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Abstract
In this paper, we address the Unrelated Parallel Machine Scheduling Problem 
(UPMSP) with sequence- and machine-dependent setup times and job due-date 
constraints. Different uncertainties are typically involved in real-world production 
planning and scheduling problems. If ignored, they can lead to suboptimal or even 
infeasible schedules. To avoid this, we present two new robust optimization models 
for this UPMSP variant, considering stochastic job processing and machine setup 
times. To the best of our knowledge, this is the first time that a robust optimization 
approach is used to address uncertain processing and setup times in the UPMSP 
with sequence- and machine-dependent setup times and job due-date constraints. 
We carried out computational experiments to compare the performance of the robust 
models and verify the impact of uncertainties to the problem solutions when mini-
mizing the production makespan. The results of computational experiments indicate 
that the robust models incorporate uncertainties appropriately into the problem and 
produce effective and robust schedules. Furthermore, the results show that the mod-
els are useful for analyzing the impact of uncertainties in the cost and risk of the 
scheduling solutions.

Keywords Production scheduling · Unrelated parallel machines · Sequence-
dependent setups · Due-date constraints · Uncertain processing and setup times · 
Robust optimization
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1 Introduction

The parallel machine scheduling problem (PMSP) consists of determining a produc-
tion schedule of jobs in parallel machines, with each job requiring a single operation 
in one of the machines, while optimizing a given objective such as the minimization 
of the maximum job completion time (makespan), total tardiness, mean completion 
time, and maximum tardiness. Three classes of PMSPs have been considered in the 
literature (Cheng and Sin 1990), namely identical, uniform and unrelated PMSP. 
The unrelated PMSP (UPMSP) is the most general of the three classes (Torabi et al. 
2013) and assumes that the machines perform the same functions, but have differ-
ent processing velocities, resources or capacities. The UPMSP is often found in 
real manufacturing and service settings, such as in the textile, chemical, electronic, 
mechanical and service industries (Ying et al. 2012).

Machine setup times and job due-date constraints are relevant aspects when 
addressing the UPMSP in practice. As pointed out in the literature, the consideration 
of sequence- and machine-dependent setup times and due date constraints is impor-
tant in different industrial and service contexts to derive feasible and effective pro-
duction schedules (Arnaout et al. 2014). Due-date constraints have broad industrial 
implications in many manufacturing systems (Lin et al. 2011), as they impose that 
the due dates of certain jobs from primary customers must not be violated.

In this paper, we consider the UPMSP with due-date constraints and sequence- 
and machine-dependent setup times. In practice, various parameters involved in this 
variant, such as job processing and machine setup times, are usually uncertain due to 
diverse sources of uncertainty such as machine breakdowns, environment changes, 
worker performance, among other machine and/or human factors (Chyu and Chang 
2011; Liao and Su 2017). These uncertainties are natural in production planning and 
scheduling problems and, if ignored, they can lead to schedules that are infeasible 
or perform poorly under real conditions (Bougeret et al. 2019). In spite of this, few 
studies presented thus far in the literature have considered such uncertainties.

1.1  Related work

Different approaches have been used to address uncertain data in scheduling envi-
ronments, such as sensitivity analysis, fuzzy programing, stochastic programming, 
and robust optimization (Macedo et al. 2016; Rodríguez et al. 2009; Salmasnia et al. 
2015; Tadayon and Smith 2015; González-Neira et al. 2017; Bougeret et al. 2019). 
Some of these studies considered the single machine scheduling problem (Tadayon 
and Smith 2015; Bougeret et al. 2019), while others addressed the UPMSP but with-
out explicitly considering due-date constraints. A fuzzy model for the UPMSP with 
sequence-dependent setup times was proposed in Gharehgozli et  al. (2009). The 
authors considered uncertain processing times and minimized the total weighted 
flow time and the total weighted tardiness simultaneously. In Chyu and Chang 
(2011), the authors used the fuzzy theory to address the UPMSP with sequence- and 
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machine-dependent setup times to minimize the makespan and the average tardiness 
under fuzzy processing times, fuzzy due dates and fuzzy deadlines for the comple-
tion of all jobs. A multi-objective UPMSP with sequence and machine-dependent 
setup times considering uncertainty in processing times and due dates was intro-
duced in Torabi et al. (2013). The authors proposed a fuzzy approach to minimize 
the total weighted flow time, the total weighted tardiness, and the machine load vari-
ation. More recently, the UPMSP was studied in Liao and Su (2017) taking into 
account the fuzzy processing, release and sequence-dependent setup times when 
minimizing the makespan.

Stochastic programing and robust optimization have been used to address variants 
of the PMSP with identical machines. In Xu et al. (2013), the authors addressed a 
makespan minimization scheduling problem in identical parallel machines, in which 
uncertain processing times are represented as intervals using a min–max regret 
scheduling model. Robust optimization approaches were proposed in Seo and Chung 
(2014) for the identical PMSP with uncertain processing times and minimizing the 
makespan. Neither of these two papers have considered production setup times or 
due date constraints. A PMSP variant with sequence-dependent setup times was also 
addressed in Hu et al. (2016), but without any consideration of due dates. The authors 
developed a scenario based mixed-integer linear programming (MIP) formulation to 
consider uncertainty in processing and arrival times when minimizing the makespan. 
A scenario-based approach was developed in Feng et al. (2016) to take into account 
uncertainty in processing times, for the makespan minimization scheduling problem 
in a two-stage hybrid flow shop. The first production stage has only one machine, 
while the second stage has identical parallel machines. These two papers identified 
robust schedules using min–max regret models based on the worst case scenario.

The UPMSP with sequence and machine-dependent setup times and due date 
constraints has been studied by a few authors (Chen 2009; Lin et al. 2011; Zeidi and 
MohammadHosseini 2015; Chen 2015), but without considering uncertainties in the 
problem parameters. Different objectives have been addressed for this scheduling 
problem, such as minimizing the total tardiness (Chen 2009; Lin et  al. 2011), the 
total cost of tardiness and earliness (Zeidi and MohammadHosseini 2015) and the 
total weighted completion time (Chen 2015). Other papers deal with the UPMSP 
with sequence and machine-dependent setup times, but without taking into account 
due date constraints or uncertainties (Ravetti et  al. 2007; Arnaout et  al. 2014; 
Nogueira et  al. 2014; Avalos-Rosales et  al. 2015; Afzalirad and Rezaeian 2016; 
Salehi Mir and Rezaeian 2016; Sadati et  al. 2017; Gomes and Mateus 2017). To 
the best of our knowledge, there are no studies so far in the literature considering 
uncertainties in the UPMSP with sequence- and machine-dependent setup times and 
explicit due date constraints.

1.2  Contributions

In this paper, we contribute to the literature by considering for the first time the 
UPMSP with due date constraints and sequence- and machine-dependent setup times 
under the hypothesis of uncertain processing and setup times. Uncertainty is incor-
porated into the problem via a robust optimization (RO) approach using budgeted 
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uncertainty sets (Ben-Tal and Nemirovski 2000; Bertsimas and Sim 2004; Bertsimas 
et al. 2011). RO has some advantages over other stochastic approaches, such as: (1) 
it does not require probability distribution information to describe parameter uncer-
tainty. Information of the data probability distribution may be not available in some 
real contexts of multiple machine scheduling problems. In this case, managers can 
define realistic intervals for the uncertain parameter values based on their own expe-
rience and the available data; (2) the robust counterpart of an uncertain MIP model 
can be reformulated as a deterministic MIP depending on the uncertainty set; and 
(3) it provides a feasible solution (uncertainty-immunized solution) for any param-
eter realization belonging to a predetermined uncertainty set (Seo and Chung 2014). 
In the UPMSP, RO can provide robust schedules, which are desirable from a practi-
cal perspective because they protect against adverse conditions of the system (Boug-
eret et  al. 2019). We propose two RO models for the addressed UPMSP variant, 
considering the minimization of the makespan as the objective function. We are not 
aware of other RO models in the literature for any variant of the UPMSP consider-
ing sequence and machine-dependent setup times.

The difficulty of considering the classical RO approaches for the addressed prob-
lem is that all the uncertain parameters (processing and/or setup times) related to 
a given machine need to appear in the same model constraint (Bertsimas and Sim 
2004; Sungur et  al. 2008; Alem and Morabito 2012). Otherwise, if we have only 
one uncertain parameter by constraint and apply the classical RO approach using the 
budgeted uncertainty set, the RO formulation would be equivalent to a determinis-
tic formulation where the uncertain data assumes its worst-case value, making the 
formulation totally conservative. This is because the robust counterpart is obtained 
dualizing the protection function inserted into each constraint (see Sects. 3.2 and 3.3 
), and each protection function considers the variation in the uncertain parameters 
defined in its corresponding constraint only. Hence, to overcome the mentioned dif-
ficulty, we first present two deterministic models for the addressed UMPSP vari-
ant that are convenient for using RO. Computational experiments using problem 
instances from the literature were carried out to compare the performance of the 
proposed RO models. We analyze the impact of the uncertainties to the solutions 
and verify the corresponding trade-off between cost and risk (robustness) of the 
solutions. Furthermore, a risk analysis using a Monte-Carlo simulation indicates 
the potential of the RO models to address the cost-risk trade-off in the addressed 
UPMSP variant. It is worth mentioning that the developments presented in this 
paper are not restricted only to the addressed UPMSP variant and hence can also be 
used for related variants of the PMSP.

1.3  Organization of the paper

The remainder of this paper is organized as follows. Section 2 describes the UPMSP 
with sequence- and machine-dependent setup times and due-date constraints and 
presents two MIP formulations for its deterministic (nominal) variant. These for-
mulations are convenient for developing the RO models proposed in Sect.  3. In 
Sect. 4, we report the results of the computational experiments with the proposed 
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RO approach. Finally, Sect. 5 presents final remarks and discusses perspectives for 
future research.

2  Problem description and deterministic formulations

In this section, we describe the UPMSP (Sect.  2.1) and present two deterministic 
mathematical formulations for the problem. The formulations use decision variables 
that describe job precedences (Sect.  2.2) and decision variables that describe the 
position of the jobs in the production sequence of the machines (Sect. 2.3).

2.1  The UPMSP

The UPMSP with sequence- and machine-dependent setup times and due-date 
constraints consists of determining a schedule for a set of jobs N  in a set of unre-
lated parallel machines M . All machines have the same functions, but with differ-
ent resources and capacities. Each job requires a single operation in one of these 
machines. There is a given due date for finishing the processing of each job in the 
subset B ⊆ N  . These jobs are related to primary customers and their due dates can-
not be violated.

In the deterministic variant of the problem (also known as nominal problem), all 
job processing and setup times are assumed to be known in advance. As the machines 
are unrelated, the processing time to perform the operation of a given job depends 
on the machine. The same happens for the setup time to perform the operation of 
a given job, which further depends on the production sequence of the machine. To 
take into account the setup time of the first job in the production sequence of a given 
machine, we define the dummy job 0 and the node set N0 = N ∪ {0} (Gharehgozli 
et al. 2009). This dummy job has to be the first job in the sequence of any machine, 
with null processing time and null setup times from each job to it.

Using the sets defined, we state the following input parameters of the problem: 

p̄ik  Nominal processing time of job i ∈ N  in machine k ∈ M;
s̄ijk  Nominal setup time from job i ∈ N0 to job j ∈ N  in machine k ∈ M;
bi  Due date of job i ∈ B;
V  Sufficiently large number. For example, V can be equal to the sum of all the 

processing and setup times.

The objective of the problem is to determine the sequences of jobs in the 
machines that minimize the production makespan (i.e., the total time required to fin-
ish all jobs). Different formulations are available in the literature for the addressed 
UPMSP variant (Avalos-Rosales et al. 2015; Gomes and Mateus 2017). We adapt 
these formulations in the remainder of this section, to make them more convenient 
for incorporating uncertainties via RO.
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2.2  Deterministic precedence‑based formulation

The addressed UPMSP variant can be formulated as a MIP model using decision vari-
ables that describe job precedences. Consider the following decision variables: 

Cmax  Completion time of the last processed job;
Cik  Completion time of job i ∈ N0 in machine k ∈ M;
Rik  Position of job i ∈ N0 in the production sequence of machine k ∈ M;
xijk  1, if job j ∈ N  is processed immediately after job i ∈ N0 in machine k ∈ M ; 

0, otherwise;
zijk  1, if the processing of job i ∈ N0 precedes the processing of job j ∈ N  in 

machine k ∈ M ; 0, otherwise.

Notice that we have defined two types of variables to represent the production 
sequence in the machine, namely xijk and zijk . The difference between them is that 
xijk = 1 means that job i precedes job j immediately in the sequence of machine k, while 
zijk = 1 means that job i precedes job j, but not necessarily immediately. These two 
types of variables are necessary to guarantee that all uncertain parameters related to the 
jobs assigned to a given machine are available in the same constraint, which makes the 
model convenient for using RO.

Using the decision variables and parameters defined, the deterministic precedence-
based formulation is as follows:

subject to:

(1)Minimize Cmax

(2)

∑
i∈N0∶

i≠j

∑
k∈M

xijk = 1, ∀j ∈ N,

(3)

∑
i∈N0∶

i≠h

xihk −
∑
j∈N0∶

j≠h

xhjk = 0, ∀h ∈ N, ∀k ∈ M,

(4)
∑
j∈N0

x0jk = 1, ∀k ∈ M,

(5)

∑
i∈N

p̄ikzijk +
∑
i∈N

∑
l∈N0∶

l≠j

s̄likxlikzljk ≤ Cjk, ∀j ∈ N, ∀k ∈ M,

(6)Cik ≤ bi, ∀i ∈ B, ∀k ∈ M,

(7)Cmax ≥ Cik, ∀i ∈ N, ∀k ∈ M,
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The objective function (1) consists of minimizing the total time required to process 
all jobs (makespan). Constraints (2)–(4) are the flow constraints: (2) ensure that each 
job j must be processed in exactly one machine; (3) impose that each job h pro-
cessed in a machine has an immediate predecessor and an immediate successor; and 
(4) ensure that the dummy job 0 is the immediate predecessor of the first actual 
job processed in each machine. Note that in accordance with these constraints, the 
dummy job 0 must immediately precede the first and immediately succeed the last 
actual jobs in each of the |M| machines.

Constraints (5) determine the completion time of the jobs assigned to each 
machine. For a given job j ∈ M and machine k ∈ M , the first term on the left-
hand side of (5) computes the processing times of all jobs that are processed before 
j in the sequence of machine k, while the second term computes all the setup times 
corresponding to changing from job l to job i, such that l immediately precedes i 
in the sequence, and l and i are processed before j. This computation requires the 
product of variables xlikzijk , as the setup times depend on the immediate precedence 
of jobs in the machine (expressed by xlik ) and we are interested only in those jobs 
that are processed before j and in the same machine (expressed by zljk ). In fact, we 
have zljk = 1 for any job l that is processed before j in machine k; thus, xlikzljk = 1 if 
and only if l is the job that immediately precedes i in the same machine (notice that 
constraints (2) guarantee that there must be exactly one job in l ∈ N  that immedi-
ately precedes node i). If job l does not precede j in machine k, then zljk = 0 and the 
product of variables is equal to zero.

(8)Rjk ≥ Rik + 1 − |N|(1 − xijk
)
, ∀i, j ∈ N, i ≠ j, ∀k ∈ M,

(9)Vzijk ≥ Rjk − Rik − V

[
2 −

∑
l∈N0

xlik −
∑
l∈N0

xljk

]
, ∀i, j ∈ N, i ≠ j, ∀k ∈ M,

(10)2xijk ≤ ziik + zjjk, ∀i, j ∈ N, i ≠ j, ∀k ∈ M,

(11)
∑
k∈M

ziik = 1, ∀i ∈ N,

(12)C0k = 0, ∀k ∈ M,

(13)Cik ≥ 0, ∀i ∈ N, ∀k ∈ M,

(14)0 ≤ Rik ≤ |N|, ∀i ∈ N, ∀k ∈ M,

(15)xijk, zijk ∈ {0, 1}, ∀i, j ∈ N0, ∀k ∈ M.
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Constraints (6) ensure that the due dates of jobs of primary customers are met. 
The makespan is computed by constraints (7), together with the objective func-
tion. Note that Cmax corresponds to the completion time of the last processed job. 
Constraints (8) link the variables Ri and xijk based on two jobs i and j such that i 
immediately precedes j. Constraints (9) link variables zijk to Ri and xijk based on 
the jobs that are processed before job j in machine k. To determine if job i pre-
cedes job j, job i needs to be processed before job j (i.e., Rjk > Rik ) and both jobs 
need to be processed in the same machine k. This second requirement is guar-
anteed by the expression inside the brackets on the right-hand side of the con-
straints, which is zero only if i and j have an immediate predecessor in machine k 
(and hence both are processed in the same machine). If in addition Rjk > Rik , then 
variable zijk assumes the value of 1 (recall that it is a binary variable).

Constraints (10) are added to the formulation to impose that two different jobs 
i and j are predecessors of themselves if they are processed in the same machine. 
Constraints (11) impose that job i is predecessor of itself in a unique machine. A 
null value for the completion time of job 0 in each machine is set by constraints 
(12). Finally, constraints (13), (14) and (15) determine the type and domain of the 
decision variables.

The formulation (1)–(15) is a non-linear model because of the product of vari-
ables in constraints (5). Nevertheless, this product of binary variables can be lin-
earized by adding binary variables to the model, together with a set of linear con-
straints. Let ylijk be a new binary variable that assumes the value of 1 if and only 
if job l immediately precedes job i and both jobs (l and i) are processed before job 
j in machine k. The following set of constraints corresponds to the linearization of 
constraints (5):

Note that if xlik = 1 and zljk = 1 , then constraints (19) imply that variable ylijk is equal 
to 1. Otherwise, variable ylijk is equal to 0. Thus, by replacing constraints (5) with 
the set of constraints (16)–(19), we obtain a MIP formulation based on decision var-
iables that describe the job precedences.

One clear disadvantage of the proposed linearization would be the addition 
of a large number of binary variables. Fortunately, because of constraints (19) 
and variables xlik, zljk being binary, the set of constraints (16)–(19) is satisfied 
for the binary variables ylijk if this set is also satisfied for the continuous vari-
ables ylijk in the interval [0, 1]. Therefore, the same number of binary variables in 

(16)
∑
i∈N

p̄ikzijk +
∑
i∈N

∑
l∈N0

s̄likylijk ≤ Cjk, ∀j ∈ N, ∀k ∈ M,

(17)ylijk ≤ xlik, ∀i, j ∈ N, ∀l ∈ N0, ∀k ∈ M,

(18)ylijk ≤ zljk, ∀i, j ∈ N, ∀l ∈ N0, ∀k ∈ M,

(19)ylijk ≥ xlik + zljk − 1, ∀i, j ∈ N, ∀l ∈ N0, ∀k ∈ M.



39

1 3

A robust optimization approach for the unrelated parallel…

the non-linear formulation is maintained in the MIP model, although there is an 
increase in the number of continuous variables.

2.3  Deterministic position‑based formulation

We can also model the UPMSP variant addressed in this paper as a MIP model using 
decision variables that describe the position of the jobs in the production sequence of 
the machines. The following formulation assumes that each machine k has a vector of 
fixed size, hereafter referred to as permutation, that assigns jobs to positions of the pro-
duction sequence of the machine. Let P be the set of positions in the permutation of a 
machine. In addition to variables Cmax and Cik defined in Sect. 2.2, we further define the 
following decision variables: 

xhik  1, if job i ∈ N  is assigned to position h ∈ P of the permutation used in 
machine k ∈ M ; 0, otherwise;

Θhk  completion time of the job assigned to position h ∈ P of the permutation used 
in machine k ∈ M.

The position-based formulation is posed as follows:

subject to:

(20)Minimize Cmax

(21)
∑
h∈P

∑
k∈M

xhjk = 1, ∀j ∈ N,

(22)
∑
h∈P

∑
k∈M

xh0k = |M|,

(23)
∑
j∈N

xhjk ≤ 1, ∀h ∈ P, ∀k ∈ M,

(24)
Θhk ≥

∑
m∈P∶

m≤h

∑
j∈N

p̄jkxmjk +
∑
m∈P∶

m≤h

∑
i∈N0

∑
j∈N

s̄ijkx(m−1)ikxmjk, ∀h ∈ P, ∀k ∈ M,

(25)Cjk ≥ Θhk − V(1 − xhjk), ∀h ∈ P, ∀j ∈ N, ∀k ∈ M,

(26)Cjk ≤ bj, ∀j ∈ B, ∀k ∈ M,

(27)
∑
i∈N0

x(h+1)ik ≤
∑
j∈N0

xhjk, ∀h ∈ P, ∀k ∈ M,
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The objective function (20) consists of minimizing the production makespan Cmax . 
Constraints (21) ensure that each job j is assigned to a unique position of exactly one 
machine. Constraints (22) guarantee the assignment of the dummy job 0 to a sin-
gle position of the permutations used in the machines. Constraints (23) ensure that 
at most one job can be assigned to position h of the permutation used in machine 
k, hence avoiding the overlapping of jobs. Constraints (24) determine the comple-
tion time of the job assigned to position h of the permutation used in machine k. 
The first term on the right-hand side of these constraints accumulates the processing 
times of all jobs assigned to the first h positions of the permutation used in machine 
k. The second term accumulates the setup times related to the jobs in these first h 
positions. Notice that we use the product x(m−1)ikxmjk to verify the immediate prec-
edence of jobs. Given two jobs i and j, we have that i immediately precedes j only if 
x(m−1)ikxmjk = 1 for a given m ≤ h.

Constraints (25) determine the completion time of job j in the permutation 
of machine k. Note that if job j is assigned to position h of the permutation of 
machine k, then the second term on the right-hand side of the constraints is equal 
to zero and thus the completion time of job j becomes the completion time of the 
job assigned to this position. Constraints (26) ensure that the due dates of the 
jobs from the primary customers are met. Constraints (27) allow the assignment 
of a job in position h + 1 of the permutation of machine k only if there is a job 
assigned to position h of this permutation. They are used to break symmetry in 
the solution space. Constraints (28) avoid assigning a job at position 0 of the per-
mutations as this position is uniquely used by the dummy job according to con-
straints (29). Constraints (30) and (31) set initial values to variables Θ0k and C0k , 
respectively. Finally, constraints (32) impose lower bounds to the makespan and 
constraints (33) and (34) define the type and domain of the decision variables.

Constraints (24) can be linearized similarly to constraints (5). Let yhijk be the 
binary variable that assumes the value of 1 if job i is assigned to position h − 1 

(28)x0jk = 0, ∀j ∈ N, ∀k ∈ M,

(29)x00k = 1, ∀k ∈ M,

(30)Θ0k = 0, ∀k ∈ M,

(31)C0k = 0, ∀k ∈ M,

(32)Cmax ≥ Cik, ∀i ∈ N, ∀k ∈ M,

(33)Cik,Θik ≥ 0, ∀i ∈ N, ∀k ∈ M,

(34)xhjk ∈ {0, 1}, ∀h ∈ P, ∀j ∈ N, ∀k ∈ M.
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and job j is assigned to position h of the permutation of machine k. The following 
set of constraints describes the linearization of constraints (24):

Constraints (38) ensure that variable yk
hij

 is equal to 1 if both variables x(h−1)ik and 
xhjk are also equal to 1. From these constraints, we observe that the set of constraints 
(35)–(38) is satisfied for the binary variables yk

hij
 if this set is also satisfied for the 

continuous variables yk
hij

 in the interval [0, 1]. Hence, we obtain a MIP formulation 
for the problem by replacing constraints (24) with the set of constraints (35)–(38).

3  Robust optimization approaches

This section presents RO models for the UPMSP with uncertain processing and 
setup times based on the nominal MIP models of Sect.  2. RO is a mathemati-
cal programming based methodology to model and solve optimization problems 
under uncertain parameters (Ben-Tal et al. 2009; Bertsimas et al. 2011, 2015). It 
has been successfully applied in different contexts, such as production-inventory 
problems (Bertsimas and Thiele 2006; De Ruiter et al. 2017), portfolio manage-
ment (Bertsimas et  al. 2018), emergency medical systems (Bertsimas and Ng 
2019), terminal traffic flow (Ng et al. 2020), vehicle routing (Munari et al. 2019; 
De La Vega et al. 2019; De La Vega et al. 2020) and scheduling (Ng et al. 2017; 
Bougeret et  al. 2019). Different from the stochastic programming methodology, 
RO does not require a complete knowledge of the probability distributions of the 
random parameters. If they are known, they can be used to build the so-called 
uncertainty set (Ben-Tal et  al. 2009). This set contains all possible realizations 
of the uncertain parameters and it can be represented by a box, a polyhedron, an 
ellipsoid or intersections of these sets (Gorissen et al. 2015). RO is a methodol-
ogy based on worst-case analysis and involves determining here-and-now deci-
sions that optimize some criteria and are insensitive to the possible variations 
of the uncertain parameters (Bertsimas and Sim 2004; Ben-Tal et al. 2009). The 
decisions prescribed by the RO methodology ensure 100% of solution feasibility 
if the uncertain parameter values belong to the uncertainty set, i.e., the solution is 
deterministically feasible. Even if the uncertainty set does not contain all possible 

(35)
Θhk ≥

∑
m∈P∶

m≤h

∑
j∈N

p̄jkxmjk +
∑
m∈P∶

m≤h

∑
i∈N0

∑
j∈N

s̄ijkymijk,

∀h ∈ P, ∀k ∈ M,

(36)yhijk ≤ x(h−1)ik, ∀h ∈ P, ∀i ∈ N0, ∀j ∈ N, ∀k ∈ M,

(37)ylijk ≤ xljk, ∀h ∈ P, ∀i ∈ N0, ∀j ∈ N, ∀k ∈ M,

(38)yhijk ≥ x(h−1)ik + xhjk − 1, ∀l ∈ P, ∀i ∈ N0, ∀j ∈ N, ∀k ∈ M.
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realizations of the uncertain parameters, the RO methodology generally ensures 
solution feasibility with high probability (Bertsimas and Sim 2003, 2004).

3.1  Uncertain parameters and uncertainty set for the robust UPMSP

The uncertain parameters, namely processing time p̃ik and setup time s̃ijk , are 
modeled as independent, limited and symmetric random variables that assume 
values in the intervals [p̄ik − p̂ik, p̄ik + p̂ik] and [s̄ijk − ŝijk, s̄ijk + ŝijk] , respectively, 
where p̄ik and s̄ijk represent the expected (nominal) values, and p̂ik and ŝijk repre-
sent the maximum deviations (from their nominal values) allowed for the possible 
realizations of the random variables. We define the primitive random variables 
�ik and �ijk , which assume values in the interval [−1, 1] , and rewrite the original 
random variables as p̃ik = p̄ik + p̂ik𝜉ik and s̃ijk = s̄ijk + ŝijk𝜂ijk . For the sake of sim-
plicity, we assume that the processing and setup times of all jobs in all machines 
are uncertain.

We restrict the possible realizations of the primitive random variables �ik and 
�ijk to cardinality-constrained sets defined for each machine k. Thus, the risk is 
distributed among the production schedules of each machine and, consequently, 
the highly unlikely scenario in which all the uncertainties of the processing and 
setup times are concentrated in a single machine is excluded. Thus, the budget of 
uncertainty Γk defines the number of uncertain parameters allowed to vary from 
their respective nominal values in machine k. The uncertainty sets are defined as 
follows, for each machine k:

Notice that as the uncertainty set depends on the budget of uncertainty Γk , the larger 
the number of uncertain parameters �ik and �ijk allowed to vary, the higher the con-
servatism of the robust approach. Note also that the nominal and Soyster problems 
(Soyster 1973) result from assigning values to Γk , for each k ∈ M , equal to 0 and 
|N| + |N0||N| , respectively. Indeed, in the nominal problem, none of the uncertain 
parameters deviates from their nominal value, while in the Soyster problem, all of 
them attain their worst case.

3.2  Robust precedence‑based formulation

We now develop a RO model for the addressed UPMSP under uncertainty, based 
on the nominal MIP model defined in Sect.  2.2 and using the uncertainty set 
define in equation (39). The robust counterpart of the constraints (16) can be 
written as follows:

(39)

Uk(Γk) =
{
(�, �) ∈ ℝ

(1+|N0|)|N| ∶ −1 ≤ �ik ≤ 1, ∀i ∈ N;

−1 ≤ �ijk ≤ 1, ∀i ∈ N0,∀j ∈ N;
∑
i∈N

|�ik| +
∑
i∈N0

∑
j∈N

|�ijk| ≤ Γk

}
.
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where the Bj

k
(z, y,Γk) define the primal protection function. For a given solution 

(z⋆, y⋆) , the protection function Bj

k
(z⋆, y⋆,Γk) of constraint (j, k) is equivalent to the 

following linear optimization model:

By duality, we can rewrite (41) as

where the decision variables �ijk , �lijk and �jk are the dual variables associated with 
the primal optimization problem (41). Replacing constraints (16) with (40) in 
the MIP model of Sect. 2.2, we obtain the following RO model for the addressed 
UPMSP under uncertainty:

(40)
�
i∈N

⎡
⎢⎢⎢⎣
p̄ikzijk +

�
l∈N0
l≠j

s̄likylijk

⎤
⎥⎥⎥⎦
+ B

j

k
(z, y,Γk) ≤ Cjk, ∀j ∈ N, ∀k ∈ M,

(41)

max
�≥0,�≥0

⎧
⎪⎨⎪⎩

�
i∈N

p̂ikz
⋆
ijk
𝜉ik +

�
i∈N

�
l∈N0
l≠j

ŝliky
⋆
lijk
𝜂lik ∶

𝜉ik ≤ 1, ∀i ∈ N,

𝜂lik ≤ 1, ∀l ∈ N0, ∀i ∈ N,

�
i∈N

𝜉ik +
�
i∈N

�
l∈N0
l≠j

𝜂lik ≤ Γk

⎫
⎪⎬⎪⎭
.

(42)

min
�≥0,�≥0,�≥0

⎧
⎪⎨⎪⎩

�
i∈N

𝛼ijk +
�
i∈N

�
l∈N0
l≠j

𝛽lijk + Γk𝜆jk ∶

𝛼ijk + 𝜆jk ≥ p̂ikz
⋆
ijk
, ∀i ∈ N,

𝛽lijk + 𝜆jk ≥ ŝliky
⋆
lijk
, l ∈ N0, l ≠ j, i ∈ N

�
,

(43)Minimize Cmax

(44)
subject to ∶

constraints: (2)-(4), (6)-(15), (17)-(19),
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The objective function (43) consists of minimizing the makespan. Constraints 
(44) have already been explained and correspond to the constraints of the nomi-
nal MIP model. The set of constraints (45)–(50) is obtained from the robust coun-
terpart (40), where Bj

k
(z, y,Γk) is defined in (42). Note that there is no need for 

explicitly adding the minimization of (42) in model (43)–(50), as we are only 
concerned with guaranteeing the feasibility of constraints (45). Indeed, if there 
is a solution that satisfies (45), then the minimum of (42) also satisfies these 
constraints.

3.3  Robust position‑based formulation

We can develop another RO model for the addressed UPMSP variant, associated to 
the nominal MIP model of Sect. 2.3 based on decision variables that describe the posi-
tion of the jobs in the production sequence of each machine. To formulate this robust 
model, we replace the nominal parameters in constraints (35) by their respective ran-
dom variables, similarly to the development presented in the previous subsection. 
Using the uncertainty set  (39), the robust counterpart of the constraints (35) can be 
stated as follows:

(45)

�
i∈N

⎡
⎢⎢⎢⎣
p̄ikzijk +

�
l∈N0
l≠j

s̄likylijk

⎤
⎥⎥⎥⎦
+
�
i∈N

𝛼ijk +
�
i∈N

�
l∈N0
l≠j

𝛽lijk + Γk𝜆jk

≤ Cjk, ∀j ∈ N, ∀k ∈ M,

(46)𝛼ijk + 𝜆jk ≥ p̂ikzijk, ∀i, j ∈ N, ∀k ∈ M,

(47)
𝛽lijk + 𝜆jk ≥ ŝlikylijk, ∀l ∈ N0, ∀i, j ∈ N,

l ≠ j, ∀k ∈ M,

(48)�jk ≥ 0, ∀j ∈ N, ∀k ∈ M,

(49)�ijk ≥ 0, ∀i, j ∈ N, ∀k ∈ M,

(50)�lijk ≥ 0, ∀l ∈ N0, ∀i, j ∈ N, l ≠ j, ∀k ∈ M.
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where the primal protection function for a given solution (x⋆, y⋆) , Bh
k
(x⋆, y⋆,Γk) , is 

given by the following linear optimization model:

Applying the duality technique to primal protection function (52), we can rewrite it 
as follows:

where the decision variables �jhk , �ijhk and �hk are the dual variables associated 
with the constraints of the inner optimization problem of primal protection func-
tion (52). Therefore, the RO model for the addressed UPMSP under uncertainty, 
associated to the nominal position-based MIP model of Sect. 2.3 can be stated as 
follows:

(51)
Θhk ≥

∑
m∈P∶

m≤h

∑
j∈N

p̄jkxmjk +
∑
m∈P∶

m≤h

∑
i∈N0

∑
j∈N

s̄ijkymijk+

B
h
k
(x, y,Γk), ∀k ∈ M, ∀h ∈ P,

(52)

max
�≥0,�≥0

⎧
⎪⎨⎪⎩

�
m∈P∶

m≤h

�
j∈N

p̂jkx
⋆
mjk

𝜉jk +
�
m∈P∶

m≤h

�
i∈N0

�
j∈N

ŝijky
⋆
mijk

𝜂ijk ∶

𝜉jk ≤ 1, ∀j ∈ N;

𝜂ijk ≤ 1, ∀i ∈ N0, ∀j ∈ N;

�
j∈N

𝜉jk +
�
i∈N0

�
j∈N

𝜂ijk ≤ Γk

�
.

(53)

min
�≥0,�≥0,�≥0

��
j∈N

𝛾jhk +
�
i∈N0

�
j∈N

𝜗ijhk + Γk𝜇hk ∶

𝛾jhk + 𝜇hk ≥
�
m∈P∶

m≤h

p̂jkx
⋆
mjk

, ∀j ∈ N,

𝜗ijhk + 𝜇hk ≥
�
m∈P∶

m≤h

ŝijky
⋆
mijk

, ∀i ∈ N0, ∀j ∈ N

⎫
⎪⎬⎪⎭
,
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subject to:

3.4  Other objective functions

The RO models presented in Sects.  3.2 and 3.3 (precedence-based and position-
based formulations) can be easily modified to deal with other criteria, such as min-
imizing total tardiness or the maximum tardiness. This is done by simply adding 
auxiliary (slack) variables to constraints (6) and (26) of the nominal models and by 
appropriately changing the model objective functions. For instance, to minimize the 
total tardiness in the precedence-based formulation, we can include the variable Tik 
to represent the tardiness of job i in machine k. Then, we replace constraints (6) with

and the objective function (1), with the minimization of 
∑

i∈B

∑
k∈M Tik . Note that 

only jobs with due date (jobs in set B ) can present tardiness.

(54)Minimize Cmax.

(55)constraints: (21)-(23), (25)-(34), (36)-(38) .

(56)

Θhk ≥
∑
m∈P∶

m≤h

∑
j∈N

p̄jkxmjk +
∑
m∈P∶

m≤h

∑
i∈N0

∑
j∈N

s̄ijkymijk +
∑
j∈N

𝛾jhk +
∑
i∈N0

∑
j∈N

𝜗ijhk + Γk𝜇hk,

∀k ∈ M, ∀h ∈ P,

(57)
𝛾jhk + 𝜇hk ≥

∑
m∈P∶

m≤h

p̂jkxmjk, ∀j ∈ N, ∀h ∈ P, ∀k ∈ M,

(58)
𝜗ijhk + 𝜇hk ≥

∑
m∈P∶

m≤h

ŝijkymijk, ∀i ∈ N0, ∀j ∈ N,∀h ∈ P, ∀k ∈ M,

(59)�jhk ≥ 0, ∀j ∈ N, ∀k ∈ M, ∀h ∈ P,

(60)�ijhk ≥ 0, ∀i ∈ N0, ∀j ∈ N, ∀k ∈ M, ∀h ∈ P.

(61)�hk ≥ 0, ∀k ∈ M, ∀h ∈ P,

Tik ≥ Cik − bi, ∀i ∈ B, ∀k ∈ M,
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4  Computational experiments

The goal of this section is threefold: first, to compare the computational perfor-
mance of the precedence-based robust model and the position-based robust model 
(Sect. 4.2); second, to expose the benefits of considering parameter uncertainties 
into the problem (Sect.  4.3); third, to illustrate the impact of the uncertainties 
on the structure of the scheduling solutions (Sect. 4.4). All instances and param-
eter values used in the computational experiments are described in Sect. 4.1. The 
models were implemented in C++ programming language and solved using the 
general-purpose optimization software IBM CPLEX version 12.7, with its default 
configuration. A Linux PC with a CPU Intel Core i7 3.4 GHz and 16.0  GB of 
memory was used to run the experiments. The stopping criterion was due to 
either the elapsed time exceeding the time limit of 3600 s or the relative optimal-
ity gap becoming smaller than 10−4.

4.1  Instances and parameter values

We carried out the computational experiments using adapted instances from the 
literature. We used four sets of instances, namely A, B1, B2 and B3, which are 
based on other problem instances from the literature. The first set (A) is based 
on the instances used in Chen (2009) and Lin et  al. (2011) for the determinis-
tic UPMSP with sequence- and machine-dependent setup times and due date 
constraints. We selected 16 original instances from Chen (2009) and Lin et  al. 
(2011). Using these instances, we perform preliminary computational experi-
ments and evaluate the efficiency of the CPLEX solver on the robust MIP models 
within the time limit. Given the difficulty of solving large-scale instances within 
the time limit using CPLEX, we present results with instances limited to at most 
10 jobs and 4 machines. More specifically, we selected the first |M| machines 
and |N| jobs of each instance, where |M|∈{2, 4} and |N|∈{8, 10} , totaling 64 
instances in set A.

Sets B1, B2 and B3 are based on instances available on the webpage of the Sched-
uling Research Virtual Center (http:// sched uling resea rch. com/) for the deterministic 
UPMSP with sequence- and machine-dependent setup times (Arnaout et al. 2010, 
2014), but without considering due date constraints. Therefore, for these instances, 
we generated the due dates of the jobs as in Chen (2009) and Lin et al. (2011) using 
an uniform distribution in the range [Cm ⋅ (1 − � − R∕2),Cm ⋅ (1 − � + R∕2)] , in 
which � ∈ [0.4, 0.8] , R ∈ [0.4, 1] and Cm is calculated as follows:

(62)Cm =

��
j∈N

�
k∈M

(pjk +

∑
i∈N sijk

�N� )∕�M�
�
∕�N�.

http://schedulingresearch.com/
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Set B1 considers instances in which the processing times dominate the setup times. 
Set B2 considers instances in which the setup times dominate the processing times. 
Finally, set B3 considers instances with balanced processing and setup times. We 
selected five instances from Arnaout et al. (2010, 2014) for each pair machine-job 
( |M| − |N| ), with |M|∈{2, 4} and |N|∈{8, 10} , totaling 20 instances in each of 
these sets.

Table 1 summarizes the sets of instances, which are publicly available at http:// 
www. dep. ufscar. br/ munari/ upmsp. Column Modification describes the changes 
carried out in the original instances. The processing and setup times of these 
instances are used as nominal values of the corresponding parameters in the 
definition of the uncertainty set. To incorporate uncertainty, we defined � as the 
percentage of maximum allowed deviation of the processing and setup times in 
relation to their nominal values, corresponding to � = 30% , 40% and 50% . Thus, 
p̂ik = 𝛿p̄ik and ŝijk = 𝛿s̄ijk . The budgets of uncertainty were considered integers 
from zero to five, i.e., Γ1 = ⋯ = Γk = Γ = 0, 1, 2, 3, 4, 5.

4.2  Computational performance of the robust models

In this section, we compare the computational performance of the precedence- 
and position-based robust models. For this, we use performance profiles (Dolan 
and Moré 2002), which are briefly explained as follows. Given a set P of 
instances and a set F  of solution approaches, let gapfp be the gap of the solution 

Fig. 1  Performance profile based on optimality gap

http://www.dep.ufscar.br/munari/upmsp
http://www.dep.ufscar.br/munari/upmsp
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obtained for instance p using approach f. The value P(f, q) (y-axis) when q > 0 
(x-axis) indicates the fraction of instances for which the approach f provides solu-
tions with a gap within a factor of 2q of the best obtained gap, i.e., the fraction of 
instances for which gapfp + � ≤ 2q ⋅min

f � ∈ F
{gapf �p + �} , where � is a suffi-

ciently small value set as 0.01. The performance profile curves for each of the 
robust models are shown in Fig. 1, from which we can infer the following for a 
given p instance:

– If we want to obtain a feasible solution with the best optimality gap, it is bet-
ter to solve the position-based robust model. This is because at q = 0.0 , CPLEX 
obtains feasible solutions with the best gaps in about 96% of the instances, using 
the position-based robust model. That percentage was just over 78% for the prec-
edence-based robust model.

– If we want to obtain a feasible solution with gap within a factor of 2q for values 
of q ∈ [0.1, 2.4] , it is preferable also to solve the position-based robust model. 
For those values of the factor q, the position-based robust model curve is always 
above the precedence-based robust model curve, which means that the first 
model has a higher chance of offering better quality solutions.

– For values of the q factor greater than 2.4, both robust models offer solutions 
within the same factor 2q as the two curves overlap.

Therefore, based on these observations, we conclude that solving the position-based 
robust model is the best alternative to obtain feasible solutions with better gaps.

Tables 2 and 3 summarize the average computational results. The tables present 
the total number of instances (Inst.) in each group (row of the table), the number of 
infeasible instances (Inf.), the number of instances solved to optimality (#Opt.), the 
percentage of instances solved to optimality (%Opt.), the average objective function 
value (Avg. OF), the average gap in percentage (Avg. gap) and the average elapsed 
time in seconds (Avg. time) for both RO models proposed in this paper. Tables 6 and 
7 in Appendix A present the same results in a more detailed way, grouped by num-
ber of jobs and machines.

The results in Tables 2 and 3 confirm that the position-based robust model leads 
to a better overall performance than the precedence-based robust model for the prob-
lem instances used in these experiments. On average, CPLEX solved 85.75% of the 
instances to optimality with the position-based model, while with the precedence-
based model it solved 69.53%, within the limit of 3600 s. Furthermore, the average 
gap and computational time are 3.1 and 4.4 times higher for the precedence-based 
model than for the position-based model.

From Tables 2 and 3, we also observe that, for higher values of Γ and � , more 
instances become infeasible. The average gaps and computational times also 
increase, indicating that the instances become more challenging. Hence, the number 
of instances with a proven optimal solution tends to decrease as Γ and � increase. 
For example, the average number of instances solved to proven optimality with the 
precedence-based model is 372 for Γ = 0 (out of 372) and 187 for Γ = 5 (out of 
372). Similarly, for the same model, the number of instances solved to optimality 
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drops from 555 to 477 (out of 744) when � increases from 0.3 to 0.5. Thus, consid-
ering uncertainty in the problem clearly makes it more difficult to solve using the 
proposed models.

4.3  Trade‑off between cost and risk

In this section, we analyze the trade-off between cost and risk of the RO solutions 
for different problem instances, exposing the benefits of incorporating parameter 
uncertainties into the problem. For this purpose, we determine the price of robust-
ness (PoR), the empirical probability of constraint violation (Risk) and the expected 
cost of the solution (Exp. Cost) (i.e., the expected makespan of the solution).

Let x�,Γ be the optimal solution for a given deviation � and budget of uncertainty 
Γ , obtained from the position-based formulation. The PoR is evaluated as 
z(x�,Γ)−z

z
⋅ 100% , in which z(x�,Γ) is the optimal objective cost (i.e., the optimal makes-

pan) of the robust model and z is the optimal objective function cost of the determin-
istic model.

The Risk is determined via a Monte Carlo simulation that randomly generates a suf-
ficiently large number of realizations for the random variables and tests the feasibility of 
a fixed (given) solution. The Monte Carlo simulation was performed by generating ran-
dom realizations for the processing and setup times in the half-intervals [p̄ik, p̄ik + p̂ik] 
and [s̄lik, s̄lik + ŝlik] , respectively. To perform the simulation, 10,000 different uniformly 
distributed samples were generated and, for each sample of the simulation, we veri-
fied if the solution was infeasible for at least one realization of each sample (out of the 
10,000 generated). After performing all simulation iterations, we counted the number 
of samples for which the solution was infeasible, which was divided by the total num-
ber of samples, to obtain the estimated risk. The expected cost (Exp. Cost) of the solu-
tions was calculated as the average makespan of these 10,000 generated samples (i.e., 
we sum the makespan of all the samples and divide the total sum by the number of 
samples).

Table  4 shows the average objective function cost (OF) of the robust model, the 
expected cost of the solution (Exp. Cost), the price of robustness (PoR) and the risk 
for the different sets of instances with a deviation of 50% (i.e., � = 0.5 ) – experiments 
using � = 0.3 and � = 0.4 show similar overall results. Table 8 in Appendix A presents 
the same results as in Table 4, but they are detailed for different numbers of jobs and 
machines. Note that, in general, most of the instances present solutions with low risk 
when the number of uncertain parameters that can assume their worst case is greater 
than two (i.e., Γ > 2 ). For the solutions in which the risk is equal to zero, the objective 
function cost increases by less than 50% with respect to the objective function cost of 
the deterministic problem. For example, the average risk of instances of set B1 with 
10 jobs and 2 machines considering that Γ = 0, 1, 2 uncertain parameters achieve their 
worst case is 76.16%, 16.09% and 8.43%, respectively. When Γ = 3 , the risk decreases 
to zero while the cost of the solution increases by 17.68%.

The objective function cost and the expected cost of the solutions increase for higher 
values of Γ . However, the increase of the expected cost is slower than the increase of 
the objective function cost. Thus, for most instances with Γ = 0 , the expected cost of 
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the solutions is higher than the objective function cost. On the other hand, for Γ > 2 , 
the expected cost of the solutions is smaller than the objective function cost in most 
of the instances. These results suggest that ignoring the impact of the uncertainties 
(with Γ = 0 ) could provide infeasible solutions in practice violating the due date of 
the customers (as indicated by the risk) or solutions with a cost higher than desired (as 
indicated by the expected cost higher than the objective function cost). Figure 2 shows 
the difference between the objective function cost and the expected cost (OF − Exp. 
Cost) for instances with 8 jobs and 2 machines. Notice that small values of Γ provide 

-110

-55

0

55

110

165

220

275

330

385

0 1 2 3 4 5

O
F 

Ex
p.

 C
os

t

Γ

|N| = 8    |M| = 2 A B1 B2 B3

Fig. 2  Difference between the objective function cost and the expected cost of the solutions for instances 
with 8 jobs and 2 machines

Table 5  Impact of uncertainties 
on the solutions of the 
illustrative example for different 
values of Γ

Jobs Due date Solution of the model with

Γ = 0 Γ = 1 Γ = 2 Γ = 3

Impact of Γ� = 0 4 398 363 243 250 273
5 275 231 231 139 153
7 361 114 114 275 114
Cmax 497 507 532 566

Impact of Γ� = 1 4 398 399 281 286 318
5 275 263 263 182 192
7 361 143 143 318 143
Cmax 533 546 578 609

Impact of Γ� = 2 4 398 434 312 286 347
5 275 292 292 208 229
7 361 171 171 358 171
Cmax 568 584 621 652

Impact of Γ� = 3 4 398 466 339 318 381
5 275 292 320 208 229
7 361 171 171 386 171
Cmax 600 619 661 693
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solutions that underestimate the empirical actual cost of the solutions, while high val-
ues of Γ provide solutions that overestimate this measure.

4.4  Impact of uncertainties

To illustrate the impact of the uncertainties on the problem solutions, we describe 
the results of an instance (arbitrarily chosen) from set B3, which has balanced pro-
cessing and setup times. The instance has 2 machines and 8 jobs, in which three of 
these jobs are from primary customers and thus their due dates cannot be violated. 
The third column of Table 5 shows these due dates (jobs 4, 5 and 7).

In this experiment, we used processing and setup time deviations corresponding 
to 50% , and Γ = 0, 1, 2, 3 . We first solved the proposed RO models to obtain robust 
solutions for each different value of Γ . Then, we analyzed the impact of consider-
ing scenarios with a different number of uncertain parameters assuming their worst-
case values, namely Γ� = 0, 1, 2, 3 , for each obtained solution with a value of Γ . For 
instance, for the robust solution obtained with Γ = 2 , we verify the performance 
of this solution in scenarios where Γ� = 0, 1, 2, 3 uncertain parameters attain their 
worst-case deviations.

Table 5 shows the earliest completion times of jobs 4, 5 and 7 from primary cus-
tomers, and the makespan Cmax , for each of the four values of Γ� = 0, 1, 2, 3 in the 
each of the four robust solutions obtained by considering Γ = 0, 1, 2, 3 (last four col-
umns of the table). For example, the value 273 highlighted in bold in the last col-
umn of the table corresponds to the earliest completion time of job 4 when Γ� = 0 
parameters attain their worst case value in an optimal solution provided by the RO 
models with Γ = 3 . If the completion time of a job violates its due date, its value is 
underlined in the table.

Note that as expected, for Γ� = 0 (first four lines of the table), all solutions 
obtained by the RO models for different values of Γ are indeed feasible. However, 
when Γ� = 1 (next four lines of the table), the RO solution obtained for Γ = 0 (i.e., 
the deterministic/nominal model) becomes infeasible, because the completion time 
of job 4 (399 in the fourth column of the table) becomes higher than the due date of 
job 4 (398 in the third column of the table). In fact, we can observe that for Γ� > Γ , 
all solutions are infeasible, as the due date of at least one job is violated. As a con-
sequence, the deterministic model solution ( Γ = 0 ) becomes infeasible when at least 
one uncertain parameter assumes the worst case deviation (i.e., for Γ� > 0).

Observe in the table that the solution values ( Cmax ) increase as the values of Γ and 
Γ� increase. For example, the makespan of the solution for Γ = 0 and Γ� = 0 (497) is 
13.8% smaller than the makespan of the solution for Γ = 3 and Γ� = 0 (566). In both 
cases we have Γ� = 0 , but the solution for Γ = 3 has a higher makespan because it is 
obtained considering up to three uncertain parameters assuming their worst case val-
ues. The solution value for Γ = 3 is 13.8% worse to be uncertainty-immunized (pro-
tected) against these three parameters, even if the actual values of these parameters 
may not be at their worst case deviations. Similarly, the solution value for Γ = 3 and 
Γ� = 0 (566) is 22.4% better than the one for Γ = 3 and Γ� = 3 (693).
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Figure 3 shows the impact of considering Γ� > Γ in some solutions of Table 5. 
The white boxes indicate setup times; the blue boxes indicate processing times 
and the jobs; the green boxes indicate the uncertain parameters actually assum-
ing their worst case values; and the red boxes correspond to the infeasibility of 
the job due dates. Figure 3a shows the (deterministic) solution obtained by the 
RO models for Γ = 0 . Machine k = 1 processes jobs 3, 1, 4 and 6, while machine 
k = 2 processes jobs 7, 5, 2 and 8. Figure 3b shows that this deterministic solution 
becomes infeasible for Γ� = 1 if the first setup time of machine k = 1 increases, 
as it makes the completion time of job 4 higher than its due date. To avoid this 
infeasibility, we can use the RO models with Γ = 1 to obtain the solution given 
in Fig. 3c, which has a different production sequence of jobs in machine k = 1 . 
However, if the number of uncertain parameters assuming their worst case devia-
tions increases to Γ� = 2 , this solution also becomes infeasible, violating the due 
date of job 5 (see Fig. 3d). A solution obtained with Γ = 2 avoids such infeasibil-
ity, as presented in Fig. 3e, which has a new assignment of jobs to machines and 
different production sequences. Finally, this solution becomes infeasible as well 
if up to three parameters attain their worst-case ( Γ� = 3 ), as presented in Fig. 3f, 
in which the due date of job 7 is violated. Figure 3g shows a feasible solution for 
this last scenario, obtained using the RO models with Γ = 3 , in which jobs 4, 5 
and 7 (the ones with due-date constraints) are processed first in the machines, 
protecting the production scheduling against uncertainties, but at the expense of a 
higher production makespan. Therefore, the increase of Γ values in the RO mod-
els changes the schedule configurations to provide more protected solutions, at 
the cost of higher makespans.

Fig. 3  Solutions of the illustrative example for different values of Γ and Γ�
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5  Conclusions

We presented a robust optimization approach for the UPMSP with due-date con-
straints and sequence- and machine-dependent setup times under uncertain process-
ing and setup times. We proposed two robust optimization models based on mixed 
integer programming models of the deterministic problem. The robust precedence-
based model uses decision variables that describe the precedences of jobs, while 
the robust position-based model uses decision variables that describe the position 
of the jobs in the production sequence of each machine. Both models are suitable 
for incorporating uncertainties in the job processing times and in the machine setup 
times, using the robust optimization paradigm.

Computational results using instances from the literature and a Monte-Carlo 
simulation showed that the robust models represent the problem appropriately and 
lead to effective and robust schedules, when solved by general purpose optimization 
software. These results also indicated that the models can be useful for analyzing 
the impact of the uncertainties and the trade-off between robustness and conserva-
tiveness of the solutions, leading to managerial insights that can bring benefits in 
real contexts. For instance, the results suggest that the risk is substantially reduced 
for relatively small values of Γ , even considering large values of � . These robust 
schedules can be useful for risk-averse managers, as the cost increases of these solu-
tions are not too high. Managing these decisions in a tractable way and under uncer-
tainty is often a challenge in practice. Furthermore, it was observed that ignoring the 
parameter uncertainties can result in infeasible schedules or in schedules with higher 
makespans. Regarding the computational performances observed for the two mod-
els, CPLEX was able to solve a larger number of instances to optimality using the 
robust position-based model than when using the robust precedence-based model.

Using the proposed models, we were able to find solutions for small instances 
only, considering a reasonable time limit. Hence, an interesting line of future 
research would be to develop effective methods to solve medium and large instances, 
such as meta-heuristics and tailored exact methods based on the problem decompo-
sition. Particularly, the heuristics and meta-heuristics proposed in the literature to 
solve the deterministic version of the problem could be extended to solve the robust 
version. It is worth mentioning that the two proposed robust optimization models 
can be easily modified to deal with other criteria, such as minimizing total tardiness 
or the maximum tardiness. Another promising line of research would be to investi-
gate how to adapt the models to consider other uncertain parameters in the UPMSP, 
such as in the due dates. Future research could also explore other approaches to cope 
with uncertainties, such as two-stage stochastic programming with recourse, fuzzy 
programming techniques, adjustable robust optimization, robust optimization with 
recourse, risk-neutral and risk-averse stochastic programming techniques.

Appendix A: Additional computational results

See Tables 6, 7, and 8.
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