autophagy has been
investigated under numerous abiotic stresses (Guiboileau
et al. 2013; Wang et al. 2015a, 2015b; Zhai et al. 2016).
BRs worked as a positive regulator of NBR1-dependent
selective autophagy in tomato plants (Chi et al. 2020).
They have verified that low temperature and BRs together
induced the BRASSINAZOLE-RESISTANT1 (BZR1)
stability, which up-regulates ATG2, ATG6, NEIGHBOR
OF BRCA1(NBR1a) and (NBR1b) expression by binding
to their promoters. The upsurge in autophagy and the
se l ec t ive au tophagy recep to r NBR1 inc reased
photoprotection via higher accumulation of functional
proteins (PsbS, VDE and D1) leading to increased toler-
ance to cold (Fig. 4).

The effect of BL on rice under chilling stress has
shown improvement in activity of enzymes (SOD and
Peroxidases) sugars and proteins (Wang et al. 2020).
Other toxic substances such as malondialdehyde were re-
duced. Minerals/inorganic ions like N, P and K were
enhanced when rice plants were exposed to BR. In fact,
these nutrients are already there but owing to low
temperature their release and transportation was delayed
or arrested.BR treatment induces the release of nutrients
and activate the enzymes which is termed tolerance. The
plants recover from cold stress when temperature becomes
normal and all activities are restored even in absence of
BR/EBL. However, these hormones induce the activity of
antioxidants and reduce ROS under all types of stresses.
Recently, Chen et al. (2021) have also suggested that BRs
mediated the impact of high temperature stress on pistil
activity during antithesis and increased antioxidants and
suppressed ROS generation in photo-thermosensitive ge-
netic male-sterile rice lines.

Heavy metal toxicity

Radioactive metals and toxic metals accumulated in plant
parts were reduced by the application of BRs. Perhaps,
metal ions forming soluble complexes with the donor
groups of BRs are prevented from their deposition in
cells. In tobacco seedlings, biomass accumulation was
drastically reduced under cadmium stress (Ahammed
et al. 2013). However, it has been noticed that the exog-
enous EBR application at 0.1 μM increases plant biomass
by augmenting carbon dioxide assimilation capacity, chlo-
rophyll fluorescence and photosynthetic pigment. They
also suggested that the foliar application of EBR reduces
cadmium uptake in roots and its translocation to tobacco
leaves. In another experiment, BR (24-EBL and 24-
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epicasterone and 4154) treatments were found to decrease
the uptake of heavy-metal (lead and cadmium) in spring
wheat plants (Kroutil et al. 2010). Bukhari et al. (2016)
have described that the tobacco leaf mesophyll cells (cell
wall, cell membrane, and dilated thylakoid) were distorted
under chromium exposure. 24-EBL application had
protected the chromium-induced damage to chloroplast.
In tomato seedlings, Singh and Prasad (2017) have also
reported that application of 28-homobrassinoloid im-
proved the chromium-induced decrease in growth,
photosynthesis and the photochemistry of PSII. Further,
Hasan et al. (2008) have reported that 28-HBL protects
chickpea from cadmium toxicity by stimulating the levels
of enzymatic and non-enzymatic antioxidants. Song et al.
(2016) have suggested that ROS generation is increased
due to heavy metal exposure and adversely influenced the
overall plant metabolism, triggering oxidative injury to
proteins, lipids and nucleic acids. However, Kanwar
et al. (2012) have found that exposure of nickel acceler-
ates the BRs biosynthesis such as castasterone,
typhasterol, EBL and dolicholide in Brassica juncea.

Ali et al. (2008b) have investigated the function of BRs
in the reduction of aluminum toxicity in mung bean
(Vigna radiata) seedlings. The seedlings were exposed
to various concentrations of aluminum (0.0, 1.0 or
10.0 mM) at 1-week-old stage and were sprayed with
10−8 M of 24-EBLor 28-HBL at 14-day stage. After three
weeks, carbonic anhydrase activity, chlorophyll content
and the rate of photosynthesis were found to decrease.
However, leaf antioxidative enzyme activities (CAT,

SOD, peroxidase) and proline in leaves and roots en-
hanced in these seedlings. Further, foliar spray of 24-
EBL or 28-HBL, in absence of aluminum strongly im-
proved the above parameters and also accelerated their
growth. Radish plant growth by foliar application of BR
(24-EBL or 28-HBL at 0.5, 1.0, or 2.0 μM) in zinc tox-
icity alleviation has been carried out by Ramakrishna and
Rao (2013). Zinc stress was found to reduce growth pa-
rameters and photosynthetic pigments but BRs exposure
improved these traits. BRs application however, decreased
H2O2 level, lipid peroxidation, electrolyte leakage and
enhanced the water absorbing capacity of leaf under
stress. Foliar application of 24-EBL was more effective
than 28-EBL in zinc stress mitigation. Several other find-
ings have also revealed that application of BRs can mod-
ify antioxidant activities in maize, mustard, radish, wheat
and rice under metal stress (Sharma et al. 2007, 2010,
2011a, 2016; Ramakrishna and Rao, 2015). It has also
been suggested that BRs under metal stress may inhibit
lipid degradation and accelerate the antioxidative enzyme
activities (Sudo et al. 2008; Soares et al. 2016).
Phytochelatins (PCs) syntheses are another important
mechanism of metal detoxification; and BRs are known
to stimulate PCs syntheses in cells treated with lead
(Rajewska et al. 2016). A possible mechanism of BRs
regulation of heavy metal stress tolerance in plants is il-
lustrated in Fig. 5.

A recent study of Brassica juncea has shown that lead
(Pb) tolerance can be diminished by BR application be-
fore or after seed germination (Soares et al. 2020). If the

Fig. 4 Projected mechanism of
BZR1 induced cold tolerance by
the autophagy activation in
tomato plants. Cold and BRs
induced BZR1 stability; and turn
on the transcription of autophagy
genes (ATG2, ATG6, NBR1a,
and NBR1b) by their promoters
binding, thereafter increasing the
autophagy. Autophagy facilitates
photoprotection by functional
proteins accumulation namely,
PsbS, VDE, and D1; and
enhances the degradation of
stress-damaged insoluble
ubiquitinated protein aggregates
through selective autophagy re-
ceptor NBR1. Arrows in the il-
lustration showed the positive
control; while the bar ends exhibit
the negative control (adopted
from Chi et al. 2020). BZR1 –
brassinazole resistant 1; BRs –
Brassinosteroids; ATG2 & ATG6
– Autophagy genes; NBR1 –
neighbor of brca1; and PsbS,
VDE & D1 – functional proteins
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soil is contaminated with lead it is absorbed by the plant
through its roots. Of all the lead salts only lead chloride and
lead nitrate are slightly soluble (not more than 1 g/100 ml in
water at 25 °C) and therefore, chances of lead toxicity are rare.
However, lead is known to be a cumulative poison as it accu-
mulates in different parts of the plant and produces lesion.
Exogenous application of EBL (10−8 M) was highly effective
against lead stress in B. juncea. It accelerated the activity CAT
and POX which prevented the damage by lead. The extent of
injury depends on the concentration of the toxic metal and the
stage of plant development. In a very recent study, Tadaiesky
et al. (2021) have reported that EBR decreased iron toxicity in
rice plants modulating the parenchyma area, contributing to
the formation of an oxidative barrier and Fe immobilization at
the root surface. Similarly, Guedes et al. (2021) have shown
that lead produces toxicity in rice plants but EBR treatment
alleviated the adverse effects of lead.

Conclusion

BRs are a group of naturally occurring plant hormones com-
prising of BL, castasetrone and their derivatives which regu-
late plant growth and development. Over 69 BRs have been
isolated from different parts of plants. These steroidal hor-
mones are timely produced and utilized by plants. They are

synthesized in response to salinity, drought, extremely cold/
hot temperature, injury or pathogenic attack to maintain the
normal functioning of plants and enhance fruits and crop
yield. In future BRs and BL would be the key hormones to
increase the yield of fruits, vegetables and agri-products. Their
application would also protect the plant/crops from pests, in-
sects and physical stresses.

Abbreviations 24-EBL, 24-epibrassinolide; 28-HBL, 28-
homobrassinolide; ABA, Abscisic acid; APX/APOX, Ascorbate peroxi-
dase; ATGs, Autophagy-related gene; BL, Brassinolide; BR,
Brassinosteroid; BZR1, BRASSINAZOLE RESISTANT 1; BAK1,
brassinosteroids associated kinase1; BRI1, brassinosteroid insensitive1;
CaCl2, Calcium chloride; CaSO4, Calcium sulfate; CAT, Catalase;
DHAR, Dehydroascorbate reductase; GP, Guaiacol peroxidase; GSH,
Glutathione; GSSG, Glutathione disulphide; GPX, Glutathione peroxi-
dase; GR, Glutathione reductase; H2O2, Hydrogen peroxide; HCl,
Hydrogen chloride; HM, Heavy Metal; IAA, Indole acetic acid; NBR1,
next-to-BRCA1; KCl, Potassium chloride; MDA, Malondialdehyde;
MAPK , Mi t og en - a c t i v a t e d p r o t e i n k i n a s e s ; MDHAR,
Monodehydroascorbate reductase; K, Potassium; P, Phosphate; NaCl,
Sodium chloride; NaOH, Sodium hydroxide; PC, Phytochelatin; Prxs,
Peroxiredoxins; ROS, Reactive oxygen species; RWC, Relative water
content; SOD, Superoxide dismutase; V-ATPase, vacuolar H+-ATPase
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Fig. 5 Proposed possible mechanism (dotted lines) of BRs regulation of
heavy metal tolerance in plants. APOX – ascorbate peroxidase; BAK1 –
BRI1-associated kinase1; BRI1 – brassinosteroid insensitive1; CAT –
catalase; DHAR – dehydroascorbate reductase; GR – glutathione reduc-
tase; GSH – glutathione; GSSG – glutathione disulphide; HM – heavy

metal; K – potassium; MAPK –mitogen activated protein kinases; MDA
– malondialdehyde; MDHAR – monodehydroascorbate reductase; P –
phosphate; PC – phytochelatins; ROS – reactive oxygen species; V-
ATPase; and vacuolar H+ −ATPase (adopted from Rajewska et al.
2016; re-drawn based on Sharma et al. 2011a)
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