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Abstract
In this article, we address the no-wait flow shop scheduling problem with sequence 
dependent setup times. The objective is to minimize makespan subject to an upper 
bound on total completion time. Although these performance measures and con-
straints have been extensively studied, they have never been considered together in 
this problem before. To solve the problem, we propose an adaptive large neighbor-
hood search algorithm called ALNS

A
 . Essentially, ALNS

A
 improves an initial solu-

tion by dynamically selecting and executing a pair of destroy and repair methods 
based on their performance history. In addition to classic greedy and random meth-
ods used, we present two new mechanisms in which the greediness-randomness 
behavior is balanced. To evaluate performance, the proposed approach is compared 
with three heuristic methods—GL, HH1 and TOB—developed for the most similar 
problems found in the literature. Computational experiments show that the proposed 
method outperforms state-of-the-art approaches in the literature for the no-wait flow 
shop scheduling problem with sequence dependent setup times and is therefore rec-
ommended to solve the problem.
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1  Introduction

In this article, we address the flow shop scheduling problem (FSP) with two pro-
cessing constraints: no-wait (NWT) and sequence dependent setup times (SDST). 
The FSP is a system where a set of jobs have to be processed through a series 
of machines in the same processing routing. In this system, often the same job 
sequence occurs on all machines, so that a schedule can be defined by a single 
permutation of jobs. When the NWT constraint is in place, there is no waiting 
time between successive operations. Therefore, no job is permitted to utilize a 
buffer or to wait in an upstream machine. NWT may occur due to process require-
ments or unavailability of waiting space. Having setup constraints means that a 
machine requires some preparation before processing a particular job. This prep-
aration may include cleaning, retooling, adjustments, inspection and rearrange-
ment of the work station. In SDST, the length of these times depends on the dif-
ficulty involved in switching from one processing configuration to another. SDST 
are common in multipurpose machines or when a single facility produces a vari-
ety of products. In those situations, instead of absorbing the setup times in the 
processing times, it is recommended to make explicit considerations (Emmons 
and Vairaktarakis 2013; Pinedo 2016).

The problem is considered with makespan and total completion time. Makes-
pan and total completion time are among the most important performance meas-
ures in the field of scheduling. Makespan represents the maximal completion 
time among all jobs in the system. Minimizing makespan is appropriate when a 
complete batch of jobs needs to be dispatched as quickly as possible. A reduced 
makespan also allows an efficient use of resources, that is, it decreases equip-
ment idle time. Total completion time is defined by the sum of all completion 
times. Schedulers try to minimize total completion time to increase processing 
rate, which decreases work-in-process inventory and increases the response to 
demands (Baker and Trietsch 2019). Optimization problems involving two (or 
more) conflicting objectives, such as these, need to be considered in the presence 
of trade-offs because no single solution optimizes each objective simultaneously. 
The approach adopted in this work is to optimize makespan subject to total com-
pletion time. This objective function is appropriate when makespan needs to be 
minimized, but there is no need to optimize total completion time as long as it 
does not exceed an upper bound. A practical example is when a scheduler sets an 
upper bound on total completion time to prevent inventory from growing beyond 
the facility’s capacity, but no benefit is gained by reducing it further after achiev-
ing this.

Many researchers have proposed algorithms to minimize makespan or total 
completion time in NWT–FSP–SDST. The most relevant studies include greedy 
algorithms (Bianco et  al 1999; Xu et  al 2012), simulated annealing (Lee and 
Jung 2005), hybrid genetic algorithm (Franca et  al 2006), constructive heuris-
tics (Araújo and Nagano 2011; Nagano et  al 2015), differential evolution (Qian 
et  al 2011, 2012), greedy randomized adaptive search and evolutionary local 
search based (Zhu et  al 2013b), iterative algorithm (Zhu et  al 2013a), hybrid 
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evolutionary cluster search (Nagano and Araújo 2014), hybrid greedy algorithm 
(Zhuang et al 2014), particle swarm optimization (Samarghandi and ElMekkawy 
2014), genetic algorithms (Samarghandi 2015a, b) and local search (Miyata et al 
2019).

Despite the extensive research on multi-objective optimization of NWT–FSP, few 
studies have addressed objectives of type A subject to B. Moreover, none of them 
have considered the SDST feature, to the best of our knowledge. Allahverdi (2004) 
tried to minimize a linear combination of makespan and maximum tardiness under 
the condition of not allowing maximum tardiness to exceed a given value. Frami-
nan and Leisten (2006) studied the FSP with the objective of minimizing makespan, 
such that maximum tardiness is not greater than an acceptable limit. Aydilek and 
Allahverdi (2012) and Nagano et al (2020) addressed the NWT–FSP with the objec-
tive of minimizing makespan under the constraint that mean completion time (or 
the equivalent total completion time) does not exceed a maximum value. Allahverdi 
and Aydilek (2013) addressed the NWT–FSP and tried to minimize total comple-
tion time while keeping makespan less than or equal to an upper bound, and Allah-
verdi and Aydilek (2014) considered the same problem with separate setup times. 
Recently, Allahverdi et  al (2018) proposed an algorithm to solve the NWT–FSP 
with the objective of minimizing total tardiness, such that makespan does not exceed 
a given value, and Allahverdi et al (2020) studied the same problem with separate 
setup times.

The NWT–FSP–SDST belongs to the class of NP-hard problems (Bianco et  al 
1999). As exact methods are often impractical or ineffective for solving large or 
complex problems, heuristic methods are preferable. Heuristics use simple rules and 
shortcuts to find satisfactory solutions for various combinatorial optimization prob-
lems in a reasonable time. Unfortunately, this flexibility comes at a cost: there is no 
unique optimal parameter setting suitable for all problems and instances. This means 
that it will always take some effort to properly calibrate the algorithms in each new 
instance configuration if the scheduler really wants to extract maximum perfor-
mance. The possibility of improvement can even be assumed to heuristics targeting 
the most convenient instance configuration, since heuristic solutions are not guaran-
teed to be optimal. Furthermore, the complexity of the algorithm and its computa-
tional time are always properties to be improved. In other words, there will always 
be possibilities for improvement, whether to get easier, better or faster solutions.

Focusing on these opportunities, we present the algorithm called ALNSA for the 
NWT–FSP–SDST to minimize makespan subject to total completion time. This 
method is based on the adaptive large neighborhood search (ALNS) algorithm origi-
nally presented by Ropke and Pisinger (2006), which extends the large neighborhood 
search (LNS) heuristic proposed by Shaw (1998). In LNS, a destroy and a repair 
method iteratively rebuild an initial solution in an attempt to improve it. In ALNS, 
multiple destroy and repair methods are used, and the performance of each destroy/
repair method determines how often that particular method is executed during the 
search. This allows the algorithm to adapt to search conditions, reducing the need 
for calibration for different instance configurations. ALNS has been mainly applied 
in vehicle routing problems (VRP), e.g., Hemmelmayr et  al (2012), Qu and Bard 
(2012), Demir et al (2012) and Azi et al (2014). However, the number of scheduling 
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applications has also grown in recent years, e.g., Lin and Ying (2014), Rifai et al 
(2016) and Beezão et al (2017). In this work, our proposed ALNSA accesses a set of 
distinct mechanisms and dynamically selects a pair of destroy and repair methods 
based on their performance history. Among the mechanisms used, we present two 
new ones in which the greediness–randomness behavior is balanced to obtain bet-
ter results. Extensive experiments are made to compare ALNSA with three heuristics 
for similar problems found in the literature. In addition, we present a mathematical 
model to be used as benchmark for small instances problems. All results are statisti-
cally verified.

The remainder of this article is organized as follows. The problem definition is 
described in Sect. 2. The mathematical model is presented in Sect. 3 and the algo-
rithms are presented in Sect. 4. Section 5 is dedicated to the experimental design 
and analysis of results. Some concluding remarks are given in Sect. 6.

2 � Problem definition

The FSP consists of a set J = {i ∣ i ∈ ℕ, 1 ≤ i ≤ n} of n jobs which needs to be pro-
cessed on a set M = {k ∣ k ∈ ℕ, 1 ≤ k ≤ m} of m machines. Each machine can pro-
cess only one job at a time. All jobs are processed once on each of the m machines, 
where the operation Ok

i
 of job i on machine k is executed during the processing time 

pk
i
 without preemption. Moreover, all jobs follow the same processing order and the 

job sequence is kept fixed through all machines. It is assumed that all jobs are ready 
at time 0.

The NWT constraint imposes that operation Ok+1
i

 must begin immediately after 
operation Ok

i
 is completed. The SDST constraint implies that, after operation Ok

i
 is 

processed, machine k requires a sequence dependent setup sk
ij
 before being able to 

start Ok
j
 . Therefore, setup times are not-attached; that is, a setup process must begin 

before the next job is ready for a given machine. It is assumed that there is no initial 
setup required by any machine before starting its first operation, and there is no final 
setup required to bring any machine back to its initial state after its last operation is 
executed. Figure  1 shows an example of the NWT–FSP–SDST. In particular, an 
instance with n = 3 jobs and m = 3 machines is represented.

Fig. 1   Gantt chart of an example problem with three jobs and three machines
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Given the set I = {q ∣ q ∈ ℕ, 1 ≤ q ≤ n} of n positions of a production sequence of 
J, let tk

q
 be the starting time of the qth job on machine k, and ck

q
 the completion time of 

the qth job on machine k. For simplicity, let tq = t1
q
 and cq = cm

q
 . Based on the formula-

tion of Bianco et al (1999), we have

and

Equation (1) defines tq+1 as tq plus its distance to tq+1 . And since the problem has the 
no-wait constraint, the completion time cq of a job is equal to its starting time tq plus 
the sum of its processing times, as defined in Eq. (2). Moreover, let Cmax and TCT​ 
represent the performance measures makespan and total completion time, respec-
tively. Hence, we have Cmax = cn and TCT =

∑
q∈I cq.

The optimization problem modeling the NWT–FSP–SDST minimizing makespan 
subject to an upper bound on total completion time can be described as follows. The 
search space is defined by the set of feasible solutions X = {� ∣ TCT(�) ≤ K} , where 
TCT(�) is the total completion time value of the solution � and K is a constant used as 
upper bound. The objective is to find a solution with the lowest makespan value among 
all feasible solutions, that is, find a �∗ ∈ X , so that Cmax(�

∗) ≤ Cmax(�), ∀� ∈ X . 
Each solution � ∈ X defines a production sequence which we represent by a vector 
� = (�1, ...,�n) , being �i ∈ J and �i ≠ �j if i ≠ j . Clearly this is a permutation problem.

Using the notation proposed by Graham et al (1979) and T’kindt and Billaut (2006) 
the addressed problem can be written as

where �(Cmax∕TCT) represents the objective function of minimizing Cmax subject 
to an upper bound on TCT​, while Fm and nwt represent flow shop and no-wait, 
respectively.

3 � Mixed‑integer linear programming model

We formulate a mixed-integer linear programming model (MIP) for 
Fm ∕ nwt, sk

i,j
∕ �(Cmax∕TCT) as follows. Let xq

i
 be a binary decision variable, such that 

x
q

i
 = 1 if job i is the qth job processed, otherwise xq

i
 = 0. Now, let yq

ij
 be a binary auxil-

iary variable, such that yq
ij
 = 1 if job i is the qth job processed immediately before job j, 

otherwise yq
ij
 = 0. Hence, MIP is defined as follows:

Subject to:

(1)tq+1 = tq + max
1≤k≤m

[
sk
q,q+1

+

k∑
h=1

(
ph
q
− ph

q+1

)
+ pk

q+1

]
, q ∈ I∕{n}

(2)cq = tq +
∑
k∈M

pk
q
, q ∈ I.

Fm ∕ nwt, sk
i,j
∕ �(Cmax∕TCT).

(3)z = min cn
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The objective function (3) minimizes makespan. Constraint (4) imposes the upper 
bound K on TCT​. Constraints (5) and (6) are the job assignment constraints, and 
constraints (7) and (8) are the precedence constraints. Constraints (9) state the right 
difference between the start time and the end time of a job on a machine accord-
ing to the job assigned. Constraints (10) guarantee NWT more easily than Eq. (2), 
because they ensure no gap between successive processing of a job with a simple 
equality. Constraints (11) ensure the SDST constraints with a simple inequality. This 
avoids dealing with the “max” term from Eq. (1). Constraint (12) states that the first 

(4)
∑
q∈I

cq ≤ K

(5)
∑
i∈J

x
q

i
= 1, q ∈ I

(6)
∑
q∈I

x
q

i
= 1, i ∈ J

(7)
∑
j∈J

y
q

ij
= x

q

i
, q ∈ I∕{n}, i ∈ J, i ≠ j

(8)
∑
i∈J

y
q

ij
= x

q+1

i
, q ∈ I∕{n}, j ∈ J, i ≠ j

(9)ck
q
= tk

q
+
∑
i∈J

(pk
i
⋅ x

q

i
), q ∈ I, k ∈ M

(10)tk+1
q

= ck
q
, q ∈ I, k ∈ M∕{m}

(11)tk
q+1

≥ ck
q
+
∑
i∈J

∑
j∈J

(sk
ij
⋅ y

q

ij
), q ∈ I∕{n}, k ∈ M, i ≠ j

(12)t1 = 0

(13)x
q

i
= {0, 1}, i ∈ J, q ∈ I

(14)y
q

ij
= {0, 1}, q ∈ I∕{n}, i, j ∈ J, i ≠ j

(15)tk
q
≥ 0, q ∈ I, k ∈ M

(16)ck
q
≥ 0, q ∈ I, k ∈ M
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job on the first machine starts processing at time zero. Constraints (13)–(16) give the 
domains of the variables.

4 � Heuristic algorithms

As mentioned earlier, the problem Fm∕nwt∕�(Cmax∕TCT)—without SDST con-
straints—has already been addressed by Aydilek and Allahverdi (2012) and Nagano 
et al (2020). Ye et al (2020) also proposed an algorithm for a similar environment. In 
this work, the best algorithm from each study is adapted to be used as a benchmark. 
The three methods are briefly explained in the next subsection, followed by a com-
plete description of our proposed algorithm ALNSA to solve the problem (3)–(16).

4.1 � Literature algorithms

Aydilek and Allahverdi (2012) proposed the algorithm HH1, composed by the algo-
rithms called mSA and HA. The algorithm mSA is a modified simulated annealing, 
which tries to improve the incumbent solution by iteratively moving a random job 
to a random position. The algorithm HA iteratively applies an insertion local search. 
Then, it tries to improve the solution generated by using an interchange local search 
(local search that swaps random pairs of jobs). Only solutions with TCT​ less than or 
equal to a given upper bound can be candidates to update the incumbent solution. 
The final solution generated by mSA is used as initial solution of HA.

Nagano et al (2020) proposed the algorithm GL for the same problem. GL iterates 
through a reconstruction procedure followed by an insertion local search. The recon-
struction step creates candidate solutions by removing random jobs from the incum-
bent solution and reinserting them back by using a constructive heuristic based on 
NEH (Nawaz et al 1983). This loop repeats until a defined number of iterations is 
achieved. Finally, a transposition local search (local search that swap pairs of adja-
cent jobs) tries to improve the incumbent solution. Throughout the execution, only 
sequences with TCT​ less than or equal to the upper bound are considered candidate 
solutions.

Ye et al (2020) proposed the algorithm called TOB. First, this method performs 
a reconstruction process that combines the NEH heuristic with an interchange local 
search. Then, a modified insertion local search is applied (local search that inserts 
jobs only ahead of its original position). The algorithm repeats these steps until a 
maximum number of iterations is achieved. The objective function was defined as a 
mathematical relationship between the two performance measures.

4.2 � Algorithm ALNS
A

The adaptive large neighborhood search (ALNS), originally proposed by Ropke and 
Pisinger (2006), has access to a set of destructive and constructive heuristics. At 
each iteration, a given solution is destroyed by a destructive procedure and rebuilt 
by a constructive procedure. A weight is assigned to each heuristic according to its 
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performance, giving to those that perform well a higher probability to be selected 
again. Usually, the weights are updated, so that all heuristics have at least some 
chance to be executed. This dynamic selection adapts the algorithm to the instance 
and the state of the search at hand (Pisinger and Ropke 2019).

The proposed ALNS ( ALNSA ) starts with a permutation �0 as initial solution. 
Algorithm is the main structure that uses other heuristics to perform the search, and 
the performance of these methods determines how often each one is executed. Given 
the set Ω− of destroy heuristics and the set Ω+ of repair heuristic, Algorithm itera-
tively tries to improve the incumbent solution �∗ by using a destroy heuristic d ∈ Ω− 
and a repair mechanism r ∈ Ω+ to create a new candidate solution �′ , so that �′ = 
r(d(�∗)).12

Algorithm 1   ALNS
A

1  See Eq. (17).
2  See Eqs. (18)–eqrefeq:rosps.
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Algorithm 2   Destroy d 

Algorithm 3   Repair r 

The set Ω− is composed by three destroy algorithms. Destroy algorithm d = 1 
removes a predefined number of jobs from a sequence at random. Destroy algorithm 
d = 2 tries to remove from a sequence the best set of jobs that optimize the objec-
tive. Destroy algorithm d = 3 is similar to the previous one, but it differs by skip-
ping some jobs at probability of 50%. These three heuristics are represented by the 
generic destroy Algorithm  2. The set Ω+ is composed by three repair algorithms. 
Repair algorithm r = 1 reinserts the removed jobs back to the partial sequence at 
random positions. Repair algorithm r = 2 reinserts each removed job back to the 
partial sequence in the best possible position. Repair algorithm r = 3 is similar to 
the previous one, but it differs by skipping some insertion options at probability of 
50%. These three heuristics are represented by the generic repair Algorithm 3.
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Line 5 of Algorithm 2 works as follows.

–	 insert1(� , �e ) inserts a random job from � into the start of �e;
–	 insert2(� , �e ) removes the job that minimizes Cmax of the remainder of � and 

insert it at the start of �e;
–	 insert3(� , �e ) removes the job that minimizes Cmax of the remainder of � and 

insert it at the start of �e , but skipping some job options at probability of 50%;

Line 3 of Algorithm 3 works as follows.

–	 insert1(�e , � ) inserts the first job of �e into a random position of �;
–	 insert2(�e , � ) inserts the first job of �e into the best position of � that minimizes 

its new Cmax;
–	 insert3(�e , � ) inserts the first job of �e into the best position of � that minimizes 

its new Cmax , but skipping some position options at probability of 50%;

Pure random procedures as d = 1 and r = 1 have low performance but provide high 
diversification. On the other hand, pure greedy procedures as Algorithms d = 2 and 
r = 2 have high performance but provide low diversification and therefore tend to 
get stuck in a local optimum. Algorithms d = 3 and r = 3 have been developed to 
provide balanced options on these behaviors. The balance is achieved by adding to 
standard greedy mechanisms the simple but effective procedure of skipping some 
job manipulations at random, rather than testing every insertion or removal option. 
If the mechanisms selected are not able to produce a candidate solution �′ , so that 
TCT(��) ≤ K , the search proceeds to the next iteration without changes.

The parameters �−
i
∈ ℝ

‖Ω−‖ and �+
i
∈ ℝ

‖Ω+‖ store the weights of destroy and 
repair methods, respectively. Equation  17 describes how Algorithm calculates the 
probabilities �−

i
 and �+

i
 to select the ith destroy and repair heuristics, respectively.

After each iteration of Algorithm , a score Ψ is assigned to the methods used, so that

Initially, we define �− = (1, 1, 1) and �+ = (1, 1, 1) . Then, the methods have their 
weights updated by computing

and

(17)�−
i
=

�−
i∑‖Ω−‖

k=1
�−
k

�+
i
=

�+
i∑‖Ω+‖

k=1
�+
k

(18)Ψ =

⎧⎪⎨⎪⎩

4, if generated solution is a new global best;

3, if generated solution is a new local best;

2, if generated solution is accepted;

1, if generated solution is rejected.

(19)�−
i
= ��−

i
+ (1 − �)Ψ�−

i
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with � ∈ [0, 1] . The parameters �−
i
 and �+

i
 represent the values used to normalize the 

score Ψ ∈ {1, 2, 3, 4} with a measure of the CPU time of the corresponding heuris-
tic. This is important, because some methods can be significantly slower than oth-
ers, so the normalization ensures a proper trade-off between CPU time and solution 
quality. Note that the values of Ψ {1, 2, 3, 4} are just a sequence of numbers in 
ascending order to establish a status ranking. The parameter that really controls the 
sensibility to change in performance is � . Furthermore, only the weights �−

i
 and �+

i
 

corresponding to the methods used in the current iteration are updated.

5 � Computational experiments

We implemented all algorithms in C++ and ran them on a Windows 11 PC 
with a processor IntelⓇ CoreTM i5-11400 H and 16 GB of RAM. The literature 
methods HH1, GL and TOB were adapted and re-implemented. The source code 
and scripts can be downloaded from 10.​5281/​zenodo.​10577​724. To find optimal 
solutions for the proposed MIP, we employ the Gurobi Optimizer solver version 
10.0.2. This solver is widely used in the field of operations research and has 
proven to be efficient and robust for solving large-scale linear and mixed-integer 
programming problems.

We defined the stopping criterion for the heuristic methods as n × (m∕2) × t 
milliseconds, with t ∈ {10, 20, 30, 40} to analyze consistency across different 
computational times. In real life, the initial solution �0 and the upper bound 
K must be given by the scheduler. For our experimental purposes, each �0 is 
obtained by optimizing a random permutation through a simple local search 
that swaps pairs of adjacent jobs and has a neighborhood space of size (n − 1) . 
The K value is defined as the total completion time of the initial solution, that 
is, K = TCT(�0) . The same initial solutions and upper bounds were used for all 
methods for a fair comparison.

The solutions were evaluated by using the Average Relative Percentage Devi-
ation (ARPD) defined as

where h represents the evaluated solution, i is a problem instance, best is the best 
known solution for that instance and N is the number of instances. In summary, this 
measure represents the arithmetic mean of the deviations from the best solutions 
found. Therefore, the best method is the one with lowest ARPD value.

The experiments are divided in three phases. In the first phase, a parameter 
tuning for ALNSA is performed. In the second phase, the heuristics methods are 
compared with an exact method for small instances. And in the third phase, the 

(20)�+
i
= ��+

i
+ (1 − �)Ψ�+

i
,

(21)ARPDh =
100

N

N∑
i=1

Cmax
h
i
− Cmax

best
i

Cmax
h
i

,

https://doi.org/10.5281/zenodo.10577724
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heuristics are tested in large instance benchmarks from literature. These three 
phases are presented in the next subsections.

5.1 � ALNS
A
 parameters tuning

The parameter tuning had been performed for ALNSA as follows. Parameter � was 
calibrated in a set of 120 instances, with 5 different problems for each combi-
nation n ∈ {5, 10, 20, 40, 80, 160} × m ∈ {4, 8, 12, 16} by using the IRACE 
software package (Lopez-Ibanez et al 2016). We separate the tuning and valida-
tion instances to reduce the risk of over-fitting the parameters tuned to the valida-
tion instances. This tuning set has processing times with a uniform distribution 
in the range [1, 99]. The SDST have a uniform distribution in the range [1, 9]. 
The tuning was performed by using a computation time limit of n × (m∕2) × 25 
milliseconds as stopping criterion (Ruiz and Stützle 2008). We consider 
� ∈ {0, 0.1, 0.2, ..., 1} for tuning in IRACE and the result obtained was � = 0.3 . We 
obtained the normalization values �− = (0.98, 0.3, 0.72) and �+ = (0.99, 0.44, 0.57) 
by dividing the average time of each method by the maximum time of its set 
(destroy or repair) after running them 10 times on a random instance. The param-
eters T0 (initial temperature), and cf  (cooling factor) control the convergence of 
the algorithm. Based on the similar approach used in the simulated annealing 
heuristic presented by Aydilek and Allahverdi (2012), we take directly from these 
works the values T0 = 0.1 and cf = 0.98.

5.2 � Experiment with small instances

In this section, we create a set of instances with 5 different problems for each com-
bination n ∈ {6, 8, 10, 12} × m ∈ {3, 4, 5, 6}. The processing times have a uni-
form distribution in the range [1, 99]. The set has setup times uniformly distributed 
in the ranges [1, 9], [1, 49], [1, 99] and [1, 124]. Therefore, 320 different problem 
instances were generated.

The ARPD results with their standard deviations for jobs and machines are pre-
sented in Table 1. These values are averages of 80 measures (5 problems × 4 set-
ups × 4 times). Obviously, MIP has all values equal to zero, as it always produces 
optimal solutions. Note that ALNSA performs consistently better when compared to 
the literature methods and very close to the MIP benchmark. Figure 2 illustrates the 
aggregated ARPD and CPU time values for each parameter. As can be seen, the heu-
ristics are not very sensitive to parameter variation, except GL which performs better 
as the number of jobs increases, and worst as the number of machines increases. 
The methods HH1 and TOB have the worst performances which are very similar. In 
general, the exact method can be used until a number of 8 jobs. Above that, its CPU 
time starts to increase exponentially, so that a heuristic method is recommended. 
Because MIP failed to produce feasible solutions in many cases with stopping crite-
rion, we run it without a time limit and presented its results over time in Figs. 2e and 
f instead of Fig. 2d. The overall ARPD values of ALNSA , GL, HH1, TOB are 0.02%, 
0.23%, 1.21% and 1.16%, respectively.
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5.3 � Experiment with large instances

This phase considers the problem instances of Ruiz and Stützle (2008), which are 
extensions of the Taillard’s benchmark (Taillard 1993). The extensions are divided 
in four sets, each consisting of 10 problems for each combination n × m for {20, 
50, 100} × {5, 10, 20} and 200 × {10, 20}. The processing times have a uniform 
distribution in the range [1, 99]. Each set has setup times uniformly distributed in 
the ranges [1, 9], [1, 49], [1, 99] and [1, 124], respectively. This means that in total, 
there are 440 different problem instances.

The ARPD results for jobs and machines are presented in Table 2. These values 
are averages of 160 measures (10 problems × 4 setups × 4 times). Table 3 gives the 
results for setup and time, where the values are averages over 110 measures (the 
size of each instance set). Note that ALNSA performs consistently better when com-
pared to the literature methods in each table. Figure 3 illustrates the ARPD values 
aggregated for each parameter. As can be seen, the heuristics are not very sensitive 
to variations on the parameters, except TOB which have values disproportionately 
high especially for 200 jobs (Fig. 3a) and t = 10 (Fig. 3c). These are extreme condi-
tions because computational time is the main resource for the search and the amount 
spend by a heuristic increases exponentially with the number of jobs. It seems 
that the complex constructive mechanisms of TOB have not enough time to finish 
with these parameters. However, the other methods converge much faster and are 

Table 1   ARPD of jobs (n) × machines (m)—[small instances]

*Since MIP is an exact method that guarantees the optimal solution, its optimality gaps are zero. Hence, 
we do not report its results for simplicity

Method* ALNS
A

GL HH1 TOB

n m ARPD STD ARPD STD ARPD STD ARPD STD

6 3 0.00 0.00 0.25 0.83 0.75 1.44 0.99 1.54
4 0.00 0.00 0.57 1.92 0.70 1.92 0.72 1.92
5 0.00 0.00 0.37 0.93 0.76 1.50 0.59 1.29
6 0.02 0.21 1.51 3.66 2.22 3.89 1.63 3.65

8 3 0.00 0.00 0.16 0.75 2.07 3.65 2.01 3.47
4 0.00 0.00 0.00 0.00 0.83 1.46 0.53 0.98
5 0.00 0.00 0.41 1.82 1.03 2.14 1.28 2.42
6 0.00 0.00 0.19 0.83 0.70 1.67 1.25 2.13

10 3 0.10 0.31 0.01 0.05 1.53 1.60 1.87 1.76
4 0.00 0.00 0.00 0.03 0.87 1.46 1.13 1.06
5 0.03 0.14 0.00 0.00 0.95 1.14 0.92 1.16
6 0.01 0.07 0.00 0.00 0.84 0.95 0.82 0.87

12 3 0.09 0.30 0.11 0.31 2.27 2.29 1.72 1.67
4 0.03 0.12 0.06 0.17 1.43 1.38 1.34 0.85
5 0.04 0.12 0.02 0.08 1.29 1.41 0.79 0.75
6 0.01 0.08 0.01 0.05 1.08 1.26 0.92 1.35

Overall 0.02 0.14 0.23 1.26 1.21 2.05 1.16 1.92
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therefore less influenced by the lack of time. The overall ARPD values of ALNSA , 
GL, HH1, TOB are 0.03%, 1.32%, 2.85% and 4.02%, respectively.

The Tukey’ honestly significant difference (HSD) test was conducted to ana-
lyze the statistic difference between the methods. The null hypotheses that two 
algorithms have equal performances was tested at a significance level of 5%. The 
results in Table 4 show that all algorithms are statistically different from each other. 
Figure  4 shows the quartile distributions of the results. ALNSA has a less skewed 
distribution than the literature methods, indicating its consistent performance. 
It’s worth noting that TOB has many outliers with ARPD over 50 (omitted to pre-
vent excessive image compression), which mainly reflect its poor performance for 
n = 200 and t = 10.

Fig. 2   Aggregated ARPD and CPU times
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Table 2   ARPD for jobs (n) × machines (m)—[large instances]

Heuristic ALNS
A

GL HH1 TOB

n m ARPD STD ARPD STD ARPD STD ARPD STD

20 5 0.05 0.18 0.46 0.52 2.39 1.40 2.12 1.17
10 0.07 0.17 0.13 0.23 1.96 1.10 1.82 0.98
20 0.04 0.14 0.03 0.08 1.59 1.16 1.30 0.87

50 5 0.03 0.15 2.00 0.85 2.44 1.34 1.56 0.99
10 0.00 0.02 1.40 0.62 2.97 1.16 1.47 0.64
20 0.01 0.05 1.03 0.49 2.86 0.98 1.68 0.81

100 5 0.08 0.24 2.49 0.86 2.43 1.58 1.42 1.00
10 0.01 0.05 1.89 0.67 2.81 0.93 1.19 0.67
20 0.01 0.07 1.47 0.43 2.96 0.90 0.99 0.58

200 10 0.00 0.00 1.91 0.56 4.14 0.80 19.52 18.09
20 0.00 0.00 1.71 0.37 4.75 1.12 11.16 17.50

Overall 0.03 0.13 1.32 0.96 2.85 1.44 4.02 9.47

Table 3   ARPD for setup (s) × time (t)—[large instances]

Heuristic ALNS
A

GL HH1 TOB

s t ARPD STD ARPD STD ARPD STD ARPD STD

10 10 0.03 0.15 1.16 0.85 2.78 1.88 9.78 18.01
20 0.04 0.15 1.18 0.88 2.70 1.78 5.33 12.47
30 0.05 0.20 1.23 0.83 2.61 1.73 1.49 0.86
40 0.05 0.17 1.17 0.88 2.60 1.55 1.44 0.88

50 10 0.05 0.17 1.08 0.75 2.69 1.60 8.32 15.28
20 0.03 0.10 1.13 0.83 2.68 1.26 4.64 10.81
30 0.03 0.11 1.14 0.80 2.68 1.26 1.26 0.64
40 0.01 0.08 1.14 0.86 2.66 1.38 1.30 0.68

100 10 0.02 0.12 1.31 0.93 3.08 1.35 7.47 12.87
20 0.01 0.05 1.41 0.95 2.97 1.30 4.56 9.42
30 0.02 0.10 1.43 1.02 2.87 1.17 1.53 0.83
40 0.02 0.10 1.46 1.04 2.93 1.20 1.60 0.87

125 10 0.02 0.14 1.56 1.02 3.08 1.38 7.36 11.94
20 0.02 0.09 1.59 1.09 3.06 1.31 4.60 9.19
30 0.02 0.13 1.59 1.08 2.92 1.29 1.78 1.03
40 0.01 0.08 1.56 1.17 3.25 1.25 1.85 1.03

Overall 0.03 0.13 1.32 0.96 2.85 1.44 4.02 9.47
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6 � Conclusion

In this work, we propose the algorithm called ALNSA to solve the no-wait flow shop 
scheduling problem with sequence-dependent setup times to minimize makespan 

Fig. 3   ARPD values aggregated for each parameter

Table 4   Multiple comparison of means—Tukey’ HSD test

FWER = 0.05

Methods Mean differ-
ence (I–J)

Std. error Sig. 95% CI Reject

I J LB UB

ALNS
A

GL −1.30 0.166 0.000 −1.73 −0.87 True
HH1 −2.83 0.166 0.000 −3.25 −2.40 True
TOB −4.02 0.166 0.000 −4.44 −3.59 True

GL ALNS
A

1.30 0.166 0.000 0.87 1.73 True
HH1 −1.53 0.166 0.000 −1.95 −1.10 True
TOB −2.72 0.166 0.000 −3.14 −2.29 True

HH1 ALNS
A

2.83 0.166 0.000 2.40 3.25 True
GL 1.53 .166 .000 1.10 1.96 True
TOB −1.19 0.166 0.000 −1.61 −0.76 True

TOB ALNS
A

4.01 0.166 0.000 3.59 4.44 True
GL 2.72 0.166 0.000 2.29 3.14 True
HH1 1.19 0.166 0.000 0.76 1.61 True
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subject to an upper bound on total completion time. First, the proposed method 
was tested with small instance problems and compared with a mixed-integer linear 
programming model along with three existent algorithms—GL, HH1 and TOB—
designed to solve the most similar problems found in the literature. This experi-
ment shows that ALNSA,GL, HH1 and TOB obtained overall ARPD values of 0.02%, 
0.23%, 1.21% and 1.16%, respectively. Furthermore, the heuristic methods were 
tested by using a large instances problems ALNSA,GL, HH1 and TOB obtained over-
all ARPD values of 0.03%, 1.32%, 2.85% and 4.02%, respectively. Therefore, ALNSA 
outperforms the literature methods.

Despite the superior performance of ALNSA , there are still possibilities for 
improvement. For example, regarding the heuristic evaluation process, it can 
be appropriate to assign weights to pairs of methods instead of each method 
individually because their performances may not be the same across different 
combinations. Another option is to calibrate more parameters. Here, the randomness 
levels that determine the number of jobs removed and reinserted by the algorithm 
have been fixed at 50%. Therefore, it could be possible to increase performance with 
additional tuning. Algorithms for different applications can be adapted and included 
in future experiments to further test its efficiency.

The objective function makespan subject to total completion time is an example 
of how to provide more realistic solutions to scheduling problems that in practice 
often involve more than one objective. But this approach has a limitation: it does not 
provide recommendations for the upper bound on total completion time and there-
fore it must be given by the scheduler. And since the objectives involved are con-
flicting, this choice must be made carefully, as a tight upper bound makes the search 
for a feasible solution very difficult.

Fig. 4   Boxplot of the ARPD results
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