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Abstract

Understanding of sulfur metabolism has reached a new dimension with comprehension of its molecular regulation; however,
knowledge underlining the evolutionary perspective and dynamics of this metabolism in cyanobacteria is still limited. In this
review, we provided a comprehensive overview of sulfur metabolism with special emphasis on cyanobacteria and discussed the
biosynthesis of cysteine and its downstream sulfur containing metabolites. Here, we invested efforts to understand the possible
regulatory mechanisms of cyanobacterial sulfur assimilation process by comparing with that of other bacteria and plants. The
impact of sulfur limitation on the morpho-physiological, biochemical, and molecular responses in cyanobacteria was also
elucidated. The present work reflected that the cyanobacterial sulfur assimilatory pathway is identical to that of bacteria and
plants since all of them employ similar enzymes in the process; however, the regulatory mechanism may vary in cyanobacteria.
This communication comprehends the recent progresses made in the field of cyanobacterial sulfur metabolism research along
with a comparative account of sulfur metabolism in some related organisms. Therefore, this review not only gives a broad
overview on cyanobacterial sulfur metabolism but also increases our understanding of the importance and evolutionary perspec-

tive of this crucial metabolism.
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Introduction

The versatility of sulfur in the life processes is unequivocal
because it is a crucial component of cellular metabolites and
exhibits redox-dependent activity (Giordano et al. 2005). With
the evolution of the Earth, the concentration of sulfur, partic-
ularly in oceans, has changed (Table 1); however, in recent
times, the concentration of sulfate in marine ecosystem is ap-
proximately 28 mM, which indicates it is the prime reservoir
of sulfate (Ksionzek et al. 2016). In contrast, majority of the
freshwater systems exhibit very low concentration of sulfate
ranging from 10 to 50 pM (Bochenek et al. 2013). Thus,
organisms thriving in this low sulfate containing freshwater
systems essentially require to compensate and maintain their
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cellular homeostasis. Some algae and cyanobacteria can re-
spond to sulfate deficiency (Prioretti et al. 2014). According to
the sulfate facilitation hypothesis, red algae is more suscepti-
ble to low sulfate availability than green algae and
cyanobacteria (Ratti et al. 2011, 2013), suggesting that chang-
es in the oceanic sulfate concentration affect the phytoplank-
ton dominance.

Despite its bioavailability in different habitats, the organic
form of sulfur is predominant, with the total concentration
being 95% in the environment, whereas the remaining 5% is
present in the inorganic forms. Although organic sulfur ac-
counts for a major proportion in the environment, it does not
provide any significant advantage to living biota because they
preferably utilize sulfate as the sole source of sulfur along with
thiosulfates, cysteine, methionine, and glutathione to satisfy
cellular requirements (Fernandez-Gonzalez et al. 2019). Some
microalgae can release arylsulfatase and alkylsulfatase, which
generate sulfate from organic compounds after catalysis
through cleavage, making them available for growth.

Sulfate acquisition, its subsequent reduction into cysteine,
and further catabolism into secondary sulfur metabolites are
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Table 1 Variation in sulfur availability with the evolutionary time scale
Habitat Eon Period Sulfate concentration References
Marine Archean oceans Precambrian >200 uM Habicht et al. 2002
Proterozoic oceans 1-5 mM Kah et al. 2004
Phanerozoic oceans Late Ediacaran oceans 15 mM Petrychenko et al. 2005
Cambrian oceans 3-12 mM Gill et al. 2011
Carboniferous > 15 mM Gill et al. 2007
Permian and Triassic ocean 20 mM Lowenstein et al. 2003
Late Paleozoic to Mesozoic oceans 1327 mM Gill et al. 2007
Cenozoic (Todays) oceans 28-30 mM Takahashi et al. 2011
Freshwater Freshwater 0.01-1 mM Giordano et al. 2008
Oligotrophic lakes <300 pM Holmer and Storkholm 2001
Meso and eutropic lakes 700-800 pM
Acidic lakes <100 uM

sequential multistep processes catalyzed by specific enzymes
(Fig. 1). Sulfur assimilation, which involves the conversion of
sulfate to cysteine, is an eight-electron reduction process that
commences with the uptake of sulfate through specific mem-
brane transporters (i.e., energy-dependent proton/sulfate [pre-
sumably 3H*/SO,>"] co-transporters) (Green and Grossman
1988; Laudenbach and Grossman 1991). To understand the
crucial role of sulfur in the cell metabolism, it is vital to iden-
tify enzymes involved in the metabolism. Sulfate is first acti-
vated to form adenosine-5'-phosphosulfate (APS) and then
phosphorylated to generate 3'-phosphoadenosine-5'-
phosphosulfate (PAPS) by ATP sulfurylase (ATPS) and
APS kinase (APSK), respectively. PAPS is successively re-
duced to sulfite (SO5>) followed by sulfide (S*) by PAPS
reductase and sulfite reductase (SR), respectively. The

Fig. 1 Schematic representation
of steps involve in sulfur %
metabolism

produced SO;* is required for sulfolipid biosynthesis, where-
as S%~ is involved in the protein modification and redox buff-
ering. The incorporation of sulfide formed in the reductive
process into cysteine is mediated by serine acetyltransferase
(SAT) that is involved in the acetylation of serine to O-
acetylserine (OAS), while O-acetylserine (thiol) lyase (OAS-
TL) is involved in the condensation of OAS and sulfide to
form cysteine (Fig. 2). The first product of primary sulfate
assimilation, namely cysteine, is further used in protein syn-
thesis or as a reduced sulfur donor for the biosynthesis of
downstream metabolites, such as methionine, SAM, and glu-
tathione, as well as in coenzymes and cofactors. Cysteine not
only serves as a central hub for the synthesis of different sulfur
containing metabolites but also merges assimilatory sulfate,
nitrogen, and carbon pathways (Fig. 3).
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Fig. 2 Overview of sulfur assimilatory pathway and the key enzymes
involved as follows: 1. ATP sulfurylase; 2. APS kinase; 3. APS
reductase; 4. PAPS reductase; 5. Sulfite reductase; 6. Serine
transacetylase; 7. Cysteine synthase; 8. Cystathionine (3-synthase; 9. y-
Glutamylcysteine synthase; 10. Glutathione synthetase; 11. Glutathione

The regulation of sulfur metabolism and its homeostasis at
the cellular level are achieved at multiple levels that include the
regulation of transporters and enzymes involved in the assimi-
latory process and their transcriptional regulation through reg-
ulatory proteins. CysB, CysM, and CysR are the LysR-type
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reductase; 12. Glutathione peroxidase; 13. Cysteine desulfurylase; 14.
Homocysteine methyltransferase; 15. S-adenosylmethionine synthase;
16. S-adenosylcysteine hydrolase; 17. y-Glutamyl transpeptidase; 18.
v-Glutamyl transpeptidase; 19. y-Glutamyl transpeptidase (adapted
from Hesse et al. 2004)

transcription regulators that control the expression of the cys
operon in Escherichia coli, Salmonella typhimurium, and
Synechococcus, respectively, whereas SAC1/SAC3 and
SLIM1 are involved in green alga Chlamydomonas reinhardtii
and Arabidopsis thaliana, respectively.
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Fig. 3 The putative connection between carbon, nitrogen, and sulfate
assimilation: 1. ATP sulfurylase; 2. APS reductase; 3. Sulfite reductase;
4.; 5. Cysteine synthase; 6. Serine acetyltransferase; 7. O-acteylserine
thiol lyase; 8. Gamma-glutamylcysteine synthetase; 9. Glutathione syn-
thetase; 10. Glutathione reductase; 11. Glutathione peroxidase; 12.

Gamma-glutamyl synthetase; 13. Homocysteine methyltransferase; 14.
S-adenosyl metheonine synthase; 15. Nitrate reductase; 16. Nitrite reduc-
tase; 17. Glutamate synthase; 18. Glutamine:2-oxoglutarate
amidotransferase; 19. UDP-sulfoquinovose synthase; 20. SQDG syn-
thase (adapted from Ravilious et al. 2012; Kumaresan et al., 2017)
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Studies have reviewed the assimilation and regulation of
sulfur and their roles as well as how this process affect other
cellular processes either directly or indirectly in cyanobacteria.
In cyanobacteria, cysteine synthesis is a major regulator of
different reactions. So far, numerous studies on sulfur
metabolism of photoautotrophs have been performed of
which maximum are focused on physiology, biochemistry,
and transcript analysis. Schmidt (1988) and Schmidt and
Jager (1992) published an in-depth review on cyanobacterial
sulfur metabolism. However, the review particularly focusing
on the sulfur starvation and its regulation in the cyanobacteria
is still lacking.

Cyanobacterial gene expression databases and physiologi-
cal studies have indicated that genes and enzymes involved in
sulfate assimilation are expressed not only in photosynthetic
organisms, but also in heterotrophic organisms (Zhang et al.
2008; Ludwig and Bryant 2012; Kolesinski et al.
2017; Kumaresan et al. 2017; Hughes et al. 2018; Kharwar
et al. 2021). Transcriptomic analysis of Synechocystis by
using a DNA array technique have been performed by
Zhang et al. in 2008. Similar studies have also been done in
case of Arthrospira platensis (Kumaresan et al. 2017).
Recently, Kharwar and Mishra (2020) performed the expres-
sion analysis of some of the crucial genes involved in the
photosynthetic and fatty acid metabolic pathway in
Anabaena sp. PCC 7120 (hereafter referred to as Anabaena
7120). Ultrastructures; cell growth, differentiation, and surviv-
al; photopigments; protein profile; and nitrogen, carbon, and
sulfolipid metabolism are affected by sulfur limitation. These
changes can result from sulfur stress-mediated events such as
photosynthetic damage, pigment destruction/degradation,
protein/enzyme inactivation, reduced protein synthesis, re-
duced nutrient uptake, changes in redox homeostasis, and sig-
nal transduction. Although in-depth reviews are available for
sulfur metabolism in bacteria, algae, and plants, particularly
those based on model organisms, very few reviews have fo-
cused on cyanobacteria.

The present review summarizes sulfur metabolism and
its regulation with particular emphasis on cyanobacteria.
Here, we provide a comprehensive view of sulfur metab-
olism and its regulation by gathering patchy information
and briefly appraising current updates in sulfur metabo-
lism from physiology to complex processes by integrating
morpho-physiological, biochemical, and molecular
findings.

Sulfur uptake and assimilation: an overveiw
Uptake of sulfur

Assimilation of sulfur commences with the uptake of sulfate
and then, sulfate is reduced in a sequential multistep process
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(Fig. 2). Although sulfate is the most preferable source, alter-
native sources such as sulfonate, cysteine, methionine, gluta-
thione, and taurine are also utilized by organisms. The model
bacterium E. coli utilizes cysteine, glutathione, and various
alkane sulfonates including taurine. In addition, some
cyanobacteria can derive sulfur from sulfate ester
(Plectonema), ethane sulfonate (Anabaena variabilis), methi-
onine (Synechococcus 6301 and A. variabilis), taurine
(A. variabilis) (Miiller and Schmidt 1986; Biedlingmaier and
Schmidt 1987), cysteine (Synechococcus 6301), cystine
(Synechococcus sp.), thiosulfate (Synechococcus sp.), thiocy-
anate (Synechococcus sp.), and reduced glutathione
(Synechococcus 6301) (Schmidt et al. 1982; Lawry and
Jensen 1986; Laudenbach and Grossman 1991).

The uptake process of sulfate is a highly regulated as it
involves different proteins and function jointly to acquire sul-
fur from the external environment; these proteins are encoded
by a specific set of genes. Uptake of sulfur in case of
cyanobacteria is an energy-requiring, light-dependent process
and varies with both temperature and pH (Utkilen et al. 1976;
Jeanjean and Broda 1977; Utkilen 1982). Metabolic poisons
and structural analogs of sulfate such as chromate, selenate,
molybdate, and sulfur compounds inhibit sulfate transport
(Jeanjean and Broda 1977). The capacity for sulfate uptake
increases in the deprived cyanobacterial cells. Many studies
have observed that sulfate uptake increased within an hour
after the removal of sulfate from growth medium and its se-
quential decrease after the resupply of sulfur, indicating that a
low sulfur concentration induces the expression and activity of
sulfate transporters, whereas high sulfur content suppresses
them. Low sulfur content is determined by a decrease in the
intracellular sulfur pools that cause an increase in nutrient-
dependent sulfate uptake. Initial studies on Synechococcus
PCC 7942 (hereafter referred to as PCC 7942) have demon-
strated that V., value for sulfate transport increases by ap-
proximately 10-20 folds during sulfur deprivation, whereas
the value of K, remains 1 uM in both sulfur-sufficient and -
deficient medium, indicating that sulfur deficiency causes in-
creased accumulation of sulfate transporters (Green and
Grossman 1988). Utkilen and his colleagues reported a K,
and Vax 0£0.75 x 107 M and 0.7 pmoL (10° cells x min ™),
respectively, at 42 °C for sulfate transport in sulfur-starved
cells of Synechococcus (Utkilen et al. 1976). Once sulfate is
transported into the cell, it is reduced through the PAPS
sulfotransferase pathway (i.e., bacterial type of sulfate reduc-
tion system) in case of Synechococcus (Schmidt and Christen
1978), whereas other cyanobacteria reduce sulfate through the
APS sulfotransferase pathway (i.¢., plant type of sulfate reduc-
tion system) (Tsang and Schiff 1975). The specificity of en-
zymatic activities toward these sulfate donors for further re-
duction process (APS and PAPS) serve as a useful taxonomic
marker for studying the relationship between different groups
of cyanobacteria and between cyanobacteria and other
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bacteria as well as for examining the phylogenetic problems of
plant origin (Schmidt 1977a, 1977b).

Pioneering work identified that the genes such as cysP,
cysT, cysW, cysA, and cysM harbored present on the cys oper-
on encode transporter proteins for sulfate uptake in E. coli
K-12. Activation of these genes requires CysB, an LysR-
type autoregulatory protein (Hryniewicz and Kredich 1991).
Moreover, the cys operon consists of many genes required for
sulfur assimilation including enzymes catalyzing the conver-
sion of sulfate to sulfide, OAS synthesis, and its further con-
version to L-cysteine. The cys operon is regulated through the
feedback inhibition of OAS by cysteine along with some ac-
tivators (Ostrowski et al. 1989).

In cyanobacteria, genes encoding sulfate permease were
first identified in PCC 7942 in an analogous region of
S. typhimurium that contains genes crucial for their growth.
A map of this region shown in Fig. 4a indicated that the tran-
scripts of many genes were either undetectable or detected ata
very low level in sulfur-deficient cyanobacteria. An increase
in the accumulation of mRNA transcribed from these genes is
apparent only when the cells are deprived of sulfur. Moreover,
in the S. typhimurium DNA probe approach was utilized to
determine genes involved in transportation; the following
genes were determined to be involved: cysA, cys T, cysW,
and sbpA. Furthermore, to prove the system involved in the
sulfate transport, each of these genes was inactivated through
mutagenesis, and the results suggested that if genes encoding
integral membrane components and nucleotide-binding pro-
tein were inactivated, then the mutated cells could no longer
transport sulfate; in this case, cells would require an alternate

(A)

sulfur source for their growth. By contrast, if sbpA was
inactivated, then mutated cells grew if sulfate was supplied
as the sole source and did not show a marked increase in the
transcript of permease genes exhibited by sulfur-deprived wild
type cells, suggesting that Sbp is not required for growth
(Green et al. 1989; Laudenbach et al. 1991; Laudenbach and
Grossman 1991).

The first gene present in the restriction map of a region
characterized which encodes a nucleotide-binding protein
i.e., CysA of a periplasmic permease system. The transporter
subunits namely cysA, cysT, cysW, and sbpA, are clustered on
the pANL plasmid along with cysR (Table 2). This sulfate
permease is likely to be the only sulfate transporter in PCC
7942 because the deletion of cysA, cysT, and cysW resulted in
no observable growth when sulfate was supplied as the sole
sulfur source. Schmidt and Jager (1992) described the order of
genes in PCC 7942: rhdA cysV cysU sbpB cysW cysR orfdl
cysT sbpA cysA. The transcription of cysA and sbpA occurs in
the opposite direction. Genes encoding sulfate permease have
different arrangements among cyanobacteria (Aguilar-Barajas
et al. 2011). Sulfate uptake is a light- and pH-dependent pro-
cess (Utkilen et al. 1976; Jeanjean and Broda 1977). Ritchie
(1996) suggested the presence of ATP-dependent active sul-
fate transport system rather than symport or antiport (Fig. 4b).

The influx of sulfate in the prokaryotes is carried out by
specific ABC-type transporters (Fig. 4b) consisting of a peri-
plasmic substrate-binding protein, a pair of intrinsic channel
proteins, and an ATP-binding cytoplasmic protein
(Laudenbach and Grossman 1991; Laudenbach et al. 1991).
These proteins have conserved domain(s) among

X P A N V S H Sp V C C P MM T V E N S
t t t t t t t t t t iorfé i t t t t t |
rhdA cysV cysU sbpB cysW  cysR cysT sbpA cysA

(B)

H*/SO2*
transporter

Fig. 4 a Restriction map of sulfate operon of Synechococcus PCC 7942
genome. The restriction sites on the map are abbreviated as follows: X,
Xbal, P Pstl; A, Scal; N, Nael; V, EcoRV; S, Sall; H, HindIII; Sp, Sphl; C,
Clal; M, Smal; T, Stul; B, Bglll. The positions of open reading frames,
their gene designations, and the direction in which they are transcribed
(indicated with arrows) are given below in the map. The operon encodes
for two periplasmic sulfate binding proteins namely SbpA and SbpB, and
four cytoplasmic membrane proteins (CysT, CysU, CysV, and CysW),

Na*/SO,* transporter

S0
S0 /

ATP

ABC-type transporter
complex

and membrane associated ATP-binding proteins CysA. In addition, the
cysR gene encodes a protein belonging to crp family of prokaryotic the
transcriptional regulators; ridA encodes a protein that exhibits similarity
rohdanese; and orfd/ encodes for unknown protein (adapted from
Laudenbach et al. 1991). b Transporters involved in sulfur metabolism.
The name of the transporters indicated below the suggested sulfate trans-
port mechanisms (adapted from Laudenbach et al. 1991)
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Table 2 (continued)

Synechococcus PCC 7942

Bacillus subtilis

E. coli

Functions

Genes

Functions

Genes

Functions

Genes

Arylsulfonate ABC permease (ATP-binding site)

ssuB

tauA  Taurine periplasmic binding protein

Arylsulfonate ABC permease (membrane protein)

tauB  Taurine ABC permease (ATP binding site) ssuC

Arylsulfonate binding lipoprotein

SSUA

tauC  Taurine permease (membrane protein)

No similarity

Arylsufatase

asl

cyanobacteria and other bacteria (Table 3). One of the com-
ponents localized in the periplasmic space is a polypeptide
that is involved in the binding of the substrate called as
substrate-binding protein (Sbp) that has two globular domains
separated by a flexible hinge. When sulfate binds to globular
domains, the conformation of Sbp changes leading to the
bending of the hinge, thus resulting in the trapping of sulfate.
Subsequently, a protein—ligand complex interacts with hydro-
phobic proteins such as CysT and CysW, which span over the
cytoplasmic membrane and form a pore. Furthermore, this
interaction causes the release of sulfate, which traverses pores
and enters into a cell against a concentration gradient through
ATP hydrolysis. However, preliminary analysis suggested
that CysA constitute sulfate permease may also transport thio-
sulfate. A mutational analysis of cysA was performed to con-
firm proposed the gene function, and the finding suggested
that cysA is associated with thiosulfate transport. The thiosul-
fate transport system can be augmented by binding of thiosul-
fate to a specific protein such as Sbp and CysP in E. coli
(Hryniewicz and Kredich 1991). The sequence homology
analysis of E. coli genes to cysP in PCC 7942 suggested its
position as immediate downstream of cysW. The downstream
position of thiosulfate transport genes, designated rAdA, en-
codes a protein that shows similarity to rhodanese, which
cleaves the sulfane bond and transfers the thiol group to a
thiophilic acceptor molecule (Laudenbach et al. 1991).
These findings indicated that the function of 7AdA is crucial
for the survival of cyanobacteria during sulfur deficiency.

A sequence analysis of the sulfate/thiosulfate binding pro-
tein of E. coli K-12 showed similarities with the Sbp of
S. typhimurium (Pardee et al. 1966). In addition, in E. coli,
cysZ was identified as a crucial factor for sulfate influx (Parra
et al. 1983; Byrne et al. 1988). Sulfate uptake in green alga
C. reinhardtii commences through transporters present on the
membrane and then actively translocated in the chloroplast.
Chlamydomonas harbors two distinct sulfate transport sys-
tems, namely H*/SO,4>" co-transporters (SULTR), Na*/SO,>
~ transporters (SLT) (Fig. 4b) which are localized and function
at plasma membrane and chloroplast envelope (Melis and
Chen 2005), respectively. By contrast, sulfate influx in plants
occurs through proton/sulfate (H*/SO4>7) co-transporters
which utilize proton motive force (Lass and Ullrich-Eberius
1984; Smith et al. 1995a) suggested that Chlamydomonas
diverge from the plant lineage before the loss of Na*/S0,*
transporters (Pootakham et al. 2010). Structural analysis of co-
transporters revealed that they belong to the intrinsic solute
transporter family that contains 12 membrane-spanning do-
mains (Smith et al. 1995b). However, in Arabidopsis, sulfate
transporters encoded by 12—16 genes are classified into five
distinct subfamilies (SULTR1 to SULTRS) based on protein
sequence similarities (Takahashi et al. 1997; Takahashi 2010,
Takahashi et al. 2011). In A. thaliana, three high-affinity sul-
fate transporters, namely AtSULTRI;1, AtSULTR1;2, and
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AtSULTR1;3, have been identified through knockout analy-
sis; the functions of proteins are listed in the Table 4. These
high-affinity sulfate transporters that have a low K,,, value are
induced under sulfur limitation. Among them, AtSULTR1;1
and AtSULTR ;2 facilitates sulfate uptake in the root system,
whereas AtSULTR1;3 is expressed only in phloem, establish-
ing a source-sink relationship (Yoshimoto et al. 2007;
Berberon et al. 2008). Despite the high-affinity of sulfate
transporters, AtSULTR1;1 is expressed less in the roots com-
pared with AtSULTR1;2 which is expressed in the root epi-
dermis and plasma membrane of the root cortical cells.
AtSULTR1;2 serves as a major sulfate permease because its
mutant shows a considerable decrease in the uptake of sulfate
(El Kassi et al. 2007). Apart from these sulfate transporters,
several low-affinity sulfate transporters (AtSULTR2;1 and
AtSULTR2;2) are expressed in vascular cylinders
(Takahashi et al. 2012) and facilitate the vertical translocation
of sulfate from the root to shoot. AtSULTR2;1 mediates sul-
fate influx into the xylem parenchyma along with
AtSULTR3;5, which acts synergistically with AtSULTR2;1,
resulting in the enhanced translocation of sulfate to a larger
distance (Kataoka et al. 2004a, 2004b). The low-affinity sul-
fate transporter i.e., AtSULTR2;1 is expressed in the develop-
ing seeds (Awazuhara et al. 2005), whereas AtSULTR2;2 is
expressed and controls sulfate influx into the companion cells
(Takahashi et al. 2000). In additionally, two sub-families of
the SULTR4 transporter ie., AtSULTR4;1 and AtSULTR4;2
are responsible for the remobilization of vacuolar sulfate to the
cytosol (Kataoka et al. 2004b). Moreover, SULTRS lacks both
N- and C-terminal hydrophilic domains common to other
transporter sub-families that have the STAS region and per-
haps perform regulatory function. This transporter subfamily
also contains a molybdenum transporter, namely MOT1
(SULTRS;2) (Tomatsu et al. 2007). However, knowledge re-
garding plastidic sulfate transporters in plants is limited, al-
though studies have reported that plastidic sulfate transporters
in green algae C. reinhardtii belong to ABC-type transporters
(Lindberg and Melis 2008), reflecting the theory of endosym-
biotic association.

Reduction of sulfate

Sulfate reduction commences with its uptake and ultimately
leads to the biosynthesis of sulfur-containing metabolites
(Fig. 5). Although the sulfate assimilation process is similar,
the cellular localization process differs between prokaryotes
and eukaryotes. Prokaryotes assimilate sulfate in the cytosol,
whereas eukaryotic phototrophs assimilate sulfate in the
membrane-bound organelles (plastid and mitochondria) and
cytosol. Moreover, sulfate assimilation in C. reinhardtii is
performed in the chloroplast. Similar to other bacteria and
cyanobacteria, higher plants also possess all enzymes in-
volved in sulfate acquisition, namely ATPS, APSK, APS

reductase (APR), PAPS sulfotransferase, SR, and OAS-TL
indicating that assimilation is likely to be conserved among
these life forms (Table 4).

Genes involved in sulfur assimilation are well described in
other bacteria (Table 2). These genes are harbored on the
chromosomes in the order cysCNDHIJ in E. coli K-12, where-
as they are arranged in a different order i.e., cysJIHDC in
S. typhimurium. Expression of these genes is controlled by
CysB in E. coli, which is in contrast to cyanobacterial sulfur
assimilation where genes involved in sulfur metabolism are
controlled by the regulatory protein, CysR that belongs to the
Crp superfamily of transcriptional regulator (Nicholson et al.
1995; Nicholson and Laudenbach 1995).

The standard reduction potential for the conversion of sul-
fate to sulfide is =454 mV, which is higher and beyond the
range of biological reduction potential (Thauer et al. 1977). In
the first step, sulfate must be activated before it can be re-
duced. In the bacterial system, ATPS acquires a tetrameric
form, which consists of two regulatory and two catalytic do-
mains. The regulatory domain, cysN (62 kDa) exhibits
GTPase activity and hydrolyzes one GTP molecule for each
APS formed, whereas the catalytic domain, cysD (27 kDa) is
involved in a thermodynamically unfavorable reaction. The
activation of sulfate catalyzed by ATPS was found to be
inhibited by AMP, ADP, and inorganic phosphate in
A. cylindrica, A. platensis, and Synechococcus 6301
(Schmidt 1977b, 1979; Menon and Varma 1978). Patron
et al. (2008) performed a phylogenetic analysis of ATPS and
observed that cyanobacteria and viridiplantae are not mono-
phyletic. The tree depicted that the lateral gene transfer of
ATPS among cyanobacteria rather than the cyanobacterial
origin of enzymes in plastids plays a key role in the redox
regulation (Prioretti et al. 2014).

APS, a product formed by ATPS, serves as a critical met-
abolic branch point channeling sulfur to cysteine (primary
pathway) or PAPS (secondary pathway), where PAPS further
serves as a substrate for the sulfation of metabolites (Giordano
and Raven 2014). Assimilatory reduction of sulfur occurs ei-
ther through the APS or PAPS pathway depending on the
organisms. The findings of phylogenetic analysis indicated
that in Plectonema strain 73,110, APS reductase lies in the
same branch as plant APS reductases (implying that plants
obtained genes for APS reductase from a chloroplast ancestor;
cyanobacterial genes were then allocated to the plant nuclear
genome through endosymbiotic gene transfer), but not as
PAPS reductases from other cyanobacteria (Synechococcus
and Synechocystis). Horizontal gene transfer plays a crucial
role in the distribution of APS and PAPS. Furthermore, the
APS-dependent pathway is an ancestral pathway because APS
reductase was present in the ancient sulfate-reducing microbes
which require one less ATP in the APS-dependent pathway
than in the PAPS-dependent pathway (Kopriva et al. 2002).
The primary pathway mainly occurs in PCC 7942, whereas
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Fig. 5 A schematic representation of the involvement of sulfur in the biosynthesis of sulfur-containing metabolites. Sulfur-containing metabolites are
directly involved as constituents or indirectly as cofactors, prosthetic groups, methyl group donor, or generally as integral part of proteins and enzymes

the PAPS pathway occurs in all cyanobacteria (Tsang and
Schiff 1975). Patron et al. (2008) performed a chemical anal-
ysis and observed APS reduction in Symploca, Nodularia,
Leptolyngbya, and Chroococcus. And also suggested that
APR phylogeny supports the theory of endosymbiotic origin.
APS is reduced to sulfite and subsequently to sulfide by
APSR and SR, respectively. Conversion of sulfite to sulfide
requires six electrons from NADPH in non-photosynthetic
bacteria. However, in cyanobacteria, SR activity was observed
in the presence of reduced ferredoxin, suggesting similar cou-
pling of SiR and reducing power with green algae and plants
(Schmidt 1979). SR consists of «- and 3-subunits encoded by
cysJ and cysI with the og34 structure, respectively (Siegel and
Davis 1974). The -subunit contains four FAD, four FMN,
and NADPH-cytochrome ¢ reductase activity, whereas the 3-
subunit consists of four Fe,S, clusters and one siroheme group
(Siegel and Davis 1974; Siegel et al. 1973; Siegel et al. 1974).
Within the process, electron flow from NADPH to sulfite in
the following sequential manner: NADPH — FAD —
FMN — Fe4S4 — siroheme — sulfite (Siegel et al. 1974).

Cyanobacteria shares probable homology in cysteine
biosynthesis with other life forms

The assimilatory pathway proceeds toward cysteine biosyn-
thesis from OAS and sulfide, catalyzed by OAS-TL. The pro-
duction of OAS from serine and acetyl-CoA is catalyzed by
SAT and regulated by cysteine through feedback inhibition. In

E. coli, SAT is encoded by cysE, whereas in PCC 7942, SAT
is encoded by srpH harbored on the pANL plasmid
(Nicholson et al. 1995). Furthermore, Kredich and his co-
workers reported that cysK and cysM encoded OAS-TL A
and OAS-TL B, respectively. By contrast, s7pG harbored on
the plasmid of PCC 7942 encodes a single form of OAS-TL
(Nicholson and Laudenbach 1995). In 1981, Diessner
and Schmidt (1981) proposed the presence of two distinct
cysteine synthases, cysteine synthase I and II, in
Synechococcus 6301 that are involved in the formation of
cysteine, like cysteine synthase complex (CSC) in E. coli.

Pathways downstream of cysteine: sulfur-containing
metabolites

Cysteine is the first molecule involved in the synthesis of sulfur-
containing metabolites such as methionine (Met), glutathione
(GSH), thioredoxin (Trx), and glutaredoxin (Grx) (Fig. 5). The
thiol group of cysteine forms a disulfide bridge between two
cysteine residues and play a role in maintaining the tertiary
structure of the proteins. Similar to cysteine, Met is involved
in translational processes. In addition, Met acts as a universal
methylating agent for nucleic acids, proteins, and several other
metabolites through SAM formation. GSH, a tripeptide com-
posed of cysteine, glycine, and glutamic acid that has a thiol
group of cysteine residue as an active group, is synthesized
through the sequential action of two ATP-requiring enzymes.
First, y-glutamylcysteine synthetase encoded by gshA forms y-
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glutamylcysteine to which glutathione synthase (encoded by
gshB) add glycine and produce GSH. Furthermore, GSH is
catabolized by y-glutamyl transpeptidase (gg?), releasing
cysteinyl-glycine dipeptide and transferring the glutamyl part
to either water, thereby regenerating glutamate or amino acids
producing glutamate-containing dipeptides (Narainsamy et al.
2016). GSH serves as a redox buffer and stabilizes cellular
homeostasis based on the interconversion between reduced
and oxidized forms.

Trx comprise a crucial antioxidant protein family. Trx was
recently identified in cyanobacteria (Gleason 1994) and ex-
hibits two distinct types: T1, thioredoxins similar to bacterial
thioredoxins (in terms of structure and redox activity). The
other protein (T2) is relatively unstable and appears to be
unique among cyanobacteria. Several metabolic pathways
such as carbon dioxide fixation, carbon catabolism, and nitro-
gen metabolism are redox regulated through Trx. Similar to
Trx, another redox-regulated protein, Grx, also has two differ-
ent types: class 1 and class 2. Class 1 forms a classical dithiol
group and class 2 contains monothiols based on the number of
cysteine residues present in their active site (Couturier et al.
2009, 2011). Grxs play crucial role in the various cellular
processes such as photosynthesis, respiration, iron homeosta-
sis, sulfur and nitrogen assimilation, chlorophyll catabolism,
apoptosis, and the survival, growth, and fitness of the organ-
ism under fluctuating environment (Rouhier et al. 2010; Li
and Outten 2012).

Phytochelatin abbreviated as PC (a cysteine-rich peptide), a
polymer of y-glutamylcysteine with the terminal glycine res-
idue found in all the organisms, is synthesized non-
ribosomally by PC synthase (PCS). Synthesis of PC is a
two-step process. The first step involves the cleavage of gly-
cine from GSH and the generation of y-Glu-Cys. In the sec-
ond step, the formed y-Glu-Cys unit is transferred to an ac-
ceptor molecule that is either GSH or an oligomeric PC pep-
tide to generate PC,,, | (Grill et al. 1989). PC has been as-
cribed as a chelator compound that detoxifies heavy metals
(Howe and Merchant 1992) and is involved in metal tolerance
and xenobiotic metabolism (Gekeler et al. 1988).

Sulfur is needed for the production of redox active Fe—S
centres. The Fe—S cluster is the most ancient and functionally
versatile prosthetic group. In brief, S and Fe in metabolism
meet at the scaffold protein, which provides a molecular plat-
form to form the Fe-S cluster. Three biogenesis machineries
for Fe—S biosynthesis have been proposed in prokaryotes: NIF
system specialized in the assembly of enzyme complexes such
as nitrogenase; ISC system responsible for the generation of
the majority of cellular Fe—S proteins, and the SUF system, an
independent assemblage used preferentially under oxidative
and Fe stress (Zheng et al. 1998; Patzer and Hantke 1999).
Fe-S clusters have a wide range of redox potential (=500 to
+300 mV) and are thus involved in transfer of electron (Meyer
2008) in the biological processes.

@ Springer

Despite conventional phospholipid, sulfur-containing lipid
(sulfolipid) is found in the most of photosynthetic and few
non-photosynthetic organisms (Harwood and Okanenko
2003). Sulfolipid i.e., sulfoquinovosyldiacylglycerol
(SQDG) is a glycoglycerolipid characterized by 6-deoxy-6-
sulfoglucose head group at the sn-3 position of the glycerol
backbone of diacylglycerol (Sato 2004). Synthesis of SQDG
requires two enzymes: (i) UDP-SQ synthase responsible for
the biosynthesis of the donor head group and (ii) SQDG syn-
thase that catalyzes the final assembly of sulfolipid. Sulfolipid
found in the thylakoid membrane have been reported in
cyanobacteria except Gloeobacter violaceous which lack thy-
lakoid and perform “thylakoid reactions” in its cell membrane
(Selstam and Campbell 1996; Sato et al. 2017). In addition,
SQDG helps in maintaining the structural and functional in-
tegrity of the membrane by stabilizing the pigment complex
(Barber and Gounaris 1986; Sato et al. 1995; Sato et al. 2003a,
b ; Sato et al. 2004).

Regulation of sulfur metabolism

Regulation of sulfur metabolism is based on its availability
and demand, which are regulated at multiple levels to ensure
intracellular homeostasis (Saito 2004). In prokaryotes, sulfur
uptake is commenced by ABC-type transporters encoded by
set of genes that are localized on cys operon (Table 4).
However, gene encoding transporters, namely H/SO,> co-
transporters and ABC-type transporters, have been identified
in Synechocystis 6803 (Kohn and Schumann 1993; Kaneko
et al. 1996), thus raising questions regarding the coordination
of functions between these two transporters. Moreover, the
plants utilize H*/SO,4>~ co-transporter to acquire sulfate.
Green et al. (1989) laid down the foundation to understand
the regulation of sulfur metabolism in cyanobacteria; in addi-
tion, they identified ABC-type transporters that act as sulfate
permease in Synechococcus 6301 and anticipated an elevated
level of sulfate transport upon sufur starvation. Permease
activity increases with an increase in the V., value,
whereas the value of K., remains constant. Furthermore,
Laudenbach et al. (1991) described that the accumulation of
transcripts encoding sulfate permease is responsible for in-
creased V. value. A 33 kDa polypeptide, rhodanese, was
found to be a crucial factor and accumulate under sulfur defi-
ciency. This protein encoded by rdhA harbored on the cys
regulon shows thiosulfate reductase activity and is involved
in thiol transfer from thiosulfate to an acceptor molecule.
Moreover, further characterization of genes encoding sulfate
permease in PCC 7942 showed that cysA, cysT, and cysW
mutants failed to uptake sulfate under sulfur starvation, thus
conferring their role. Cyanobacteria possess strong potential
orthologs of cysT in viridiplantae and are considered as an
ancestor (Lyubetsky et al. 2013). Laudenbach andGrossman
(1991) mutated sbpA and cysR genes and indicated that shpA
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and cysR function as a sulfate binding protein and regulator,
respectively. CysR shows structural similarities to NtcA
and BifA, allows its DNA binding, and further regulates
the transcription of 36 kDa periplasmic protein (i.e., sulfate
permease) (Nicholson and Laudenbach 1995). CysR con-
tains SPXX motif located at its N-terminal domain
(Churchill and Suzuki 1989; Suzuki et al. 1993) that is
involved in DNA binding at the AT-rich regions and fur-
ther guide sulfur metabolism. Insertional inactivation of
cysR prevents an increment in the V., value of sulfate
permease upon sulfur deprivation compared with its wild
type (Laudenbach and Grossman 1991).

Similar to cyanobacteria, sulfate uptake increases in other
bacteria because of the accumulation of transporters transcript
under sulfur limitation. Transporters in E. coli are encoded by
cysPUWAM operon and are homologous to cyanobacterial
cysATW operon (Table 4). Regulation of sulfur metabolism
in E. coli is achieved through two levels: the first level in-
volves, inhibition of SAT encoded by cysE, whereas the sec-
ond level involves the allosteric inhibition of CysB through
sulfide and thiosulfate (Hryniewicz and Kredich 1991;
Kredich 1966). CysB function as an analog to CysR for the
derepression of cys regulon upon sulfur starvation. CysB acts
either positively or negatively depending on presence or ab-
sence of N-acetyl serine (NAS) (Kredich 1966; Parry and
Clark 2002). Transcriptional studies have revealed that the
DNA binding site of CysB lies upstream of promoter —35
region, and the interaction of CysB to major activator sites
allows stable conformation and recruitment of RNA polymer-
ase, leading to the transcription of genes (Guédon and Martin-
Verstraete 2006). Although CysB acts as a positive regulator,
it represses its own transcription by blocking the binding site
of RNA polymerase due to the overlapping of CysB with the
promoter of'its own gene (Kredich 1996). Such autoregulation
of CysR is not yet reported in cyanobacteria. The three-
dimensional structures of regulators generated using I-
TASSER server (https://zhanglab.ccmb.med.umich.edu/I-
TASSER/) are shown in Fig. 6, and the quality of models
were evaluated using the RAMPAGE plot (http://mordred.
bioc.cam.ac.uk/rapper/rampage.php). Furthermore, String
(http://string-db.org/) network analysis was performed to
understand the spectrum of protein—protein interactions for
CysB and CysR that act as query protein (Fig. 7). CysB inter-
acts with different proteins such as RpoA, CysE, and TopA,
possibly exhibiting DNA-dependent RNA polymerase activi-
ty; catalyzes the transcription of DNA into RNA; participates
in cysteine biosynthesis, and exhibits DNA topoisomerase
activity. Several other proteins, namely CysD, CysH, CyslJ,
TauA, CysP, and Cysl, involved in sulfur assimilation also
interact with CysB, indicating that all possible interactive part-
ners are regulated by CysB. However, CysR interacts with
CysW and SbpA, which are involved in the sulfate transport
system. In addition, CysR interacts with other proteins such as

CysA, SrpH, CysE, SrpG, and CysT, suggesting the regulato-
ry role played by CysR.

Similar to inorganic sulfur compounds, the assimilation of
aliphatic sulfur (i.e., sulfonate and taurine) is regulated by
CysB interacting with ssu and tau operon, respectively. The
tauABCD and ssuEADCB operons of E. coli are induced in the
absence of preferred sulfur sources such as inorganic sulfate,
thiosulfate, and cysteine, whereas their expression is sup-
pressed in the presence of these sources. Such phenomenon
is termed sulfate starvation response, which are controlled by
two transcriptional regulators, namely CysB and Cbl. No di-
rect evidence is related to the binding of CysB to the ssu
promoter, although it exerts a direct effect on fau operon
in vivo (Van Der Ploeg et al. 2001). Furthermore, Iwanicka-
Nowicka and Hryniewicz (1995) reported a second regulator,
Cbl, regulated by CysB. In 2002, Bykowski and his col-
leagues reported that the direct interaction of Cbl with the
—35 promoter region of both operons and activate gene
transcription (Bykowski et al. 2002). By contrast, negative
regulation of APS by Cbl is reported by the same research
group. However, such a descriptive illustration for the regula-
tion of sulfonate and taurine assimilation are not known in
cyanobacteria. Moreover, knowledge regarding sulfonate
and taurine assimilation in cyanobacteria is majorly confined
to the work of Biedlingmaier and Schmidt (1987), who
depicted that the growth of cyanobacteria depends on ethane
sulfonate and taurine as the source of sulfur. Under sulfur
limitation, A. variabilis uses ethane sulfonate and taurine,
whereas no such apparent uptake was detected in
Synechococcus 6301, indicating that some cyanobacteria pos-
sess sulfonic acid permease and thus utilize sulfonate and
taurine as sulfur source. Recently, genome analysis of
Vulcanococcus limneticus indicated that cyanobacteria utilize
alkane sulfonate through two alkanesulfonate
monooxygenases and six sulfonate ABC transporters
(TauABCD and ssuEADCB) (Di Cesare et al. 2018).

Symbiotic cyanobacteria such as Nostoc, showed enriched
functions for the transport and metabolism of organic sulfur
compounds. Recently, Warshan et al. (2018) performed tran-
script profiling to identify gene families present in Nostoc and
observed that domains involved in sulfur metabolism include
putative aliphatic sulfonate transporters, substrate binding pro-
teins (alkanesulfonate monooxygenase), and a putative aliphat-
ic sulfonate monooxygenase. Up-regulation of these proteins
during physical contact in the symbiont-component strains in-
dicated that aliphatic sulfonate act as “currency” and are in-
volved in symbiosis, reflecting that feathermoss probably trans-
fers aliphatic sulfonate to the cyanobiont in exchange for fixed
nitrogen (Warshan et al. 2017; Warshan et al. 2018).

The regulatory mechanism of C. reinhardtii is distinct from
that of cyanobacteria because three genes, namely sacl, sac2,
and sac3, are involved in the sulfur assilimation. Mutational
analysis of these genes showed aberrant arylsulfatase activity

@ Springer


https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
http://mordred.bioc.cam.ac.uk/rapper/rampage.php
http://mordred.bioc.cam.ac.uk/rapper/rampage.php
http://string-db.org/

2824

Biologia (2021) 76:2811-2835

A

Fig. 6 3D structure of the regulatory proteins: a CysR (Synechococcus
PCC 7942) and b CysB (E. coli) generated by I-TASSER server. The
models were further refined by two-step atomic-level energy minimiza-
tion based on Cx traces using ModRefiner (http://zhanglab.ccmb.med.
umich.edu/ModRefiner/). These proteins consist of « helix (red), 3-
strand (yellow), and random coil/loops (cyan). The secondary structure
analysis revealed that CysR and CysB have C-score value of —0.08 and —
0.04, respectively. Ramachandran plot were used for the validation of the
predicted models by measuring the backbone dihedral phi (¢) and psi (V)
angles. Quality of the generated models were evaluated by RAMPAGE

in the mutant compared with its wild type. SACI has been
characterized and appeared to play a crucial role in the regu-
lation of sulfur assimilation because its mutation blocks APSR
transcription (Davies et al. 1994, 1996; Wykoff et al. 1998).
Nevertheless, SAC1 controls the distribution of resources un-
der sulfur limitation by sensing the intracellular sulfur status.
Moreover, sacl controls cell wall reorganization by inducing
the expression of proteins upon sulfur deficiency.
Furthermore, SAC2, a second regulator, acted at translational
and post-translational levels (Shibagaki and Grossman 2008)
in a SAC2 mutant and showed the accumulation of APSR
transcript with no significant increase in its protein level
(Ravina et al. 2002). However, SAC3 is considered a putative
SFN1-like serine-threonine kinase; however, it does not exert
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(B)

server (http://mordred.bioc.cam.ac.ik/rapper/rampage.php) showed 97.
1% (198 amino acid residues) lies in favored region, 2% (4 amino acid
residues) in allowed region, and 1% (2 amino acid residues) lies in the
outlier region for CysR protein; wheras 93.2% (300 amino acid residues)
lies in favored region, 5.6% (18 amino acid residues) in allowed region,
and 1.2% (4 amino acid residues) lies in the outlier region for CysB
protein indicating stability of the models. Functional interactive
networks of CysB (A) and CysR (B) with other proteins using STRING
databse

any significant effect on the transcription of genes involved in
sulfur assimilation (Davies et al. 1999).

In recent years, increasing attention has been focused on
plants for examining molecular mechanisms underlying sulfur
metabolism. Metabolic products of sulfur metabolism, such as
GSH and OAS, are considered which play central role in the
signaling pathway and elicit several regulatory responses in-
cluding the expression of most of the genes encoding sulfate
transporters and sulfur assimilation enzymes. OAS does not
perform a parallel role as NAS in prokaryotes (Hopkins et al.
2005; Davidian and Kopriva 2010). Moreover, no correlation
has been demonstrated between the transcript levels of high-
affinity sulfate transporters (AtSULTR1;1 and AtSULTR1;2)
with intracellular OAS concentration in A. thaliana (Rouhier
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Fig. 7 An integrated view of probable regulatory mechanism of sulfur
assimilation in cyanobacteria, showing activation of CysR under sulfur
limited condition; CysR induced accumulation of transporter proteins
transcripts under low intracellular sulfur concentration. The thickness of
transcript shows its accumulation (shown in bold). Solid arrow indicates
the known mechanism prevails in the cyanobacteria whereas dotted arrow
indicated possible mechanisms that may occur. The green zone highlights
the regulation of sulfur metabolism which is known in plant and bacteria
but not reported in cyanobacteria, though, OAS-TL and SAT perform
similar catalysis in cyanobacteria. Regulation of sulfur metabolism in

et al. 2010). Despite showing a similar response under sulfur
limitation, regulatory mechanism of plants is more complex,
consisting of several regulators coordinating together at mul-
tiple levels, unlike cys regulon-mediated regulation as ob-
served in other bacteria and cyanobacteria. Maruyama-
Nakashita et al. (2005) described SURE as a cis-acting ele-
ment with 16 bp sequences in A. thaliana. Maruyama-
Nakashita et al. found that the gene of AtSULTR1;1 harbored
SURE element in its promoter. However, Howarth et al.
(2009) depicted another cis-acting element (i.e., sdi-1) occu-
pying a similar position in the promoter as the SURE element.
Moreover, Maruyama-Nakashita et al. (2005) reported that
SLIM, another transcriptional regulator, induces the genes of
AtSULTR1;1, AtSULTR1;2, and AtSULTR4;2 upon sulfur
limitation. The inducibility of AtSULTR1;1 is higher than that
of AtSULTR1;2 because AtSULTR1:;2 lacks the SURE ele-
ment in its promoter, suggesting that SURE as an element
induces high-affinity sulfate transporters under sulfur stress
condition.

soF SO sop SO

cyanobacteria triggered by deprivation of sulfur inside the cell and sense
by NbIS-NbIR. NbIS-NbIR is homologues of histidine kinase sensors and
response regulators of two component signal transduction pathway.
Dotted arrow indicates as yet unknown response regulatory pathway,
whereas yellow and green colors indicated the pool of OAS, regulatory
process inside the plant and bacteria. NblS, sensor kinase; NbIR, response
regulator; cysA, cysT, cysW, and sbpA encodesATP binding domain;
transmembrane periplasmic binding protein, transmembrane periplasmic
binding protein; sulfate binding protein, respectively, ** shows increased
accumulation

In plants, sulfur assimilation is dependent on APSR expres-
sion, which acts as a link between sulfur and nitrogen
metabolism. Reduced sulfur compounds such as hydrogen
sulfide, cysteine, and GSH inhibit APSR, whereas sulfur
limitation restores APSR. In addition, Brunold and Suter
(1984) observed that nitrogen starvation represses APSR,
whereas ammonium and amino acid induces it. Kopriva and
Koprivova (2004) described similar inducibility of APSR un-
der sulfur and nitrogen stress condition. Other genes such as
SAT and OAS-TL are strongly regulated by protein—protein
interactions forming CSC which are feedback inhibited by
OAS through the dissociating enzyme complex
(Riemenschneider et al. 2005). Sulfide strengthens the associ-
ation of both SAT and OAS-TL, thus suggesting that cysteine
biosynthesis occurs only in the presence of adequate sulfide.
This substrate-level regulation of CSC was observed in E. coli
(Kredich et al. 1969). However, in cyanobacteria, CSC was
not reported, despite the presence of SAT and OAS-TL, indi-
cating that substrate-level regulation or protein—protein
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interactions between these two proteins suggest the presence
of a unique regulatory pathway. Figure 7 shows an integrated
view of sulfur assimilation in cyanobacteria. Although we
have summarized the role of CysR, there are still unanswered
questions concerning their elaborative mechanism of action
that need further investigations. Little is known regarding
the functional role of CysR. Because CysR acts as a key reg-
ulator of sulfur homeostasis by controlling sulfur acquisition,
elucidation of other targets should provide novel insights into
sulfur-dependent biochemical processes.

Metabolic adjustments upon sulfur stress

Schwarz and Forchhammer (2005) proposed two forms of
state response upon nutrient limitation: general and specific.
Rapid anabolism and arrested catabolism are considered as a
general response, whereas specific response include modula-
tion of metabolic circuits. These responses are either short- or
long-term depending on the nutritional status (Hirai and Saito
2004). Likewise, sulfur deficiency elicits both short- and long-
term as well as general and specific responses based on the
magnitude of deficiency. Transcriptome profiling in
A. platensis upon sulfur starvation showed that genes involved
in the Fe—S cluster, amino acid biosynthesis, protein folding,
translational machineries, and ribosomal assembly were
down-regulated, whereas genes related to carbohydrate me-
tabolism, phosphor-relay sensor kinase, membrane proteins,
and DNA repair mechanisms were up-regulated (Kumaresan
etal. 2017). In addition, the corresponding down-regulation of
chaperon molecules, adenylylsulfate kinase, tyrosinephenol
lyase, aspartate aminotransferase, adenosylhomocysteinase,
and phosphate acetyl transferase were observed, suggesting
changes in different cellular metabolism upon sulfur limita-
tion. Some of the pronounced effects of sulfur deprivation on
the various metabolic processes are as follows:

Effect of sulfur deprivation on the growth,
ultrastructures, and cellular inclusions

A reduction in sulfur not only reduces cyanobacterial growth
(Kharwar et al. 2021) but also alters the cellular ultrastructure
(Allen 1984; Arifio et al. 1995). Specific responses upon sul-
fur deficiency in cyanobacteria include the accumulation of
glycogen and polyphosphate bodies mimicking the responses
of nitrogen limitation (Lawry and Simon 1982). Likewise,
deposition of phosphate granules was observed in few bacteria
and red alga (Callow and Evans 1979). Moreover,
C. reinhardtii synthesizes polyphosphate granules under sul-
fur limitation (Ruiz et al. 2001). Deposition of condensed
phosphate in Synechococcus prevent nutrient imbalance, and
the concurrent loss of orthophosphate from growth media re-
flects phosphorus uptake by cyanobacteria (Lawry and Jensen
1979). Additionally, polyphosphate was significantly
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increased in Synechococcus leopoliensis upon sulfur limita-
tion (Jensen and Rachlin 1984). A similar response shown
by Klebsiella aerogenes (Enterobacter aerogenes) indicated
the reciprocity of uptake and assimilation which exist between
orthophosphate and sulfate.

Similar to many photosynthetic organisms, cyanobacteria
produce polyhydroxybutyrate (PHB), a stored product (Hai
et al. 2001). Granules of polyphosphate and lipid bodies con-
taining (-hydroxybutyrate have been reported in
cyanobacteria with photoautotrophic PHB production
reaching less than 10% of dry cell weight (Bhati et al. 2010).
In Aulosira fertilissima, the PHB content increased by 8.7% of
dry cell weight upon sulfur deprivation (Samantaray and
Mallick 2015), whereas Gloeothece PCC 6909 accumulated
sulfate in its sheath during sulfur deficiency (Giinal et al.
2019). A study reported concomitant repression of total cellu-
lar proteins and up-regulation of transcript levels and/or trans-
lated proteins involved in the biosynthesis of PHB, namely
phaA-C and phaFE for class 11l PHB synthase upon sulfur
starvation (Hirai et al. 2019). An ultra-structural assessment
of sulfur-deficient and -replete cells of cyanobacteria revealed
morphological alterations such as structure-less sheath; cell
wall thickening; and accumulation of cyanophycin, PHB,
polyphosphate, and glycogen granules alongwith prominent
reduction and/or disintegration of the thylakoid membrane.
When PCC 7942 was grown in the presence of sulfate, 3—4
prominent concentric rings of the thylakoid membrane were
produced, whereas the membrane was reduced to a single
layer in sulfur-starved cells.

Under prolonged sulfur limitation, all vegetative cells
eventually differentiated into akinetes in Nostoc ANTH
(Kyndiah and Rai 2006), demonstrating sulfur limitation as a
better circumstance to trigger akinete formation. In addition,
reduction in cell size and subsequent programmed cell death
of Anabaena 7120 were observed upon sulfur limitation
(Kharwar and Mishra 2020).

Sulfur limitation alters photosynthesis and fluxes of
central carbon metabolism

The optimum availability of sulfur is a pre-requisite for
photosynthesis because the process displays a high de-
mand for sulfur compounds; therefore, sulfur limitation
exerts inhibitory effects on the process. Sulfur deprivation
leads to the degradation of pigment displaying chlorosis/
bleaching of the cells (Collier and Grossman 1992, 1994;
Davies and Grossman 1998). Changes in the color of
cyanobacteria from blue—green to yellow occur as a conse-
quence of pigment degradation and cessation of new pig-
ment biosynthesis (Bryant and Liu 2013). Plasticity and
restructuring of phycobilisome are evident upon sulfur lim-
itation (Schwarz and Grossman 1998; Richaud et al. 2001)
largely due to phycobiliproteins (PBP) degradation and
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repressed transcript synthesis. A reduction in PBPs possi-
bly reduces light harvesting capacity by narrowing PAR
absorption (Schmidt et al. 1982). However, an alternative
adaptive mechanism was observed in Fremeyella
diplosiphon, where low sulfur-containing PBPs synthe-
sized under sulfur limitation (Gutu et al. 2011).

Sulfur starvation damage the photosynthetic reaction cen-
ter. The biosynthesis of D1 protein and PSII repair process
was found to be ceased not only in Anabaena 7120 and PCC
7942 but also in green alage C. reinhartii (Vasilikiotis and
Melis 1994; Wykoff et al. 1998; Melis 1999; Zhang et al.
2002; Zhang et al. 2004; Kharwar and Mishra 2020).
Moreover, rbcL encoding the Rubisco large subunit was
down-regulated (Kharwar and Mishra 2020). Furthermore,
decreased transcription of cytochrome b6/f and ATP synthase
accounts for decreased photosynthetic activity (Zhang et al.
2008). Thus, sulfur deficiency reduces the maximum photo-
synthetic efficiency (P.x), but in Gloeothece, the photosyn-
thetic efficiency (o) was less affected (Ortega-Calvo and Stal
1994). The decreased rate of photosynthetic electron transport
chain resulted in the reduction of ATP and NADPH, thus
affecting carbon dioxide fixation (Giordano et al 2000,
Giordano et al. 2005, 2008, 2013). However, no significant
effect on the glycogen content was observed in Synechocystis
PCC 6803 (Monshupanee and Incharoensakdi 2016).
Moreever, long-term sulfur deficiency causes significant per-
turbation in the gene expressions and metabolites of the
Calvin cycle, leading to lower photosynthate assimilation
(Lindblad 1999; Nikiforova et al. 2003; Hoefgen and
Nikiforova 2008).

Similar to photosynthesis, the effect of sulfur limitation
on the respiration was evident because of alterations in
gene expressions involved in the TCA cycle and glycoly-
sis. In the marine microalgae, Emiliania huxleyi, sulfur
deficiency resulted in the up- or down-regulation of the
transcripts of succinyl CoA synthetase, succinate dehydro-
genase, and citrate synthase (Bochenek et al. 2013).
Moreover, Zhang et al. (2008) reported the down-
regulation of ccbA, which encodes fructose-1,6-
bisphosphate aldolase, causes glycolysis impairment in
Synechocystis 6803 upon sulfur deprivation. Sulfur defi-
ciency affects the acetyl-CoA content and thiamine
pyrophosphatase affecting respiration, thus causing lower
energy assimilation. Genes encoding transketolase (¢klA)
and pentose-5-phosphate-3-epimerase (cfxE) were also al-
tered, leading to the activation of sugar accumulation in
cyanobacteria (Zhang et al. 2008). Recently, Klanchui
and his colleagues demonstrated that A. platensis Cl
(1AK888) increased their glycogen fluxes upon sulfate
starvation. Thus, sulfur limitation affects carbon metabo-
lism by modulating the activities of phosphoglycerate mu-
tase, enolase, pyruvate kinase, and malate dehydrogenase
(Klanchui et al. 2018).

Regulation of nitrogen and amino acid metabolism
upon sulfur stress

It is imperative to maintain the harmony between sulfur and
nitrogen metabolism for the optimal cell metabolism; there-
fore, the level of nitrogen assimilatory proteins was perceived
as an indicator to balance the S:N ratio. At a low sulfur con-
centration, a lower expression of genes involved in nitrogen
metabolism was observed to maintain the S:N ratio. In
Gloeothece and Anabaena 7120, sulfur deprivation represses
nitrogenase, where as sulfur replenishment reactivates it
(Ortega-Calvo and Stal 1994). Furthermore, Nishihara et al.
(2018) reported that the loss of nitrogenase activity in thermo-
philic microbes was partially recovered by the addition of
hydrogen sulfate and carbon dioxide, anticipating their roles.
In addition, impairment in the nitrate uptake and assimilation
has been observed in plants under sulfur limitation (Prosser
et al. 1997; Migge et al. 2000), suggesting the involvement of
sulfur in nitrogen assimilation. A reduction in the nitrate up-
take was probably due to decreased cysteine production upon
sulfur deficiency, leading to OAS accumulation that acted as a
feedback inhibitor (Prosser et al. 2001). Kaur et al. (2011)
suggested that nitrate reductase (NR) and glutamine synthe-
tase activity was reduced, whereas nitrite reductase (NiR) and
glutamate synthase (GS) were not significantly affected.
However, transcriptome analysis indicated a significant reduc-
tion in the mRNA expression of NR and GS, although the
reduction in the transcript level of NR was more prominent
than latter, indicating reduction in NR activity and its mRNA
level appear to be an adaptative response. Furthermore, nitrite
excretion occurred at a saturating carbon dioxide concentra-
tion during sulfur starvation in Synechococcus 6301 (Kramer
and Schmidt 1989).

In A. variabilis, assimilatory sulfate reduction was restrict-
ed in the vegetative cells only, whereas heterocysts were re-
stricted at a reduced level of sulfur metabolism, suggesting
that heterocysts must be provided with reduced sulfur com-
pounds (Giddings Jr et al. 1981). Moreover, reduced sulfur
and their subsequent reduction into cysteine alter their trans-
lation, leading to the accumulation of organic nitrogen com-
pounds such as asparagine and arginine in cyanobacteria
(Kiyota et al. 2012). By contrast, decreased NR and nitrite
accumulation upon sulfur starvation was observed by
Kramer and Schmidt (1989), suggesting perturbation in the
amino acid metabolism and changes in the physiology.
Sulfur deficiency exerts different effects on the individual
amino acids based on their composition and properties.
Sulfur deficiency in plants resulted in a decreased rate of pro-
tein synthesis and increased contents of free amino acids, am-
ides, and inorganic nitrogen (Thomas 1958). An increased
content of basic amino acids such as glutamine, asparagine,
and arginine has been reported in plants and cyanobacteria,
whereas no significant change was reported in aspartate,
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glutamate, serine, and alanine contents upon sulfur depriva-
tion (Kiyota et al. 2014). Similary, the total amino acid content
in sulfur-deficient and starved cells increased significantly
when compared with control cells in Anabaena 7120; howev-
er, reduction in methionine and cysteine was evident in
Anabaena 7120 (Kharwar and Mishra 2020).

Nitrogen and sulfur act as an integral component of protein;
thus, the nitrogen content was correlated with cellular protein.
A decrease in the nitrogen content upon sulfur stress condition
has been recently reported in cyanobacteria, suggesting the
nitrogen content depends on the availability of sulfur
(Kharwar and Mishra 2020; Zhang et al. 2020).

Effect of sulfur stress on lipid metabolism

Sulfur deficiency causes down-regulation of the fatty acid
metabolism and exerts an adverse effect on both phospholipid
and sulfolipid. Studies on E. huxleyi concluded that genes
involved in fatty acid biosynthesis, including acetyl-CoA car-
boxylase, 3-ketoactyl-ACP reductase, and acetyl-CoA dehy-
drogenase were affected when the sulfur content was low
(Bochenek et al. 2013). Furthermore, increased desC tran-
script and fatty acid unsaturation were observed upon sulfur
limitation in Anabaena 7120 (Kharwar and Mishra 2020). In
addition, Zhang et al. (2020) found an increased accumulation
of C16:0 and C18:1 in sulfur-limited groups that could be
further used in the application of biodiesel production.
However, no significant effect on the lipids was observed in
Synechocystis 6803 (Monshupanee and Incharoensakdi
2016).

Fig. 8 Proposed generalized
scheme of MC and MAA
biosynthetic pathway and their
interaction with sulfur
metabolism. The intermediate
products formed and the steps
involve in the process are not
indicated (adapted from Long

In C. reinhardtii, sulfolipid degrade within 6-12 h upon
sulfur starvation, suggesting that sulfolipid act as a major
source of sulfur for the protein synthesis (Sato et al. 2017).
By contrast, high stability of SQDG is maintained in the cya-
nobacterium, Synechococcus and Synechocystis under sulfur-
limiting condition (Sato 2004; Sato et al. 2017). However, in
A. thaliana, genes involved in sulfolipid biosynthesis were
down-regulated, thus resulting in the reduced sulfolipid bio-
synthesis upon sulfur limitation.

Increased hydrogen production upon sulfur stress

Nutrient starvation has been recently used for enhancing hy-
drogen (H,) production in the microorganisms by altering
their cellular metabolism. Sulfur limitation triggers H, pro-
duction because the degradation of D1 protein results in a
more rapid decline of photosynthesis than respiration enabling
anaerobic condition at equilibrium, which is ideal for H, pro-
duction. In addition, sulfur starvation inhibits carbon dioixde
fixation and thus removes another important electron sink.
Furthermore, this process likely leads to decreased sugar ca-
tabolism and culminated carbohydrate accumulation that are
crucial for sustained H, production (Antal and Lindblad
2005). Similar to nitrogen starvation, mechanism underlining
increased H, production upon sulfur limitation involve a
higher expression of the hox gene encoding cyanobacterial
Hox-hydrogenase (Antal and Lindblad 2005; Baebprasert
et al. 2010). The large-scale H, production involves treating
cells with sulfur limitation through inhibiting oxygenic pho-
tosynthesis in Gloeocapsa alpicola, Synechocystis 6803, and

8042_
v

l

Cysteine > ——>——> Co-enzyme A

2010) :
Y i
\'2
Mycosporine Methionine ¢
like amino acid v
synthesis v .
Methylation v l
reactions SAM Malonyl-co-A

@ Springer

\ )
/

Microcystin synthesis



Biologia (2021) 76:2811-2835 2829
Fig. 9 Scheme of sulfur stress T — >
induced responses and By 3
modulations in the metabolic ‘ Re;:;:p;or L
processes of cyanobacteria OAAL o
Two component 9 SAENEG) s
© o system Transducer REd'j‘Wd Sy
> — RubisCo Disturb )
Signal N\ redox (¢
transducti . < S
Cell division N— Alters  homeostasis SO Transporters
C slow down carbon i 3 \w @) S0,>
S Fraitom utathione | . ./
"'\-,, -.} Decrease photosynthesis ) /
(- — ot o I and energy metabolism M
i o Bl C Cysteine ==
== Phycobili protein Hampers chlorophyll Activation of . ' biosynthesis : )
: degradation biosynthesis sulfate transporter \decrease [
/ VAV ©2N
2 o \\MW Ao S
Q2 nitrogen : amino acid . (")
Y 2 ). metabolism \ R \\\ / biosynthesis
2 L bR 5L N
& < g d Depleted S Methionine | -

Anabaena 7120 (Antal and Lindblad 2005; Zhang et al. 2008;
Hifney and Abdel-Basset 2014). Yodsang and his colleagues
showed 17-fold increased H, production under combined ni-
trogen and sulfur deprivation in Fischerella muscicola
(Yodsang et al. 2018).

Modulations in the secondary metabolism in response
to sulfur stress

Sulfur-containing compounds are known for their protective
mechanism and enhance overall fitness. Cylindrospermopsin,
a sulfur-containing hepatotoxin produced by Aphanizomenon
ovalisporum, is affected by sulfate availability. Bacsi and his
coworkers reported a reduction in the cylindrospermopsin
pool, indicating the role of sulfur and its interaction with the
biosynthesis of cylindrospermopsin (Bacsi et al. 2006).
Furthermore, microcystin (MC), a hexapeptide, was affected
after limiting sulfur supply, suggesting limitation of SAM
production may outcompete for MC biosynthesis, thus requir-
ing sulfur (methionine as metabolic demand) in the biosyn-
thetic process of MC (Fig. 8) (Long 2010).
Mycosporine-like amino acids (MAAs) contain sulfate es-
ters or glycosidic linkages through imine substituents, indicat-
ing the role of sulfur in the biosynthesis of MAAs. MAAs play
a crucial role in the recycling of sulfur (in the form of methi-
onine) under sulfur-deficient condition, in addition to their
well-known photoprotective role (Singh et al. 2010). Under
sulfur deficiency, methionine and its derivative SAM become
limiting while increase in the homocysteine concentration.
Furthermore, Singh et al. reported that the bioconversion of
primary MAAs (MAA-shinorine) into secondary MAA
(MAA palythine-serine) is regulated by sulfur in
A. variabilis. This cyanobacterium synthesizes MAA-
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Decrease SAM G R
translational S— _ M~ \ @)

machinery N

shinorine under control condition, whereas MAA palythine-
serine is produced upon sulfur limiting condition for the
recycling of sulfur (Fig. 8).

Future prospects and goals of sulfur research

With the increase in research on sulfur, we are moving toward
deciphering the canonical regulation of sulfur metabolism in
cyanobacteria. Although CysR regulation has been described
in unicellular cyanobacteria, in-depth investigation of regula-
tion in filamentous cyanobacteria has not yet been performed.
Thus, future research should examine the effects of sulfur
limitation and its crosstalk with other metabolic processes at
genetic and proteomic levels, evaluate the perception of sulfur
stress-induced signals, explore how sulfur regulates nutrient
uptake, and investigate the ameloriative role of sulfur under
stress condition. Possibly integrated omic approaches can be
used to elucidate the role of sulfur in cyanobacteria. Figure 9
provide an integrated view of sulfur stress-mediated responses
in cyanobacteria. Studies on this versatile macronutrient are
crucial to broaden our understanding and help us further elu-
cidate the response mechanisms and adaptive physiology of
cyanobacteria.

Abbreviations ABC, ATP- binding cassette; APS , Adenosine-5'-
phosphosulfate; ATPS, ATP sulfurylase; CSC, Cysteine synthase com-
plex; SAM, S-adenosylmethionine; STAS , Sulphate Transporter and
Anti-Sigma factor antagonist.
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