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Abstract
In the flow shop rescheduling literature, many papers consider unlimited buffer 
capacities between successive machines. In real fact, these capacities may be lim-
ited, or no store may exist. Thus, a blocking situation is inducted. Diverse types of 
blocking constraints are studied in the flow shop scheduling problems. However, in 
dynamic environments, only few papers deal with these kinds of constraints. The 
aim of this paper is to investigate a problem of rescheduling the jobs in a flowshop 
environment and mixed blocking as a constraint, considering simultaneously sched-
ule efficiency and stability as a performance measure, and job arrival as a disruption. 
An iterative methodology based on the predictive–reactive strategy is implemented 
for dealing with this rescheduling problem. The problem has first been modeled as 
a Mixed Integer Linear Programing (MILP) model. Experimental results show that 
the MILP resolution is only possible for small-sized instances. Hence, inspired by 
NEH algorithm, we proposed four heuristics for solving large-sized instances of this 
problem. Eventually, we discussed the performance of the proposed heuristics for 
different blocking situations, both in terms of solution efficiency and resolution time.
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1 � Introduction and literature review

The adoption of digital technology in services companies has completely changed 
the customer’s practices (Mula and Bogataj 2021). From now on, a customer can, 
in real time, create, modify, or cancel an order using new technological tools, 
such as mobile phone applications or companies’ websites. To keep a competi-
tive edge, the companies must be adapted to these orders uncertainties. In fact, 
the possibility to change the order’s information has an impact on the produc-
tion scheduling (Şenyiğit et  al. 2022). Although traditional scheduling properly 
organizes the production system planning (Pitombeira-Neto and Prata 2020), this 
one will be invalid when a new disruption occurs. Therefore, the decision-makers 
must quickly react so as not to stop completely the production. As a consequence, 
the process of revising an existing schedule in response to disruptions, referred to 
as rescheduling, becomes a major issue for the enterprises, as well as an interest-
ing research area.

Several papers have already established literature reviews of the rescheduling 
problems. Vieira et al. (2003) is among the well-known works that have provided 
a detailed definition of this process, and described its framework, methods, and 
strategies. The following works can also be noticed, Li et al. (2020), Serrano-Ruiz 
et al. (2021) and recently Mohan et al. (2022). In the scheduling literature, differ-
ent types of machines environments have been studied, such as single machine 
representing a single workstation (Hall and Potts 2004; Prata et  al. 2021), 
resources constrained (Machado-Dominguez et al. 2022), parallel machines rep-
resenting identical or non-identical workstations (Kovalyov et  al. 2019; Akyol 
Ozer and Sarac 2019; De La Vega et  al. 2023), job shop (Yan et  al. 2018; Ser-
rano-Ruiz et  al. 2022), flexible job Shop problem (Auer et  al. 2021), and open 
shop (Liu and Zhou 2013; Ozolins 2021). Numerous papers are also dealing with 
flow shop rescheduling. Rahmani and Ramezanian (2016) investigated a flexible 
flowshop rescheduling problem, with the arrival of new jobs as a disruption, the 
weighted tardiness as an efficiency measure, and the absolute deviation of com-
pletion times as a stability measure. The authors adopted a predictive–reactive 
rescheduling strategy and designed a variable neighborhood search algorithm to 
solve their problem. Katragjini et al. (2013) considered a permutation flow shop 
rescheduling problem. They assumed three simultaneous random disruptions, the 
arrival of new jobs, machine breakdowns, and release time delays. Makespan is 
considered as the schedule efficiency criterion, and the number of starting times 
altered tasks as the stability measure. The authors proposed an iterated greedy 
algorithm to solve the described problem. The following papers also present 
interesting studies about flow shop scheduling problems, Uhlmann et al. (2022) 
and Bautista-Valhondo and Alfaro-Pozo (2020).

The scheduling problems generally use classical efficiency criteria to assess 
the schedule performance. For instance, the makespan (Sayed et al. 2020; Valle-
dor et al. 2022), the total completion time (Druetto et al. 2022), the total tardiness 
(Zhang et  al. 2022a, b), the total weighted tardiness (Haroune et  al. 2022), the 
number of tardy jobs (Zhang et  al. 2013), and the multiple efficiency measures 
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(Kacem and Dammak 2021) are criteria that have already been studied. However, 
in dynamic environments, other measures can also be considered. Stability cri-
teria, limiting the deviation from the initial schedule, are often associated with 
the efficiency criterion. They measure the penalty induced by moving jobs due to 
disruptions. In fact, the schedule movement generates supplementary costs, like 
reallocation costs, or raw materials reordering costs. Akkan (2015) considered a 
single machine rescheduling problem, disrupted by new jobs arrival. The authors 
associated the schedule efficiency and stability. They considered the maximum 
tardiness as an efficiency criterion, and the sum of the absolute starting time devi-
ations as a stability measure, which is the sum of the absolute difference between 
the starting time of a job before and after the rescheduling. Other stability cri-
teria have already been investigated in the rescheduling literature, for example 
the number of jobs that change of machine after rescheduling (He et  al. 2020), 
change in human resources assignments (Xiao et  al. 2010), and the maximum 
time disruption (delivery times of jobs to customers changes) (Liu and Ro 2014). 
Different from existing literature, this work investigates two performance meas-
ures. At first, regarding the schedule efficiency, the Total Weighted Waiting Time 
(TWWT​) is used as a criterion. This measure is inspired from real-life systems, 
it represents the job waiting time in front of a workstation, or the patient wait-
ing time in the case of hospital system (Braune et al. 2022), assuming the weight 
as the customer priority. Tighazoui et  al. (2021a) considered a problem of the 
TWWT​ minimization combined with a stability criterion in a flowshop reschedul-
ing problem. The authors explain that the problem can be an illustration of real-
life systems. For example, in production systems, it can be regarded as the wait-
ing period of a product in front of an installation and the weight as the product 
priority. In hospital systems, it can represent the delay between a patient’s arrival 
and his actual treatment, considering the emergency level as a weight. Guo and 
Xie (2017) formulated two MILP models for a single machine rescheduling prob-
lem with the total waiting time as an objective. The studied problem came from a 
quartz glass factory, considering that the waiting time is the waiting of materials 
before the welding step. Kan (1976) classified the problem of the minimization 
of the average waiting time as NP-hard for a single machine scheduling. Second, 
concerning the schedule stability, the Total Weighted Completion Time Devia-
tion (TWCTD) is considered as a criterion. It consists of assessing the deviation 
between the completion times of a job, when it is scheduled for the first time 
and after the rescheduling, associating a weight for each job, to penalize more 
largely the important orders (Tighazoui et al. 2020). This association of criteria 
has already been introduced in Tighazoui et al. (2021b) for the parallel machines 
rescheduling problem. The authors observed that due to a proactive effect, the 
stability measure provides better solutions compared to a mono criterion consid-
ering only the efficiency. Now, the aim is to analyze the criterion behavior in a 
flow shop rescheduling problem with blocking constraints.

Most of flow shop rescheduling problems assume that the buffer spaces capaci-
ties between successive machines are unlimited. In actual industrial systems, the 
store between successive machines is generally limited or no store space may exist. 
Thus, a blocking situation is generated, referred to as blocking constraint. In the 
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rescheduling literature, only few papers are interested in this question (Kecman et al 
2013; Tao and Liu 2019). Different types of blocking constraints have already been 
investigated in static flow shop scheduling. The classical RSb (Release when Start-
ing Blocking) constraint for example has been introduced in Wang et al. (2006). It 
describes the case where a machine is blocked by a job, until the job starts on the 
following machine. RCb or RCb* (Release when Completing Blocking) describes 
the case where a machine is blocked by a job, until this one ends on the follow-
ing machine (RCb*) (Yuan et  al. 2009; Trabelsi et  al. 2011) or starts on the fur-
ther next one (RCb) (Martinez et  al. 2006). Mixed blocking constraints represent 
the case where successive machines can be simultaneously subject to any combi-
nation of previous blocking constraints (Trabelsi et al. 2012). To fill the void, the 
present paper treats a flow shop rescheduling problem with different types of con-
straints mixed in one production system. The aim is to study a general case in which 
the decision-maker can choose the type of blocking constraint to apply between two 
successive machines. An example of mixed blocking constraints can be found in the 
cider brewing process. In this application, it is not possible to simultaneously brew 
apples for different customers. In this process, pouring the apples into the vat repre-
sents stage 1, grinding the apples is stage 2, and pressing the apples to make juice is 
stage 3. Between stage 1 and 2, there is an RSb constraint since all the apples must 
be poured before starting the grinding. Between stages 2 and 3, there is an RCb con-
straint since the apples of a new customer cannot be poured into the vat until all the 
apples of the first customer have been pressed.

Rescheduling strategies are classified in two basic categories (Herrmann 2006). 
Dynamic scheduling strategy consists in dispatching the jobs, using some rules 
at the moment of dispatching. In this strategy, heuristics are used to choose the 
sequence of the jobs that will be proceeded on the machine (Wu et al. 2022; Zhang 
et  al. 2022a, b). Predictive–reactive scheduling strategy consists of generating an 
initial schedule at the first step, then updating it at each time a disruption occurs 
(Manzini et  al. 2022). Gürel et  al. (2010) used a predictive–reactive strategy on a 
parallel non-identical machines’ problem with controllable processing times. In the 
predictive phase, an initial schedule is generated to minimize the total manufactur-
ing costs of the jobs. In the reactive phase, after a disruption caused by machines 
breakdowns, the schedule is repaired. In our paper, the predictive–reactive schedul-
ing strategy is also adopted. In the predictive step, the flow shop scheduling prob-
lem with mixed blocking constraints is solved with the objective of minimizing the 
TWWT​. After disruption occurrence, the reactive step starts, solving the resched-
uling problem, but considering this time the TWWT​ as a criterion combined with 
the TWCTD. These two criteria are associated by the efficiency–stability coeffi-
cient α, representing a ponderation between both parts of the objective function (α 
TWWT​ + (1 − α) TWCTD).

The present work addresses a problem of rescheduling the jobs in a flowshop 
environment, mixed blocking as a constraint, and the arrival of the jobs as a disrup-
tion. A MILP formulation is designed to describe the problem, as well as an itera-
tive methodology based on the predictive–reactive scheduling strategy. Experimen-
tal results show that the MILP resolution is only possible for little size instances. 
Hence, inspired by NEH algorithm, we proposed four heuristics for solving large 
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size instances of this problem. These heuristic methods have been compared to the 
resolution based on the MILP model, both in terms of accuracy and computation 
time. To the best of our knowledge, no other work was interested in studying this 
kind of problem. The main contributions of this paper are:

–	 Investigating for the first time a flow shop rescheduling problem with mixed 
blocking constraints.

–	 Simultaneously integrating the schedule efficiency and stability in the described 
problem.

–	 Designing a MILP model for this problem, and heuristic methods allowing to 
browse more jobs in a reasonable time.

The outline of the paper is as follows: Sect. 2 presents a description of the prob-
lem and the predictive–reactive strategy adopted to tackle it. Section 3 explains the 
MILP formulation of the offline problem, and the additional equation used to solve 
the online problem. In Sect. 4, heuristic methods are described. In Sect. 5, experi-
mental results are presented and discussed. Finally, a conclusion and some perspec-
tives are given in Sect. 6.

2 � Problem description and methodology

In this section, the problem is described, as well as the predictive–reactive schedul-
ing strategy proposed to handle the disruptions.

2.1 � Problem description

A flow shop rescheduling problem with different types of blocking constraints is 
studied in this section. The system is also disrupted by the arrival of new jobs. To 
each job, j is associated a processing time on the machine m, pjm, a weight wj and a 
release date rj. Preemption is not assumed in this problem. Thus, when a job j starts 
its execution in the system, it proceeds up to the completion time CTjm. Efficiency 
measure, stability measure, and blocking constraints are explained hereafter.

The efficiency measure: Wj is the waiting time of the job j. It represents the total 
period that the job j waits in the system before its complete execution.

In Fig. 1, the red lines represent the total period that job j waits in the system 
before its complete execution, it also represents the sum of the waiting periods that 
a job waits in front of the successive machines (workstations). Hence, the waiting 
time Wj is defined as: Wj = CTj nm − rj −

∑nm

m=1
pjm , where CTj nm is the job j comple-

tion time on the last machine.
It is assumed that N = {1, 2, …, n} is the set of jobs, and M = {1, 2, …, nm} 

is the set of machines. At time t = 0, the set of jobs N are already available. Thus, 
the initial problem to solve before the disruptions consists in minimizing 

∑n

j=1
wjWj , 

referred to as the TWWT​.
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The stability measure: let CTojm be the original completion time of the job j on 
the machine m. It corresponds to the job j completion time when it is scheduled for 
the first time. After the occurrence of new jobs, the schedule may change, and the 
job j may then actually end at CTjm, its actual completion time. Thus, the difference 
between CTjm and CTojm is the completion time deviation. In addition, the weight 
wj is associated to each job j to penalize more largely the deviation of the important 
orders. In order to normalize this criterion with respect to the efficiency measure, it 
is divided by the number of machines nm. So, the stability measure is then defined 
as 1

nm

∑n

j=1

∑nm

m=1
wj(CTjm − CTojm) , referred to as the TWCTD.

Both parts of the objective function are associated with α, the efficiency–stability 
coefficient. Thereby, the function simultaneously considers the schedule efficiency 
and the stability is:

As can be seen, only the set N of jobs are concerned by the stability criterion. N 
contains the jobs existing before the occurrence of a disruption. N’ = {1, 2, …, n’} is 
the set of jobs which contains the currently unexecuted jobs (i.e., the jobs that have 
not started) combined with the newly arrived ones.

The mixed blocking constraints: Most of flow shop rescheduling problems con-
sider unlimited buffer space capacities between successive machines. This case is 
referred to as without blocking constraint (Wb). There is also the case of classi-
cal blocking constraints RSb when the machine is blocked by a job until this one 
starts in the following machine. Specific constraint RCb* can also be considered. 
It describes the case where a machine is blocked by a job until this one is finished 
on the following machine. RCb constraint is a particular case where a machine is 
blocked by a job, until this one is finished and left the next machine, this time then 
corresponds to the starting time of the job on the third machine. To illustrate the dif-
ference among these blocking constraints, we present in Fig. 2 an example with four 
jobs and five machines. The matrix of processing times is given by:

�

n�∑
j=1

wjWj + (1 − �)
1

nm

n∑
j=1

nm∑
m=1

wj(CTjm − CTojm)

Fig. 1   Waiting time of a job j 
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In Fig. 2a, there is no blocking situation. Thus, each machine is available to treat 
a job as soon as the previous job is finished. In Fig. 2c, job J3 remains blocked on 
machine M1 while the machine M2 is executing job J2. In Fig.  2b, illustrates the 
case when job J3 blocks the machine M1 until the operation J3 on M2 will finish. In 
Fig. 2d, illustrates the case when job J3 blocks the machine M1 until the operation J3 
on M2 will finish and it will leave this machine. This date corresponds to the opera-
tion beginning of job J3 on the machine M3.

In this work, we assume that all those described constraints can be mixed in one 
production system, with any combination. Thereby, a vector V is introduced, to 
describe a sequence of constraints between the successive machines of the problem. 
For instance, V = (RCb, RSb, RCb*, Wb) can be a blocking constraints vector for the 

pjm =

⎛
⎜⎜⎜⎝

1 1 2 1 2

1 3 2 2 1

1 1 2 2 1

3 2 1 1 1

⎞
⎟⎟⎟⎠
j�{1, .., 4},m �{1, .., 5}

Fig. 2   Flowshop with different blocking constraints. a Wb, b RCb*, c RSb, d RCb 

Fig. 3   Mixed blocking constraints with the vector V(RCb, RSb, RCb*, Wb)
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5-machines problem presented on Fig. 3. Different combinations of the vector V are 
studied in the experimental results section.

2.2 � Predictive‑reactive scheduling strategy

In order to solve the flow shop rescheduling problem, we implemented a predic-
tive–reactive scheduling strategy. It consists in solving at first, a problem of minimiza-
tion of the TWWT​ efficiency measure. At the appearance of a new job, this one will 
be combined with the yet uninitiated jobs and the schedule will be updated. The new 
objective function contains a part of schedule efficiency measured with TWWT​, as well 
as a part for assessing the schedule instability TWCTD. For simulating this matter, a 
finite time horizon [0, T] is defined, and discretized into periods Δt. The occurrence of 
a job may be possible only at these periods. It is assumed that Δt = 1 unit of time, and 
one job can arrive per period. In several industrial cases, it is common to urgently treat 
the arrival of one order. When a job arrives at time t, this date will correspond to its 
release date. Accordingly, the variable β(t) is defined, equal to one if a job appears and 
zero otherwise.

The flowchart presented in Fig.  4 describes the proposed predictive–reactive 
scheduling strategy. This methodology consists of going through the simulation 
horizon step by step and checks whether a job appears thanks to the state of β(t). If 
β(t) = 1, the problem data, constraints, and the objective function are updated. Then, 
the new problem is solved.

3 � Mathematical models

According to the chart presented in Fig.  4, two phases of resolution are imple-
mented. The first is before the disruption, referred to as the offline resolution. The 
second operates after the occurrence of the disruptions and is referred to as the 
online resolution. Accordingly, the two mathematical models corresponding to both 
phases are described in this section.

3.1 � The offline mathematical formulation

To build our mathematical formulation, we adapted the parallel machine model pre-
sented in Tighazoui et al. (2020) to a flow shop environment with mixed blocking 
constraints. The presented model is based on assigning jobs to positions. Variables, 
parameters, and constraints are given hereafter:

(1)�(t) =

{
1 if a job appears

0 Otherwise
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3.1.1 � Parameters

N: set of jobs {1, 2, …, n}.
K: set of positions {1, 2, …, n}.
M: set of machines {1, 2, …, nm}.
j: index of job, j = 1, 2, …, n.
k: index of position, k = 1, 2, …, n.

t =t +Δt

Start 

Solve the initial problem 
ΣwjWj

Update problem data, 
constraints, and objective 

function

β(t)=1? 

Yes 

No 

Solve the new problem 

α ΣwjWj +(1-α) ΣΣwj (Cjm-Cojm)

End

Data initialization 

t ≤ T ? 

No 

Yes 

Fig. 4   Predictive–reactive scheduling strategy
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m: index of machine, m = 1, 2, …, nm.
wj: weight of job j.
rj: The release date of job j.
pjm: processing time of job j on machine m.

with: h = 1 if there is no blocking constraint between the machine m and m + 1.
h = 2 if there is a blocking of type RSb between the machine m and m + 1.
h = 3 if there is a blocking of type RCb* between the machine m and m + 1.
h = 4 if there is a blocking of type RCb between the machine m and m + 1.
bigM: big value.

3.1.2 � Decision variables

Skm: Starting time of the job in kth position on machine m.
Ckm: Completion time of the job in kth position on machine m.
CTjm: Completion time of job j on machine m.
Wj: Waiting time of job j.
Objective function f1 =

∑n

j=1
wjWj , the objective is to Minimizef 1 subject to:

Bhm =

{
1 if there is a blocking constraint of type h between themachinem andm + 1

0 Otherwise

Xjk =

{
1 if the job j is assigned to kth position

0 Otherwise

(2)
n∑

k=1

Xjk = 1 ∀j ∈ N

(3)
n∑
j=1

Xjk = 1 ∀k ∈ K

(4)Ckm = Skm +

n∑
j=1

pjmXjk ∀k ∈ K, ∀m ∈ M

(5)Skm ≥ Ckm−1 ∀k ∈ K, ∀m ∈ {2, ..., nm}

(6)
Skm ≥ Ck−1 m ⋅ B1m + Sk−1 m+1 ⋅ B2m + Ck−1 m+1 ⋅ B3m + Sk−1 m+2 ⋅ B4m

∀k ∈ {2, ..., n}, ∀m ∈ {1, ..., nm − 2}

(7)
Sk nm−1 ≥ Ck−1 nm−1 ⋅ B1 nm−1 + Sk−1 nm ⋅ B2 nm−1 + Ck−1 nm ⋅ B3 nm−1 ∀k ∈ {2, ..., n}

(8)Sk nm ≥ Ck−1 nm ∀k ∈ {2, ..., n}
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Constraint (2) specifies that each job is assigned to one position. Constraint (3) 
specifies that each position is occupied by only one job. Constraint (4) defines the 
completion time of the position k. Constraint (5) an operation on a machine starts 
after its completion on the previous machine. Constraint (6) defines the starting time 
of a position. It depends on different types of blocking constraints, depending on the 
parameter Bhm. Constraint (7) defines the starting time of a position in the penulti-
mate machine where there is no RCb constraint, as it depends on the two following 
machines. Constraint (8) defines the starting time in the last machine which can only 
be without blocking. Constraint (9) makes the starting time of an operation greater 
than or equal its release date. Constraints (10) and (11) associates the job comple-
tion time to the position completion time, where bigM must be sufficiently large. 
Constraint (12) defines the waiting time of job j, according to its completion time 
in the last machine, release date, and processing time. Constraint (13) constraints 
the variable Xjk to be a binary decision variable. Constraints (14) are non-negativity 
constraints, making all decision variables greater than or equal to zero.

3.2 � Online mathematical formulation

This second mathematical formulation is used after a disruption. Thus, all jobs that 
have already begun their execution before t (the time of disruption) are omitted from 
the set of jobs. The new parameters are presented hereafter:

3.2.1 � Parameters of the online mathematical formulation

Nj: number of new jobs (we assumed in this work that only one job arrives per 
period nj = 1).

(9)Skm ≥

n∑
j=1

rjXjk ∀k ∈ K, ∀m ∈ M

(10)CTj m ≥ Ckm − bigM(1 − Xjk) ∀j ∈ N, k ∈ K,∀m ∈ M

(11)CTj m ≤ Ckm + bigM(1 − Xjk) ∀j ∈ N, k ∈ K,∀m ∈ M

(12)Wj = CTj nm − rj −

nm∑
m=1

pjm ∀j ∈ N

(13)Xjk ∈ {0, 1}, ∀j ∈ N, ∀k ∈ K

(14)Skm,Ckm,CTjm,Wj ≥ 0 ∀j ∈ N, k ∈ K, ∀m ∈ M
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nt: number of unexecuted jobs at time t.
n′ = nt + nj
N’:set of jobs {1, 2, …, n′}.
K’: set of positions {1, 2, …, n′}.
j: index of job j = 1, 2, …, n′.
k: index of position k = 1, 2, …, n′.
CTojm: original completion time of job j on machine m.
α: efficiency–stability coefficient.
The same decision variables as previously described are used for this second 

model. Thus, the new objective function is defined as:

4 � Heuristic methods

The proposed heuristics are based on the initial solution to insert the new job on 
schedule. The heuristics browse in the simulation horizon step by step, at each step 
t, if β(t) = 1, a job arrives. This job will be combined with the set of unexecuted jobs, 
its release date will correspond to the time t, and the last position in the existing 
schedule will be assigned to it. Then, one of the proposed heuristic methods will be 
applied. The following algorithm describes this process.

The proposed heuristics are based on the NEH heuristic. This latter is one of the 
best well known in the scheduling problem since its effectiveness is proven (Nawaz 
et al. 1983). It is also very simple to implement. NEH algorithm is widely accepted 
as one of the best simple heuristics for makespan minimization in flow shop sched-
uling problems (Sauvey and Sauer 2020). As NEH is based on job insertion, it is 
wise to use it in the case of a disruption due to job arrival, since the new job is 

f2 = �

n�∑
j=1

wjWj + (1 − �)
1

nm

n∑
j=1

nm∑
m=1

wj(CTjm − CTojm)
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inserted into the existing schedule. In our case, we use NEH algorithm evaluating 
the new objective function f2. NEH pseudo-code is recalled below:

4.1 � Heuristic H1

Description of H1: We consider the list of jobs sequenced in the order of the previ-
ous schedule and we insert the new job in all possible positions, starting by the last 
position. The solution that minimizes the objective function is selected.

Improvement of H1: We consider the sequence obtained by H1 and we put the 
last job in all possible positions. We select the solution if it is better. We repeat the 
same operation, while the value of the objective function is improved. We call this 
heuristic H1*.
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Example illustrating H1 and H1*: In Table  1, the processing times pjm, the 
release dates rj and the weights wj for the 4 jobs are presented. The first 3 jobs are 
considered in the initial schedule (in offline), for which all information is known 
in advance, then job 4 arrives at t = 3 (in online). There is no blocking constraints 
between the machines V(Wb,Wb), and α = 0.5.

Optimal initial sequence is 1-2-3 with f1 = 15. Table 2 presents the obtained solu-
tions with H1 and H1* after the apparition of job 4.

H1 placed job 4 in all possible positions, except for the first one since the job 1 
has already started its execution when job 4 arrived at time t = 3. The best solution 
provided by H1 is f2 = 19.83 instead of 18.5 given by H1*, which improves H1 by 
repeating the same operations, as long as a better result is obtained. However, the 
computing time of H1* is bigger than H1.

4.2 � Heuristic H2

Description of H2: We consider a list of jobs sequenced by the order obtained in 
the previous schedule and put temporarily the new job in the last position. We apply 
NEH for sequencing this list. The solution that minimizes the objective function is 
selected.

Table 1   Problem data of the 
illustrative example

Offline Online

Job j 1 2 3 4
pjm

 M1 3 1 5 1
 M2 2 4 2 2
 M3 3 2 4 3

rj 0 1 0 3
wj 2 1 3 5
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Improvement of H2: We consider the sequence obtained by H2 and apply the 
algorithm of NEH recursively as for H1*, while an improvement is found. We call 
this heuristic H2*.

Example illustrating H2 and H2*: We study here an illustration of H2 and H2*, 
with the same example as the one presented in Table 1. The obtained results are pre-
sented in Table 3.

H2 considers the list 1–2-3–4. Exempt the jobs that already started their execu-
tion (job 1 in this example), H2 puts the jobs of the list, one by one, in the par-
tial schedule applying NEH method. The best solution provided by H2 is f2 = 19.83 
instead of 18.5 given by H2*, which improves H2 by repeating the same operations 
as long as the result is better. However, the computing time of H2* is bigger than 
H2.

4.3 � Heuristic H3

Description of H3: We consider a list of jobs sequenced by the order obtained in 
the previous schedule and put temporarily the new job in the first position. We apply 
NEH to sequence this list. The solution that minimizes the objective function is 
selected.

Table 2   Obtained solutions with 
H1 and H1*

The values highlighted in bold represent the optimal outcomes 
achieved in each iteration

H1 H1*

Sequence f2 Sequence f2

First execution
 Iteration 1 1–2-3–4 30 1–2-3–4 30
 Iteration 2 1–2-4–3 27.5 1–2-4–3 27.5
 Iteration 3 1–4-2–3 19.83 1–4-2–3 19.83

Improvement 1
 Initial solution – – 1–4-2–3 19.83
 Iteration 2 – – 1–4-3–2 18.5
 Iteration 3 – – 1–3-4–2 32

Improvement 2
 Initial solution – – 1–4-3–2 18.5
 Iteration 2 – – 1–4-2–3 19.83
 Iteration 3 – – 1–2-4–3 27.5

Best solution 1–4-2–3 19.83 1–4-3–2 18.5
Computing time (s) 0.046 0.069
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Improvement of H3: We consider the sequence obtained by H3 and apply the 
algorithm of NEH recursively as for H1*, while an improvement is found. We call 
this heuristic H3*.

Example illustrating H3 and H3*: We study here an illustration of H3 and H3*, 
with the same example as the one presented in Table 1. The obtained results are pre-
sented in Table 4.

H3 considers the list 1–4-2–3. Exempt the jobs that already started their execu-
tion (job 1 in this example), H3 puts the jobs of the list, one by one, in the par-
tial schedule applying NEH method. The best solution provided by H3 and H3* is 
f2 = 18.5. However, the computing time of H3* is bigger than H3.

Table 3   Obtained solutions with 
H2 and H2*

The values highlighted in bold represent the optimal outcomes 
achieved in each iteration

H2 H2*

Sequence f2 Sequence f2

Execution of heuristic
 Iteration 1 1–2 1.5 1–2 1.5
 Iteration 2 1–2-3 7.5 1–2-3 7.5
 Iteration 3 1–3-2 9.5 1–3-2 9.5
 Iteration 4 1–2-3–4 30 1–2-3–4 30
 Iteration 5 1–2-4–3 27.5 1–2-4–3 27.5
 Iteration 6 1–4-2–3 19.83 1–4-2–3 19.83

Improvement 1
 Iteration 1 – – 1–4 5
 Iteration 2 – – 1–4-2 8.33
 Iteration 3 – – 1–2-4 14
 Iteration 4 – – 1–4-2–3 19.83
 Iteration 5 – – 1–4-3–2 18.5
 Iteration 6 – – 1–3-4–2 32

Improvement 2
 Iteration 1 – – 1–4 5
 Iteration 2 – – 1–4-3 11
 Iteration 3 – – 1–3-4 23
 Iteration 4 – – 1–4-3–2 18.5
 Iteration 5 – – 1–4-2–3 19.83
 Iteration 6 – – 1–2-4–3 27.5

Best solution 1–4-2–3 19.83 1–4-3–2 18.5
Computing time (s) 0.047 0.078
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Table 4   Obtained solutions with 
H3 and H3*

The values highlighted in bold represent the optimal outcomes 
achieved in each iteration

H3 H3*

Sequence f2 Sequence f2

Execution of heuristic
 Iteration 1 1–4 5 1–4 5
 Iteration 2 1–4-2 8.33 1–4-2 8.33
 Iteration 3 1–2-4 14 1–2-4 14
 Iteration 4 1–4-2–3 19.83 1–4-2–3 19.83
 Iteration 5 1–4-3–2 18.5 1–4-3–2 18.5
 Iteration 6 1–3-4–2 32 1–3-4–2 32

Improvement 1
 Iteration 1 – – 1–4 5
 Iteration 2 – – 1–4-3 11
 Iteration 3 – – 1–3-4 23
 Iteration 4 – – 1–4-3–2 18.5
 Iteration 5 – – 1–4-2–3 19.83
 Iteration 6 – – 1–2-4–3 27.5

Best solution 1–4-3–2 18.5 1–4-3–2 18.5
Computing time (s) 0.047 0.063

Table 5   Obtained solutions with 
H4 and H4*

The values highlighted in bold represent the optimal outcomes 
achieved in each iteration

H4 H4*

Sequence f2 Sequence f2

Execution of heuristic
 Iteration 1 1–4 5 1–4 5
 Iteration 2 1–4-3 11 1–4-3 11
 Iteration 3 1–3-4 23 1–3-4 23
 Iteration 4 1–4-3–2 18.5 1–4-3–2 18.5
 Iteration 5 1–4-2–3 19.83 1–4-2–3 19.83
 Iteration 6 1–2-4–3 27.5 1–2-4–3 27.5

Improvement 1
 Iteration 1 – – 1–4 5
 Iteration 2 – – 1–4-3 11
 Iteration 3 – – 1–3-4 23
 Iteration 4 – – 1–4-3–2 18.5
 Iteration 5 – – 1–4-2–3 19.83
 Iteration 6 – – 1–2-4–3 27.5

Best solution 1–4-3–2 18.5 1–4-3–2 18.5
Computing time (s) 0.048 0.062
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4.4 � Heuristic H4

Description of H4: We consider the list of jobs sequenced by descending order of 
wj and we apply NEH to sequence this list. The solution that minimizes the objective 
function is selected.

Improvement of H4: We consider the sequence obtained by H4 and apply the 
algorithm of NEH recursively as for H1*, while an improvement is found. We call 
this heuristic H4*.

Example illustrating H4 and H4*: We study here an illustration of H4 and H4*, 
with the same example as the one presented in Table 1. The obtained results are pre-
sented in Table 5.

H4 considers the list of jobs sequenced by descending order of wj, 4-3-1-2. 
Exempt the jobs that already started their execution (job 1 in this example), H4 puts 
the jobs of the list, one by one, in the partial schedule applying NEH method. The 
best solution provided by H4 and H4* is f2 = 18.5. However, the computing time of 
H4* is bigger than H4.

5 � Experimental results

In this section, numerical results obtained for a flow shop system composed by 5 
machines are presented. The data used are explained in Table 6.

The chosen data are adapted for real industrial cases. The simulation is over 8-h’ 
time horizon (480 min), representing a factory opening time. It is assumed that Δt = 1 
unit of time (ut), and 1 ut is equivalent to 10 min. Thus, T = 8 h = 480 min = 48 ut. 
The weight values wj represent 5 priority levels of customers. The processing times 
pjm represent the durations of product manufacturing times. It is assumed that it fol-
lows a discrete uniform distribution with values between 1 and 4, obtaining dura-
tions between 1 ut (10 min) and 4 ut (40 min). In the offline phase, the release dates 
are generated following a discrete uniform distribution, providing values between 0 
and 2, U ~ (0, 2), to have an initial solution on which we have generated the disrup-
tions. In the online phase, the variable β(t) is used for generating the arrival of new 
jobs, its value is randomly generated with the Bernoulli distribution. At each time t, 
the value 1 is generated with probability pβ, and 0 with probability 1-pβ, where pβ is 
the appearance frequency of the jobs. Different values of pβ are tested.

50 different instances are randomly generated according to pjm and wj. For 
each instance, we scheduled the first five jobs in the offline phase, considering 

Table 6   Parameter values Parameters Values

T 48 (ut)
wj  ~ U(1,5)
pjm  ~ U(1, 4) (ut)
β(t)  ~ B(pβ)
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that the information is known at time t = 0. Then, the schedule will be disrupted 
by the arrival of new jobs. For each instance, we tested three scenarios of α (0.5, 
0.75 and 1) and four scenarios of pβ (0.2, 0.5, 0.8 and 1). In total, we investigated 
50*3*4 = 600 scenarios. Thus, three vectors of constraints are studied, in order to 
analyze the impact of the blocking constraints on the solution.

5.1 � Without blocking constraints case

In this case, a vector without any blocking constraint V(Wb, Wb, Wb, Wb) is consid-
ered. It represents a classical flowshop rescheduling problem. Two studies are con-
ducted in this section. We firstly made a comparison between the proposed heuris-
tics and their improved versions, to quantify the improvement process, both in terms 
of efficiency and computing time. Secondly, the heuristics are compared with the 
method based on the MILP model (B-MILP).

5.1.1 � Heuristics versus improved heuristics

A comparison of the heuristics (H) and their improved versions (H*) has been estab-
lished. Ten instances are generated, accordingly to Table 6. For each heuristic, the 
Number of Times when H* ≤ H (NT), the Improvement Rate (IR), and the Time Dif-
ference Rate (TDR) are calculated. Averages are presented in Table 7.

The improvement rate is, in most of cases, positive. That proves the efficiency 
of the improved versions of the heuristics. However, in some particular cases, this 
rate can be negative. By applying the improvement on some steps, we certainly get a 
better solution. But, in the next step, the methodology consists in fixing the already 
executed jobs in the previous step and rescheduling. In this case, if the set of jobs 
fixed by H and H* is not the same, the problem to solve in the next steps becomes 
different. Thus, the improved version can provide a bad result in the final step, but 
the value of IR when it is negative is relatively small. On the other hand, the average 
of the number of times when H* ≤ H (NT) is 7.8.

Time difference rate is always positive, since the improvement consists of repeat-
ing the operations of the heuristic if the solution is better. Thus, the computing time 
increases. Thanks to their effectiveness, in the rest of the experimental results, the 
improved heuristics are used for the resolution methods comparison.

IR =
Solution given by H − Solution given by H

∗

Solution given by H

TDR =
Time of H∗ − Time of H

Time of H
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5.1.2 � Resolution methods comparison

We compared for the 50 generated instances, four improved heuristics with the 
B-MILP in terms of solution quality and computing time. Averages are presented in 
Tables 8 and 9.

As can be seen, when pβ increases, the number of arrived jobs at each period 
increase too, the problem then will be difficult to solve in a reasonable time with the 
B-MILP. Only the heuristics can provide solutions when pβ exceeds 0.5. The Maxi-
mum Duration of Iteration (MDI) is the maximum computation duration that the 
method takes, at each iteration, to provide a solution. It estimates the period between 
the occurrence of a job and the establishment of the new schedule. As shown in 
Table 8, the MDI of the B-MILP is large when pβ = 0.5.

When pβ = 0.2, as there are few disruptions, the heuristics and B-MILP provide 
close solutions. In this case, the percentage errors and standard deviations pre-
sented in Table 9 becomes small. The percentage error is the difference between 
the best solution and provided solution, as a percentage of the best solution.

When pβ = 0.5, as the disruptions are medium, the B-MILP takes more time 
to provide a solution compared to the heuristics. The method based on MILP 
(B-MILP) is also a heuristic consisting in generating at each disruption the MILP 
for solving the problem. The B-MILP method may sometimes produce inferior 
solutions compared to heuristics. This occurs because the B-MILP method finds 
a locally optimal solution, which may not be the optimal solution for the entire 
problem (when all the jobs have appeared). In the predictive–reactive strategy, 
which is an iterative process, the solution obtained with B-MILP is used as a 
basis for solving the next problem in the subsequent iteration. However, in this 
process, all the jobs that have already started their execution before time t are 
excluded from the set of jobs. So, B-MILP and heuristics schedule a different 
set of jobs. Thus, the obtained solutions are different, sometimes in favor of the 
heuristics.

In dynamic environments, decision-makers need to establish a new plan after 
each disruption. This planning process should be initiated as quickly as possi-
ble, preferably before the occurrence of another disruption. In our case, based 
on the discretization assumption, we have made, a new job can potentially arrive 
at every time interval of Δt. Therefore, if the Maximum Duration of Iteration 
(MDI) exceeds Δt, it is considered as an unacceptable time frame. In our experi-
ments, we have assumed that Δt is equivalent to 10 min, which is equal to 600 s. 
Therefore, if the MDI exceeds 600  s, it is considered as an unreasonable dura-
tion. However, we only interrupt the simulations after 12 h, regardless of the MDI 
exceeding 600 s. With pβ = 0.8 and 1, the B-MILP fails to give a solution in a rea-
sonable time. Heuristics quickly provide solutions, generally the fours heuristics 
are close in terms of computing time.

percentage error =
provided solution − best solution

best solution
× 100
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H4* considers a list of jobs sequenced by descending order of wj and use NEH 
method to reschedule this list of jobs. It provides better solutions when α = 1 
since the schedule stability is not considered. The jobs weights are very influ-
ential in this case. H2* considers a list of jobs sequenced by the order obtained 
in the previous schedule and uses NEH method to reschedule this list of jobs. It 
provides better solutions when α = 0.75. As the schedule stability is considered 
in this case, the previous sequence is often maintained, and the new arrived job 
is often placed in the last positions, depending on its weight. This is already the 
principle of H2*, which explains its adaptation to this case. When α = 0.5, the 
schedule stability is more considered. According to Table 9, the number of times 
that H2* provides the best solution becomes very high. This approves the supe-
riority of H2* when the schedule stability is more considered. H1* only puts the 
new job in all possible positions without using NEH method. In most cases, it 
provides a bad solution than others since H2*, H3* and H4* are improved ver-
sions of H1*.

As a conclusion, one of the best choices that the decision-maker can do is to use, 
for each case, a heuristic among the proposed heuristics. Ideally, H4* when α = 1, 
and H2* when α = 0.5 or α = 0.75.

5.2 � The case of V(Wb, RSb, RCb*, RCb)

A vector of V(Wb, RSb, RCb*, RCb) is studied in this sub-section, and the average 
results of the 50 different instances are presented in Tables 10 and 11.

When the blocking constraints are simultaneously mixed in one production sys-
tem, the space of feasible solutions reduces since there are many constraints to sat-
isfy at the same time. As can be seen in Table 10, the computing time and the MDI 
becomes large compared to the case without blocking constraints. The B-MILP can 
hardly provide solutions when pβ = 0.5.

The B-MILP and the heuristics still give very close results when pβ = 0.2. The 
results differ when the system is subjected to more disruptions, pβ > 0.2. Also, 
according to Table  10, we always observe a superiority of H4* when α = 1, and 
H2* when α = 0.75 and α = 0.5. Therefore, the interpretation established in Sect. 5.1 
about the impact of α on the solutions performance remains still correct.

However, a diminution of the percentage errors and standard deviations is 
observed in Table  11, in comparison with Table  9. As the mixed blocking con-
straints are used in this example, the space of feasible solutions reduces. Thus, the 
heuristic solutions become close to each other. H2*, H3*, H4* converge in most of 
the cases toward the same solution, compared with the case without blocking. H1* 
which does not use NEH method, has a higher percentage error, compared to other 
heuristics.

The constraint RCb* describes the case where a machine is blocked by a job, until 
this one will finish on the following machine. According to Sauvey et al (2020), this 
blocking constraint links together two machines around the same job since it con-
siders at least the next operation to schedule an in‐course operation. Therefore, in 
the next sub-section we consider RCb* introduced between the first and the second 
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machine, followed by two successive Wb. This, for evaluating the impact of this par-
ticular situation on the computing time and the percentage errors of the proposed 
methods.

5.3 � The case of V(RCb*, Wb, Wb, RSb)

The vector V (RCb*, Wb, Wb, RSb) is studied in this sub-section, the average results 
of the 50 instances are presented in Tables 12 and 13.

Having RCb* constraint introduced between the first and the second machine, 
makes the problem difficult to solve. Since this blocking considers the next operation 
to schedule an in-course one, the B-MILP needs more time to find the best solution. 
Therefore, the B-MILP can only provide solutions when the system is subjected to 
little disruptions. When pβ exceeds 0.2, it fails to give solutions in a reasonable time. 
The simulation has been interrupted after 12 h. Heuristics still provide solutions in 
a short time. However, the computing time and the MDI are long compared to the 
blocking case previously studied.

On the other hand, a diminution of the percentage errors and standard deviations 
is observed in Table 13, in comparison with Table 11. As the RCb* is introduced 
between the first and the second machine, the space of feasible solutions becomes 
even smaller. H2*, H3*, and H4* are based on NEH method for rescheduling jobs, 
converge even more toward the same solution. H1* has a large percentage error 
compared to other heuristics. Since it only puts the new job in all possible positions 
without using NEH method, it fails in most of cases to provide the best solution.

In this particular blocking case, H4* is still efficient when the stability is not con-
sidered (α = 1). H2* is also still efficient when the schedule stability is more consid-
ered. H3* provides better results compared to the blocking cases previously studied.

6 � Conclusion and perspectives

This paper investigates a flow shop rescheduling problem when different blocking 
constraints are mixed in one production system. Two aspects are simultaneously 
investigated to measure the schedule performance. First, regarding the efficiency, the 
total weighted waiting time is considered as a criterion. Second, in terms of stabil-
ity, the total weighted completion time deviation is used as a criterion to limit the 
difference from the initial schedule. At each period, the established schedule can 
be disrupted by the arrival of a new job. Using the predictive–reactive strategy, the 
schedule is updated in response to this disruption. The problem has first been solved 
using a MILP model. Experimental results show that the MILP resolution is only 
possible for little size instances. Hence, inspired by NEH algorithm, we proposed 
four heuristics for solving large size instances of this problem. The comparison of 
these methods has been discussed in the experimental results section, where three 
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different blocking constraints vectors have been evaluated. The main conclusions of 
this work are:

–	 The appearance frequency of the jobs pβ has a major impact on the computing 
time. The more arriving jobs increase, the more the resulting computing time 
increases. The increase in computing time depends also on the type of successive 
blocking constraints between the machines.

–	 When the schedule stability is not considered, improved Heuristic 4 (H4*) which 
sequences the set of jobs by descending order of wj and uses NEH method for 
rescheduling, provides better solutions since the jobs weights have a major impact 
on the results. However, when the schedule stability is more considered, improved 
Heuristic 2 (H2*) which consists in maintaining the previous order and in using 
NEH method for rescheduling, gives better solutions since the deviation from the 
previous schedule is limited by the stability criterion. One of the best choices that 
the decision-maker can do, is to use, for each case, a heuristic among the proposed 
heuristics. Ideally, H4* when α = 1, and H2* when α = 0.5 or α = 0.75.

–	 Considering blocking constraints mixed in one flow shop system, reduces 
the space of feasible solutions since there are many constraints to satisfy. This 
increases the resolution time, but it reduces the percentage errors of the resolu-
tion methods. The B-MILP and the proposed heuristics converge in most of the 
cases toward the same solution. This matter has been clearly shown when RCb* 
constraint has been considered as a first constraint in the flow shop system.

This work can be of great interest, not only for the researchers facing with flow 
shop rescheduling problems, but also for a broader audience, such as industrial 
decision-makers. As perspectives, we intend to improve our methods by adapting 
it to consider, at each period, more than one job. Indeed, the decision-makers must 
quickly react for providing a new schedule in response to disruptions, even if several 
ones arrive at the same time. On the other hand, the proposed heuristics accelerate 
the getting of solutions. However, the decision-makers must choose among the pro-
posed heuristics, the best adapted to their case, depending on the efficiency-stability 
coefficient value. In future work, it will be interesting to design a metaheuristic that 
can be smartly adapted to all cases. Finally, we will study the behavior of the TWWT​ 
combined with the TWCTD in the case of job shop or open shop environments, con-
sidering the blocking constraints.
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