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Abstract
In order to handle some problems in which human uncertainties coexist with stochas-
ticities characterized by non-additive probabilities, we develop uncertain random
programming models based on four different types of expectations in the framework
of U-S chance theory. In this paper, firstly, the operational law for uncertain ran-
dom variables is proved in this framework. Then, based on sub-linear expectations
and Choquet integrals, four types of expectations of uncertain random variables are
defined. Finally, four uncertain randomprogrammingmodels are proposed and applied
to optimal investment in incomplete financial market and system reliability design.

Keywords Uncertain random programming · Optimal investment · System
reliability · U-S chance theory

1 Introduction

The programming problem is to achieve an optimization objective under given con-
straint conditions. However, since real-world situations are usually not deterministic,
traditional mathematical programming models cannot solve all practical decision-
making problems. Therefore, probability theory, fuzzy theory and uncertainty theory
are applied to programming problems.

Stochastic programming provides a method to consider objectives and constraints
with stochastic parameters. In 1955, a complete computation procedure was provided
byDantzig (1955) for a special class of two-stage linear programmingmodels inwhich
the first-stage allocations were made to meet an uncertain but known distribution of
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demands occurring in the second stage. Charnes and Cooper (1959) pioneered chance-
constrained programming as a means of dealing with uncertainty by specifying a
confidence level at which one would determine the stochastic constraint to hold. A
sequential solution procedure to stochastic linear programming problems with 0–1
variables was described by Levary (1984). Other hot issues of stochastic programming
are studied by many scholars, for example Schultz (2003), Dyer and Stougie (2006),
Nemirovski et al. (2009), etc.

Fuzzy programming provides amethod for dealingwith optimization problemswith
fuzzy parameters. The decision-making problem in fuzzy environment was presented
by Bellman and Zadeh (1970), in which optimal decision-making was an alternative
that maximized the membership function of fuzzy decision-making. Zimmermann
(1978) gave the application of fuzzy linear programming approaches to the linear
vector maximum problem. Expected values of fuzzy variables were proposed by Liu
and Liu (2002), and they also constructed a spectrum of fuzzy expected value models.
For recent developments of fuzzy programming, interested readers can refer to Chang
(2007), Li and Liu (2015), Dalman and Bayram (2018), Ranjbar and Effati (2020),
and so on.

In practice, it is usually encountered that fuzziness and randomness appear simul-
taneously. In order to deal with this situation, Kwakernaak (1978) introduced the
concepts of fuzzy random variables, expectations of fuzzy random variables etc. He
also gave a more intuitive interpretation of the notion of fuzzy random variables, and
derived algorithms and examples for determining expectations, fuzzy probabilities
etc. in Kwakernaak (1979). Fuzzy random programming is an optimization theory
for dealing with fuzzy random decision-making problems. By discussing a practical
engineering problem, linear programming with fuzzy random variable coefficients
was introduced by Wang and Zhong (1993), and they also gave its simplex algorithm.
In 2001, a new concept of chance of fuzzy random events and a general framework for
fuzzy random chance-constrained programming were proposed by Liu (2001). Kata-
giri et al. (2004) investigated a multi-objective 0–1 programming problem involving
fuzzy random variable coefficients and proposed an interactive satisfaction method
based on the reference point approach. Fuzzy random programming is still a hot topic
and studied by many scholars, such as Liu and Liu (2005), Li et al. (2006), Ammar
(2008), Sakawa et al. (2012), etc.

For studying human uncertainty, Liu (2007) founded uncertainty theory. Uncertain
programming is the optimization theory in uncertain environment. Liu (2009) proposed
uncertain programming, including chance-constrained programming, dependent-
chance programming, uncertain dynamic programming etc., and Liu (2011) applied
uncertain programming to the study of project scheduling problem, machine sequenc-
ing problem etc. Subsequently, Liu and Chen (2015) further provided uncertain
multi-objective programming and uncertain goal programming. In addition, uncer-
tain multilevel programming was given by Liu and Yao (2015).

In order to better dealwith complex systems involving both human uncertainties and
stochasticities, Liu (2013a) presented a new concept of uncertain random variable, and
combined probability measure and uncertain measure into a chance measure in 2013.
Meanwhile, uncertain random programming was firstly provided based on chance
theory byLiu (2013b).As the generalizations of uncertain randomprogramming, Zhou
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et al. (2014) proposed uncertain random multi-objective programming, and uncertain
random project scheduling programming model was built in Ke et al. (2015).

It it well-known that additivity of classical probabilities is difficult to portray non-
linear characteristics of some problems, such as, risk behavior in incomplete market,
industrial production with incomplete information, etc. Therefore, many scholars
have tried to solve these problems by using non-additive probability measures. Cho-
quet (1954) firstly introduced the concepts of non-additive probability (capacity) and
Choquet expectation. With the rapid developments of computer science and data
information technology, financial risks are becoming more and more complex and
their dynamic characteristics are also stronger, Choquet expectation is difficult to be
applied to the study of modern financial risk. Therefore, Peng (2007) founded sub-
linear expectation theory. However, for a long time, there exists a class of complex
systems that contain both human uncertainties and stochasticities with sub-linear char-
acteristics, such as investment behavior in incomplete financial market influenced by
government regulation, redundant design of system, etc. In order to describe charac-
teristics of those phenomena, Fu et al. (2022) combined sub-linear expectation theory
with uncertainty theory to construct two product spaces, so as to use a new mathe-
matical tool called U-S chance theory to deal with complex systems involving both
human uncertainties and stochasticities with sub-linear characteristics. In this paper,
uncertain random programming models based on U-S chance theory are investigated
for the first time, which provide more reasonable solutions to the problems of optimal
investment and financial riskmanagement in incompletemarket. In addition, uncertain
random programming models proposed in this paper are also applicable to the study
of system reliability design.

The paper is organized as follows. In Sect. 2 and Appendix A, some definitions and
properties about uncertainty theory, U-S chance theory, and sub-linear expectation
theory used in this paper are reviewed. In Sect. 3, under the framework of U-S chance
theory, we present the operational law of uncertain random variables. In Sect. 4, four
types of expectations of uncertain random variables are defined, based on sub-linear
expectations and Choquet integrals. In Sect. 5, we provide four types of uncertain
random programming models. In Sect. 6, two of these models are applied to stock
investment in incomplete financial market and system reliability design.

2 Preliminary

In this section, we introduce some basic concepts about uncertain variables and uncer-
tain random variables under U-S chance spaces, which are used throughout the paper.

2.1 Uncertain variable

Definition 1 (Liu 2015) Let L be a σ -algebra on a non-empty set �. A set function
M is called an uncertain measure if it satisfies the following axioms:
Axiom 1 (Normality Axiom): M{�} = 1, for the universal set �;
Axiom 2 (Duality Axiom): M{�} + M {

�c
} = 1, for any � ∈ L;
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Axiom 3 (Sub-additivity Axiom): For every countable sequence of
{
� j
} ⊂ L, we

have

M
⎧
⎨

⎩

∞⋃

j=1

� j

⎫
⎬

⎭
≤

∞∑

j=1

M {
� j
}
.

The triplet (�,L,M) is called an uncertainty space, and each element � in L is
called an event. In order to obtain an uncertain measure of compound event, a product
uncertain measure is defined as follows:
Axiom 4 (Product Axiom): Let (�k,Lk,Mk) be uncertainty spaces for k = 1, 2, . . . .
The product uncertain measure M is an uncertain measure satisfying

M
{ ∞∏

k=1

�k

}

=
∞∧

k=1

Mk {�k} ,

where �k are arbitrarily chosen events from Lk for k = 1, 2, . . . , respectively.

Definition 2 (Liu 2015) A function τ : � �→ R is called an uncertain variable if it is
measurable, i.e.,

{τ ∈ B} = {γ ∈ �|τ(γ ) ∈ B} ∈ L
for each B ∈ B(R). Its uncertainty distribution is a function given by

ϒ(x) = M{τ ≤ x}, x ∈ R.

Definition 3 (Liu 2015) The uncertain variables τ1, τ2, . . . , τn are said to be indepen-
dent if

M
{

n⋂

i=1

{τi ∈ Bi }
}

=
n∧

i=1

M{τi ∈ Bi }

for any Bi ∈ B(R), i = 1, 2, . . . , n.

Definition 4 (Liu 2015) Let τ be an uncertain variable. Then, the expected value of τ

is defined by

E[τ ] =
+∞∫

0

M{τ ≥ x}dx −
0∫

−∞
M{τ ≤ x}dx

provided that at least one of the two integrals is finite.

2.2 Uncertain random variable under U-S chance spaces

In this subsection, we use the framework and notations of Fu et al. (2022).

Definition 5 (Fu et al. 2022) Let (�,L,M) be an uncertainty space, and (�,H,E)

be a sub-linear expectation space (see Remark 3 in Appendix A). Suppose that V and
v are non-additive probabilities generated by E. A pair of chance spaces generated by
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uncertainty space and sub-linear expectation space (U-S chance spaces for short) are
the spaces of forms:

(�,L,M) × (�,F ,V) = (� × �,L × F ,M × V)

and
(�,L,M) × (�,F , v) = (� × �,L × F ,M × v),

where � ×� is the universal set, L×F is the product σ -algebra,M×V andM× v

are two product measures.

Here, the notations (�,H,E), v and V were introduced by Peng (2017, 2019) and
Chen (2016). For more details, please refer to Appendix A.

Definition 6 (Fu et al. 2022) Let 	 ∈ L×F be an uncertain random event under U-S
chance spaces. Then, chance measures ch and CH of 	 are given by

ch{	} :=
1∫

0

v {ω ∈ �|M {γ ∈ �|(γ, ω) ∈ 	} ≥ r} dr (1)

and

CH{	} :=
1∫

0

V {ω ∈ �|M {γ ∈ �|(γ, ω) ∈ 	} ≥ r} dr , (2)

respectively.

Remark 1 The universal set � × � is clearly the set of all ordered pairs of the form
(γ, ω), where γ ∈ � and ω ∈ �. That is,

� × � = {(γ, ω)|γ ∈ �,ω ∈ �}.

The product σ -algebra L × F is the smallest σ -algebra containing measurable rect-
angles of the form � × A, where � ∈ L and A ∈ F . Any element in L×F is called
an event in the U-S chance spaces.

In the following, we discuss the product measuresM×V andM×v by the similar
method of (Liu, 2015, pp. 409–410). Suppose	 is an event inL×F . For each ω ∈ �,
it is clear that the set

	ω = {γ ∈ �|(γ, ω) ∈ 	}
is an event inL. Thus, the uncertain measureM{	ω} exists for eachω ∈ �. However,
unfortunately,M{	ω} is not necessarily a measurable function with respect toω. That
is, the set

	∗
x = {ω ∈ �|M{	ω} ≥ x}

is a subset of�but not necessarily an event inF for any real number x . Therefore, upper
probability measure V{	∗

x } and lower probability measure v{	∗
x } do not necessarily
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exist. In this case, we assign

V{	∗
x } =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

inf
A∈F ,A⊇	∗

x

V{A}, if inf
A∈F ,A⊇	∗

x

V{A} < 0.5

sup
A∈F ,A⊆	∗

x

V{A}, if sup
A∈F ,A⊆	∗

x

V{A} > 0.5

0.5, otherwise

and

v{	∗
x } =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

inf
A∈F ,A⊇	∗

x

v{A}, if inf
A∈F ,A⊇	∗

x

v{A} < 0.5

sup
A∈F ,A⊆	∗

x

v{A}, if sup
A∈F ,A⊆	∗

x

v{A} > 0.5

0.5, otherwise

in the light of maximum uncertainty principle. This ensures upper probability measure
V{	∗

x } and lower probability measure v{	∗
x } exist for any real number x . It is now

appropriate to defineM×V andM× v of 	 as the expected values ofM{	ω} with
respect to ω ∈ �, i.e.,

1∫

0

V{	∗
r }dr

and
1∫

0

v{	∗
r }dr .

Thus, chance measures CH and ch are well-defined.

Fu et al. (2022) also verified that chance measures ch andCH satisfy the following
four properties:

(i)
ch{A × B} = M{A} × v{B}, CH{A × B} = M{A} × V{B},

for any A ∈ L and B ∈ F;
(ii)

CH{	} + ch{	c} = 1, 	 ∈ L × F; (3)

(iii)
ch{	1} ≤ ch{	2}, CH{	1} ≤ CH{	2},

for events 	1, 	2 ∈ L × F , such that 	1 ⊆ 	2;
(iv)

ch{	} ≤ CH{	}, 	 ∈ L × F .
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Definition 7 A function ξ : � ×� �→ R is called an uncertain random variable under
U-S chance spaces if it is measurable, i.e., for each B ∈ B(R),

{ξ ∈ B} = {(γ, ω) ∈ � × �|ξ(γ, ω) ∈ B} ∈ L × F .

Example 1 Let η be a Bernoulli random variable under E (see Definition 16 in
Appendix A) with the set of possible values {a1, a2, . . . , an} and τ1, τ2, . . . , τn
be uncertain variables defined on (�,L,M). Suppose that f is a mapping from
� × {a1, a2, . . . , an} to R such that

f (γ, ai ) = τi .

Then

ξ = f (γ, η(ω)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ1, with possible probability measure p1,

τ2, with possible probability measure p2,

· · ·
τn, with possible probability measure pn

(4)

is an uncertain random variable, where pk ∈ [p
k
, pk] for k = 1, 2, . . . , n, satisfying

∑n
k=1 pk = 1, and n ∈ N.

Here and in the sequel, uncertain random variables are based on the U-S chance
spaces (�,L,M) × (�,F ,V) and (�,L,M) × (�,F , v).

3 Operational law

Theorem 1 Let η1, η2, . . . , ηm be random variables under E, and τ1, τ2, . . . , τn be
independent uncertain variableswith regular uncertainty distributionsϒ1, ϒ2, . . . , ϒn,
respectively. Then, uncertain random variable

ξ = f (η1, η2, . . . , ηm, τ1, τ2, . . . , τn)

has a lower distribution

1(x) = ch{ξ ≤ x}

=
1∫

0

v {ω ∈ �|M{ξ ≤ x} ≥ r} dr

=
1∫

0

v {ω ∈ �|F(x; η1, η2, . . . , ηm) ≥ r} dr (5)

and an upper distribution
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2(x) = CH{ξ ≤ x}

=
1∫

0

V {ω ∈ �|M{ξ ≤ x} ≥ r} dr

=
1∫

0

V {ω ∈ �|F(x; η1, η2, . . . , ηm) ≥ r} dr , (6)

where F(x; y1, y2, . . . , ym) is the uncertainty distribution of uncertain variable
f (y1, y2, . . . , ym, τ1, τ2, . . . , τn) for any given real numbers y1, y2, . . . , ym, and is
determined by its inverse function (see Theorem 2.18 in Liu 2015)

F−1(α; y1, y2, . . . , ym) = f
(
y1, y2, . . . , ym, ϒ−1

i1
(α), . . . ,

ϒ−1
ik

(α),ϒ−1
ik+1

(1 − α), . . . , ϒ−1
in

(1 − α)
)

provided that f (η1, η2, . . . , ηm, τ1, τ2, . . . , τn) is strictly increasing with respect to
τi1 , . . . , τik and strictly decreasing with respect to τik+1 , . . . , τin .

Proof For any given real numbers y1, y2, . . . , ym , it follows from the operational law
of uncertain variables that f (y1, y2, . . . , ym, τ1, τ2, . . . , τn) is an uncertain variable
with uncertainty distribution F(x; y1, y2, . . . , ym). By using Definition 6, we know
that 1 and 2 are the lower and upper distributions of ξ just with forms (5) and (6),
respectively. �
Example 2 Let η1, η2, . . . , ηm be independent random variables (see Definition 13 (i)
in Appendix A) with maximal distribution (see Definition 14 in Appendix A) under
E. i.e.,

E[ϕ(ηi )] = sup
μ
i
≤yi≤μi

ϕ(yi ),

for eachBorelmeasurable functionϕ onR, andμi = E[ηi ],μi
= E[ηi ], i = 1, . . . ,m.

And let τ1, τ2, . . . , τn be independent uncertain variables with regular uncertainty
distributions ϒ1, ϒ2, . . . , ϒn , respectively. Then, the sum

ξ = η1 + η2 + · · · + ηm + τ1 + τ2 + · · · + τn

has a lower distribution

1(x) =
1∫

0

v {ω ∈ �|ϒ(x − (η1 + η2 + · · · + ηm)) ≥ r} dr

= inf
μ
1
≤y1≤μ1

· · · inf
μ
m

≤ym≤μm

ϒ(x − (y1 + y2 + · · · + ym))

= ϒ

(

x −
m∑

i=1

μi

)

(7)
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and an upper distribution

2(x) =
1∫

0

V {ω ∈ �|ϒ(x − (η1 + η2 + · · · + ηm)) ≥ r} dr

= sup
μ
1
≤y1≤μ1

· · · sup
μ
m

≤ym≤μm

ϒ(x − (y1 + y2 + · · · + ym))

= ϒ

(

x −
m∑

i=1

μ
i

)

, (8)

where ϒ is the uncertainty distribution of τ1 + τ2 +· · ·+ τn (see Theorem 2.14 in Liu
2015) determined by

ϒ(z) = sup
z1+···+zn=z

ϒ1(z1) ∧ ϒ2(z2) ∧ · · · ∧ ϒn(zn).

Example 3 Let η1, η2, . . . , ηm be IID random variables (see Definition 13 (iii) in
Appendix A) with G-normal distribution (see Definition 15 in Appendix A) under E,
i.e., η1 ∼ N

(
0, [σ 2, σ 2]), where E[η1] = E[η1] = 0, σ 2 = E[η21] and σ 2 = E[η21].

And let τ1, τ2, . . . , τn be independent uncertain variables with regular uncertainty
distributions ϒ1, ϒ2, . . . , ϒn , respectively. Then, the sum

ξ = η1 + η2 + · · · + ηm + τ1 + τ2 + · · · + τn

has a lower distribution

1(x) = σ − σ

σ + σ
ϒ(x) + 2σ

σ + σ

ϒ(x)∫

0



(
x − ϒ−1(r)√

mσ

)
dr

+ 2σ

σ + σ

1∫

ϒ(x)



(
x − ϒ−1(r)√

mσ

)
dr (9)

and an upper distribution

2(x) = σ − σ

σ + σ
ϒ(x) + 2σ

σ + σ

ϒ(x)∫

0



(
x − ϒ−1(r)√

mσ

)
dr

+ 2σ

σ + σ

1∫

ϒ(x)



(
x − ϒ−1(r)√

mσ

)
dr , (10)
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where  denotes the distribution of standard normal distribution and ϒ is the uncer-
tainty distribution of τ1 + τ2 + · · · + τn determined by

ϒ(z) = sup
z1+···+zn=z

ϒ1(z1) ∧ ϒ2(z2) ∧ · · · ∧ ϒn(zn).

Proof FromDefinition 15 and Remark 4 in Appendix A, we know that η1+η2+· · ·+
ηm

d= √
mη1. According to Corollary 1 in Peng and Zhou (2020), we conclude that

v {ω ∈ � | η1(ω) ≤ t} =
⎧
⎨

⎩

σ−σ
σ+σ

+ 2σ
σ+σ


( t

σ

)
, t ≥ 0,

2σ
σ+σ


(

t
σ

)
, t ≤ 0,

and

V {ω ∈ � | η1(ω) ≤ t} =
⎧
⎨

⎩

σ−σ
σ+σ

+ 2σ
σ+σ


(

t
σ

)
, t ≥ 0,

2σ
σ+σ


( t

σ

)
, t ≤ 0,

where  denotes the distribution of standard normal distribution.
Then by using the above arguments, it follows that

1(x) =
1∫

0

v {ω ∈ �|M{ξ ≤ x} ≥ r} dr

=
1∫

0

v
{
ω ∈ �|ϒ(x − √

mη1(ω)) ≥ r
}
dr

=
1∫

0

v

{
ω ∈ �|η1(ω) ≤ x − ϒ−1(r)√

m

}
dr

=
ϒ(x)∫

0

σ −σ

σ +σ
+ 2σ

σ +σ


(
x−ϒ−1(r)√

mσ

)
dr +

1∫

ϒ(x)

2σ

σ + σ


(
x − ϒ−1(r)√

mσ

)
dr

= σ − σ

σ +σ
ϒ(x)+ 2σ

σ + σ

ϒ(x)∫

0



(
x − ϒ−1(r)√

mσ

)
dr

+ 2σ

σ + σ

1∫

ϒ(x)



(
x − ϒ−1(r)√

mσ

)
dr ,

where ϒ(z) = supz1+···+zn=z ϒ1(z1) ∧ ϒ2(z2) ∧ · · · ∧ ϒn(zn).
Hence, (9) is proved. With the similar argument, we can verify that (10) holds.

Thus, the proof is completed. �
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Example 4 Let η1, η2, . . . , ηm be independent random variables under E, and
τ1, τ2, . . . , τn be independent uncertain variables with regular uncertainty distribu-
tions ϒ1, ϒ2, . . . , ϒn , respectively.

(i) The maximum

ξ = η1 ∨ η2 ∨ · · · ∨ ηm ∨ τ1 ∨ τ2 ∨ · · · ∨ τn

has a lower distribution

1(x) = ϒ(x)v{η1 ≤ x} · · · v{ηm ≤ x} (11)

and an upper distribution

2(x) = ϒ(x)V{η1 ≤ x} · · ·V{ηm ≤ x}, (12)

where ϒ is the uncertainty distribution of τ1 ∨ τ2 ∨ · · · ∨ τn (see Exercise 2.13
in Liu 2015) determined by

ϒ(x) = ϒ1(x) ∧ ϒ2(x) ∧ · · · ∧ ϒn(x).

(ii) The minimum

ξ = η1 ∧ η2 ∧ · · · ∧ ηm ∧ τ1 ∧ τ2 ∧ · · · ∧ τn

has a lower distribution

1(x) = 1 − [1 − ϒ(x)] (1 − v{η1 ≤ x}) · · · (1 − v{ηm ≤ x}) (13)

and an upper distribution

2(x) = 1 − [1 − ϒ(x)] (1 − V{η1 ≤ x}) · · · (1 − V{ηm ≤ x}) , (14)

where ϒ is the uncertainty distribution of τ1 ∧ τ2 ∧ · · · ∧ τn (see Exercise 2.12
in Liu 2015) determined by

ϒ(x) = ϒ1(x) ∨ ϒ2(x) ∨ · · · ∨ ϒn(x).

Proof (i) According to (5) and using the fact that η1, η2, . . . , ηm are independent
random variables under E, it can be shown that

1(x) =
1∫

0

v {ω ∈ �|M{ξ ≤ x} ≥ r} dr

=
1∫

0

v
{
ω ∈ �|I{η1≤x}∩···∩{ηm≤x}ϒ(x) ≥ r

}
dr
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=
ϒ(x)∫

0

v {ω ∈ �|{η1 ≤ x} ∩ · · · ∩ {ηm ≤ x}} dr

= ϒ(x)v{η1 ≤ x} · · · v{ηm ≤ x},

where ϒ(x) = ϒ1(x)∧ϒ2(x)∧· · ·∧ϒn(x). Similarly, we can verify that (12) holds.
(ii) Since η1, η2, . . . , ηm are independent random variables under E, from (3), it

yields that

1(x) =
1∫

0

v {ω ∈ �|M{ξ ≤ x} ≥ r} dr

= 1 −
1∫

0

V {ω ∈ �|M{ξ > x} ≥ r} dr

= 1 −
1∫

0

V
{
ω ∈ �|I{η1>x}∩···∩{ηm>x} [1 − ϒ(x)] ≥ r

}
dr

= 1 −
1−ϒ(x)∫

0

V {ω ∈ �|{η1 > x} ∩ · · · ∩ {ηm > x}} dr

= 1 − [1 − ϒ(x)]V{η1 > x} · · ·V{ηm > x}
= 1 − [1 − ϒ(x)] (1 − v{η1 ≤ x}) · · · (1 − v{ηm ≤ x}) ,

where ϒ(x) = ϒ1(x)∨ϒ2(x)∨· · ·∨ϒn(x). Similarly, we can verify that (14) holds.
The proof is completed. �
Theorem 2 Assume that η1, η2, . . . , ηm are independent Boolean random variables
under E (see Definition 17 in Appendix A), i.e.,

ηi =
{
1, with possible probability measure pi ,

0, with possible probability measure 1 − pi ,
(15)

where pi ∈ [p
i
, pi ], i = 1, 2, . . . ,m. And let τ1, τ2, . . . , τn be independent Boolean

uncertain variables, i.e.,

τ j =
{
1, with uncertain measure q j ,

0, with uncertain measure 1 − q j ,
(16)

for j = 1, 2, . . . , n. Suppose that f is a Boolean function from {0, 1}n+1 to {0, 1} and
g is a Boolean function from {0, 1}m to {0, 1}. Then

ξ = f (g(η1, . . . , ηm), τ1, τ2, . . . , τn)
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is a Boolean uncertain random variable satisfying the following properties:

(i) if the equation g(x1, . . . , xm) = 1 (xi ∈ {0, 1}, i = 1, . . . ,m) has a unique
solution {y1, . . . , ym} in set {0, 1}m and f (0, τ1, τ2, . . . , τn) = 0, then

ch{ξ = 1} =
m∏

i=1

wi (yi )Z(y1, . . . , ym), (17)

and

CH{ξ = 1} =
m∏

i=1

ui (yi )Z(y1, . . . , ym); (18)

(ii) if the equation g(x1, . . . , xm) = 0 (xi ∈ {0, 1}, i = 1, . . . ,m) has a unique
solution {y1, . . . , ym} in set {0, 1}m and f (1, τ1, τ2, . . . , τn) = 1, then

ch{ξ = 0} =
m∏

i=1

wi (yi )Z(y1, . . . , ym), (19)

and

CH{ξ = 0} =
m∏

i=1

ui (yi )Z(y1, . . . , ym). (20)

Here

Z(y1, . . . , ym ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
f (g(y1,...,ym ),z1,...,zn )=1

min
1≤ j≤n

v j (z j ),

if sup
f (g(y1,...,ym ),z1,...,zn )=1

min
1≤ j≤n

v j (z j ) < 0.5,

1 − sup
f (g(y1,...,ym ),z1,...,zn )=0

min
1≤ j≤n

v j (z j ),

if sup
f (g(y1,...,ym ),z1,...,zn )=1

min
1≤ j≤n

v j (z j ) ≥ 0.5,

(21)

Z(y1, . . . , ym ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
f (g(y1,...,ym ),z1,...,zn )=0

min
1≤ j≤n

v j (z j ),

if sup
f (g(y1,...,ym ),z1,...,zn )=0

min
1≤ j≤n

v j (z j ) < 0.5,

1 − sup
f (g(y1,...,ym ),z1,...,zn )=1

min
1≤ j≤n

v j (z j ),

if sup
f (g(y1,...,ym ),z1,...,zn )=0

min
1≤ j≤n

v j (z j ) ≥ 0.5,

(22)

wi (yi ) =
{

p
i
, if yi = 1,

1 − pi , if yi = 0,
(23)

ui (yi ) =
{

pi , if yi = 1,

1 − p
i
, if yi = 0,

(24)
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and

v j (z j ) =
{

q j , if z j = 1,

1 − q j , if z j = 0.
(25)

Proof (i) By the operational law of uncertain random variables (Theorem 1), we have

ch{ξ = 1} =
(

m∏

i=1

wi (yi )

)

M { f (g(y1, . . . , ym), τ1, τ2, . . . , τn) = 1}

and

CH{ξ = 1} =
(

m∏

i=1

ui (yi )

)

M { f (g(y1, . . . , ym), τ1, τ2, . . . , τn) = 1} ,

where (y1, . . . , ym) is the unique solutionof g(x1, . . . , xm)=1. Since f (g(y1, . . . , ym),

τ1, τ2, . . . , τn) is essentially a Boolean function of uncertain variables, it follows from
theoperational lawof uncertain variables thatM { f (g(y1, . . . , ym), τ1, τ2, . . . , τn)=1}
is determined by (21) (see Theorem 2.23 in Liu 2015), thus (17) and (18) are verified.

By using the similar method of proof of (i), we can prove (ii). Therefore, it is
omitted. The proof is completed. �
Example 5 Let η1, η2, . . . , ηm be independent Boolean random variables under E

defined by (15), and τ1, τ2, . . . , τn be independent Boolean uncertain variables defined
by (16).

(i) The minimum

ξ = η1 ∧ η2 ∧ · · · ∧ ηm ∧ τ1 ∧ τ2 ∧ · · · ∧ τn

is a Boolean uncertain random variable such that

ch{ξ = 1} = p
1
p
2
· · · p

m
(q1 ∧ q2 ∧ · · · ∧ qn), (26)

and

CH{ξ = 1} = p1 p2 · · · pm(q1 ∧ q2 ∧ · · · ∧ qn). (27)

(ii) The maximum

ξ = η1 ∨ η2 ∨ · · · ∨ ηm ∨ τ1 ∨ τ2 ∨ · · · ∨ τn

is a Boolean uncertain random variable such that
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ch{ξ = 1} = 1 − CH{ξ = 0}
= 1 − (1 − p

1
)(1 − p

2
) · · · (1 − p

m
)(1 − q1 ∨ q2 ∨ · · · ∨ qn), (28)

and

CH{ξ = 1} = 1 − ch{ξ = 0}
= 1 − (1 − p1)(1 − p2) · · · (1 − pm)(1 − q1 ∨ q2 ∨ · · · ∨ qn). (29)

4 Expected value

Let η1, η2, . . . , ηm be random variables under E, and τ1, τ2, . . . , τn be uncertain vari-
ables. Then, the uncertain random variable

ξ = f (η1, η2, . . . , ηm, τ1, τ2, lcdots, τn)

has the following four types of expectations:
(i) Upper expectation

Ẽ[ξ ] = E
{
E [ f (y1, y2, . . . , ym, τ1, τ2, . . . , τn)]yi=ηi ,i=1,2,...,m

}

= sup
θ∈�

EPθ

{
E [ f (y1, y2, . . . , ym, τ1, τ2, . . . , τn)]yi=ηi ,i=1,2,...,m

}
, (30)

(ii) Lower expectation

Ẽ[ξ ] = E{E [ f (y1, y2, . . . , ym, τ1, τ2, . . . , τn)]yi=ηi ,i=1,2,...,m
}

= inf
θ∈�

EPθ

{
E [ f (y1, y2, . . . , ym, τ1, τ2, . . . , τn)]yi=ηi ,i=1,2,...,m

}
, (31)

(iii) Choquet expectation with respect to CH

ECH [ξ ] =
∞∫

0

CH{ξ ≥ x}dx −
0∫

−∞
1 − CH{ξ ≥ x}dx

=
∞∫

0

CH{ξ ≥ x}dx −
0∫

−∞
ch{ξ ≤ x}dx, (32)

(iv) Choquet expectation with respect to ch

Ech[ξ ] =
∞∫

0

ch{ξ ≥ x}dx −
0∫

−∞
1 − ch{ξ ≥ x}dx

=
∞∫

0

ch{ξ ≥ x}dx −
0∫

−∞
CH{ξ ≤ x}dx . (33)
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Remark 2 (i) In (30) and (31), E[ f (y1, . . . , ym, τ1, . . . , τn)] denotes the expected
value of uncertain variable f (y1, . . . , ym, τ1, . . . , τn), and it is finite. In (32) and
(33), at least one of the two integrals is finite.

(ii) From (30) and (31), we can verify that Ẽ and Ẽ have the same properties as E
and E , respectively.
Theorem 3 Let η1, η2, . . . , ηm be independent random variables under E, and
τ1, τ2, . . . , τn be independent uncertain variables with regular uncertainty distribu-
tions ϒ1, ϒ2, . . . , ϒn, respectively. Assume that {Fθi (yi ), yi ∈ R}θi∈�i is a family
of distributions of ηi corresponding to the set of probability measures {Pθi }θi∈�i ,
for i = 1, . . . ,m, respectively. Then, the upper and lower expectations of uncertain
random variable ξ = f (η1, . . . , ηm, τ1, τ2, . . . , τn) are

Ẽ[ξ ] = sup
θ1∈�1

∞∫

−∞
· · ·
⎛

⎝ sup
θm∈�m

∞∫

−∞

1∫

0

f
(
y1, . . . , ym, ϒ−1

i1
(α), . . . , ϒ−1

ik
(α),

ϒ−1
ik+1

(1 − α), . . . , ϒ−1
in

(1 − α)
)
dαdFθm (ym)

⎞

⎠ · · · dFθ1(y1) (34)

and

Ẽ[ξ ] = inf
θ1∈�1

∞∫

−∞
· · ·
⎛

⎝ inf
θm∈�m

∞∫

−∞

1∫

0

f
(
y1, . . . , ym, ϒ−1

i1
(α), . . . , ϒ−1

ik
(α),

ϒ−1
ik+1

(1 − α), . . . , ϒ−1
in

(1 − α)
)
dαdFθm (ym)

⎞

⎠ · · · dFθ1(y1), (35)

respectively,where f (η1, η2, . . . , ηm, τ1, τ2, . . . , τn) is strictly increasingwith respect
to τi1 , . . . , τik and strictly decreasing with respect to τik+1 , . . . , τin .

Proof Without loss of generality, we only prove that (34) holds for m = 2, the proof
of other cases of (34) is similar.

Suppose that {Pδ}δ∈� is a family of joint probability measures of η1 and η2. Since
f (y1, y2, τ1, τ2, . . . , τn) is strictly increasing with respect to τi1 , . . . , τik and strictly
decreasing with respect to τik+1 , . . . , τin , then by Theorem 2.30 in Liu (2015), we
obtain

E [ f (y1, y2, τ1, τ2, . . . , τn)]

=
∞∫

0

1 − F(x; y1, y2)dx −
−∞∫

0

F(x; y1, y2)dx

=
1∫

0

f
(
y1, y2, ϒ

−1
i1

(α), . . . , ϒ−1
ik

(α),ϒ−1
ik+1

(1 − α), . . . , ϒ−1
in

(1 − α)
)
dα,
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where F(x; y1, y2) is the uncertainty distribution of f (y1, y2, τ1, . . . , τn).
Since η2 is independent to η1 under E, it follows from (30) that

Ẽ[ξ ]= sup
δ∈�

EPδ

⎡

⎣
1∫

0

f
(
η1, η2, ϒ

−1
i1

(α), . . . , ϒ−1
ik

(α),ϒ−1
ik+1

(1−α), . . . , ϒ−1
in

(1−α)
)
dα

⎤

⎦

= sup
θ1∈�1

EPθ1

⎡

⎣ sup
θ2∈�2

∞∫

−∞

1∫

0

f
(
η1, y2, ϒ

−1
i1

(α), . . . , ϒ−1
ik

(α),

ϒ−1
ik+1

(1 − α), . . . , ϒ−1
in

(1 − α)
)
dαdFθ2 (y2)

⎤

⎦

= sup
θ1∈�1

∞∫

−∞

⎛

⎝ sup
θ2∈�2

∞∫

−∞

1∫

0

f
(
y1, y2, ϒ

−1
i1

(α), . . . , ϒ−1
ik

(α),

ϒ−1
ik+1

(1 − α), . . . , ϒ−1
in

(1 − α)
)
dαdFθ2 (y2)

⎞

⎠ dFθ1(y1).

Hence (34) is proved. With the similar argument, we can prove that (35) holds. Thus
the proof is completed. �
Theorem 4 Let η1, η2, . . . , ηm be random variables under E, τ1, τ2, . . . , τn be uncer-
tain variables and

ξ = f (η1, η2, . . . , ηm, τ1, τ2, . . . , τn)

be an uncertain random variable. Then

Ech[ξ ] ≤ Ẽ[ξ ] ≤ Ẽ[ξ ] ≤ ECH [ξ ]. (36)

Proof Firstly, for any non-negative uncertain random variable ξ , from (32) and (33),
it follows that

Ech[ξ ] =
∞∫

0

ch{ξ ≥ x}dx

=
∞∫

0

1∫

0

v {ω ∈ �|M{ξ ≥ x} ≥ r} drdx

=
∞∫

0

1∫

0

inf
θ∈�

Pθ {ω ∈ �|M{ξ ≥ x} ≥ r} drdx

≤ inf
θ∈�

⎛

⎝
∞∫

0

1∫

0

Pθ {ω ∈ �|M{ξ ≥ x} ≥ r} drdx
⎞

⎠
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= inf
θ∈�

⎛

⎝
∞∫

0

∫

�

M{ξ ≥ x}dPθdx

⎞

⎠

= inf
θ∈�

⎛

⎝
∫

�

∞∫

0

M{ξ ≥ x}dxdPθ

⎞

⎠

= Ẽ[ξ ] (37)

and

ECH [ξ ] =
∞∫

0

CH{ξ ≥ x}dx

=
∞∫

0

1∫

0

V {ω ∈ �|M{ξ ≥ x} ≥ r} drdx

=
∞∫

0

∫ 1

0
sup
θ∈�

Pθ {ω ∈ �|M{ξ ≥ x} ≥ r} drdx

≥ sup
θ∈�

⎛

⎝
∞∫

0

1∫

0

Pθ {ω ∈ �|M{ξ ≥ x} ≥ r} drdx
⎞

⎠

= sup
θ∈�

⎛

⎝
∞∫

0

∫

�

M{ξ ≥ x}dPθdx

⎞

⎠

= sup
θ∈�

⎛

⎝
∫

�

∞∫

0

M{ξ ≥ x}dxdPθ

⎞

⎠

= Ẽ[ξ ]. (38)

Secondly, for any uncertain random variable ξ ,

ξ = ξ+ − ξ−,

where ξ+ = ξ ∨ 0 = max{ξ, 0}, ξ− = −(ξ ∧ 0) = −min{ξ, 0}. Then by (32) and
(33), we have

Ech [ξ ] = Ech [ξ+] − ECH [ξ−], ECH [ξ ] = ECH [ξ+] − Ech [ξ−].

Applying (37) and (38), it yields

Ech[ξ ] ≤ Ẽ[ξ+] − Ẽ[ξ−]], ECH [ξ ] ≥ Ẽ[ξ+] − Ẽ[ξ−].
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From the sub-additivity of Ẽ and the fact that Ẽ[ξ ] = −Ẽ[−ξ ], it can be shown that

Ẽ[ξ ] ≤ Ẽ[ξ+] − Ẽ[ξ−], Ẽ[ξ ] ≥ Ẽ[ξ+] − Ẽ[ξ−].

Finally, by using the above arguments and noting the fact that Ẽ[ξ ] ≤ Ẽ[ξ ], we
obtain

Ech[ξ ] ≤ Ẽ[ξ ] ≤ Ẽ[ξ ] ≤ ECH [ξ ].
The proof of Theorem 4 is completed. �
Theorem 5 Let η be a random variable underE, and τ be an uncertain variable. Then,
we have

(i)
Ẽ[η + τ ] = E[η] + E[τ ] (39)

and
Ẽ[η + τ ] = E[η] + E[τ ]; (40)

(ii)
Ẽ[ητ ] = (E[τ ])+E[η] + (E[τ ])−E[−η] (41)

and
Ẽ[ητ ] = (E[τ ])+E[η] + (E[τ ])−E[−η]; (42)

(iii)

ECH [η + τ ] =
∞∫

0

1∫

0

V {ω ∈ �|1 − F(x − η) ≥ r} drdx

−
0∫

−∞

1∫

0

v {ω ∈ �|F(x − η) ≥ r} drdx (43)

and

Ech[η + τ ] =
∞∫

0

1∫

0

v {ω ∈ �|1 − F(x − η) ≥ r} drdx

−
0∫

−∞

∫ 1

0
V {ω ∈ �|F(x − η) ≥ r} drdx, (44)

where F(x) is the uncertainty distribution of τ .

Proof (i) According to (30), the uncertain random variable η + τ has an upper expec-
tation
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Ẽ[η + τ ] = sup
θ∈�

EPθ

{
E[y + τ ]|y=η

}

= sup
θ∈�

EPθ [η] + E[τ ]
= E[η] + E[τ ]. (45)

Similarly, by (31), we can show that the uncertain random variable η + τ has a
lower expectation

Ẽ[η + τ ] = E[η] + E[τ ].
(ii) From (30), the uncertain random variable ητ has an upper expectation

Ẽ[ητ ] = sup
θ∈�

EPθ

{
E[yτ ]|y=η

}

= sup
θ∈�

EPθ
{ηE[τ ]}

= (E[τ ])+E[η] + (E[τ ])−E[−η]. (46)

Similarly, by (31), we can show that the uncertain random variable ητ has a lower
expectation

Ẽ[ητ ] = (E[τ ])+E[η] + (E[τ ])−E[−η].
(iii) Applying (32), it is easily obtain that

ECH [η + τ ] =
∞∫

0

CH{η + τ ≥ x}dx −
0∫

−∞
ch{η + τ ≤ x}dx

=
∞∫

0

1∫

0

V {ω ∈ �|1 − F(x − η) ≥ r} drdx

−
0∫

−∞

∫ 1

0
v {ω ∈ �|F(x − η) ≥ r} drdx,

where F(x) is the uncertainty distribution of τ .
With the similar argument, we can verify that (44) holds. The proof of Theorem 5

is completed. �
Theorem 6 Assume η1 and η2 are random variables satisfying that η2 is independent
to η1 under E, τ1 and τ2 are uncertain variables, and for any given real numbers y1
and y2, f1(y1, τ1) and f2(y2, τ2) are real-valued comonotonic functions with respect
to τ1 and τ2. Then

Ẽ[ f1(η1, τ1) + f2(η2, τ2)] = Ẽ[ f1(η1, τ1)] + Ẽ[ f2(η2, τ2)] (47)

and
Ẽ[ f1(η1, τ1) + f2(η2, τ2)] = Ẽ[ f1(η1, τ1)] + Ẽ[ f2(η2, τ2)]. (48)
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Proof Since f1(y1, τ1) and f2(y2, τ2) are real-valued comonotonic functions with
respect to uncertain variables τ1 and τ2, we have

E[ f1(y1, τ1) + f2(y2, τ2)] = E[ f1(y1, τ1)] + E[ f2(y2, τ2)]

according to Definition 4. Then from (30), it follows that

Ẽ[ f1(η1, τ1) + f2(η2, τ2)]
= sup

θ∈�

EPθ

{
E[ f1(y1, τ1) + f2(y2, τ2)]y1=η1, y2=η2

}

= sup
θ∈�

EPθ

{
E[ f1(y1, τ1)]y1=η1 + E[ f2(y2, τ2)]y2=η2

}
.

(49)

Denote
g1(η1) = E[ f1(y1, τ1)]y1=η1

and
g2(η2) = E[ f2(y2, τ2)]y2=η2 .

Hence

Ẽ[ f1(η1, τ1) + f2(η2, τ2)] = sup
θ∈�

EPθ
{g1(η1) + g2(η2)}

= sup
θ∈�

EPθ

{
sup
θ∈�

EPθ [g1(y1) + g2(η2)]y1=η1

}

= sup
θ∈�

EPθ

{
g1(η1) + sup

θ∈�

EPθ [g2(η2)]
}

= sup
θ∈�

EPθ [g1(η1)] + sup
θ∈�

EPθ [g2(η2)]

= Ẽ[ f1(η1, τ1)] + Ẽ[ f2(η2, τ2)] (50)

by Definition 13 (i) in Appendix A. In the similar way, we can verify that (48) holds
and the proof is completed. �

5 Uncertain random programming

In this section, we suggest some classes of uncertain random optimization models,
called uncertain random programming under U-S chance spaces, to solve decision-
making problems in uncertain random environments.

Assume that x is a decision vector, ξ is an uncertain random vector, f (x, ξ)

is an objective function, and g j (x, ξ) are uncertain random constraint functions,
j = 1, 2, . . . , p. Since the uncertain random objective function f (x, ξ) cannot be
directly maximized or minimized, we may maximize or minimize its expected values.
Furthermore, since the uncertain random constraints g j (x, ξ) ≤ (≥)0, j = 1, . . . , p
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do not define a crisp feasible set, it is naturally desired that the uncertain random
constraints hold with confidence levels α j or β j , j = 1, . . . , p. Then we have the
following two sets of chance constraints:

CH{g j (x, ξ) ≥ 0} ≤ α j , j = 1, . . . , p (51)

and
ch{g j (x, ξ) ≤ 0} ≥ β j , j = 1, . . . , p. (52)

Four uncertain random programming models based on U-S chance theory are intro-
duced in the following.

5.1 Two robust uncertain random programmingmodels

In order to obtain a decision-making with maximum expected objective value sub-
ject to a set of chance constraints, we suggest the following two uncertain random
programming models:

(a)

⎧
⎪⎨

⎪⎩

max
x

Ẽ[ f (x, ξ)]
subject to:

CH{g j (x, ξ) ≥ 0} ≤ α j , j = 1, . . . , p

(53)

and

(b)

⎧
⎪⎨

⎪⎩

max
x

Ech[ f (x, ξ)]
subject to:

CH{g j (x, ξ) ≥ 0} ≤ α j , j = 1, . . . , p.

(54)

Definition 8 A vector x is called a feasible solution to the uncertain random program-
ming model (a) (or (b)) if

CH{g j (x, ξ) ≥ 0} ≤ α j , j = 1, . . . , p. (55)

Definition 9 (i) A feasible solution x∗ is called an optimal solution to the uncertain
random programming model (a) if

Ẽ[ f (x∗, ξ)] ≥ Ẽ[ f (x, ξ)] (56)

for any feasible solution x.
(ii) A feasible solution x∗ is called an optimal solution to the uncertain random

programming model (b) if

Ech[ f (x∗, ξ)] ≥ Ech[ f (x, ξ)] (57)

for any feasible solution x.
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5.2 Two radical uncertain random programmingmodels

In order to obtain a decision-making with minimum expected objective value sub-
ject to a set of chance constraints, we suggest the following two uncertain random
programming models:

(c)

⎧
⎪⎨

⎪⎩

min
x

Ẽ[ f (x, ξ)]
subject to:

ch{g j (x, ξ) ≤ 0} ≥ β j , j = 1, . . . , p

(58)

and

(d)

⎧
⎪⎨

⎪⎩

min
x

ECH [ f (x, ξ)]
subject to:

ch{g j (x, ξ) ≤ 0} ≥ β j , j = 1, . . . , p.

(59)

Definition 10 A vector x is called a feasible solution to the uncertain random pro-
gramming model (c) (or (d)) if

ch{g j (x, ξ) ≤ 0} ≥ β j , j = 1, . . . , p. (60)

Definition 11 (i) A feasible solution x∗ is called an optimal solution to the uncertain
random programming model (c) if

Ẽ[ f (x∗, ξ)] ≤ Ẽ[ f (x, ξ)] (61)

for any feasible solution x.
(ii) A feasible solution x∗ is called an optimal solution to the uncertain random

programming model (d) if

ECH [ f (x∗, ξ)] ≤ ECH [ f (x, ξ)] (62)

for any feasible solution x.

5.3 Equivalent conditions of uncertain random programmingmodels

In this subsection, we state some equivalent conditions of the above four uncertain
random programming models as the following two theorems.

Theorem 7 Let η1, η2, . . . , ηm be independent random variables under E, and
τ1, τ2, . . . , τn be independent uncertain variables with regular uncertainty dis-
tributions ϒ1, ϒ2, . . . , ϒn, respectively. Assume that {Fθi (yi ), yi ∈ R}θi∈�i is
a family of distributions of ηi corresponding to the set of probability mea-
sures {Pθi }θi∈�i , for i = 1, . . . ,m. If f (x, η1, η2, . . . , ηm, τ1, τ2, . . . , τn) and
g j (x, η1, η2, . . . , ηm, τ1, τ2, . . . , τn) are strictly increasingwith respect to τi1 , . . . , τik
and strictly decreasing with respect to τik+1 , . . . , τin , for j = 1, . . . , p, then
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(i) the uncertain random programming (a)

⎧
⎪⎨

⎪⎩

max
x

Ẽ[ f (x, η1, η2, . . . , ηm, τ1, τ2, . . . , τn)]
subject to:

CH{g j (x, η1, η2, . . . , ηm, τ1, τ2, . . . , τn) ≥ 0} ≤ α j , j = 1, . . . , p

(63)

is equivalent to the crisp mathematical programming

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max
x

inf
θ1∈�1

∫ ∞
−∞

· · ·
(

inf
θm∈�m

∫ ∞
−∞

∫ 1

0
f
(
x, y1, . . . , ym , ϒ−1

i1
(α), . . . , ϒ−1

ik
(α),

ϒ−1
ik+1

(1 − α), . . . , ϒ−1
in

(1 − α)
)
dαdFθm (ym )

)
· · · dFθ1 (y1)

subject to:
∫ 1

0
V
{
ω ∈ �|1 − G j (0; x, η1, η2, . . . , ηm ) ≥ r

}
dr ≤ α j , j = 1, . . . , p;

(64)

(ii) the uncertain random programming (c)

⎧
⎪⎨

⎪⎩

min
x

Ẽ[ f (x, η1, η2, . . . , ηm, τ1, τ2, . . . , τn)]
subject to:

ch{g j (x, η1, η2, . . . , ηm, τ1, τ2, . . . , τn) ≤ 0} ≥ β j , j = 1, . . . , p

(65)

is equivalent to the crisp mathematical programming

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

sup
θ1∈�1

∫ ∞
−∞

. . .
(

sup
θm∈�m

∫ ∞
−∞

∫ 1

0
f
(
x, y1, . . . , ym , ϒ−1

i1
(α), . . . , ϒ−1

ik
(α),

ϒ−1
ik+1

(1 − α), . . . , ϒ−1
in

(1 − α)
)
dαdFθm (ym )

)
· · · dFθ1 (y1)

subject to:
∫ 1

0
v
{
ω ∈ �|G j (0; x, η1, η2, . . . , ηm ) ≥ r

}
dr ≥ β j , j = 1, . . . , p,

(66)

where for each j ∈ {1, . . . , p}, G j (z; x, y1, y2, . . . , ym) is the uncertainty
distribution of uncertain variable g j (x, y1, y2, . . . , ym, τ1, τ2, . . . , τn) for any
given real numbers y1, y2, . . . , ym, and is determined by its inverse function

G−1
j (α, x, y1, y2, . . . , ym) = g j

(
x, y1, y2, . . . , ym, ϒ−1

i1
(α),

. . . , ϒ−1
ik

(α),ϒ−1
ik+1

(1 − α), . . . , ϒ−1
in

(1 − α)
)
.

Proof It follows from Theorem 1 and Theorem 3 immediately. �
Theorem 8 Let η1, η2, . . . , ηm be random variables under E, and τ1, τ2, . . . , τn be
independent uncertain variableswith regular uncertainty distributionsϒ1, ϒ2, . . . , ϒn,
respectively. If f (x, η1, η2, . . . , ηm, τ1, τ2, . . . , τn) and g j (x, η1, η2, . . . , ηm, τ1, τ2,

. . . , τn) are strictly increasing with respect to τi1 , . . . , τik and strictly decreasing with
respect to τik+1 , . . . , τin , for j = 1, . . . , p, then
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(i) the uncertain random programming (b)

⎧
⎪⎨

⎪⎩

max
x

Ech[ f (x, η1, η2, . . . , ηm, τ1, τ2, . . . , τn)]
subject to:

CH{g j (x, η1, η2, . . . , ηm, τ1, τ2, . . . , τn) ≥ 0} ≤ α j , j = 1, . . . , p

(67)

is equivalent to the crisp mathematical programming
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
x

{∫ ∞
0

∫ 1

0
v {ω ∈ �|1 − F(z; x, η1, η2, . . . , ηm ) ≥ r}

drdz − ∫ 0−∞
∫ 1
0 V {ω ∈ �|F(z; x, η1, η2, . . . , ηm ) ≥ r} drdz

}

subject to:
∫ 1

0
V
{
ω ∈ �|1 − G j (0; x, η1, η2, . . . , ηm ) ≥ r

}
dr ≤ α j , j = 1, . . . , p;

(68)

(ii) the uncertain random programming (d)

⎧
⎪⎨

⎪⎩

min
x

ECH [ f (x, η1, η2, . . . , ηm, τ1, τ2, . . . , τn)]
subject to:

ch{g j (x, η1, η2, . . . , ηm, τ1, τ2, . . . , τn) ≤ 0} ≥ β j , j = 1, . . . , p

(69)

is equivalent to the crisp mathematical programming
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

{∫ ∞
0

∫ 1

0
V {ω ∈ �|1 − F(z; x, η1, η2, . . . , ηm ) ≥ r}

drdz − ∫ 0−∞
∫ 1
0 v {ω ∈ �|F(z; x, η1, η2, . . . , ηm ) ≥ r} drdz

}

subject to:
∫ 1

0
v
{
ω ∈ �|G j (0; x, η1, η2, . . . , ηm ) ≥ r

}
dr ≥ β j , j = 1, . . . , p,

(70)

where F(z; x, y1, y2, . . . , ym) is the uncertainty distribution of uncertain vari-
able f (x, y1, y2, . . . , ym, τ1, τ2, . . . , τn) for any given real numbers y1, y2, . . . ,
ym, and is determined by its inverse function

F−1(α, x, y1, y2, . . . , ym) = f
(
x, y1, y2, . . . , ym, ϒ−1

i1
(α),

. . . , ϒ−1
ik

(α),ϒ−1
ik+1

(1 − α), . . . , ϒ−1
in

(1 − α)
)
,

and for each j ∈ {1, . . . , p}, G j (z; x, y1, y2, . . . , ym) is the uncertainty distri-
bution of uncertain variable g j (x, y1, y2, . . . , ym, τ1, τ2, . . . , τn) for any given
real numbers y1, y2, . . . , ym, and is determined by its inverse function

G−1
j (α, x, y1, y2, . . . , ym) = g j

(
x, y1, y2, . . . , ym, ϒ−1

i1
(α),

. . . , ϒ−1
ik

(α),ϒ−1
ik+1

(1 − α), . . . , ϒ−1
in

(1 − α)
)
.
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Proof It follows from (32), (33), Theorem 1 and Axiom 2 of Definition 1 immediately.
�

6 Some applications of uncertain random programmingmodels

In this section, some applications of two types of uncertain random programming
models are given, namely, stock investment in incomplete financial market and system
reliability design, respectively.

6.1 Stock investment in incomplete market

The optimal stock investment problem has always been a hot issue in the fields of
economics and finance, and stock investment in incomplete financial market contains
rich uncertainties, which disturb the choice of optimal strategies.

In finance, it is widely known that if the market is complete, then there exists a
risk-neutral and unique probability measure P . However, if the market is incomplete,
then this neutral probability measure is no longer unique, but there exists a series of
probability measures {Pθ }θ∈�. Incompleteness refers to the fact that more than one
probability plays on the market, yet we have no way of knowing the transformation
law. In this case, sub-linear expectation theory can be employed to analyze problems
of mathematical finance, such as optimal investment.

In financial market, when no samples are available to estimate probability mea-
sures, we have to invite some domain experts to evaluate the belief degree about the
unknown state. In this case, uncertain measures can be applied to analyze problems
of mathematical finance, such as optimal investment.

Suppose that there exist two types of stocks in incomplete financial market, and the
total number of stocks is m + n. For each i = 1, 2, . . . ,m, the initial price of the i th
stock is Y i

0, and the process of price change of the i th stock can be described by the
following uncertain stock model (see Sect. 16.1 in Liu 2015):

dY i
t = μi Y

i
t dt + vi Y

i
t dC

i
t , (71)

whereμi is the drift coefficient, vi is the diffusion coefficient, which are both constants,
and Ci

t is Liu process (see Definition 14.1 in Liu 2015). The solution of (71) is
Y i
t = Y i

0exp(μi t +viCi
t ). Definition 14.3 in Liu (2015) shows that the expected value

of Y i
t is

E[Y i
t ] =

⎧
⎪⎨

⎪⎩

Y i
0 exp(μi t)

vi t
√
3

sin(vi t
√
3)

, t <
π

vi
√
3
,

+∞, t ≥ π

vi
√
3
.

(72)

In addition, for each j = m+1,m+2, · · · ,m+n, the initial price the j th stock is
N j
0 , and the process of price change of the j th stock can be described by the following

stochastic differential equation driven by one-dimensional G-Brownian motion {B j
t }
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(see Definition 3.1.2 in Peng 2019):

dN j
t = e j N

j
t dt + σ j N

j
t dB

j
t + α j N

j
t d〈B〉 jt , (73)

where e j , σ j , α j are constants, and {〈B〉 jt } is a process of quadratic variation (see Sect.
3.4 in Peng 2019) with respect to {B j

t }. By using G-Itô’s formula (see Theorem 3.6.5
in Peng 2019), it can be calculated that

N j
t = N j

0 exp

[
e j t + σ j B

j
t +

(
α j − 1

2
σ 2
j

)
〈B〉 jt

]
, (74)

and when α j = 1
2σ

2
j , it is known that

E[N j
t ] = −E[−N j

t ]

= N j
0 exp(e j t)√
2π tσ 2

j

+∞∫

−∞
exp

[

σ j x − x2

2tσ 2
j

]

dx,
(75)

from Proposition 3.1.6 in Peng (2019).
The financial product is purchased at the moment 0 and sold at the moment T . Let

xk represent the number of shares of the k-th stock (k = 1, 2, . . . ,m + n) purchased,
Y i
T represent the stock price of the i th stock (i = 1, 2, . . . ,m) at the moment T , and

N j
T represent the stock price of the j th stock ( j = m + 1,m + 2, . . . ,m + n) at the

moment T . Denote
x = (x1, x2, . . . , xm+n)

and
ξ = (Y 1

T ,Y 2
T , . . . ,Ym

T , Nm+1
T , Nm+2

T , . . . , Nm+n
T ).

Let T (x, ξ) represent the total price at the moment T of financial product pur-
chased and T k(x, ξ) represent the price at the moment T of xk shares of the kth stock
purchased, then

T k(x, ξ) =
{
xkY k

T , k = 1, 2, . . . ,m,

xk Nk
T , k = m + 1,m + 2, . . . ,m + n

(76)

and

T (x, ξ) =
m+n∑

k=1

T k(x, ξ). (77)

In addition, the total cost of financial product purchased is

C(x) = x1Y
1
0 + · · · + xmY

m
0 + xm+1N

m+1
0 + · · · + xm+nN

m+n
0 . (78)
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If the initial capital is C0, then the capital constraint is

C(x) ≤ C0. (79)

Under the capital constraint,we canmaximize the return of financial product purchased
at the moment T by building the following uncertain random programming model:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
x

Ẽ[T (x, ξ)]
subject to:

C(x) ≤ C0,

x ≥ 1 (integer vector).

(80)

Example 6 Suppose that there are five stocks in an incomplete financial market. Two
of those obey the uncertain differential equations (71), the initial stock prices are
Y 1
0 = 24, Y 2

0 = 18.2, the drift coefficients are μ1 = 0.00216, μ2 = 0.0006, and
the diffusion coefficients are v1 = 0.003, v2 = 0.0011, respectively. The other three
stocks obey the stochastic differential equations (73), the initial stock prices are N 3

0 =
16.3, N 4

0 = 17.9, N 5
0 = 13.6, the parameters are e3 = 0.00153, e4 = 0.00104, e5 =

0.00263, σ3 = 0.0023, σ4 = 0.0019, σ5 = 0.005, α3 = 7.22 × 10−6, α4 =
8 × 10−6, α5 = 9.245 × 10−6, and σ 2

3 = 1.0304, σ 2
4 = 1.0201, σ 2

5 = 1.0501,
respectively. The risk-free interest rate is r = 5.4 × 10−5, and the maturity time is
T = 30.

If the initial capital is assumed to be 1000, by using MATLAB, we can calculate
that the optimal stock portfolio is

x∗ = (37, 2, 1, 1, 3),

the initial capital consumption is 999.4, and the expected income is 65.7.

6.2 System reliability design

Providing redundancy for components in a system is an effective method to improve
system reliability. The purpose of system reliability design is to determine the opti-
mal number of redundant elements for balancing system performance and total cost.
Suppose a series system consists of n components, and each component has only one
type of elements. The lifetimes of elements are uncertain random variables. We also
assume that redundant elements of all components are in a standby state. That is,
one of redundant elements begins to work only when the active element fails. This
approach is usually applied in cases where replacement can be accomplished imme-
diately. Therefore, the lifetime of a component is the sum of lifetimes of all elements
in the component. Let xi be the number of elements in the i th component, and ξi j
be the lifetime of the j-th element in the i th component, where j = 1, 2, . . . , xi ,
i = 1, 2, . . . , n. Denote

x = (x1, x2, . . . , xn)
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and
ξ = (ξ11, . . . , ξ1x1, ξ21, . . . , ξ2x2 , . . . , ξn1, . . . , ξnxn ).

Let T (x, ξ) represent the system lifetime, and T i (x, ξ) represent the lifetime of
the i th component, i = 1, 2, . . . , n, respectively. Then

Ti (x, ξ) =
xi∑

j=1

ξi j , i = 1, 2, . . . , n (81)

and

T (x, ξ) =
n∧

i=1

Ti (x, ξ). (82)

In addition, if we assume that the cost of each element in the i th component is ci ,
i = 1, 2, . . . , n, respectively, then the total cost is

C(x) = c1x1 + c2x2 + · · · + cnxn .

Suppose that the total capital available is C0, then the cost constraint is

C(x) ≤ C0. (83)

When the cost constraint is satisfied, the uncertain random redundancy model can be
constructed as following to maximize the expected system lifetime:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
x

Ech[T(x, ξ)]
subject to:

C(x) ≤ C0,

x ≥ 1 (integer vector).

(84)

Since T (x, ξ) is a strictly increasing function with respect to ξ , the uncertain random
redundancy model may be converted to a crisp mathematical model like (68).

Example 7 Suppose a series system consists of 4 components, and each of those con-
tains only one type of element. The lifetimes of the 4 types of elements are assumed
to be

N (8, [1, 1.1]) , N (10, [1, 1.2]) , L (5, 8) , L (7, 10) ,

where N
(
μi , [σ 2

i , σ
2
i ]
)
represents a G-normal distribution with an expected value of

μi , which can be generated by μi + ηi satisfying ηi ∼ N
(
0, [σ 2

i , σ
2
i ]
)
, and L (a, b)

represents a linear uncertain variable whose uncertainty distribution is

ϒ(x) =

⎧
⎪⎨

⎪⎩

0, if x ≤ a,

(x − a)/(b − a), if a ≤ x ≤ b,

1, if x ≥ b.

(85)
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Assume the costs of the 4 types of elements are assumed to be 8, 10, 12, 11, respec-
tively, and the total capital is 100. Then by using MATLAB, the optimal combination
of elements for this system is

x∗ = (2, 2, 3, 2),

the cost of consumption is 94, and the expected system lifetime is 13.27.

7 Conclusion

In the real world, there exists a class of complex systems where non-additive char-
acteristic stochasticity and human uncertainty coexist. In this case, we can employ
U-S chance theory to analyze problems in these complex systems. In this paper, we
investigate the uncertain random programming models under U-S chance theory. The
operational law for uncertain random variables is proven. Based on sub-linear expecta-
tions and Choquet integrals, four types of expectations of uncertain random variables
under U-S chance spaces are defined, and their relations and some properties are
presented. It follows from these four types of expectations that four uncertain ran-
dom programming models are provided. And the four models’ equivalent conditions
are offered. Furthermore, they can be successfully applied to optimal investment in
incomplete financial market and system reliability design.

The following is our future research plan. In this paper, uncertain random single-
objective programming models under U-S chance theory are studied. However, in
practical applications, we may want more than one objective function. Therefore,
in the forthcoming work, we will investigate the uncertain random multi-objective
programming models under the U-S chance theory and present their compromise
models and crisp equivalent models. Finally, these uncertain random multi-objective
programming models will be applied to portfolio selection in incomplete financial
market. And we have made some headway in this work as of right now.
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Appendix A Sub-linear expectation theory

In real world, there are a number of problems where human uncertainties coexist with
stochasticities characterized by non-additive probabilities. This stochasticity is usually
constrained by a family of probabilities {Pθ }θ∈�, but we do not knowwhich one really
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works. In this case, we choose to take supθ∈� EPθ and infθ∈� EPθ to analyze these
problems, where EPθ is the expectation under probability measure Pθ . Let (�,F)

be a given measurable space, M be the set of all probability measures on �, and H
be a set of random variables such that if X ∈ H, then supθ∈� EPθ [|X |] < +∞.
For any non-empty subset {Pθ }θ∈� ⊆ M, A ∈ F and X ∈ H, define an upper
probability V(A) := supθ∈� Pθ (A), a lower probability v(A) := infθ∈� Pθ (A), a
maximum expectation E[X ] := supθ∈� EPθ [X ] and a minimum expectation E[X ] :=
infθ∈� EPθ [X ]. Obviously, E[X ] = −E[−X ].
Remark 3 The upper probability V and the lower probability v are two special non-
additive probabilities. Moreover, V is sub-additive, and V(A) + v(Ac) = 1 for any
A ∈ F . In fact, given a maximum expectation E, V and v can generated by V(A) =
E[IA], v(A) = E[IA] = −E[−IA].

It is easy to show that the maximum expectation E[X ] is actually a sub-linear
expectation on H. We use the framework and notations of sub-linear expectation
introduced by Peng (2019) and Chen (2016). In the following, some definitions and
properties of sub-linear expectation theory used in this paper are reviewed.

Definition 12 (Peng 2019) A sub-linear expectation E onH is a function E : H �→ R

satisfying the following properties: for all X ,Y ∈ H, we have

(i) Monotonicity: If X ≥ Y , then E[X ] ≥ E[Y ];
(ii) Constant preserving: E[c] = c, c ∈ R;
(iii) Sub-additivity: E[X + Y ] ≤ E[X ] + E[Y ];
(iv) Positive homogeneity: E[λX ] = λE[X ], λ ≥ 0.

The triple (�,H,E) is called a sub-linear expectation space. Given a sub-linear expec-
tation E, let us denote the conjugate expectation E of E by

E[X ] := −E[−X ], X ∈ H.

From Definition 12, it is easily shown that E[X ] ≤ E[X ], E[X + c] = E[X ] + c,
and E[X − Y ] ≥ E[X ] − E[Y ] for all X ,Y ∈ H.

Definition 13 (Peng 2019) (i) (Independence) Suppose that Y1,Y2, . . . , Yn is a
sequence of random variables. Random variable Yn is said to be independent to
X := (Y1,Y2, . . . ,Yn−1) under E, if for each Borel measurable function ϕ on R

n

with ϕ(X ,Yn) ∈ H and ϕ(x,Yn) ∈ H for each x ∈ R
n−1, we have

E[ϕ(X ,Yn)] = E[ϕ̄(X)],

where ϕ̄(x) := E[ϕ(x,Yn)] and ϕ̄(X) ∈ H.
(ii) (Identical distribution) Random variables X and Y are said to be identically

distributed, denoted by X
d= Y , if for each Borel measurable function ϕ on R such

that ϕ(X), ϕ(Y ) ∈ H,
E[ϕ(X)] = E[ϕ(Y )].

(iii) (IID random variables) A sequence of random variables {Xi }∞i=1 is said to be

IID, if Xi
d= X1 and Xi+1 is independent to Y := (X1, . . . , Xi ) for each i ∈ N.
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Definition 14 (Maximal distribution, Peng 2019) A random variable η on a sub-
linear expectation space (�,H,E) is called maximally distributed if E[ϕ(η)] =
supμ≤y≤μ ϕ(y) for each Borel measurable function ϕ onR, and μ = E[η], μ = E[η].
Definition 15 (G-normal distribution, Peng 2019) A random variable η on a sub-linear
expectation space (�,H,E) is called G-normally distributed if

aη + bη̄
d=
√
a2 + b2η, for a, b ≥ 0,

where η̄ is an independent copy of η. Denote it as η ∼ N (0, [σ 2, σ 2]), where E[η] =
E[η] = 0, σ 2 = E[η2] and σ 2 = E[η2].
Remark 4 (Peng (2019)) Let η and η̄ be two random variables on a sub-linear expecta-

tion space (�,H,E). η̄ is called an independent copy ofη if η̄
d= η and η̄ is independent

to η.

Definition 16 A random variable η under E is said to be Bernoulli if it satisfies:
(i) The possible values of η are a1, a2, . . . , an , n ∈ N;
(ii) For any k ∈ {1, 2, . . . , n}, the possible probability measure that η = ak is pk , and
p1 + p2 + · · · + pn = 1, i.e.,

η =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a1, with possible probability measure p1,

a2, with possible probability measure p2,

· · ·
an, with possible probability measure pn,

(A1)

where pk ∈ [p
k
, pk] for k = 1, 2, . . . , n, satisfying

∑n
k=1 pk = 1, and n ∈ N.

Remark 5 A Bernoulli random sequence {ηi }∞i=1 under E is a infinite sequence of
independent Bernoulli random variables under E.

Definition 17 A Bernoulli random variable η under E is called Boolean random vari-
able under E, if it takes values 1 and 0, and the possible probability measures that
η = 1 and η = 0 are p and 1 − p, respectively, i.e.,

η =
{
1, with possible probability measure p,

0, with possible probability measure 1 − p,
(A2)

where p ∈ [p, p].
To make readers easier to understand Definition 16, we give the following typical

example of Bernoulli random sequence under E.

Example 8 Consider a countable infinity urns, ordered and indexed by the set N. It is
known that the i th urn contains wi white balls, yi yellow balls and bi black balls. The
exact numbers of wi , yi and bi are unknown, but we only know that wi + yi + bi =
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100+ (i −1), wi ∈ [10+ (i −1), 20+ (i −1)], and yi ∈ [15+ (i −1), 30+ (i −1)].
Now we are allowed to sufficiently mix the balls and then choose a ball from the i th
urn. Let ηi be a random variable defined by

ηi =

⎧
⎪⎨

⎪⎩

1, if the ball drawn from the i th urn is white,

0, if the ball drawn from the i th urn is yellow,

−1, if the ball drawn from the i th urn is black.

(A3)

Then the distribution of ηi is

(
1 0 −1
pi1 pi2 1 − (pi1 + pi2)

)

with the possible probability measures
pi1 ∈ [ 9+i

99+i ,
19+i
99+i ] and pi2 = [ 14+i

99+i ,
29+i
99+i ].
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