
Vol:.(1234567890)

TOP (2024) 32:304–322
https://doi.org/10.1007/s11750-024-00669-9

1 3

ORIGINAL PAPER

An ALNS to optimize makespan subject to total completion
time for no‑wait flow shops with sequence‑dependent
setup times

Fernando Siqueira de Almeida1 · Marcelo Seido Nagano1 

Received: 8 August 2022 / Accepted: 20 February 2024 / Published online: 29 March 2024
© The Author(s) under exclusive licence to Sociedad de Estadística e Investigación Operativa 2024

Abstract
In this article, we address the no-wait flow shop scheduling problem with sequence
dependent setup times. The objective is to minimize makespan subject to an upper
bound on total completion time. Although these performance measures and con-
straints have been extensively studied, they have never been considered together in
this problem before. To solve the problem, we propose an adaptive large neighbor-
hood search algorithm called ALNS

A
 . Essentially, ALNS

A
 improves an initial solu-

tion by dynamically selecting and executing a pair of destroy and repair methods
based on their performance history. In addition to classic greedy and random meth-
ods used, we present two new mechanisms in which the greediness-randomness
behavior is balanced. To evaluate performance, the proposed approach is compared
with three heuristic methods—GL, HH1 and TOB—developed for the most similar
problems found in the literature. Computational experiments show that the proposed
method outperforms state-of-the-art approaches in the literature for the no-wait flow
shop scheduling problem with sequence dependent setup times and is therefore rec-
ommended to solve the problem.

Keywords  Adaptive large neighborhood search · Flow shop · No-wait · Sequence-
dependent setup times

Mathematics Subject Classification  68M20

Fernando Siqueira de Almeida and Marcelo Seido Nagano have contributed equally to this work.

 *	 Marcelo Seido Nagano
	 drnagano@usp.br

	 Fernando Siqueira de Almeida
	 fernando.siqueira.almeida@gmail.com

1	 Department of Production Engineering, University of Sao Paulo, Av. Trabalhador Saocarlense,
Sao Carlos 13566‑590, Sao Paulo, Brazil

http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-024-00669-9&domain=pdf
http://orcid.org/0000-0002-0239-1725

305

1 3

An ALNS to optimize makespan subject to total completion time…

1  Introduction

In this article, we address the flow shop scheduling problem (FSP) with two pro-
cessing constraints: no-wait (NWT) and sequence dependent setup times (SDST).
The FSP is a system where a set of jobs have to be processed through a series
of machines in the same processing routing. In this system, often the same job
sequence occurs on all machines, so that a schedule can be defined by a single
permutation of jobs. When the NWT constraint is in place, there is no waiting
time between successive operations. Therefore, no job is permitted to utilize a
buffer or to wait in an upstream machine. NWT may occur due to process require-
ments or unavailability of waiting space. Having setup constraints means that a
machine requires some preparation before processing a particular job. This prep-
aration may include cleaning, retooling, adjustments, inspection and rearrange-
ment of the work station. In SDST, the length of these times depends on the dif-
ficulty involved in switching from one processing configuration to another. SDST
are common in multipurpose machines or when a single facility produces a vari-
ety of products. In those situations, instead of absorbing the setup times in the
processing times, it is recommended to make explicit considerations (Emmons
and Vairaktarakis 2013; Pinedo 2016).

The problem is considered with makespan and total completion time. Makes-
pan and total completion time are among the most important performance meas-
ures in the field of scheduling. Makespan represents the maximal completion
time among all jobs in the system. Minimizing makespan is appropriate when a
complete batch of jobs needs to be dispatched as quickly as possible. A reduced
makespan also allows an efficient use of resources, that is, it decreases equip-
ment idle time. Total completion time is defined by the sum of all completion
times. Schedulers try to minimize total completion time to increase processing
rate, which decreases work-in-process inventory and increases the response to
demands (Baker and Trietsch 2019). Optimization problems involving two (or
more) conflicting objectives, such as these, need to be considered in the presence
of trade-offs because no single solution optimizes each objective simultaneously.
The approach adopted in this work is to optimize makespan subject to total com-
pletion time. This objective function is appropriate when makespan needs to be
minimized, but there is no need to optimize total completion time as long as it
does not exceed an upper bound. A practical example is when a scheduler sets an
upper bound on total completion time to prevent inventory from growing beyond
the facility’s capacity, but no benefit is gained by reducing it further after achiev-
ing this.

Many researchers have proposed algorithms to minimize makespan or total
completion time in NWT–FSP–SDST. The most relevant studies include greedy
algorithms (Bianco et al 1999; Xu et al 2012), simulated annealing (Lee and
Jung 2005), hybrid genetic algorithm (Franca et al 2006), constructive heuris-
tics (Araújo and Nagano 2011; Nagano et al 2015), differential evolution (Qian
et al 2011, 2012), greedy randomized adaptive search and evolutionary local
search based (Zhu et al 2013b), iterative algorithm (Zhu et al 2013a), hybrid

306	 F. S. d. Almeida, M. S. Nagano

1 3

evolutionary cluster search (Nagano and Araújo 2014), hybrid greedy algorithm
(Zhuang et al 2014), particle swarm optimization (Samarghandi and ElMekkawy
2014), genetic algorithms (Samarghandi 2015a, b) and local search (Miyata et al
2019).

Despite the extensive research on multi-objective optimization of NWT–FSP, few
studies have addressed objectives of type A subject to B. Moreover, none of them
have considered the SDST feature, to the best of our knowledge. Allahverdi (2004)
tried to minimize a linear combination of makespan and maximum tardiness under
the condition of not allowing maximum tardiness to exceed a given value. Frami-
nan and Leisten (2006) studied the FSP with the objective of minimizing makespan,
such that maximum tardiness is not greater than an acceptable limit. Aydilek and
Allahverdi (2012) and Nagano et al (2020) addressed the NWT–FSP with the objec-
tive of minimizing makespan under the constraint that mean completion time (or
the equivalent total completion time) does not exceed a maximum value. Allahverdi
and Aydilek (2013) addressed the NWT–FSP and tried to minimize total comple-
tion time while keeping makespan less than or equal to an upper bound, and Allah-
verdi and Aydilek (2014) considered the same problem with separate setup times.
Recently, Allahverdi et al (2018) proposed an algorithm to solve the NWT–FSP
with the objective of minimizing total tardiness, such that makespan does not exceed
a given value, and Allahverdi et al (2020) studied the same problem with separate
setup times.

The NWT–FSP–SDST belongs to the class of NP-hard problems (Bianco et al
1999). As exact methods are often impractical or ineffective for solving large or
complex problems, heuristic methods are preferable. Heuristics use simple rules and
shortcuts to find satisfactory solutions for various combinatorial optimization prob-
lems in a reasonable time. Unfortunately, this flexibility comes at a cost: there is no
unique optimal parameter setting suitable for all problems and instances. This means
that it will always take some effort to properly calibrate the algorithms in each new
instance configuration if the scheduler really wants to extract maximum perfor-
mance. The possibility of improvement can even be assumed to heuristics targeting
the most convenient instance configuration, since heuristic solutions are not guaran-
teed to be optimal. Furthermore, the complexity of the algorithm and its computa-
tional time are always properties to be improved. In other words, there will always
be possibilities for improvement, whether to get easier, better or faster solutions.

Focusing on these opportunities, we present the algorithm called ALNSA for the
NWT–FSP–SDST to minimize makespan subject to total completion time. This
method is based on the adaptive large neighborhood search (ALNS) algorithm origi-
nally presented by Ropke and Pisinger (2006), which extends the large neighborhood
search (LNS) heuristic proposed by Shaw (1998). In LNS, a destroy and a repair
method iteratively rebuild an initial solution in an attempt to improve it. In ALNS,
multiple destroy and repair methods are used, and the performance of each destroy/
repair method determines how often that particular method is executed during the
search. This allows the algorithm to adapt to search conditions, reducing the need
for calibration for different instance configurations. ALNS has been mainly applied
in vehicle routing problems (VRP), e.g., Hemmelmayr et al (2012), Qu and Bard
(2012), Demir et al (2012) and Azi et al (2014). However, the number of scheduling

307

1 3

An ALNS to optimize makespan subject to total completion time…

applications has also grown in recent years, e.g., Lin and Ying (2014), Rifai et al
(2016) and Beezão et al (2017). In this work, our proposed ALNSA accesses a set of
distinct mechanisms and dynamically selects a pair of destroy and repair methods
based on their performance history. Among the mechanisms used, we present two
new ones in which the greediness–randomness behavior is balanced to obtain bet-
ter results. Extensive experiments are made to compare ALNSA with three heuristics
for similar problems found in the literature. In addition, we present a mathematical
model to be used as benchmark for small instances problems. All results are statisti-
cally verified.

The remainder of this article is organized as follows. The problem definition is
described in Sect. 2. The mathematical model is presented in Sect. 3 and the algo-
rithms are presented in Sect. 4. Section 5 is dedicated to the experimental design
and analysis of results. Some concluding remarks are given in Sect. 6.

2 � Problem definition

The FSP consists of a set J = {i ∣ i ∈ ℕ, 1 ≤ i ≤ n} of n jobs which needs to be pro-
cessed on a set M = {k ∣ k ∈ ℕ, 1 ≤ k ≤ m} of m machines. Each machine can pro-
cess only one job at a time. All jobs are processed once on each of the m machines,
where the operation Ok

i
 of job i on machine k is executed during the processing time

pk
i
 without preemption. Moreover, all jobs follow the same processing order and the

job sequence is kept fixed through all machines. It is assumed that all jobs are ready
at time 0.

The NWT constraint imposes that operation Ok+1
i

 must begin immediately after
operation Ok

i
 is completed. The SDST constraint implies that, after operation Ok

i
 is

processed, machine k requires a sequence dependent setup sk
ij
 before being able to

start Ok
j
 . Therefore, setup times are not-attached; that is, a setup process must begin

before the next job is ready for a given machine. It is assumed that there is no initial
setup required by any machine before starting its first operation, and there is no final
setup required to bring any machine back to its initial state after its last operation is
executed. Figure 1 shows an example of the NWT–FSP–SDST. In particular, an
instance with n = 3 jobs and m = 3 machines is represented.

Fig. 1   Gantt chart of an example problem with three jobs and three machines

308	 F. S. d. Almeida, M. S. Nagano

1 3

Given the set I = {q ∣ q ∈ ℕ, 1 ≤ q ≤ n} of n positions of a production sequence of
J, let tk

q
 be the starting time of the qth job on machine k, and ck

q
 the completion time of

the qth job on machine k. For simplicity, let tq = t1
q
 and cq = cm

q
 . Based on the formula-

tion of Bianco et al (1999), we have

and

Equation (1) defines tq+1 as tq plus its distance to tq+1 . And since the problem has the
no-wait constraint, the completion time cq of a job is equal to its starting time tq plus
the sum of its processing times, as defined in Eq. (2). Moreover, let Cmax and TCT​
represent the performance measures makespan and total completion time, respec-
tively. Hence, we have Cmax = cn and TCT =

∑
q∈I cq.

The optimization problem modeling the NWT–FSP–SDST minimizing makespan
subject to an upper bound on total completion time can be described as follows. The
search space is defined by the set of feasible solutions X = {� ∣ TCT(�) ≤ K} , where
TCT(�) is the total completion time value of the solution � and K is a constant used as
upper bound. The objective is to find a solution with the lowest makespan value among
all feasible solutions, that is, find a �∗ ∈ X , so that Cmax(�

∗) ≤ Cmax(�), ∀� ∈ X .
Each solution � ∈ X defines a production sequence which we represent by a vector
� = (�1, ...,�n) , being �i ∈ J and �i ≠ �j if i ≠ j . Clearly this is a permutation problem.

Using the notation proposed by Graham et al (1979) and T’kindt and Billaut (2006)
the addressed problem can be written as

where �(Cmax∕TCT) represents the objective function of minimizing Cmax subject
to an upper bound on TCT​, while Fm and nwt represent flow shop and no-wait,
respectively.

3 � Mixed‑integer linear programming model

We formulate a mixed-integer linear programming model (MIP) for
Fm ∕ nwt, sk

i,j
∕ �(Cmax∕TCT) as follows. Let xq

i
 be a binary decision variable, such that

x
q

i
 = 1 if job i is the qth job processed, otherwise xq

i
 = 0. Now, let yq

ij
 be a binary auxil-

iary variable, such that yq
ij
 = 1 if job i is the qth job processed immediately before job j,

otherwise yq
ij
 = 0. Hence, MIP is defined as follows:

Subject to:

(1)tq+1 = tq + max
1≤k≤m

[
sk
q,q+1

+

k∑
h=1

(
ph
q
− ph

q+1

)
+ pk

q+1

]
, q ∈ I∕{n}

(2)cq = tq +
∑
k∈M

pk
q
, q ∈ I.

Fm ∕ nwt, sk
i,j
∕ �(Cmax∕TCT).

(3)z = min cn

309

1 3

An ALNS to optimize makespan subject to total completion time…

The objective function (3) minimizes makespan. Constraint (4) imposes the upper
bound K on TCT​. Constraints (5) and (6) are the job assignment constraints, and
constraints (7) and (8) are the precedence constraints. Constraints (9) state the right
difference between the start time and the end time of a job on a machine accord-
ing to the job assigned. Constraints (10) guarantee NWT more easily than Eq. (2),
because they ensure no gap between successive processing of a job with a simple
equality. Constraints (11) ensure the SDST constraints with a simple inequality. This
avoids dealing with the “max” term from Eq. (1). Constraint (12) states that the first

(4)
∑
q∈I

cq ≤ K

(5)
∑
i∈J

x
q

i
= 1, q ∈ I

(6)
∑
q∈I

x
q

i
= 1, i ∈ J

(7)
∑
j∈J

y
q

ij
= x

q

i
, q ∈ I∕{n}, i ∈ J, i ≠ j

(8)
∑
i∈J

y
q

ij
= x

q+1

i
, q ∈ I∕{n}, j ∈ J, i ≠ j

(9)ck
q
= tk

q
+
∑
i∈J

(pk
i
⋅ x

q

i
), q ∈ I, k ∈ M

(10)tk+1
q

= ck
q
, q ∈ I, k ∈ M∕{m}

(11)tk
q+1

≥ ck
q
+
∑
i∈J

∑
j∈J

(sk
ij
⋅ y

q

ij
), q ∈ I∕{n}, k ∈ M, i ≠ j

(12)t1 = 0

(13)x
q

i
= {0, 1}, i ∈ J, q ∈ I

(14)y
q

ij
= {0, 1}, q ∈ I∕{n}, i, j ∈ J, i ≠ j

(15)tk
q
≥ 0, q ∈ I, k ∈ M

(16)ck
q
≥ 0, q ∈ I, k ∈ M

310	 F. S. d. Almeida, M. S. Nagano

1 3

job on the first machine starts processing at time zero. Constraints (13)–(16) give the
domains of the variables.

4 � Heuristic algorithms

As mentioned earlier, the problem Fm∕nwt∕�(Cmax∕TCT)—without SDST con-
straints—has already been addressed by Aydilek and Allahverdi (2012) and Nagano
et al (2020). Ye et al (2020) also proposed an algorithm for a similar environment. In
this work, the best algorithm from each study is adapted to be used as a benchmark.
The three methods are briefly explained in the next subsection, followed by a com-
plete description of our proposed algorithm ALNSA to solve the problem (3)–(16).

4.1 � Literature algorithms

Aydilek and Allahverdi (2012) proposed the algorithm HH1, composed by the algo-
rithms called mSA and HA. The algorithm mSA is a modified simulated annealing,
which tries to improve the incumbent solution by iteratively moving a random job
to a random position. The algorithm HA iteratively applies an insertion local search.
Then, it tries to improve the solution generated by using an interchange local search
(local search that swaps random pairs of jobs). Only solutions with TCT​ less than or
equal to a given upper bound can be candidates to update the incumbent solution.
The final solution generated by mSA is used as initial solution of HA.

Nagano et al (2020) proposed the algorithm GL for the same problem. GL iterates
through a reconstruction procedure followed by an insertion local search. The recon-
struction step creates candidate solutions by removing random jobs from the incum-
bent solution and reinserting them back by using a constructive heuristic based on
NEH (Nawaz et al 1983). This loop repeats until a defined number of iterations is
achieved. Finally, a transposition local search (local search that swap pairs of adja-
cent jobs) tries to improve the incumbent solution. Throughout the execution, only
sequences with TCT​ less than or equal to the upper bound are considered candidate
solutions.

Ye et al (2020) proposed the algorithm called TOB. First, this method performs
a reconstruction process that combines the NEH heuristic with an interchange local
search. Then, a modified insertion local search is applied (local search that inserts
jobs only ahead of its original position). The algorithm repeats these steps until a
maximum number of iterations is achieved. The objective function was defined as a
mathematical relationship between the two performance measures.

4.2 � Algorithm ALNS
A

The adaptive large neighborhood search (ALNS), originally proposed by Ropke and
Pisinger (2006), has access to a set of destructive and constructive heuristics. At
each iteration, a given solution is destroyed by a destructive procedure and rebuilt
by a constructive procedure. A weight is assigned to each heuristic according to its

311

1 3

An ALNS to optimize makespan subject to total completion time…

performance, giving to those that perform well a higher probability to be selected
again. Usually, the weights are updated, so that all heuristics have at least some
chance to be executed. This dynamic selection adapts the algorithm to the instance
and the state of the search at hand (Pisinger and Ropke 2019).

The proposed ALNS ( ALNSA ) starts with a permutation �0 as initial solution.
Algorithm is the main structure that uses other heuristics to perform the search, and
the performance of these methods determines how often each one is executed. Given
the set Ω− of destroy heuristics and the set Ω+ of repair heuristic, Algorithm itera-
tively tries to improve the incumbent solution �∗ by using a destroy heuristic d ∈ Ω−
and a repair mechanism r ∈ Ω+ to create a new candidate solution �′ , so that �′ =
r(d(�∗)).12

Algorithm 1   ALNS
A

1  See Eq. (17).
2  See Eqs. (18)–eqrefeq:rosps.

312	 F. S. d. Almeida, M. S. Nagano

1 3

Algorithm 2   Destroy d 

Algorithm 3   Repair r 

The set Ω− is composed by three destroy algorithms. Destroy algorithm d = 1
removes a predefined number of jobs from a sequence at random. Destroy algorithm
d = 2 tries to remove from a sequence the best set of jobs that optimize the objec-
tive. Destroy algorithm d = 3 is similar to the previous one, but it differs by skip-
ping some jobs at probability of 50%. These three heuristics are represented by the
generic destroy Algorithm 2. The set Ω+ is composed by three repair algorithms.
Repair algorithm r = 1 reinserts the removed jobs back to the partial sequence at
random positions. Repair algorithm r = 2 reinserts each removed job back to the
partial sequence in the best possible position. Repair algorithm r = 3 is similar to
the previous one, but it differs by skipping some insertion options at probability of
50%. These three heuristics are represented by the generic repair Algorithm 3.

313

1 3

An ALNS to optimize makespan subject to total completion time…

Line 5 of Algorithm 2 works as follows.

–	 insert1(� , �e ) inserts a random job from � into the start of �e;
–	 insert2(� , �e ) removes the job that minimizes Cmax of the remainder of � and

insert it at the start of �e;
–	 insert3(� , �e ) removes the job that minimizes Cmax of the remainder of � and

insert it at the start of �e , but skipping some job options at probability of 50%;

Line 3 of Algorithm 3 works as follows.

–	 insert1(�e , � ) inserts the first job of �e into a random position of �;
–	 insert2(�e , � ) inserts the first job of �e into the best position of � that minimizes

its new Cmax;
–	 insert3(�e , � ) inserts the first job of �e into the best position of � that minimizes

its new Cmax , but skipping some position options at probability of 50%;

Pure random procedures as d = 1 and r = 1 have low performance but provide high
diversification. On the other hand, pure greedy procedures as Algorithms d = 2 and
r = 2 have high performance but provide low diversification and therefore tend to
get stuck in a local optimum. Algorithms d = 3 and r = 3 have been developed to
provide balanced options on these behaviors. The balance is achieved by adding to
standard greedy mechanisms the simple but effective procedure of skipping some
job manipulations at random, rather than testing every insertion or removal option.
If the mechanisms selected are not able to produce a candidate solution �′ , so that
TCT(��) ≤ K , the search proceeds to the next iteration without changes.

The parameters �−
i
∈ ℝ

‖Ω−‖ and �+
i
∈ ℝ

‖Ω+‖ store the weights of destroy and
repair methods, respectively. Equation 17 describes how Algorithm calculates the
probabilities �−

i
 and �+

i
 to select the ith destroy and repair heuristics, respectively.

After each iteration of Algorithm , a score Ψ is assigned to the methods used, so that

Initially, we define �− = (1, 1, 1) and �+ = (1, 1, 1) . Then, the methods have their
weights updated by computing

and

(17)�−
i
=

�−
i∑‖Ω−‖

k=1
�−
k

�+
i
=

�+
i∑‖Ω+‖

k=1
�+
k

(18)Ψ =

⎧⎪⎨⎪⎩

4, if generated solution is a new global best;

3, if generated solution is a new local best;

2, if generated solution is accepted;

1, if generated solution is rejected.

(19)�−
i
= ��−

i
+ (1 − �)Ψ�−

i

314	 F. S. d. Almeida, M. S. Nagano

1 3

with � ∈ [0, 1] . The parameters �−
i
 and �+

i
 represent the values used to normalize the

score Ψ ∈ {1, 2, 3, 4} with a measure of the CPU time of the corresponding heuris-
tic. This is important, because some methods can be significantly slower than oth-
ers, so the normalization ensures a proper trade-off between CPU time and solution
quality. Note that the values of Ψ {1, 2, 3, 4} are just a sequence of numbers in
ascending order to establish a status ranking. The parameter that really controls the
sensibility to change in performance is � . Furthermore, only the weights �−

i
 and �+

i

corresponding to the methods used in the current iteration are updated.

5 � Computational experiments

We implemented all algorithms in C++ and ran them on a Windows 11 PC
with a processor IntelⓇ CoreTM i5-11400 H and 16 GB of RAM. The literature
methods HH1, GL and TOB were adapted and re-implemented. The source code
and scripts can be downloaded from 10.​5281/​zenodo.​10577​724. To find optimal
solutions for the proposed MIP, we employ the Gurobi Optimizer solver version
10.0.2. This solver is widely used in the field of operations research and has
proven to be efficient and robust for solving large-scale linear and mixed-integer
programming problems.

We defined the stopping criterion for the heuristic methods as n × (m∕2) × t
milliseconds, with t ∈ {10, 20, 30, 40} to analyze consistency across different
computational times. In real life, the initial solution �0 and the upper bound
K must be given by the scheduler. For our experimental purposes, each �0 is
obtained by optimizing a random permutation through a simple local search
that swaps pairs of adjacent jobs and has a neighborhood space of size (n − 1) .
The K value is defined as the total completion time of the initial solution, that
is, K = TCT(�0) . The same initial solutions and upper bounds were used for all
methods for a fair comparison.

The solutions were evaluated by using the Average Relative Percentage Devi-
ation (ARPD) defined as

where h represents the evaluated solution, i is a problem instance, best is the best
known solution for that instance and N is the number of instances. In summary, this
measure represents the arithmetic mean of the deviations from the best solutions
found. Therefore, the best method is the one with lowest ARPD value.

The experiments are divided in three phases. In the first phase, a parameter
tuning for ALNSA is performed. In the second phase, the heuristics methods are
compared with an exact method for small instances. And in the third phase, the

(20)�+
i
= ��+

i
+ (1 − �)Ψ�+

i
,

(21)ARPDh =
100

N

N∑
i=1

Cmax
h
i
− Cmax

best
i

Cmax
h
i

,

https://doi.org/10.5281/zenodo.10577724

315

1 3

An ALNS to optimize makespan subject to total completion time…

heuristics are tested in large instance benchmarks from literature. These three
phases are presented in the next subsections.

5.1 � ALNS
A
 parameters tuning

The parameter tuning had been performed for ALNSA as follows. Parameter � was
calibrated in a set of 120 instances, with 5 different problems for each combi-
nation n ∈ {5, 10, 20, 40, 80, 160} × m ∈ {4, 8, 12, 16} by using the IRACE
software package (Lopez-Ibanez et al 2016). We separate the tuning and valida-
tion instances to reduce the risk of over-fitting the parameters tuned to the valida-
tion instances. This tuning set has processing times with a uniform distribution
in the range [1, 99]. The SDST have a uniform distribution in the range [1, 9].
The tuning was performed by using a computation time limit of n × (m∕2) × 25
milliseconds as stopping criterion (Ruiz and Stützle 2008). We consider
� ∈ {0, 0.1, 0.2, ..., 1} for tuning in IRACE and the result obtained was � = 0.3 . We
obtained the normalization values �− = (0.98, 0.3, 0.72) and �+ = (0.99, 0.44, 0.57)
by dividing the average time of each method by the maximum time of its set
(destroy or repair) after running them 10 times on a random instance. The param-
eters T0 (initial temperature), and cf (cooling factor) control the convergence of
the algorithm. Based on the similar approach used in the simulated annealing
heuristic presented by Aydilek and Allahverdi (2012), we take directly from these
works the values T0 = 0.1 and cf = 0.98.

5.2 � Experiment with small instances

In this section, we create a set of instances with 5 different problems for each com-
bination n ∈ {6, 8, 10, 12} × m ∈ {3, 4, 5, 6}. The processing times have a uni-
form distribution in the range [1, 99]. The set has setup times uniformly distributed
in the ranges [1, 9], [1, 49], [1, 99] and [1, 124]. Therefore, 320 different problem
instances were generated.

The ARPD results with their standard deviations for jobs and machines are pre-
sented in Table 1. These values are averages of 80 measures (5 problems × 4 set-
ups × 4 times). Obviously, MIP has all values equal to zero, as it always produces
optimal solutions. Note that ALNSA performs consistently better when compared to
the literature methods and very close to the MIP benchmark. Figure 2 illustrates the
aggregated ARPD and CPU time values for each parameter. As can be seen, the heu-
ristics are not very sensitive to parameter variation, except GL which performs better
as the number of jobs increases, and worst as the number of machines increases.
The methods HH1 and TOB have the worst performances which are very similar. In
general, the exact method can be used until a number of 8 jobs. Above that, its CPU
time starts to increase exponentially, so that a heuristic method is recommended.
Because MIP failed to produce feasible solutions in many cases with stopping crite-
rion, we run it without a time limit and presented its results over time in Figs. 2e and
f instead of Fig. 2d. The overall ARPD values of ALNSA , GL, HH1, TOB are 0.02%,
0.23%, 1.21% and 1.16%, respectively.

316	 F. S. d. Almeida, M. S. Nagano

1 3

5.3 � Experiment with large instances

This phase considers the problem instances of Ruiz and Stützle (2008), which are
extensions of the Taillard’s benchmark (Taillard 1993). The extensions are divided
in four sets, each consisting of 10 problems for each combination n × m for {20,
50, 100} × {5, 10, 20} and 200 × {10, 20}. The processing times have a uniform
distribution in the range [1, 99]. Each set has setup times uniformly distributed in
the ranges [1, 9], [1, 49], [1, 99] and [1, 124], respectively. This means that in total,
there are 440 different problem instances.

The ARPD results for jobs and machines are presented in Table 2. These values
are averages of 160 measures (10 problems × 4 setups × 4 times). Table 3 gives the
results for setup and time, where the values are averages over 110 measures (the
size of each instance set). Note that ALNSA performs consistently better when com-
pared to the literature methods in each table. Figure 3 illustrates the ARPD values
aggregated for each parameter. As can be seen, the heuristics are not very sensitive
to variations on the parameters, except TOB which have values disproportionately
high especially for 200 jobs (Fig. 3a) and t = 10 (Fig. 3c). These are extreme condi-
tions because computational time is the main resource for the search and the amount
spend by a heuristic increases exponentially with the number of jobs. It seems
that the complex constructive mechanisms of TOB have not enough time to finish
with these parameters. However, the other methods converge much faster and are

Table 1   ARPD of jobs (n) × machines (m)—[small instances]

*Since MIP is an exact method that guarantees the optimal solution, its optimality gaps are zero. Hence,
we do not report its results for simplicity

Method* ALNS
A

GL HH1 TOB

n m ARPD STD ARPD STD ARPD STD ARPD STD

6 3 0.00 0.00 0.25 0.83 0.75 1.44 0.99 1.54
4 0.00 0.00 0.57 1.92 0.70 1.92 0.72 1.92
5 0.00 0.00 0.37 0.93 0.76 1.50 0.59 1.29
6 0.02 0.21 1.51 3.66 2.22 3.89 1.63 3.65

8 3 0.00 0.00 0.16 0.75 2.07 3.65 2.01 3.47
4 0.00 0.00 0.00 0.00 0.83 1.46 0.53 0.98
5 0.00 0.00 0.41 1.82 1.03 2.14 1.28 2.42
6 0.00 0.00 0.19 0.83 0.70 1.67 1.25 2.13

10 3 0.10 0.31 0.01 0.05 1.53 1.60 1.87 1.76
4 0.00 0.00 0.00 0.03 0.87 1.46 1.13 1.06
5 0.03 0.14 0.00 0.00 0.95 1.14 0.92 1.16
6 0.01 0.07 0.00 0.00 0.84 0.95 0.82 0.87

12 3 0.09 0.30 0.11 0.31 2.27 2.29 1.72 1.67
4 0.03 0.12 0.06 0.17 1.43 1.38 1.34 0.85
5 0.04 0.12 0.02 0.08 1.29 1.41 0.79 0.75
6 0.01 0.08 0.01 0.05 1.08 1.26 0.92 1.35

Overall 0.02 0.14 0.23 1.26 1.21 2.05 1.16 1.92

317

1 3

An ALNS to optimize makespan subject to total completion time…

therefore less influenced by the lack of time. The overall ARPD values of ALNSA ,
GL, HH1, TOB are 0.03%, 1.32%, 2.85% and 4.02%, respectively.

The Tukey’ honestly significant difference (HSD) test was conducted to ana-
lyze the statistic difference between the methods. The null hypotheses that two
algorithms have equal performances was tested at a significance level of 5%. The
results in Table 4 show that all algorithms are statistically different from each other.
Figure 4 shows the quartile distributions of the results. ALNSA has a less skewed
distribution than the literature methods, indicating its consistent performance.
It’s worth noting that TOB has many outliers with ARPD over 50 (omitted to pre-
vent excessive image compression), which mainly reflect its poor performance for
n = 200 and t = 10.

Fig. 2   Aggregated ARPD and CPU times

318	 F. S. d. Almeida, M. S. Nagano

1 3

Table 2   ARPD for jobs (n) × machines (m)—[large instances]

Heuristic ALNS
A

GL HH1 TOB

n m ARPD STD ARPD STD ARPD STD ARPD STD

20 5 0.05 0.18 0.46 0.52 2.39 1.40 2.12 1.17
10 0.07 0.17 0.13 0.23 1.96 1.10 1.82 0.98
20 0.04 0.14 0.03 0.08 1.59 1.16 1.30 0.87

50 5 0.03 0.15 2.00 0.85 2.44 1.34 1.56 0.99
10 0.00 0.02 1.40 0.62 2.97 1.16 1.47 0.64
20 0.01 0.05 1.03 0.49 2.86 0.98 1.68 0.81

100 5 0.08 0.24 2.49 0.86 2.43 1.58 1.42 1.00
10 0.01 0.05 1.89 0.67 2.81 0.93 1.19 0.67
20 0.01 0.07 1.47 0.43 2.96 0.90 0.99 0.58

200 10 0.00 0.00 1.91 0.56 4.14 0.80 19.52 18.09
20 0.00 0.00 1.71 0.37 4.75 1.12 11.16 17.50

Overall 0.03 0.13 1.32 0.96 2.85 1.44 4.02 9.47

Table 3   ARPD for setup (s) × time (t)—[large instances]

Heuristic ALNS
A

GL HH1 TOB

s t ARPD STD ARPD STD ARPD STD ARPD STD

10 10 0.03 0.15 1.16 0.85 2.78 1.88 9.78 18.01
20 0.04 0.15 1.18 0.88 2.70 1.78 5.33 12.47
30 0.05 0.20 1.23 0.83 2.61 1.73 1.49 0.86
40 0.05 0.17 1.17 0.88 2.60 1.55 1.44 0.88

50 10 0.05 0.17 1.08 0.75 2.69 1.60 8.32 15.28
20 0.03 0.10 1.13 0.83 2.68 1.26 4.64 10.81
30 0.03 0.11 1.14 0.80 2.68 1.26 1.26 0.64
40 0.01 0.08 1.14 0.86 2.66 1.38 1.30 0.68

100 10 0.02 0.12 1.31 0.93 3.08 1.35 7.47 12.87
20 0.01 0.05 1.41 0.95 2.97 1.30 4.56 9.42
30 0.02 0.10 1.43 1.02 2.87 1.17 1.53 0.83
40 0.02 0.10 1.46 1.04 2.93 1.20 1.60 0.87

125 10 0.02 0.14 1.56 1.02 3.08 1.38 7.36 11.94
20 0.02 0.09 1.59 1.09 3.06 1.31 4.60 9.19
30 0.02 0.13 1.59 1.08 2.92 1.29 1.78 1.03
40 0.01 0.08 1.56 1.17 3.25 1.25 1.85 1.03

Overall 0.03 0.13 1.32 0.96 2.85 1.44 4.02 9.47

319

1 3

An ALNS to optimize makespan subject to total completion time…

6 � Conclusion

In this work, we propose the algorithm called ALNSA to solve the no-wait flow shop
scheduling problem with sequence-dependent setup times to minimize makespan

Fig. 3   ARPD values aggregated for each parameter

Table 4   Multiple comparison of means—Tukey’ HSD test

FWER = 0.05

Methods Mean differ-
ence (I–J)

Std. error Sig. 95% CI Reject

I J LB UB

ALNS
A

GL −1.30 0.166 0.000 −1.73 −0.87 True
HH1 −2.83 0.166 0.000 −3.25 −2.40 True
TOB −4.02 0.166 0.000 −4.44 −3.59 True

GL ALNS
A

1.30 0.166 0.000 0.87 1.73 True
HH1 −1.53 0.166 0.000 −1.95 −1.10 True
TOB −2.72 0.166 0.000 −3.14 −2.29 True

HH1 ALNS
A

2.83 0.166 0.000 2.40 3.25 True
GL 1.53 .166 .000 1.10 1.96 True
TOB −1.19 0.166 0.000 −1.61 −0.76 True

TOB ALNS
A

4.01 0.166 0.000 3.59 4.44 True
GL 2.72 0.166 0.000 2.29 3.14 True
HH1 1.19 0.166 0.000 0.76 1.61 True

320	 F. S. d. Almeida, M. S. Nagano

1 3

subject to an upper bound on total completion time. First, the proposed method
was tested with small instance problems and compared with a mixed-integer linear
programming model along with three existent algorithms—GL, HH1 and TOB—
designed to solve the most similar problems found in the literature. This experi-
ment shows that ALNSA,GL, HH1 and TOB obtained overall ARPD values of 0.02%,
0.23%, 1.21% and 1.16%, respectively. Furthermore, the heuristic methods were
tested by using a large instances problems ALNSA,GL, HH1 and TOB obtained over-
all ARPD values of 0.03%, 1.32%, 2.85% and 4.02%, respectively. Therefore, ALNSA
outperforms the literature methods.

Despite the superior performance of ALNSA , there are still possibilities for
improvement. For example, regarding the heuristic evaluation process, it can
be appropriate to assign weights to pairs of methods instead of each method
individually because their performances may not be the same across different
combinations. Another option is to calibrate more parameters. Here, the randomness
levels that determine the number of jobs removed and reinserted by the algorithm
have been fixed at 50%. Therefore, it could be possible to increase performance with
additional tuning. Algorithms for different applications can be adapted and included
in future experiments to further test its efficiency.

The objective function makespan subject to total completion time is an example
of how to provide more realistic solutions to scheduling problems that in practice
often involve more than one objective. But this approach has a limitation: it does not
provide recommendations for the upper bound on total completion time and there-
fore it must be given by the scheduler. And since the objectives involved are con-
flicting, this choice must be made carefully, as a tight upper bound makes the search
for a feasible solution very difficult.

Fig. 4   Boxplot of the ARPD results

321

1 3

An ALNS to optimize makespan subject to total completion time…

Acknowledgements  This work was supported by the Brazilian National Council for Scientific and Tech-
nological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq) [Nos.
312585/2021-7 and 404819/2023-0].

Declarations 

Conflict of interest  The authors report no declarations of interest.

References

Allahverdi A (2004) A new heuristic for m-machine flowshop scheduling problem with bicriteria of makes-
pan and maximum tardiness. Comput Oper Res 31(2):157–180

Allahverdi A, Aydilek H (2013) Algorithms for no-wait flowshops with total completion time subject to
makespan. Int J Adv Manuf Technol 68(9–12):2237–2251

Allahverdi A, Aydilek H (2014) Total completion time with makespan constraint in no-wait flowshops with
setup times. Eur J Oper Res 238(3):724–734

Allahverdi A, Aydilek H, Aydilek A (2018) No-wait flowshop scheduling problem with two criteria; total
tardiness and makespan. Eur J Oper Res 269(2):590–601

Allahverdi A, Aydilek H, Aydilek A (2020) No-wait flowshop scheduling problem with separate setup times
to minimize total tardiness subject to makespan. Appl Math Comput 365(124):688

Araújo DC, Nagano MS (2011) A new effective heuristic method for the no-wait flowshop with sequence-
dependent setup times problem. Int J Ind Eng Comput 2(1):155–166

Aydilek H, Allahverdi A (2012) Heuristics for no-wait flowshops with makespan subject to mean completion
time. Appl Math Comput 219(1):351–359

Azi N, Gendreau M, Potvin JY (2014) An adaptive large neighborhood search for a vehicle routing problem
with multiple routes. Comput Oper Res 41:167–173

Baker KR, Trietsch D (2019) Principles of sequencing and scheduling. Wiley
Beezão AC, Cordeau JF, Laporte G et al (2017) Scheduling identical parallel machines with tooling con-

straints. Eur J Oper Res 257(3):834–844
Bianco L, Dell’Olmo P, Giordani S (1999) Flow shop no-wait scheduling with sequence dependent setup

times and release dates. INFOR: Inform Syst Oper Res 37(1):3–19
Demir E, Bektaş T, Laporte G (2012) An adaptive large neighborhood search heuristic for the pollution-

routing problem. Eur J Oper Res 223(2):346–359
Emmons H, Vairaktarakis G (2013) Flow shop scheduling. Theoretical results, algorithms, and applications.

Springer Science & Business Media, Cham
Framinan JM, Leisten R (2006) A heuristic for scheduling a permutation flowshop with makespan objective

subject to maximum tardiness. Int J Prod Econ 99(1–2):28–40
Franca PM, Tin G Jr, Buriol L (2006) Genetic algorithms for the no-wait flowshop sequencing problem with

time restrictions. Int J Prod Res 44(5):939–957
Graham RL, Lawler EL, Lenstra JK et al (1979) Optimization and approximation in deterministic sequencing

and scheduling: a survey. Ann Discrete Math, vol 5. Elsevier, pp 287–326
Hemmelmayr VC, Cordeau JF, Crainic TG (2012) An adaptive large neighborhood search heuristic for two-

echelon vehicle routing problems arising in city logistics. Comput Oper Res 39(12):3215–3228
Lee YH, Jung JW (2005) New heuristics for no-wait flowshop scheduling with precedence constraints and

sequence dependent setup time. In: International Conference on Computational Science and Its Appli-
cations, Springer, pp 467–476

Lin SW, Ying KC (2014) Minimizing shifts for personnel task scheduling problems: a three-phase algorithm.
Eur J Oper Res 237(1):323–334

Lopez-Ibanez M, Dubois-Lacoste J, Caceres LP et al (2016) The irace package: iterated racing for automatic
algorithm configuration. Oper Res Perspect 3:43–58. https://​doi.​org/​10.​1016/j.​orp.​2016.​09.​002

Miyata HH, Nagano MS, Gupta JN (2019) Integrating preventive maintenance activities to the no-wait flow
shop scheduling problem with dependent-sequence setup times and makespan minimization. Comput
Ind Eng 135:79–104

Nagano MS, Araújo DC (2014) New heuristics for the no-wait flowshop with sequence-dependent setup
times problem. J Braz Soc Mech Sci Eng 36(1):139–151

https://doi.org/10.1016/j.orp.2016.09.002

322	 F. S. d. Almeida, M. S. Nagano

1 3

Nagano MS, Miyata HH, Araújo DC (2015) A constructive heuristic for total flowtime minimization in a no-
wait flowshop with sequence-dependent setup times. J Manuf Syst 36:224–230

Nagano MS, Almeida FSd, Miyata HH (2020) An iterated greedy algorithm for the no-wait flowshop sched-
uling problem to minimize makespan subject to total completion time. Eng Optim, pp 1–19

Nawaz M, Enscore EE Jr, Ham I (1983) A heuristic algorithm for the m-machine, n-job flow-shop sequenc-
ing problem. Omega 11(1):91–95

Pinedo M (2016) Scheduling. Theory, algorithms, and systems, 5th edn. Springer Science & Business Media,
Cham

Pisinger D, Ropke S (2019) Large neighborhood search. Handbook of metaheuristics. Springer, Cham, pp
99–127

Qian B, Zhou HB, Hu R, et al (2011) Hybrid differential evolution optimization for no-wait flow-shop sched-
uling with sequence-dependent setup times and release dates. In: International Conference on Intelli-
gent Computing, Springer, pp 600–611

Qian B, Du P, Hu R, et al (2012) A differential evolution algorithm with two speed-up methods for nfssp
with sdsts and rds. In: Proceedings of the 10th World Congress on Intelligent Control and Automation,
IEEE, pp 490–495

Qu Y, Bard JF (2012) A grasp with adaptive large neighborhood search for pickup and delivery problems
with transshipment. Comput Oper Res 39(10):2439–2456

Rifai AP, Nguyen HT, Dawal SZM (2016) Multi-objective adaptive large neighborhood search for distributed
reentrant permutation flow shop scheduling. Appl Soft Comput 40:42–57

Ropke S, Pisinger D (2006) An adaptive large neighborhood search heuristic for the pickup and delivery
problem with time windows. Transp Sci 40(4):455–472

Ruiz R, Stützle T (2008) An iterated greedy heuristic for the sequence dependent setup times flowshop prob-
lem with makespan and weighted tardiness objectives. Eur J Oper Res 187(3):1143–1159

Samarghandi H (2015) A no-wait flow shop system with sequence dependent setup times and server con-
straints. IFAC-PapersOnLine 48(3):1604–1609

Samarghandi H (2015) Studying the effect of server side-constraints on the makespan of the no-wait flow-
shop problem with sequence-dependent set-up times. Int J Prod Res 53(9):2652–2673

Samarghandi H, ElMekkawy TY (2014) Solving the no-wait flow-shop problem with sequence-dependent
set-up times. Int J Comput Integr Manuf 27(3):213–228

Shaw P (1998) Using constraint programming and local search methods to solve vehicle routing problems. In:
International Conference on Principles and Practice of Constraint Programming, Springer, pp 417–431

Taillard E (1993) Benchmarks for basic scheduling problems. Eur J Oper Res 64(2):278–285. https://​doi.​org/​
10.​1016/​0377-​2217(93)​90182-M

T’kindt V, Billaut JC, (2006) An approach to multicriteria scheduling problems. Theory, models and algo-
rithms, multicriteria scheduling, pp 113–134

Xu T, Zhu X, Li X (2012) Efficient iterated greedy algorithm to minimize makespan for the no-wait flowshop
with sequence dependent setup times. In: Proceedings of the 2012 IEEE 16th International Conference
on Computer Supported Cooperative Work in Design (CSCWD), IEEE, pp 780–785

Ye H, Li W, Nault BR (2020) Trade-off balancing between maximum and total completion times for no-wait
flow shop production. Int J Prod Res 58(11):3235–3251

Zhuang WJ, Xu T, Sun MY (2014) A hybrid iterated greedy algorithm for no-wait flowshop with sequence
dependent setup times to minimize makespan. In: Advanced materials research, Trans Tech Publ, pp
459–466

Zhu X, Li X, Gupta JN (2013a) Iterative algorithms for no-wait flowshop problems with sequence-dependent
setup times. In: 2013 25th Chinese Control and Decision Conference (CCDC), IEEE, pp 1252–1257

Zhu X, Li X, Wang Q (2013b) An adaptive intelligent method for manufacturing process optimization in
steelworks. In: Proceedings of the 2013 IEEE 17th International Conference on Computer Supported
Cooperative Work in Design (CSCWD), IEEE, pp 363–368

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1016/0377-2217(93)90182-M

	An ALNS to optimize makespan subject to total completion time for no-wait flow shops with sequence-dependent setup times
	Abstract
	1 Introduction
	2 Problem definition
	3 Mixed-integer linear programming model
	4 Heuristic algorithms
	4.1 Literature algorithms
	4.2 Algorithm

	5 Computational experiments
	5.1 parameters tuning
	5.2 Experiment with small instances
	5.3 Experiment with large instances

	6 Conclusion
	Acknowledgements
	References

