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Abstract
This paper examines the performance of improvement search as a function of the 
quality of the starting solution in the planar (or continuous) p-median problem. We 
show that using optimal solutions of the analogue discrete p-median problem as the 
starting solution for heuristic improvement algorithms, as recommended in the lit-
erature, can actually lead to inferior performance. That is, good starting solutions 
obtained in the discrete space with a fraction of the effort can actually be better, a 
counter-intuitive result that illustrates in a different context the less is more principle 
recently advocated in the literature.

Keywords  Multiple facility location · P-median · Starting solutions · Heuristics

Mathematics Subject Classification  90B85 · 90C59 · 46N10

1  Introduction

An efficient way to solve many evaluation and optimization problems is through 
discretization of the continuous model. For example, integration of a continu-
ous function is evaluated by the Simpson rule or Gaussian quadrature formulas 
(Abramowitz and Stegun 1972). Ordinary differential equations are solved by the 
Runge–Kutta method (Runge 1895; Kutta 1901; Ince 1926). Many models that 
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are based on normal distributions are solved by discretizing the distribution (e.g. 
Drezner and Zerom 2016). Aboolian et al. (2007) solved a competitive location 
model with concave demand by converting the continuous function to a sequence 
of discrete lines termed the TLA (tangent line approximation) method. Brimberg 
et al. (2017a) solved the p-median problem by injecting potential locations for the 
facility in an iterative approach. There are exceptions to this rule. For example, 
integer linear programming solutions may not be close to the continuous ones. 
However, it is reasonable to expect that solving multiple facility location prob-
lems by discretizing the problem formulation will be an effective approach. In 
this paper we investigate the application of discrete p-median solutions as starting 
solutions for solving the continuous p-median problem. We show that using the 
best discrete solutions as starting solutions for continuous optimization may not 
be the best strategy for planar p-median problems.

The continuous p-median problem (Drezner et  al. 2016; Drezner and Salhi 
2017), also known as the multi-source Weber problem (Brimberg et  al. 2000; 
Kuenne and Soland 1972; Hansen et al. 1998), or continuous location-allocation 
problem (Love et al. 1988; Brimberg et al. 2008), requires finding p sites for facil-
ities in Euclidean space in order to minimize a weighted sum of distances from 
a set of demand points (fixed points, existing facilities, customers) to their clos-
est facility. Let Xi denote the location of facility i ∈ {1,… , p} , and Aj the known 
location of demand point j ∈ N = {1,… , n} . In the typical scenario, which is 
assumed here, the Xi = (xi, yi) and Aj = (aj, bj) for all i,  j are points in the plane. 
As well, distances are assumed to be measured by the Euclidean norm, so that

The weights (or demands) at the Aj ’s are given by wj > 0, j ∈ {1,… , n} . We formal-
ize the planar p-median problem as follows:

where X = {X1,… ,Xp} denotes the set of location variables.
This model was originally proposed by Cooper (1963, 1964), who also 

observed that the objective function f(X) is non-convex, and may contain several 
local optima. The problem was later shown to be NP-hard (Megiddo and Supowit 
1984; Garey and Johnson 1979; Kariv and Hakimi 1979). For recent reviews of 
the discrete p-median problem see Daskin and Maass (2015), and for the planar 
p-median problem see Brimberg and Hodgson (2011).

The single facility 1-median problem termed the Weber problem (Weber 1909) 
has a long history dating back to the French mathematician Pierre De Fermat of 
the 1600s. Recent reviews of the Weber problem are Wesolowsky (1993); Church 
(2019); Drezner et al. (2002).

The connection between the discrete p-median problem, where potential facil-
ity locations are restricted to a given set of nodes (or demand points), and its 

(1)d(Xi,Aj) =

√
(xi − aj)

2 + (yi − bj)
2.

(2)min
X⊂ℝ2

{
f (X) =

n∑

j=1

wj min
1≤i≤p

{d(Xi,Aj)}

}
,
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continuous counterpart, where the facility sites are modeled as unknown points 
in the plane, has been a topic of study since the introduction of the continuous 
problem by Cooper (1963, 1964). Hansen et  al. (1998) propose a heuristic that 
first finds an optimal solution of the discrete problem, and then performs one 
step of continuous adjustment starting from this solution to obtain the final one. 
Very good computational results are reported, but as observed in Brimberg et al. 
(2000), the CPU time to find an optimal solution to the discrete p-median becomes 
prohibitively high for larger problem instances. In this paper we show, through 
extensive computational tests, a rather counter-intuitive result that good discrete 
starting solutions can actually be better than optimal (or best-known) ones. The 
implication is that heuristics that interface between discrete and continuous ver-
sions of the p-median (e.g., Brimberg et  al. 2014), should not focus efforts on 
obtaining exact solutions in the discrete phase, but rather introduce some ran-
domness by using multiple good discrete solutions as starting points for the con-
tinuous phase. This will save considerable execution time, and may, depending on 
the improving search, produce as good or better continuous solutions.

The remainder of the paper is organized as follows. In Sect. 2, a binary linear pro-
gram is formulated to find the optimal solution to the discrete p-median problem. The 
formulation is extended to find the k best solutions to the discrete p-median problem 
using CPLEX recursively. A genetic algorithm is also presented to find ‘good quality’ 
discrete solutions, but still, notably inferior to the solutions to the discrete p-median 
problem. Section 3 presents extensive computational results followed by some discus-
sion in Sect. 4. A summary of conclusions is presented in Sect. 5. The main conclusion 
is that, although good discrete starting solutions result in better continuous solution 
quality than random discrete solutions (i.e., poor ones), there is a point reached where 
further improvement of the discrete solution can be counter-productive in the continu-
ous phase. That is, “good” can sometimes be better than “best”. This also corroborates 
the ‘less is more’ philosophy adopted in some recent papers on heuristic design (e.g., 
Mladenović et al. 2016; Brimberg et al. 2017b).

2 � Generating starting solutions

We investigate an approach suggested in the literature (e.g., Hansen et al. 1998; Brim-
berg et al. 2014) of finding the best selection of p demand points out of n given points, 
to form the starting solution for locating p facilities in the plane ℝ2 . Let dij be the dis-
tance between demand points i and j. We minimize the value of the discrete objective 
function by selecting set P containing p out of the n demand points. The standard for-
mulation for the discrete p-median problem is:

We also extended this idea by finding the second best, third best, etc., until say 
the k = 100th best, and then using each of these as starting solutions to solve the 

(3)min
P∶|P|=p

{
n∑

i=1

wi min
j∈P

{dij}

}
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continuous p-median problem. Two approaches are tested: (i) finding the k best solu-
tions exactly by a binary linear program, and (ii) finding heuristically good solutions 
by a genetic algorithm.

2.1 � A binary linear programming formulation

The following formulation for finding the best set is similar to the one in ReV-
elle and Swain (1970); Kalczynski and Drezner (2020); Daskin (1995); Daskin 
and Maass (2015). Let xj ∈ {0, 1} be a binary variable. xj = 1 if demand point j is 
selected for locating a facility, and zero otherwise. yij = 1 if selected demand point j 
is the closest facility to demand point i. The BLP (binary linear programming) opti-
mization problem is:

 For the mixed version MBLP (mixed binary linear program), 0 ≤ yij ≤ 1 are con-
tinuous variables for i = 1,… , n , j = 1,… , n . In the computational experiments we 
applied BLP as it required less CPU time than MBLP. In formulation (4) there are 
n2 + n variables, and n2 + n + 1 constraints not including the last three.

2.2 � Finding the best k discrete solutions

Let P(1) be the optimal set. In order to get the second best solution add the constraint

getting the second best set P(2) . Once the best k ≥ 1 sets are found, the (k + 1)th best 
solution is obtained by adding to the original problem (4) k constraints:

(4)

min

{
n∑

i=1

n∑

j=1

[
widij

]
yij

}

subject to:

n∑

j=1

xj = p

yij ≤ xj for i, j = 1,… , n

n∑

j=1

yij = 1 for i = 1,… , n

xj ∈ {0, 1} for j = 1,… , n

yij ∈ {0, 1} for i, j = 1,… , n

∑

j∈P(1)

xj ≤ p − 1

(5)
∑

j∈P(m)

xj ≤ p − 1 for m = 1,… , k
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2.3 � A genetic algorithm

We create a population of pop solutions, such as pop = 100 , and once the genetic 
algorithm terminates, we have a sorted list of solutions by the objective function 
value of the discrete p-median. We can apply up to pop of the best population mem-
bers as starting solutions. We propose a variant of a genetic algorithm (Goldberg 
2006; Holland 1975), which is similar to such algorithms that were designed and 
successfully applied to problems of selecting p items out of n with various objective 
functions (Alp et al. 2003; Berman et al. 2003; Drezner et al. 2020).

2.3.1 � Outline of the genetic algorithm

Every population member is a list of p demand points where facilities are located. 
The iterations are repeated until the best population member is not improved in 
a pre-specified number of consecutive iterations N. In most experiments we used 
N = 2p or 5p. 

1.	 A population of pop (we used pop = 100 ) sets of p demand points is either ran-
domly generated or generated by a construction algorithm (described below). Set 
iter = 0.

2.	 Two population members are selected by the parents selection rule detailed below.
3.	 An offspring is produced by the merging process detailed below.
4.	 If the offspring is worse than the worst population member, or is identical to an 

existing population member, go to Step 7.
5.	 If the offspring is better than the best population member, set iter = 0.
6.	 The offspring replaces the worst population member.
7.	 Set iter = iter + 1 , and if iter ≤ N , go to Step 2.
8.	 The final population is the desired list of starting solutions. It can be sorted by 

the value of the discrete objective function, which is actually the same as the 
continuous objective function value.

The following parents selection rule was proposed in Drezner and Marcoulides 
(2003). It is based on the biological concepts of inbreeding and outbreeding depres-
sion (Edmands 2007; Fenster and Galloway 2000; Drezner and Drezner 2020). A 
successful offspring is formed in nature when the parents are not too close geneti-
cally, such as siblings, (inbreeding depression) or too dissimilar (outbreeding 
depression). We assume that 2p < n.

The Parents Selection Rule:
Define: 

s:	� Number of potential second parents (a parameter). In Drezner and Marcoulides 
(2003), and later applications, s = 2 or 3 provided the best performance. A large 
value of s may lead to outbreeding depression. s = 1 is the “standard” parent 
selection rule of randomly selecting two parents. The selected individual is 
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typically neither the most similar nor the most different member of the popula-
tion. In nature, breeding with individuals that are genetically very similar (e.g. 
siblings, parents) tends to produce inferior offspring, termed inbreeding depres-
sion (Freeman et al. 2014). Conversely, breeding with individuals that are very 
different, also tends to be disadvantageous. This is termed outbreeding depres-
sion (Edmands 2007; Fenster and Galloway 2000).

c:	� Similarity count between two population members. It is the number of demand 
points that are included in both members.

The process:

1.	 One population member is randomly selected as the first parent.
2.	 s ≥ 1 potential second parents are randomly selected from the remaining pop − 1 

population members.
3.	 For each potential second parent, the similarity count with the first parent, c, is 

found.
4.	 The potential second parent with the smallest value of c is selected with ties 

broken arbitrarily, so that the parents are as dissimilar as possible,.

 The Merging Process:

1.	 The combined set of demand points in the two parents is created. c points are 
common to the two parents; so there are 2p − c points in the combined set.

2.	 Randomly select c points, which are not in the combined set (out of the remaining 
n − (2p − c) points), and add them to the combined set. This is done to avoid the 
possibility that a “good” demand point is not present in any population member 
and thus will not be present in future generations. The extended set has 2p mem-
bers.

3.	 A reverse descent algorithm is applied on the extended set: 

(a)	 Select the point in the set, not among the c common points, whose removal 
increases the objective function the least.

(b)	 The removal of points is repeated for p iterations, so that the set is reduced 
to p points defining the offspring.

2.3.2 � Efficient calculation of the merging process

	 1.	 The set P of 2p demand points for facility locations is given. The c members 
that are common to the two parents are moved to the beginning of the list and 
duplicates removed. Set the number of demand points in P to m = 2p − c.

	 2.	 A vector D of the distances Di between demand point i and the closest facility 
is found for i = 1,… , n and the objective function F for the m-median problem 
is calculated.

	 3.	 Set the facility to be removed j = c + 1 , and the minimum increase in the objec-
tive function ΔF to a large number.
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	 4.	 The increase in the value of the objective function ΔFj by removing facility j 
from P is calculated as follows: 

(a)	 Set ΔFj = 0 , i = 1.
(b)	 If dij > Di go to Step 4D
(c)	 If dij = Di , find the minimum distance D̂i to the demand points in P − {j} 

and set ΔFj = ΔFj + wi(D̂i − Di).
(d)	 Set i to i + 1.
(e)	 If i ≤ n go to Step 4b.

	 5.	 If ΔFj < ΔF set ΔF = ΔFj and record the value of ĵ = j.
	 6.	 Set j = j + 1.
	 7.	 If j ≤ m go to Step 4
	 8.	 Remove Facility ĵ from P; set m = m − 1 . Update the vector D: not changing it 

when dij > Di , and if dij = Di replace Di by D̂i as in Step 4c.
	 9.	 Update F = F + ΔF.
	10.	 If m > p go to Step 3. Otherwise, stop with the set P and its objective function 

F.

If the merging process is performed in a straightforward way, i.e., calculating 
the value of the objective function for each potential removal of demand point j 
from the set P, there are O(p2) such evaluations and each requires O(np) opera-
tions for a total complexity of O(np3) . In the efficient calculations: Step 4b 
requires O(1) operations, and Step 4c requires O(p) operations but is performed 
on average only 1

p
 of the time. Therefore, each evaluation of the objective func-

tion is of complexity O(n). The number of the objective function calculations 
remains the same, reducing the complexity to O(np2).

2.4 � Starting solutions for the genetic algorithm

We tested two starting solution approaches for the discrete problem: a random 
selection of p demand points (RAND), and the construction algorithm (CONS) 
suggested in Brimberg and Drezner (2020); Kalczynski et  al. (2020b, 2020a). 
The construction algorithm, which applies the GRASP approach (Feo and 
Resende 1995), is outlined as follows: 

1.	 The first two demand points are randomly selected.
2.	 The demand point with the largest minimum distance to the already selected 

points is selected with probability 2
3
 , and the one with the second-largest minimum 

distance is selected with probability 1
3
.

3.	 Repeat Step 2 until p demand points are selected.
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2.4.1 � Improving the starting solution

Once the starting solutions were determined, we applied the RATIO algorithm 
(Brimberg and Drezner 2020), which is a small modification of the IALT algorithm 
(Brimberg and Drezner 2013), on the set of starting solutions. Cooper (1963, 1964) 
suggested the ALT (alternating) algorithm. Since each demand point gets its ser-
vices from the closest facility, each facility attracts a subset of demand points. The 
algorithm alternates between determining the subsets attracted by each facility, and 
re-locating the facilities to the optimal location for each subset, until stabilization. 
Once Cooper’s algorithm terminates, the IALT algorithm finds for each demand 
point the difference between the distances to the closest facility and the second clos-
est, and considers re-assigning the demand points with the L smallest differences 
(we use L = 20 ) individually from the closest facility to the second closest. Another 
iteration of Cooper’s algorithm is then performed on the two adjusted subsets. If no 
improvement for all the transfers is found, the process terminates. The RATIO algo-
rithm selects the L smallest ratios between the distances rather than differences. It 
was found in Brimberg and Drezner (2020) that this small modification significantly 
improves the performance of the IALT algorithm.

Since the merging process consumes most of the calculation time, and is per-
formed about p times, the complexity of the genetic algorithm using the efficient 
calculations is O(np3) rather than O(np4) . The complexity of the RATIO procedure 
(Brimberg and Drezner 2020) is the same as the IALT algorithm (Brimberg and 
Drezner 2013), which is O(np2) per iteration.

3 � Computational experiments

The FORTRAN programs used double precision arithmetic. They were compiled by 
an Intel 11.1 FORTRAN Compiler with no parallel processing. They were run on a 
desktop with the Intel i7-6700 3.4GHz CPU processor and 16GB RAM. Only one 
processor was used. The BLP was run on IBM’s CPLEX (CPLEX and IBM ILOG  
2009) Optimization Studio 12.8 environment. We used the default CPLEX MIP 
solver settings. The solvers were run on a virtualized Windows environment with 16 
vCPUs and 128GB of vRAM. The physical server used was a 2 CPU (8 cores each) 
PowerEdge R720 Intel E5-2650 CPUs with 128 GB RAM using shared storage on 
MD3620i via 10GB interfaces.

We first tested the approaches on the 50 randomly generated instances of prob-
lems used in Brimberg and Drezner (2020). The number of demand points is 
n = 100, 200,… , 1000 , and the number of facilities is p = 5, 10, 15, 20, 25 , for a 
total of 50 instances. We also tested problems that were extensively investigated in 
the literature, and report results on two of them with n = 654, 1060 demand points 
(Reinelt 1991), for a total of 58 instances. In total, 108 instances were tested.

The starting solutions were found in two ways: (i) the best 100 discrete solutions 
found optimally by the binary linear program; and (ii) the final population members 
of the genetic algorithm.
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3.1 � Testing randomly generated instances

In Table 1 we report the continuous solution found by starting at the optimal (best) 
discrete solution. The best discrete solution was obtained by solving (4) using 
CPLEX. Some of the largest problem sets required several days of computing time. 
Applying RATIO on the best discrete solution required a negligible fraction of one 
second by a FORTRAN program. The results are disappointing. The best known 
(BK) continuous solution was found for only 12 of the 50 instances. The average 
percentage above the best known solution was 0.048%.

For comparison, we report in Table  2 the analogous results obtained from 
repeating the genetic algorithm 10 and 100 times using N = 2p , s = 1, 2… , 5 sec-
ond parents, and the best 10 members of each final population. When 100 runs are 

Table 1   Optimal discrete solution as a starting solution for the test problems

(1) Best known continuous objective
(2) Best discrete objective
(3) Continuous objective from best discrete solution. Best known marked in boldface

n p (1) (2) (3) n p (1) (2) (3)

100 5 164.6011 167.3227 164.6179 600 5 1030.9282 1032.1770 1031.0041
100 10 100.7650 101.7818 101.0657 600 10 694.2726 697.3327 694.2980
100 15 74.4746 75.5618 74.4746 600 15 547.8102 549.8051 547.9021
100 20 59.4779 60.1859 59.4779 600 20 460.6433 463.3245 461.2379
100 25 49.1846 49.7157 49.2830 600 25 408.3926 410.1870 408.6577
200 5 329.0968 331.1405 329.0968 700 5 1198.9113 1200.7430 1198.9113
200 10 213.1025 214.2705 213.1246 700 10 807.4504 810.0341 808.1567
200 15 167.1654 168.5897 167.3351 700 15 647.6007 649.6282 647.6007
200 20 140.0728 141.4799 140.3091 700 20 548.0676 550.6144 548.2130
200 25 120.5562 122.5305 120.5626 700 25 482.5661 485.3041 482.8113
300 5 505.9990 508.2661 505.9990 800 5 1372.8710 1374.7470 1373.9489
300 10 331.5499 333.1892 331.5499 800 10 928.7004 930.4604 929.1542
300 15 259.6754 262.7352 259.6754 800 15 743.1017 745.3164 743.1632
300 20 216.8050 219.2277 216.8138 800 20 633.9782 636.4713 634.2868
300 25 191.5259 193.5395 191.9743 800 25 557.1867 560.3380 557.6293
400 5 685.1978 686.3057 685.2155 900 5 1545.5993 1549.4860 1545.5993
400 10 458.8549 460.8376 458.8954 900 10 1053.7279 1055.6010 1054.3150
400 15 362.7120 364.6220 362.9923 900 15 844.0657 846.3643 844.0657
400 20 304.1061 306.2300 304.1783 900 20 718.9711 721.6564 719.6132
400 25 266.3945 269.1881 266.5848 900 25 634.8785 637.9545 634.9551
500 5 856.1153 858.1612 856.1153 1000 5 1731.6308 1735.3630 1731.9183
500 10 575.6737 577.4147 576.0708 1000 10 1177.9664 1180.2960 1178.7499
500 15 449.8948 453.1653 450.1084 1000 15 942.4672 944.4968 942.4672
500 20 382.6915 384.4923 382.8467 1000 20 798.5461 802.0976 798.5688
500 25 337.3002 339.1829 337.6522 1000 25 705.8626 708.3867 705.9880
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performed, the best known continuous solution was found for all 50 instances by any 
number of parents, except in two cases where it was found in 49 instances. All vari-
ants performed about equally well. The best performing variant (with 100 replica-
tions) used random starting solutions, and s = 2 second parents.

As noted above, the best known continuous solution was not obtained in many 
cases using the optimal discrete solution as the starting solution for RATIO. We fur-
ther investigated this phenomenon on six instances of n = 100,… , 600 , and p = 5 . 
The 1000 best discrete solutions for these instances were found by total enumera-
tion with a FORTRAN program. The number of feasible combinations ranges from 
about 75 million for n = 100 to 637 billion for n = 600 . The value of the objective 
function for each combination was calculated, and the sorted vector of the 1000 best 
objective function values created. Run times for these instances ranged from about 3 
seconds for n = 100 to about 61 hours for n = 600.

In Table  3 we report the 10 highest ranked (best) discrete solutions, and the 
1000th one. We examined all 1000 of them, but it is not reasonable to report on all 

Table 2   Variants of the genetic approach

Number of Second Parents

1 2 3 4 5

Random Starting Solutions, 10 runs
 Average of best found solution above best known 0.004% 0.002% 0.004% 0.003% 0.005%
 Number of best known solutions found 38 41 44 42 40
 Total time (seconds) for all runs of the smallest problem 0.02 0.02 0.02 0.02 0.02
 Total time (seconds) for all runs of the largest problem 11.1 14.0 12.2 10.9 11.8
 Average total time (seconds) for all runs 1.7 1.8 1.7 1.7 1.7

Construction Starting Solutions, 10 runs
 Average of best found solution above best known 0.005% 0.004% 0.004% 0.005% 0.006%
 Number of best known solutions found 42 42 41 43 37
 Total time (seconds) for all runs of the smallest problem 0.03 0.03 0.02 0.02 0.02
 Total time (seconds) for all runs of the largest problem 12.1 15.5 11.5 12.3 12.1
 Average total time (seconds) for all runs 2.0 2.1 2.0 2.0 2.0

Random Starting Solutions, 100 runs
 Average of best found solution above best known 0% 0% 0% 0.001% 0%
 Number of best known solutions found 50 50 50 49 50
 Total time (seconds) for all runs of the smallest problem 0.19 0.19 0.17 0.20 0.19
 Total time (seconds) for all runs of the largest problem 116.6 118.6 118.9 122.4 114.1
 Average total time (seconds) for all runs 17.5 17.3 17.4 17.5 17.4

Construction Starting Solutions, 100 runs
 Average of best found solution above best known 0% 0.000% 0% 0% 0%
 Number of best known solutions found 50 49 50 50 50
 Total time (seconds) for all runs of the smallest problem 0.20 0.20 0.22 0.19 0.20
 Total time (seconds) for all runs of the largest problem 130.8 136.4 123.9 130.6 128.9
 Average total time (seconds) for all runs 19.8 20.2 19.7 19.8 19.9
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of them. The best found genetic discrete solution was ranked several times even 
worse than the 1000th one. In Table 4 the ranks of the best found genetic solution for 
n = 100, 200 are reported. For example, the best genetic solution using s = 3 second 
parents for n = 100 was the 266th best discrete solution. For n ≥ 300 all solutions 
were ranked higher than the 1000th one. It is interesting and perhaps surprising that 
even though the values of the discrete objective function of the genetic algorithm 
solutions were rather inferior, they resulted in excellent continuous solutions (see 
Table 2).

Table 3   One thousand best discrete objectives for p = 5

† Number of feasible solutions
‡ Time in minutes for scanning all feasible solutions and getting the best 1000 ones

Rank of Solution Number of Demand points (n)

100 200 300 400 500 600

1 167.3227 331.1405 508.2661 686.3057 858.1612 1032.1770
2 167.3522 331.1546 508.3602 686.3366 858.1716 1032.2529
3 167.3604 331.1551 508.3676 686.4217 858.2183 1032.2832
4 167.3631 331.3353 508.4049 686.5040 858.2716 1032.3591
5 167.3899 331.4797 508.5313 686.7107 858.3287 1032.4699
6 167.3927 331.5968 508.6018 686.8402 858.3333 1032.5024
7 167.4015 331.5974 508.6510 686.8999 858.3893 1032.5645
8 167.4310 331.6160 508.6540 686.9308 858.3997 1032.5902
9 167.4838 331.6335 508.6584 686.9516 858.4437 1032.6228
10 167.4861 331.6381 508.6624 686.9825 858.4997 1032.6404
1000 169.9705 335.0922 512.0414 690.7987 862.8357 1036.7017
† 7.53E+07 2.54E+09 1.96E+10 8.32E+10 2.55E+11 6.37E+11
‡ 0.05 3.57 41.35 263.00 1134.18 3661.02
Parents Best found genetic discrete solution
 1 167.3522 336.1606 516.2656 698.9384 874.3234 1047.9237
 2 167.5479 333.7619 520.6779 702.1613 865.5019 1047.5878
 3 168.9990 333.6394 518.1258 700.1646 872.1444 1051.3648
 4 168.5249 332.8579 517.4716 696.1967 874.7907 1047.7047
 5 168.0556 332.4777 514.8653 698.8044 875.1926 1051.4130

Table 4   Ranks of best genetic 
discrete solutions, p = 5

Number 
Parents

n = 100 n = 200

Objective Rank Objective Rank

1 167.3522 2 336.1606 >1000
2 167.5479 12 333.7619 261
3 168.9990 266 333.6394 220
4 168.5249 112 332.8579 68
5 168.0556 49 332.4777 37
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In Table 5 we report the distribution of the 1000 continuous objectives obtained 
by RATIO starting at the best 1000 discrete starting solutions for n ≤ 600 , and 
p = 5 . For n = 200, 300, 500 , the best known continuous solution was obtained 
from the best discrete solution, as was also reported in Table 1. For n = 500 all 1000 
best discrete solutions yielded the best continuous solution. A different behavior 
is observed for n = 100, 400, 600 . For n = 100 , the best continuous solution was 
obtained for the 15th discrete solution, meaning that the best 14 ones did not yield 
the best continuous solution. For n = 400 the 3 rd , and for n = 600 the 5 th , found the 
best known continuous solution. The solution obtained by the best discrete solution 

Table 5   Continuous results of the 1000 best discrete starting solutions, p = 5

† First rank of the discrete starting solution
‡ Number of times the continuous solution obtained

Cont. n = 100 n = 200 n = 300

Rank Objective † ‡ Objective † ‡ Objective † ‡

1 164.6011 15 129 329.0968 1 306 505.9990 1 191
2 164.6028 10 138 329.1135 2 694 506.0105 2 527
3 164.6179 1 275 506.5548 14 210
4 164.6612 376 2 506.5651 20 72
5 164.8097 164 14
6 165.2178 18 71
7 165.3513 129 137
8 165.3514 17 206
9 167.5991 200 23

n = 400 n = 500 n = 600

1 685.1978 3 825 856.1153 1 1000 1030.9282 5 220
2 685.2155 1 175 1030.9495 21 35
3 1030.9688 3 270
4 1031.0041 1 194
5 1032.6397 203 8
6 1032.6422 230 17
7 1032.6495 185 5
8 1032.6514 520 2
9 1032.8203 241 9
10 1032.8781 62 16
11 1033.2775 57 188
12 1033.3372 202 5
13 1033.3716 116 8
14 1033.5151 431 6
15 1033.5154 400 1
16 1033.5408 344 5
17 1033.5637 644 11
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is 0.010% above the best known for n = 100 , and 0.003%, 0.007% for n = 400, 600 . 
For n = 100 , ten different solutions were obtained, while for n = 600 there were sev-
enteen different solutions.

In Table 6 we report on the continuous solutions found using the top 10 discrete 
solutions obtained by CPLEX with (4) and additional constraints (5). The improve-
ment in the results is disappointing, compared with the results starting at the best dis-
crete solution reported in Table 1. The best known continuous solution was obtained 
at least once in 21 of the 50 instances, an increase of only 9 instances. The average 
best result was 0.035% above the best known solution, down from 0.048%. There 
are also some unusual results. In eleven instances the same continuous solution was 

Table 6   Best ten discrete solutions as starting solutions

(1) Best known continuous objective
(2) Best continuous found starting from the best ten discrete objectives
(3) The number of times out of 10 that the (2) result obtained
(4) The smallest discrete rank yielding the (2) result
(5) Percent of (2) above (1)

n p (1) (2) (3) (4) (5) (%) n p (1) (2) (3) (4) (5) (%)

100 5 164.6011 164.6028 1 10 0.001 600 5 1030.9282 1030.9282 4 3 0
100 10 100.7650 101.0657 8 1 0.298 600 10 694.2726 694.2726 4 2 0
100 15 74.4746 74.4746 6 1 0 600 15 547.8102 547.9021 5 1 0.017
100 20 59.4779 59.4779 10 1 0 600 20 460.6433 461.1782 1 2 0.116
100 25 49.1846 49.2830 10 1 0.200 600 25 408.3926 408.6577 9 1 0.065
200 5 329.0968 329.0968 7 1 0 700 5 1198.9113 1198.9113 10 1 0
200 10 213.1025 213.1025 4 4 0 700 10 807.4504 807.4504 3 6 0
200 15 167.1654 167.3351 5 1 0.101 700 15 647.6007 647.6007 10 1 0
200 20 140.0728 140.2270 6 3 0.110 700 20 548.0676 548.0676 3 6 0
200 25 120.5562 120.5626 10 1 0.005 700 25 482.5661 482.6098 4 2 0.009
300 5 505.9990 505.9990 5 1 0 800 5 1372.8710 1373.9489 10 1 0.079
300 10 331.5499 331.5499 10 1 0 800 10 928.7004 929.1526 3 2 0.049
300 15 259.6754 259.6754 10 1 0 800 15 743.1017 743.1632 2 1 0.008
300 20 216.8050 216.8138 10 1 0.004 800 20 633.9782 634.0161 1 5 0.006
300 25 191.5259 191.9743 10 1 0.234 800 25 557.1867 557.3658 2 8 0.032
400 5 685.1978 685.1978 4 3 0 900 5 1545.5993 1545.5993 5 1 0
400 10 458.8549 458.8954 7 1 0.009 900 10 1053.7279 1053.7279 3 3 0
400 15 362.7120 362.9760 1 10 0.073 900 15 844.0657 844.0657 9 1 0
400 20 304.1061 304.1783 10 1 0.024 900 20 718.9711 719.0012 1 5 0.004
400 25 266.3945 266.5848 10 1 0.071 900 25 634.8785 634.8785 5 4 0
500 5 856.1153 856.1153 10 1 0 1000 5 1731.6308 1731.9183 10 1 0.017
500 10 575.6737 575.6832 2 5 0.002 1000 10 1177.9664 1178.5329 1 5 0.048
500 15 449.8948 449.9610 3 2 0.015 1000 15 942.4672 942.4672 9 1 0
500 20 382.6915 382.8467 10 1 0.041 1000 20 798.5461 798.5461 1 2 0
500 25 337.3002 337.6522 10 1 0.104 1000 25 705.8626 705.9880 10 1 0.018
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found for all ten discrete starting solutions, but it was not the best known solution. 
In conclusion, for this set of test problems, the best discrete solutions are not recom-
mended as starting solutions. 

3.2 � Testing the n = 654 and 1060 Instances

To further investigate the conclusion that optimal, or close to optimal, discrete start-
ing solutions do not perform well for the planar p-median problem, we tested the 
procedures on the n = 50, 287, 654, 1060 instances, with various values of p, which 
were tested in many papers. The n = 50, 287 (Eilon et al. 1971; Bongartz et al. 1994) 
instances, which were solved optimally by Krau (1997), are quite easy. Therefore, 
we report the results for the n = 654, 1060 (Reinelt 1991) instances. The best known 
solutions for the n = 654, 1060 problems were reported in Drezner and Drezner 
(2020). In Table 7 we compare the best known continuous objective to the optimal 
discrete objective for the n = 654, 1060 instances.

The distribution of the demand points for the n = 654, 1060 instances is definitely 
not uniformly random (see Figs. 1,2) as in the instances examined in Sect. 3.1. In 
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Fig. 1   The n = 654, p = 10 Instance
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Fig. 2   The n = 1060, p = 10 Instance

Tables  8,9 we report the best continuous result obtained by applying RATIO on 
the best 100 discrete solutions for the n = 654, 1060 instances, compared with 
the results of applying RATIO on the genetic algorithm final population mem-
bers. In Fig.  1, the optimal discrete solution and best known continuous solution 
for n = 654, p = 10 facilities are depicted. The best discrete solution is quite far 
from the continuous one. In fact, all 100 best discrete solutions resulted in the same 
inferior continuous solution by applying RATIO, as reported in Table 8. In Fig. 2, 
the best known continuous and optimal discrete solutions for n = 1060 , p = 10 are 
depicted. The solution points are closer to each other for n = 1060.

3.2.1 � Analysis and discussion of the n = 654, p = 10 instance

The optimal discrete objective of 115788.7512 is 0.39% above the best known con-
tinuous objective (BK). The 100th best discrete solution is 0.44% above BK. All these 
100 starting solutions resulted in the same continuous objective of 115384.6427, 
which is 0.04% above BK.

When using the genetic results as starting solutions with N = 2p , out of 25,000 
starting solutions (5,000 starting solutions for each of the five second parents), 2,318 
resulted in BK. The distribution of the discrete values of these 2,318 starting solu-
tions is: the best one is 117595.2606 which is 1.96% above BK, the 100th best of 
these is 3.98% above BK, and the last one on the list of 2318 is 152.55% above BK!

When N in the genetic algorithm was increased from 2p to 5p, the results 
were better. There were 6,327 BK’s, with the best discrete objective among these 
results of 116042.5786, which is 0.61% above BK, number 100 is 0.90% above 
BK, and the last one, number 6,327, is 95.45% above BK. In conclusion, the best 
continuous solutions can often be found using moderately good discrete starting 
solutions, and in some cases even bad ones. If the discrete starting solutions are 
optimal or near optimal, the continuous results may be inferior.
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In Table 10, various statistical results and run times of various approaches are 
depicted for the n = 654, 1060 instances. In the genetic variants, all 100 final pop-
ulation members were used as starting solutions.

Referring to Table 10, the following observations may be made: 

Table 7   Comparing discrete to continuous objectives

(1) Percent of optimal discrete objective above best known continuous solution
(2) Run time in minutes for finding optimal discrete solution

p Best Known Opt. Discrete (1) (%) (2) p Best Known Opt. Discrete (1) (%) (2)

n = 654

5 209068.7935 209155.2963 0.04 2.45 35 39257.2685 39861.9684 1.54 6.13
6 180488.2126 180613.4840 0.07 2.31 40 35704.4076 36228.2778 1.47 7.23
7 163704.1681 163880.0282 0.11 2.45 45 32306.9721 32779.0578 1.46 5.96
8 147050.7904 147275.6162 0.15 2.45 50 29338.0106 29774.1401 1.49 4.38
9 130936.1241 131182.2763 0.19 2.61 55 26699.1208 27200.0921 1.88 2.62
10 115339.0328 115788.7512 0.39 2.77 60 24504.3952 24984.0306 1.96 2.30
11 100133.2007 100708.7261 0.57 2.20 65 22733.2923 23129.2031 1.74 2.21
12 94152.0549 94634.4786 0.51 2.18 70 21465.4391 21851.8388 1.80 2.15
13 89454.7613 89930.1438 0.53 2.25 75 20269.9644 20740.4013 2.32 3.11
14 84807.6690 85255.1202 0.53 2.45 80 19193.8610 19748.1558 2.89 2.17
15 80177.0422 80595.4106 0.52 2.49 85 18313.8703 18837.1674 2.86 2.19
20 63389.0238 63894.6649 0.80 4.13 90 17514.4227 18008.4259 2.82 2.84
25 52209.5106 52875.7746 1.28 4.37 95 16770.1973 17259.7985 2.92 2.60
30 44705.1920 45307.1196 1.35 7.71 100 16083.5345 16544.1315 2.86 2.40
n = 1060

5 1851877.3 1854329.7 0.13 21.42 80 325971.3 329073.4 0.95 4.93
10 1249564.8 1252141.9 0.21 14.10 85 313446.6 316449.5 0.96 9.00
15 980131.7 982399.3 0.23 10.24 90 302479.1 304974.3 0.82 24.96
20 828685.7 831419.3 0.33 9.12 95 292282.6 294660.2 0.81 19.40
25 721988.2 725005.9 0.42 9.34 100 282536.5 284814.9 0.81 22.59
30 638212.3 641851.1 0.57 6.42 105 273463.3 275576.3 0.77 4.80
35 577496.7 581365.0 0.67 5.66 110 264959.6 267025.8 0.78 5.13
40 529660.1 532431.5 0.52 6.00 115 256735.7 258803.0 0.81 5.15
45 489483.8 492441.2 0.60 6.39 120 249050.5 251111.7 0.83 5.19
50 453109.6 455587.7 0.55 6.57 125 241880.4 243873.4 0.82 5.01
55 422638.7 425166.0 0.60 6.37 130 235203.4 237192.7 0.85 4.81
60 397674.5 399964.2 0.58 5.75 135 228999.2 230919.6 0.84 4.81
65 376630.3 379072.1 0.65 5.23 140 223062.0 225017.0 0.88 4.67
70 357335.1 360126.8 0.78 5.10 145 217462.8 219397.9 0.89 4.90
75 340123.5 343260.5 0.92 5.50 150 212230.5 214201.6 0.93 4.85
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1.	 When RATIO is applied directly to random discrete solutions, the best obtained 
continuous objective values for each p are bad. The average for the deviation of 
the best solution for each p is 12.33% for n = 654 , and 3.15% for n = 1060 . Note 
that these averages are based on best found results from 5000 starting solutions 
for each instance. The results improve somewhat for CONS starting solutions 
(9.19% for n = 654 , and 1.93% for n = 1060 ). We conclude that the application 

Table 8   Comparing results from different starting solutions for the n = 654 Instances

† Genetic algorithm applying: CONS, N = 5p , s = 2 parents, 50 populations of 100 members
(1) The number of times out of 100 that the best found result was obtained
(2) The smallest discrete solution rank yielding the best found result
(3) Percent of best found result above best known
(4) Total run time in minutes for all runs

p Best Known 100 Best Discrete Solutions Genetic Algorithm†

Best Found (1) (2) (3) (4) Best Found (3) (4)

5 209068.7935 209068.7935 100 1 0% 281.50 209068.7935 0% 0.06
6 180488.2126 180488.2126 100 1 0% 269.78 180488.2126 0% 0.05
7 163704.1681 163704.1681 100 1 0% 282.15 163704.1681 0% 0.06
8 147050.7904 147050.7905 100 1 0% 296.20 147050.7904 0% 0.07
9 130936.1241 130936.1241 100 1 0% 310.54 130936.1241 0% 0.07
10 115339.0328 115384.6427 100 1 0.04% 335.31 115339.0328 0% 0.09
11 100133.2007 100133.2007 100 1 0% 263.07 100133.2007 0% 0.10
12 94152.0549 94152.0550 100 1 0% 264.89 94152.0549 0% 0.10
13 89454.7613 89454.7613 95 1 0% 274.82 89454.7613 0% 0.12
14 84807.6690 84807.6690 79 1 0% 288.40 84807.6690 0% 0.15
15 80177.0422 80177.0422 100 1 0% 298.34 80177.0422 0% 0.18
20 63389.0238 63389.8074 23 5 0.00% 481.45 63389.0238 0% 0.43
25 52209.5106 52209.5106 9 5 0% 657.37 52209.5106 0% 0.69
30 44705.1920 44705.1921 6 42 0% 877.10 44705.1920 0% 1.05
35 39257.2685 39257.2685 2 54 0% 851.93 39257.2685 0% 1.51
40 35704.4076 35773.2693 12 18 0.19% 886.95 35704.4076 0% 2.32
45 32306.9721 32306.9721 45 4 0% 496.45 32306.9721 0% 3.22
50 29338.0106 29338.0106 70 1 0% 715.04 29338.0106 0% 4.08
55 26699.1208 26703.1845 7 2 0.02% 300.42 26699.1208 0% 4.81
60 24504.3952 24505.4082 100 1 0.00% 307.89 24505.4082 0.00% 6.52
65 22733.2923 22734.3053 100 1 0.00% 287.73 22733.2923 0% 7.55
70 21465.4391 21473.9547 100 1 0.04% 302.85 21470.8346 0.03% 9.89
75 20269.9644 20341.2528 100 1 0.35% 393.27 20270.4011 0.00% 11.79
80 19193.8610 19217.9862 51 1 0.13% 316.96 19261.8774 0.35% 13.92
85 18313.8703 18346.0036 100 1 0.18% 314.21 18413.3586 0.54% 15.61
90 17514.4227 17573.3116 100 1 0.34% 404.50 17617.0847 0.59% 19.17
95 16770.1973 16850.0891 100 1 0.48% 352.08 16823.1395 0.32% 19.72
100 16083.5345 16084.3842 36 7 0.01% 336.06 16083.5345 0% 24.09
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Table 9   Comparing results from different starting solutions for the n = 1060 instances

† Genetic algorithm applying: CONS, N = 5p , s = 2 parents, 50 populations of 100 members
(1) The number of times out of 100 that the best found result obtained
(2) The smallest discrete rank yielding the best found result
(3) Percent of best found result above best known
(4) Total run times in minutes for all runs

p Best Known 100 Best Discrete Solutions Genetic Algorithm†

Best Found (1) (2) (3) (4) Best Found (3) (4)

5 1851877.3 1851877.3 34 4 0% 3179.77 1851877.3 0% 0.18
10 1249564.8 1249590.4 3 31 0.00% 1666.11 1249564.8 0% 0.27
15 980131.7 980319.0 1 42 0.02% 1184.81 980131.7 0% 0.52
20 828685.7 828775.0 1 95 0.01% 1101.15 828685.7 0% 0.92
25 721988.2 722029.6 2 26 0.01% 1093.31 721995.3 0.00% 1.57
30 638212.3 638236.3 26 9 0.00% 816.10 638212.3 0% 2.51
35 577496.7 577496.7 6 64 0% 689.53 577496.7 0% 3.69
40 529660.1 529970.4 8 53 0.06% 732.35 529660.1 0% 4.75
45 489483.8 489554.0 80 1 0.01% 744.24 489512.6 0.01% 6.12
50 453109.6 453297.3 68 1 0.04% 785.63 453109.6 0% 8.58
55 422638.7 422860.7 6 14 0.05% 800.72 422638.7 0% 11.19
60 397674.5 397674.9 3 68 0.00% 742.56 397674.5 0% 13.22
65 376630.3 377041.9 60 1 0.11% 703.45 376630.3 0% 16.61
70 357335.1 357335.1 3 56 0% 700.94 357335.1 0% 17.72
75 340123.5 340333.4 80 1 0.06% 730.60 340175.3 0.02% 23.43
80 325971.3 326077.3 32 1 0.03% 694.44 325998.4 0.01% 25.35
85 313446.6 313790.6 53 1 0.11% 2256.37 313512.6 0.02% 27.56
90 302479.1 302733.3 16 5 0.08% 2897.88 302613.8 0.04% 33.67
95 292282.6 292590.8 1 98 0.11% 2879.34 292625.9 0.12% 39.91
100 282536.5 282738.6 7 35 0.07% 2878.77 282825.5 0.10% 47.51
105 273463.3 273738.9 2 49 0.10% 759.91 273821.7 0.13% 53.79
110 264959.6 265361.7 1 81 0.15% 786.38 265445.8 0.18% 52.95
115 256735.7 256908.9 4 10 0.07% 787.34 257195.2 0.18% 65.48
120 249050.5 249068.8 1 73 0.01% 781.67 249155.2 0.04% 77.35
125 241880.4 241936.3 22 5 0.02% 738.50 241955.5 0.03% 85.32
130 235203.4 235477.4 1 96 0.12% 768.88 235469.2 0.11% 98.30
135 228999.2 229026.6 1 75 0.01% 766.40 229138.0 0.06% 105.75
140 223062.0 223238.8 1 28 0.08% 776.05 223207.2 0.07% 112.18
145 217462.8 217572.3 6 24 0.05% 773.84 217955.5 0.23% 120.68
150 212230.5 212401.0 1 62 0.08% 779.30 212510.5 0.13% 136.78
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of the genetic algorithm to obtain “good” discrete starting solutions is well worth 
the extra effort, as seen by the substantial improvement in the averages of best 
results.

2.	 The best overall solution quality reported in Table 10 is obtained by using the 100 
best discrete solutions as starting solutions. (Further analysis reported in Table 11 
shows a better percentage above the best known solution of 0.052% for n = 654 
and 0.043% for n = 1060 by a very shallow genetic algorithm). However, the 
reduction in percent deviation over the genetic results is of the order of 0.005%, 
which is quite negligible in practical terms. Furthermore, as seen in Tables 8 
and 9, the improvement applies only to the larger instances (larger values of p), 
while the genetic starting solutions gave better results for the smaller ones.

Table 10   Average for all p’s of 
best results by applying RATIO 
on discrete starting solutions

‡Average time per instance (one parent selection) in minutes
∗ CPLEX time (minutes) for 100 best. RATIO time is negligible

Parents n = 654 n = 1060 Average

RAND CONS RAND CONS

Genetic using N = 2p , 50 populations of 100
1 0.079% 0.063% 0.060% 0.054% 0.064%
2 0.083% 0.073% 0.065% 0.060% 0.070%
3 0.089% 0.068% 0.058% 0.055% 0.067%
4 0.079% 0.071% 0.059% 0.059% 0.067%
5 0.078% 0.066% 0.062% 0.062% 0.067%
Average 0.082% 0.068% 0.061% 0.058% 0.067%
Time‡ 2.70 2.70 19.44 19.95
Genetic using N = 5p , 50 populations of 100
1 0.077% 0.066% 0.062% 0.052% 0.064%
2 0.070% 0.065% 0.052% 0.049% 0.059%
3 0.084% 0.070% 0.058% 0.053% 0.066%
4 0.081% 0.071% 0.057% 0.056% 0.066%
5 0.076% 0.071% 0.053% 0.051% 0.063%
Average 0.078% 0.069% 0.056% 0.052% 0.064%
Time‡ 5.44 5.33 39.12 39.34
No genetic on 5000 starting solutions
Average 12.33% 9.19% 3.15% 1.93% 6.65%
Time‡ 1.17 0.51 5.70 4.71
Applying RATIO on the 100 Best Discrete solutions
Average 0.063% 0.049% 0.056%
Time‡ 408.83∗ 1166.54∗
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3.2.2 � Analyzing the depth of the genetic algorithm

Define the depth of the genetic algorithm as: depth =
N

p
 . The deeper the genetic 

algorithm, the greater are the number of iterations executed, and the longer are the 
run times (approximately proportional to the depth). Therefore, the final population 
of the genetic algorithm improves with depth. If we wish to have approximately the 
same genetic algorithms run time, the number of repetitions of the genetic algorithm 
should be inversely proportional to the depth.

We selected the value of the depth multiplied by the number of populations equal 
240, so there are 20 integer values of the depth and number of populations, see 
Table  11. Note that for each tested population, 100 starting solutions are created 
for RATIO. Each instance was run five times applying five different random seeds. 
The average of the five best found solutions by each of the five random seeds is 
reported. Graphs showing the percentage above the best known solution as a func-
tion of log(depth) , obtained from Table 11, are depicted in Fig. 3.

Table 11   Comparing results from different depth values (Five Random Seeds)

(1) Percent of the average of best found result for each random seed, above best known
(2) Average time (minutes per seed) for all runs
(3) Estimated average time (minutes per seed) for CONS and RATIO
(4) Average time (minutes per seed) for the genetic algorithms

Depth Starting n = 654 n = 1060

Solutions (1) (2) (3) (4) (1) (2) (3) (4)

1 24000 0.048% 8.26 2.45 5.81 0.046% 61.49 22.61 38.88
2 12000 0.061% 6.37 1.22 5.14 0.051% 47.85 11.30 36.55
3 8000 0.065% 5.67 0.82 4.85 0.052% 42.16 7.54 34.62
4 6000 0.069% 5.37 0.61 4.75 0.052% 39.68 5.65 34.03
5 4800 0.067% 5.12 0.49 4.63 0.050% 38.14 4.52 33.62
6 4000 0.071% 4.98 0.41 4.57 0.053% 36.64 3.77 32.87
8 3000 0.073% 4.72 0.31 4.42 0.055% 35.10 2.83 32.27
10 2400 0.075% 4.55 0.24 4.30 0.055% 33.66 2.26 31.40
12 2000 0.076% 4.46 0.20 4.25 0.053% 32.54 1.88 30.66
15 1600 0.077% 4.41 0.16 4.25 0.054% 33.13 1.51 31.63
16 1500 0.078% 4.35 0.15 4.20 0.053% 32.77 1.41 31.36
20 1200 0.081% 4.35 0.12 4.22 0.058% 32.13 1.13 31.00
24 1000 0.085% 4.23 0.10 4.13 0.056% 31.15 0.94 30.21
30 800 0.089% 4.12 0.08 4.03 0.059% 30.57 0.75 29.82
40 600 0.082% 4.07 0.06 4.01 0.062% 30.10 0.57 29.54
48 500 0.092% 3.93 0.05 3.88 0.065% 30.45 0.47 29.98
60 400 0.089% 4.01 0.04 3.97 0.065% 29.23 0.38 28.85
80 300 0.098% 3.86 0.03 3.83 0.071% 28.05 0.28 27.77
120 200 0.107% 3.82 0.02 3.80 0.076% 28.59 0.19 28.40
240 100 0.126% 3.30 0.01 3.29 0.093% 27.66 0.09 27.57
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The total run time of the procedures consists of generating the starting solu-
tions, running the genetic algorithms, and running RATIO. Generating start-
ing solutions and running RATIO are performed the same number of times 
for each p (second column in Table 11). We estimated the run time of generat-
ing 5000 starting solutions and 5000 runs of RATIO as 0.51  min for n = 654 , 
and 4.71  min for n = 1060 (Table  10). For example, (referring to Table 11) for 
depth=1 and n = 1060 , the procedure required an average of 61.49  min. Gen-
erating 24000 starting solutions and running RATIO 24000 times required 
24000 ×

4.71

5000
= 22.61 min. Therefore, the genetic algorithms (that were repeated 

240 times) required 61.49-22.61=38.88  min, which is about 10  sec per each 
genetic algorithm. In contrast, one run of the genetic algorithm using depth=240 
required 27.57 min.

We calculated simple regression lines, with the dependent variable of the aver-
age percentage above the best known solution for n = 654, 1060 , on the 20 points 
for each n depicted in Fig.  3. As the independent variable we tested: (i) depth, 
(ii) log(depth), and (iii) 

[
log(depth)

]� , for the � that best fits the data (maximum 
R value). We found, by the Solver in Excel, that the best value for � is 1.5 for 

Table 12   Statistical analysis of 
the average best results

†� = 1.5 for n = 654 ; � = 3.4 for n = 1060

Independent Variable n = 654 n = 1060

R p-value R p-value

depth 0.8919 1.3×10−7 0.9728 7.0×10−13

log(depth) 0.9624 1.2×10−11 0.8765 4.0×10−7

log(depth)�† 0.9708 1.3×10−12 0.9888 2.4×10−16

0 06%

0.07%

0.08%

0.09%

0.10%

0.11%

0.12%

0.13%

0.04%

0.05%

0.06%

0 0.5 1 1.5 2 2.5
log(depth)

� n = 654 ��� n = 1060 Trend line

Fig. 3   Percent above the best known solution (average of 5 seeds)
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n = 640 , and 3.4 for n = 1060 . The results are depicted in Table 12. All regres-
sion lines are statistically significant with very small p-values. This means that 
the quality deteriorates significantly as the genetic algorithm provides better 
objective values of the starting solution, when the number of runs are controlled 
by the run time of the genetic algorithm. More populations with lower quality 
discrete starting solutions yield better continuous objectives.

4 � Discussion

When all the locations of the facilities in the optimal continuous solution coin-
cide with demand points, the optimal discrete solution is the same as the con-
tinuous one. How likely is it that a facility is located at a demand point? In the 
optimal solution (continuous or discrete), the set of demand points is partitioned 
by a Voronoi diagram (Suzuki and Okabe 1995; Okabe et al. 2000; Voronoï 1908; 
Aurenhammer et al. 2013) to p non-intersecting subsets, and each has a facility 
located at the optimal location for the subset minimizing the weighted sum of 
distances. Therefore, the two solutions will be the same if every single facility 
solution for a subset is located at a demand point.

When the number of demand points increases, one would expect that the prob-
ability that the Weber solution point is on a demand point converges to 1. There 
is “no space” left between demand points, when the number of demand points 
increases to infinity. However, Drezner and Simchi-Levi (1992) showed that when 
n demand points are randomly generated in a unit circle, then the probability that 
the Weber solution with Euclidean distances is on a demand point is approxi-
mately  1

n
 . This counter-intuitive result was verified by simulation. Consider the 

n = 654 , p = 10 case. For n = 654 and one facility, the probability that the solu-
tion is on a demand point is about 0.15%. When 10 about equally sized subsets 
are created, the probability that the location of the facility serving a subset is on a 
demand point is 1.5%. The probability that all 10 facilities are located at demand 
points is basically zero ( 10−18 ). The numbers for n = 1060 are even lower. The 
optimal discrete will hardly ever be the same as the optimal continuous.

The subsets are separated by perpendicular bisectors between the facilities. If 
the facilities are moved, the perpendicular bisectors can change quite a bit, even 
for small perturbations. The partitioned subsets for the optimal continuous solu-
tion can be significantly different from those of the optimal discrete solution. This 
may explain why using the optimal discrete solution as a starting solution is not 
the “best” choice, as we often observed in the computational results.

On the other hand, even if the optimal discrete solution leads to the optimal 
(or best known) continuous one, there are likely many other discrete solutions 
of varying quality that will also produce the same result. That is, there may be 
several discrete solutions that map onto the same continuous solution (local opti-
mum obtained by the RATIO algorithm). For example, consider the extreme case, 
instance n = 500 , p = 5 in Table  5, where all 1000 best discrete solutions map 
onto the same (best known) continuous solution.
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The computational results show that using “good” discrete starting solutions 
from our genetic algorithm often yield better continuous solutions than those 
obtained by optimal or near-optimal discrete solutions. Not only do we get bet-
ter solutions, but the CPU time is also reduced by one or more orders of magni-
tude. However, this is not uniformly the case. As noted above, the optimal and 
near-optimal discrete solutions were able to beat the genetic starting solutions for 
several larger instances (see Tables 8 and 9). Consider, for example, the n = 654 , 
p = 85 instance, where the percent deviation obtained with the 100 best discrete 
solutions and the genetic solutions were, respectively, 0.18% and 0.54%, a differ-
ence of 0.36% in favor of the optimal/near optimal discrete solutions.

Similar conclusions are drawn by Drezner and Drezner (2016). They investi-
gated sequential location of two facilities. Once the first facility is located, the sec-
ond facility is located at its optimal location considering the location of the first one 
(termed the conditional location model (Minieka 1980; Drezner 1995)). They found 
that for the 2-median and 2-center problems, random location of the first facility is 
better, while for locating two new competing facilities, the optimal location for the 
first facility is better.

5 � Conclusions

In this paper we examined the use of discrete starting solutions for solving the con-
tinuous p-median problem. One would expect that better discrete starting solutions 
should result in better continuous solutions. However, we found that this is not the 
case. Moderately good starting solutions can often yield better continuous solutions. 
We tested using as starting solutions: (i) the optimal discrete solution, (ii) the 100 
best discrete solutions, and (iii) the final population of a genetic algorithm designed 
to find good discrete solutions.

The 100 best discrete solutions provided quite good continuous solutions. How-
ever, run time was two orders of magnitude longer than the time required by the 
genetic algorithm. If we would allow the genetic algorithm to consume that much 
run time, it is clear that best continuous solutions obtained would be much improved 
from the same population of starting solutions. Actually, the best performance was 
observed when many populations of a very short genetic algorithm, whose results 
are not so good, were applied. We also evaluated the effect of the quality of the 
genetic algorithm on the final outcome. It is clear that when using about the same 
run time, better genetic final populations (fewer final populations though), perform 
worse. Statistical analysis shows that this inferiority is statistically significant, as 
evidences by extremely small p-values.

We found that a diverse set of “good” discrete starting solutions is a better option 
than relying on a single optimal (or near-optimal) discrete solution. Furthermore, 
this diverse set may be obtained with less computational effort. Our research also 
shows that at some point, further improvement in quality of the discrete starting 
solution may actually result in inferior continuous solutions. This turning point 
would depend on the local search being implemented in the continuous space. This 
notion of a “turning point” may provide some insight on what constitutes a good set 
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of starting solutions. If the current best continuous solution is reached from starting 
solution X∗ , and there is no improvement obtained from several better quality start-
ing solutions, we might surmise that the current set of starting solutions is a good 
one for the applied heuristic. This could also become an interesting direction for 
future research.

Future research should investigate other continuous search algorithms, such as 
the standard Cooper method (which is faster but less powerful than the RATIO 
algorithm we used), to determine the effect on our conclusions of the quality of 
the local search. Also, it would be useful to investigate using discrete starting 
solutions for solving other continuous multiple facility location problems, such 
as the p-center, and finding whether “best” discrete solutions perform better or 
worse than “good” discrete solutions.
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