
Vol:.(1234567890)

TOP (2021) 29:694–721
https://doi.org/10.1007/s11750-020-00588-5

1 3

ORIGINAL PAPER

Multi‑objective scheduling on two dedicated processors

Adel Kacem1 · Abdelaziz Dammak1

Received: 2 May 2019 / Accepted: 20 November 2020 / Published online: 3 January 2021
© Sociedad de Estadística e Investigación Operativa 2021

Abstract
We study a multi-objective scheduling problem on two dedicated processors. The
aim is to minimize simultaneously the makespan, the total tardiness and the total
completion time. This NP-hard problem requires the use of well-adapted methods.
For this, we adapted genetic algorithms to multi-objective case. Four methods are
presented to solve this problem. The first is an aggregative genetic algorithm (GA),
the second is a Pareto GA, the third is a non-dominated sorting GA (NSGA-II) and
the fourth is a constructive algorithm based on lower bounds (CABLB). We pro-
posed some adapted lower bounds for each criterion to evaluate the quality of the
found results on a large set of instances. Indeed, these bounds also make it pos-
sible to determine the dominance of one algorithm over another based on the dif-
ferent results found by each of them. We used two metrics to measure the quality
of the Pareto front: the hypervolume indicator (HV) and the number of solutions in
the Pareto front (ND). The obtained results show the effectiveness of the proposed
algorithms.

Keywords Scheduling · Dedicated processors · Lower bound · NSGA-II · Pareto
front

Mathematics Subject Classification 90-08

 * Adel Kacem
 adel.kacem@gmail.com

 Abdelaziz Dammak
 abdelaziz.dammak@fsegs.rnu.tn

1 Modeling and Optimization for Decisional, Industrial and Logistic Systems Laboratory, Faculty
of Economics and Management, University of Sfax, Airport Street, km 4, Post Office Box 1088,
3018 Sfax, Tunisia

http://orcid.org/0000-0002-0263-589X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-020-00588-5&domain=pdf

695

1 3

Multi-objective scheduling on two dedicated processors

1 Introduction

This work aims at optimizing the computer control systems when these systems
have two dedicated processors: the assignment of tasks to these processors is fixed.
For this problem, we have three types of tasks. Some tasks must be processed only
by the first processor, others by the second processor, and the remaining tasks need
simultaneously both processors. This problem represents a practical issue in com-
puter control systems, where a task is performed in several copies on different pro-
cessors to ensure better safety of the system. In production management, we can cite
the case where a task requires several operators for its execution.

The contribution of our work is to propose lower bounds for the three studied
criteria (makespan, total tardiness and total completion time) and to develop genetic
algorithms to solve this problem in the multi-objective case. The lower bounds
allow us to assess the quality of the feasible solutions and the genetic algorithms
incorporates the optimization part. We implemented our approach by consider-
ing aggregative, NSGA-II and Pareto scenarios on a large set of instances. The
results show the effectiveness of the implemented algorithms. The studied problem
is P2�fixj, rj�Cmax,

∑
Tj,

∑
Cj according the standard ternary notation, where P2

denotes two processors; fixj indicates that each task has one or two dedicated pro-
cessors and the assignment of each task is fixed; rj denotes the release date; Cmax , ∑

Tj and
∑

Cj indicates the makespan, the total tardiness and the total completion
time, respectively.

The next section is a review of existing research related to the studied problem. In
Sect. 3, a mathematical formulation model is proposed, some notations are detailed
and the proposed lower bounds for the makespan, total completion time and total
tardiness are given. In Sect. 4, we present the solving approaches. Four methods to
solve the considered problem are developed. The first one is aggregative GA with
Uniform Design, the second is Pareto GA, the third is the NSGA-II and the fourth
is CABLB algorithm. Section 5 deals with the generation of instances, the different
parameters used to develop the proposed algorithms, the proposed metrics to meas-
ure the quality of the Pareto front, the computational results and the qualitative and
quantitative analysis. Finally concluding remarks are given in Sect. 6.

2 Literature review

Few studies have dealt with this problem. The most important studies are mentioned
in the following paragraphs.

Coffman et al. (1985) studied the file transfer problem in the field of computer
networks where each computer has a number of different ports for data exchange.
File transfer uses a subset of ports, therefore, a multiprocessor task on dedicated
processors. The boot time of the transfers is also taken into account, then differ-
ent transfer protocols are proposed, and performance results are demonstrated.
Drozdowski (1996) cited this paper to describe the actual applications of scheduling
problems on dedicated processors.

696 A. Kacem, A. Dammak

1 3

Craig et al. (1988) studied the problem in testing integrated circuits VLSI (very
large-scale integration). To test a component of these circuits, several other elec-
tronic components are needed simultaneously. The authors addressed the problems
in case when the processing times are unitary or arbitrary. A heuristic based on the
maximum degree of incompatibility has been proposed to solve these two problems
P|fixj, pj = 1|Cmax and P|fixj|Cmax (pj denotes the processing time of task j).

These works (Coffman et al. 1985; Craig et al. 1988), which cover several fields
of application, made it possible to form the first theoretical basis for scheduling
problems on dedicated processors. This topic has been widely investigated dur-
ing the past years. The most remarkable work has been devoted to the study of the
complexity.

Hoogeveen et al. (1994) showed that the problem P2�fixj�∑wjCj is NP-hard in
the strong sense (wj the weight and Cj the completion time of task j). The preemp-
tion of tasks does not make the problem easier. Oguz and Ercan (2005) proved that
the problem P2�fixj, pmtn�∑wjCj is NP-hard in the strong sense (pmtn allows us the
preemption of tasks). Afrati et al. (1999) proposed a polynomial time approximation
scheme (PTAS) for the problem Pm�fixj, pmtn�∑Cj and a second PTAS approxima-
tion scheme proposed by Afrati and Milis (2006).

Chu (1992) proposed a lower bound for the minimization of total tardiness prob-
lem; the calculation involves the SRPT priority rule (Shortest Remaining processing
Time) for a relaxed problem with preemption. The main idea is that each time the
processor becomes available, an unfinished task available with the shortest remain-
ing processing time is set. The execution of a task is interrupted when its remaining
processing time is strictly greater than the length of processing task that becomes
available.

Leung and Wang (2000) proposed a genetic algorithm with multiple fitness func-
tions to conduct research to solve a multi-objective problem. The authors applied an
experimental design method called Uniform Design to select the weights used with
the objective functions and diversify uniformly selected solutions.

Kacem (2007) developed two lower bounds for tardiness minimization problem
on a single machine with Family Setup Times. The first lower bound is based on
Emmons theorem (Emmons 1969) and the SPT rule (Shortest Processing Time),
the second is achieved by sorting tasks by processing times and the idea of due
dates exchange. Another idea for solving the linear programming problem was also
proposed.

Berrichi et al. (2007) studied a bi-objective model of parallel machine problem
using reliability models to take into account the service side. Two genetic algorithms
were developed to obtain an approximation of the Pareto front: One algorithm that
uses the two objectives weighted and NSGA-II algorithm.

Rebai et al. (2010) introduced three lower bounds for minimization tardiness
problem on one machine to schedule preventive maintenance tasks. The first lower
bound is based on the Lagrangian relaxation of mathematical model. The second is
obtained by the sum of M costs calculated for M tasks, and the third is an adaptation
of the lower bound given by Li (1997) for the problem of earliness tardiness minimi-
zation with a single due date for each task.

697

1 3

Multi-objective scheduling on two dedicated processors

Manaa and Chu (2010) proposed a branch-and-bound method to minimize the
makespan. In their article, the authors presented a lower bound that has been proven.
This method can treat all instances generated up to 30 tasks for the most difficult
cases in less than 15 min.

Vallada and Ruiz (2011) studied the unrelated parallel machine scheduling prob-
lem. A genetic algorithm is developed to solve this problem. The proposed method
includes a fast local search and a local search enhanced crossover operator. The
computational and statistical analysis shows an excellent performance in a compre-
hensive benchmark set of instances.

Bradstreet (2011) introduced the hypervolume indicator (HV) to measure the
quality of the Pareto front. The hypervolume is one of the most famous indicator
that can reflect the dominance of Pareto fronts.

An approximation algorithm is proposed by Alhadi et al. (2020) to minimize the
maximum lateness and makespan on parallel machines. In this paper, the authors
presented polynomial time approximation schemes to generate an approximate
Pareto Frontier.

Kacem and Dammak (2019) studied the problem of bi-objective scheduling of
multi-processor tasks on two dedicated processors. The authors adapted the genetic
algorithm to solve the problem of minimizing the makespan and the total tardi-
ness for the large size instances. The results found showed the effectiveness of the
proposed genetic algorithms and the encouraging quality of the lower bounds con-
structed in Manaa and Chu (2010), Kacem and Dammak (2017).

The most three main criteria analyzed in the case of scheduling problems with
one processor and with parallel processors are the schedule length, the mean flow
time and the lateness (Blazewicz et al. 2019). In addition, these criteria are com-
pletely different: the schedule length and the flow time involving release dates. The
lateness involves due dates. For that, we decided to study a new extension of this
problem with these three criteria since they are the most relevant. According the
standard ternary notation, the studied problem is P2�fixj, rj�Cmax,

∑
Tj,

∑
Cj.

3 Problem statement

In this section, we detail some notations, we propose a mathematical model for our
studied problem and we give a lower bounds for the three criteria: the makespan, the
total tardiness and the total completion time.

3.1 Notation

The following fields used in the studied problem P2�fixj, rj�Cmax,
∑

Tj,
∑

Cj denote:

• P2: Two processors.
• fixj : Each task has one or two dedicated processors and the assignment of each

task is fixed.
• rj : Release date of task j.

698 A. Kacem, A. Dammak

1 3

• Cmax : Makespan.
• Tj : Tardiness of task j; Tj = max

{
Cj − dj;0

}
 with dj the due date of task j.

• Cj : the completion time of task j.

The set of parameters and variables necessary for our model are presented below:

• xl,k =

{
1 if task lcompletes before task k starts

0 else;

• pj : Processing time of task j.
• P1 : The set of tasks requiring the first processor.
• P2 : The set of tasks requiring the second processor.
• P1,2 : The set of tasks requiring both processors simultaneously.
• M: Constant penalty.

3.2 Mathematical model

We propose here a mathematical formulation of our multi-objective scheduling
problem.

Subject to:

Equation (1) expresses the three criteria: the makespan, the total tardiness and the
total completion time. In the constraints (2) and (3), for each task k sequenced after

(1)Minimize {Cmax,
∑

Tj,
∑

Cj}

(2)Ck ≥ Cl + pk + (xl,k − 1).M ∀(l, k) ∈ (P1 ∪ P1,2)
2 with l ≠ k

(3)Ck ≥ Cl + pk + (xl,k − 1).M ∀(l, k) ∈ (P2 ∪ P1,2)
2 with l ≠ k

(4)xl,k + xk,l = 1 ∀(l, k) ∈ (P1 ∪ P1,2)
2 with l ≠ k

(5)xl,k + xk,l = 1 ∀(l, k) ∈ (P2 ∪ P1,2)
2 with l ≠ k

(6)Cmax ≥ Cj ∀j ∈ (P1 ∪ P2 ∪ P1,2)

(7)Tj ≥ Cj − dj ∀j ∈ (P1 ∪ P2 ∪ P1,2)

(8)Tj ≥ 0 ∀j ∈ (P1 ∪ P2 ∪ P1,2)

(9)Cj ≥ rj + pj ∀j ∈ (P1 ∪ P2 ∪ P1,2)

(10)xk,l ∈ {0, 1} ∀k ≠ l ∀(k, l) ∈ ((P1 ∪ P1,2)
2 ∪ (P2 ∪ P1,2)

2)

699

1 3

Multi-objective scheduling on two dedicated processors

task l completes, the completion time of task k is greater than or equal to the com-
pletion time of task l plus the processing time of task k. The constraints (4) and (5)
make it possible two tasks to complete one before the second task starts. The con-
straint (6) ensures that the makespan is greater than or equal to the completion time
for each task j. The constraints (7) and (8) compute the tardiness and ensures that
Tj = max

{
Cj − dj;0

}
 . Constraint (9) defines the completion time and shows that it is

greater than or equal to the release date plus the processing time of task j. The con-
straint (10) defines the domain of definition of the parameters of the model.

We study three scheduling problems (makespan, total tardiness and total comple-
tion time) on two dedicated processors. To assess the quality of the results found by
such a method, we use the following lower bounds for each criterion.

3.3 Lower bound LBC for problem P2|fixj, rj|Cmax

Manaa and Chu (2010) proposed two ideas to construct a lower bound for the con-
sidered problem:

• The idea of dividing the problem into two sub-problems on one processor by
relaxing the studied problem.

• The idea of Bianco et al. (1997) an optimal solution to minimize the makespan
for one-processor problem.

The relaxation of the studied problem allows us to obtain two simple problems:

(a) Scheduling tasks that necessitate using simultaneously both processors and tasks
that require the first processor.

(b) Scheduling tasks that require employing simultaneously both processors and
tasks that necessitate the second processor.

The optimal solutions of problems (a) and (b) can be found by scheduling tasks
according to the order of their release dates.

The lower bound for the studied problem corresponds to the maximum value of
the solutions of problems (a) and (b).

3.4 Lower bound LBTC for problem P2�fixj, rj�∑ Cj

In this study, we use and combine three ideas to build a lower bound:

– The idea of reducing the problem into two sub-problems on one processor by
partitioning the bi-processor tasks.

– The idea of dividing the mono- processor tasks into two tasks.
– The idea of under-estimating the completion times of the tasks on a single pro-

cessor (originally proposed by Chu 1992).

700 A. Kacem, A. Dammak

1 3

The first of this lower bound is to partition the bi- processor tasks into two mono-
processor tasks, each of them on one of the processors. We get two independent
problems on each processor.

On the first processorP1 , we consider the n1 mono-processor tasks jj with a weight
w1
j
= 1 , and the n12 bi- processor sub-tasks jj on processor P1 a weight w1

j
= w , with

w ∈ [0, 1].
Similarly, we consider the second processor P2 , the n2 mono-processor tasks jj

with a weight w2
j
= 1 . However, the bi-processor sub-tasks jj on processor P2 a

weight w2
j
= 1 − w . Thus, we obtain a problem on each processor: 1�fixj, rj�∑w1

j
Cj

and 1�fixj, rj�∑w2
j
Cj.

We consider w =
1

2
 . The next step is to divide the mono-processor tasks (with a

weight w1
j
= 1) in two tasks. We get for each divided task two sub tasks jj1 and jj2

with release date rj1 = rj ; rj2 = rj +
pj

2
 and processing time pj1 = pj2 =

pj

2
.

We divide the weight on for each sub tasks. We are getting w1
j
=

1

2
 if

∀jj ∈
{
P1;P12

}
 . From where,

Lb1 = Lb
�
1�fixj, rj�∑w1

j
Cj

�
= Lb

�
1�fixj, rj�∑ 1

2
Cj

�
+
∑

j∈P1

pj

4
 , with

∑
j∈P1

pj

4
 is a

penalty to be added according to Webster formula.

We apply the same principle for the problem 1�fixj, rj�∑w2
j
Cj . We are getting

Lb2 = Lb
�
1�fixj, rj�∑ 1

2
Cj

�
+
∑

j∈P2

pj

4
=

1

2
Lb

�
1�fixj, rj�∑Cj

�
+
∑

j∈P2

pj

4
 .

LBTC = Lb1 + Lb2 is then a lower bound for problem P2�fixj, rj�∑Cj . The calcula-
tion of the lower bounds of completion times for the problem on each processor uses
the following theorem for 1�rj, pre�∑Cj.

Theorem 1 (Chu 1992) Let C[i](�) be the completion time of the task in the ith posi-
tion of a feasible schedule. C′

i
 is the completion time of the task in the i th position of

a feasible schedule constructed by the SRPT (Shortest Remaining Processing Time)
priority rule. Chu proved that for every feasible schedule � , we have: C[i](�) ≥ C�

i

Lb1 = Lb
(
1|fixj, rj|

∑ 1

2
Cj

)
+
∑
j∈P1

pj

4
=

1

2
Lb

(
1|fixj, rj|

∑
Cj

)
+
∑
j∈P1

pj

4
.

Table 1 Example j rj pj P

j1 2 6 P1

j2 4 2 P1

j3 1 2 P12

j4 0 8 P1

j5 3 2 P2

j6 2 6 P2

j7 1 2 P2

701

1 3

Multi-objective scheduling on two dedicated processors

By applying the theorem in Chu (1992), we compute a lower bound on the com-
pletion time of each job.

Example Let us consider the instance in Table 1.

We apply the principle of calculation of the lower bound mentioned above and
we get two sub-problems on each processor. On the first processor P1 , we sched-
ule the tasks

{
j1, j2, j3, j4

}
 . We divide the tasks

{
j1, j2, j4

}
 on into two, we get the

following tasks:
{
j11, j12, j21, j22, j41, j42

}
with the following parameters described in

Table 2.
The sequence built by the SRPT rule with preemption gives the solution

described in Fig. 1.
The total of completion time, giving the following lower bound:

Lb1 =
1

2
Lb

�
1�fixj, rj�∑Cj

�
+
∑

j∈P1

pj

4
=

3+5+6+8+11+14+18

2
+

3+3+1+1+4+4

4
= 36, 5 .

Respectively, we calculate the lower bound Lb2 for the problem on P2.
Thus, we consider LBTC = Lb1 + Lb2 as a lower bound for the problem

P2�fixj, rj�∑Cj . .

3.5 Lower bound LBTT for the problem P2�fixj, rj�∑ Tj

Kacem and Dammak (2017) proposed an adapted lower bound for the problem
of minimization of total tardiness on two dedicated processors. The authors
exploited and combined three ideas to construct this lower bound:

Table 2 Results division on P1 j rj pj P

j1.1 2 3 P1

j1.2 5 3 P1

j2.1 4 1 P1

j2.2 5 1 P1

j3 1 2 P1

j4.1 0 4 P1

j4.2 4 4 P1

Fig. 1 SRPT representation on P1

702 A. Kacem, A. Dammak

1 3

– The idea of reducing the problem in two sub-problems on one processor by
partitioning the bi-processor tasks.

– The idea of under-estimating the completion time of the tasks (initially sug-
gested by Chu 1992).

– The idea of calculating the lower bound by assigning the due dates to the
reduced completion times (originally proposed in Rebai et al. (2010) for
another scheduling problem).

The first step of this lower bound is to divide the bi-processor tasks into two mono-
processor tasks; each of which is executed on one of the two processors. Conse-
quently, we obtain two independent problems on each processor. On the first proces-
sor P1 , we consider the n1 mono-processor tasks Jj with a weight �1

j
= 1 , and the n12

bi-processor sub-tasks Jj on processor P1 having a weight �1
j
= � with � ∈ [0, 1].

Similarly, we consider, on the second processor P2 , the n2 mono-processor tasks
Jj with a weight �2

j
= 1 . However, the n12 bi-processor sub-tasks Jj on the processor

P2 have a weight �2
j
= 1 − � . Thus, we obtain a problem on each processor

1�fixj, rj�∑ �
1
j
Tj and 1�fixj, rj�∑ �

2
j
Tj.

Using the idea of Chu (1992) (described in the previous section), we compute a
lower bound on the completion time of each task.

The next step of computing the lower bound is based on the idea of assigning the
weight and the due date of each task to completion times’ lower bounds. The total
tardiness is minimized by the Hungarian algorithm.

Let Costi,j be the cost of assigning a reduced C′
i
 to the task Jj supposed to end at

the ith position of the schedule. This cost can be calculated according to the follow-
ing formula: Costi,j = �j ∗ max

{
C�
i
− dj;0

}
.

This assignment technique, presented by Rebai et al. (2010), allows us to elabo-
rate a new lower bound. We apply the Hungarian algorithm to determine, from the
assignment matrix CostP1

i,j
 , a lower bound (Lb1) to solve the following problem

1�fixj, rj�∑ �
1
j
Tj.

Applying the same process, we calculate Lb2 for the 1�fixj, rj�∑ �
2
j
Tj problem. Thus,

we consider LBTT = Lb1 + Lb2 as a lower bound for the problem P2�fixj, rj�∑Tj.
Optimization of the lower bound LBTT To improve the constructed lower

bound, we look for the weights �∗
j
 , which maximize LBTT. The idea is to associate

the better weight �∗
j
 for each bi-processor task Jj which maximizes the tardiness cal-

culated by the Hungarian algorithm. We use the following method to optimize the
bound LBTT.

(11)

Lb1 =min
�

xi,jCosti,j

⎧⎪⎨⎪⎩

∑
i xi,j = 1∑
j xi,j = 1

xi,j ∈ {0, 1}

703

1 3

Multi-objective scheduling on two dedicated processors

– For a bi-processor task Jj ∈ (P1,2) , we calculate the gap ej ∗ between TP1

j∗
 and TP2

j∗

(where TP1

j∗
 (respectively, TP2

j∗
) is the tardiness of task j associated to the sub-prob-

lem on P1 (respectively, P2) obtained by the Hungarian algorithm).
– According to the gap, ej ∗ , we increase the � value for a negative gap (and we

reduce it, respectively, for a positive gap).
– We apply the Hungarian algorithm to the new matrix and we calculate a new

lower bound LBTT�.
– We repeat this procedure ∀Jj ∈ (P1,2).

Next, we present the study of the problem P2�fixj, rj�Cmax,
∑

Cj,
∑

Tj.

4 Solving approaches

We adapt a genetic algorithm to the multi-objective case. We propose four algo-
rithms to solve the considered problem. The first is an aggregative GA, the second is
a Pareto GA, the third is a NSGA-II and the fourth is a constructive algorithm based
on lower bounds.

4.1 The genetic algorithm

To represent the data of the studied problem, we used a standard coding technique.
This coding consists in representing an individual with a permutation containing N
distinct numbers that correspond to the set {1, 2, 3, ..,N}.

To form the diversified initial population, we used a random method to create a
feasible sequence and to generate the other individuals of the initial population.

To assess the quality of individuals in a population, we have presented three
methods to evaluate the studied problem in a given sequence.

The literature has several selection techniques such as proportional selection by
tournament, by rank, random selection, etc (see Karasakal and Silav 2016). For our
algorithm, we implemented three selection approaches: the aggregative approach,
the Pareto one and NSGA-II.

The process of crossover between two parents leads to the birth of two children.
In this case, an exchange position is randomly determined (see Vallada and Ruiz
2011). The first part of the first child is directly obtained from the first parent. The
second part is provided by respecting the order of the remaining tasks as they appear
in the second parent tasks. The same process is applied to the second child by revers-
ing the parents. For our algorithm, we implemented the one-point crossover, which
is a folklore (see Holland 1975).

Several methods of mutation exist in the literature such as the method of per-
mutation, insertion and inversion. In our case, we used the permutation method of
swapping two positions of the individual.

704 A. Kacem, A. Dammak

1 3

4.2 Aggregative approach

To adapt our genetic algorithm to the multi-objective case, we constructed an aggre-
gative selection method that consists in generating weights for each sequence of a
given population. To calculate the weights, we used an experimental design method
called Uniform Design (Leung and Wang 2000). We choose a new population by a
scaling method, which consists in calculating the weighted sum of normalized objec-
tive functions. Several combinations of weight are considered for the three objec-
tive functions (makespan, total tardiness and completion time). Each combination of
these weights transforms the problem into a mono-objective case. Accordingly, the
search directions are uniformly dispersed to the Pareto front in the objective space.
With multiple fitness functions, we design a selection scheme to maintain the qual-
ity and the diversity of the population. This selection scheme consists in applying
at every iteration the fitness functions (See Equation 19) and to sort the individuals
of the current population in increasing order according to the Scaling method (See
Sect. 4.2.2). The best individuals are selected to form a new population.

In what follows, we will describe the Uniform Design method used for calculat-
ing the weight and we will give the formula for the scaling method for the selection
of a new population.

4.2.1 Calculation of weight with uniform design

The main objective of the Uniform Design is to sample a small set of points from a
given set of points, so that the selected points are uniformly dispersed. This method
is a branch of statistics that has been used to calculate the weight. As an illustration
of the Uniform Design method, the reader could consult (Leung and Wang 2000).

We consider a unit hyper-cube C in a K dimensions space (K is the number
of objectives) and h a point in C, Where h = (h1, h2, .., hK)

T , such that 0 ≤ hi ≤ 1
∀1 ≤ i ≤ K.

For any item h from the hyper-cube C, we can create a hyper-rectangle R(h)
between the center O and h, with O = (0, 0, .., 0)T . This hyper-rectangle is described
by the following formula:

We consider a set of X points from C, we can associate with each point h, a subset
of X points that belongs to the hyper-rectangle R(h). Let X(h) be the cardinality of
such a sub set and X(h)/X the fraction of the points included in the hyper-cube C
and

∏K

i=1
hi is the fraction of volume value of the hyper-rectangle R(h). The uni-

form design is to determine X points in C such that the following discrepancy is
minimized.

(12)R(h) =
{
a ∈ C∕a = (a1, a2, .., aK), 0 ≤ ai ≤ hi,∀1 ≤ i ≤ K

}

705

1 3

Multi-objective scheduling on two dedicated processors

The authors presented the X points solution calculated using the uniform matrix
U(K,X)

{
Ur,i

}
X∗K

 given by Fang and Li (1994). With Ur,i = (r.�i−1modX) + 1 and �
is a parameter that depends on X and K.

Now, we consider our problem studied, which consists in optimizing three objec-
tives. In our case, we have K = 3 , we take X = 7 , so � = 3 see (Leung and Wang
2000). Using the formula Ur,i given by Fang and Li (1994), we get the following
uniform matrix:

U(3, 7)
�
Ur,i

�
X∗K

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 4 3

3 7 5

4 3 7

5 6 2

6 2 4

7 5 6

1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

We consider the weighting vector Wr = (wr
1
,wr

2
, ..,wr

K
)T . The components of this

vector are calculated by the following formula:

4.2.2 Scaling method

We use the weight components vector calculated using the Uniform Design to build
a scaling method that allows us to choose a new population by sorting individuals of
the current population in ascending order according to the following formula:

Such that,

(13)Sup
h∈C

|X(h)
X

−

K∏
i=1

hi|

(14)wr
i
=

Ur,i

Ur,1 + Ur,2 +⋯ + Ur,K

,∀1 ≤ r ≤ X,∀1 ≤ i ≤ K

(15)H(s) = wr
1
∗ C(s) + wr

2
∗ TT(s) + wr

3
∗ TC(s)

(16)C(s) =

⎛⎜⎜⎝

Cmax(s) − min
x∈P

�
Cmax(x)

�

max
x∈P

�
Cmax(x)

�
− min

x∈P

�
Cmax(x)

�
⎞⎟⎟⎠

(17)TT(s) =

(
T(s) − min

x∈P
{T(x)}

max
x∈P

{T(x)} − min
x∈P

{T(x)}

)

706 A. Kacem, A. Dammak

1 3

where wr
i
 are the vector components of the weight described in the above section, s

is a feasible solution from population P and Cmax(x) , T(x), Ctime(x) , are, respectively,
the makespan, the total tardiness and total completion time of a solution x ∈ P.

By exploiting the uniform matrix, we obtain seven evaluation functions (fitness).
The list of functions is given by the following formula:

Each combination of these weights transforms the problem into a mono-objective
case. For each combination, the genetic algorithm is applied simultaneously, the best
feasible solutions are selected to form a new population by sorting the individuals of
the current population in increasing order of the weighted objective and the popula-
tion is stored. At the end of this process, such populations are merged and only the
non-dominated solutions are kept.

4.3 Pareto approach

We adapt the classical genetic algorithm for multi-objective case using the Pareto
approach (Pareto 1896). For each generation, we transform the population P by
crossing the non-dominated solutions and mutating the dominated solutions.
Then, we concatenate the current population P and the new individuals created by
crossover and mutation (see Alberto and Mateo 2011). The new population is then
obtained by keeping all non-dominated solutions. In case the number of non-domi-
nated solutions is less than the population size, we complete the remaining popula-
tion by the best individuals according to three fairly studied criteria: the one-third of
the remaining population by the best individuals according to the makespan crite-
rion and the one-third of the remaining population by the best individuals according
to the total tardiness criterion. The best individuals according to the total completion
time criterion will complement the rest of the population. In the last generation, only
non-dominated solutions are kept.

(18)TC(s) =

⎛
⎜⎜⎝

Ctime(s) − min
x∈P

�
Ctime(x)

�

max
x∈P

�
Ctime(x)

�
− min

x∈P

�
Ctime(x)

�
⎞
⎟⎟⎠

(19)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

fitness1 =
2

9
∗ C(s)+

4

9
∗ TT(s)+

3

9
∗ TC(s)

fitness2 =
3

15
∗ C(s)+

7

15
∗ TT(s)+

5

15
∗ TC(s)

fitness3 =
4

14
∗ C(s)+

3

14
∗ TT(s)+

7

14
∗ TC(s)

fitness4 =
5

13
∗ C(s)+

6

13
∗ TT(s)+

2

13
∗ TC(s)

fitness5 =
6

12
∗ C(s)+

2

12
∗ TT(s)+

4

12
∗ TC(s)

fitness6 =
7

18
∗ C(s)+

5

18
∗ TT(s)+

6

18
∗ TC(s)

fitness7 =
1

3
∗ C(s)+

1

3
∗ TT(s)+

1

3
∗ TC(s)

707

1 3

Multi-objective scheduling on two dedicated processors

4.4 NSGA‑II algorithm

The NSGA-II algorithm is based on the following principles (Deb et al. 2002):

– With each generation g, merging the population of parents Pg of size s with the
population of children Eg of the same size to build a new population Rg = Pg ∪ Eg
of size 2 ∗ s.

– Sort the Rg results population according to the non-dominance criterion. This
makes it possible to distribute Rg in several fronts

(
F1,F2, ...

)
 . The first fronts

contain the best individuals.
– Building the new parent population Pg+1 by adding the Fi fronts while the size of

Pg+1 does not exceed s. In the case where the size of the new population is less
than s, the crowding method is applied.

The calculation of the crowding distance of an individual is based on the following
principles:

– Repeat these steps for all objectives.
– Sort the solutions of an objective in ascending order.
– Assign infinite distance for the individuals having extreme values (the first and

last according to the sorts).
– For all other individuals, calculate the normalized difference of the two adjacent

solutions. Add the value and calculate the distance of the current individual.

After calculating the crowding distance of the ith front Fi from Rg , the list of Fi solu-
tions must be sorted in a descending order. The best solution is selected using the
crowded comparison-operator (≺n) ; between two different rank solutions, we choose
the one with the smallest rank, if they have the same rank we choose the solution
that has the greatest crowding distance.

4.5 Constructive algorithm based on lower bounds

We exploit and combine the ideas of the proposed lower bounds for each criterion
(makespan, total completion time and total tardiness) to build a new Constructive
Algorithm Based on Lower Bounds (CABLB). The main ideas of this algorithm is
to create a feasible schedule using the lower bounds on each processors for each cri-
terion. To diversify the selected solutions we transform the set of solutions obtained

Fig. 2 Feasible schedule using the lower bounds LBTC on P1

708 A. Kacem, A. Dammak

1 3

by crossing the non-dominated solutions and mutating the dominated solutions. At
the end, only the non-dominated solutions are kept.

Example Let us consider the instance in Table 1. Now, we apply the lower bound
LBTC to this instance. We obtain two sub-problems on each processor. On the first
processor P1 , we have to perform the following tasks

{
j1, j2, j3, j4

}
 . According to the

SRPT rule (see Fig. 1), we obtain the following tasks
{
j3, j2, j1, j4

}
 to create a feasi-

ble schedule with a lower bound on the completion time on P1.

The next step is to insert on the second processor P2 the mono-processor tasks {
j5, j6, j7

}
 which only request the second processor P2 according to their order by

using the SRPT rule. We have to perform the following tasks
{
j5, j7, j6

}
 . Figure 2

represents a feasible schedule using the lower bounds LBTC on P1 applied to the
instance in Table 1.

Similarly, we create a feasible schedule using the lower bound LBTC on P2 . Then,
we insert on the first processor P1 the mono-processor tasks which only request the
first processor P1 according to their order by using the SRPT rule.

To generate the set of solutions, we applied this principle to all the proposed
lower bounds (LBC, LBTC and LBTT) on each processor.

The CALB algorithm is based on the following steps:

– Step 1 Create a feasible schedule s1 using the lower bounds LBTC on P1 and the
mono-processor tasks which only request the second processor P2 according to
their order by the SRPT rule.

– Step 2 Create a feasible schedule s2 using the lower bounds LBTC on P2 and the
mono-processor tasks which only request the first processor P1 according to their
order by the SRPT rule.

– Step 3 Create a feasible schedule s3 using the lower bounds LBTT on P1 and the
mono-processor tasks which only request the second processor P2 according to
their order by the SRPT rule.

– Step 4 Create a feasible schedule s4 using the lower bounds LBTT on P2 and the
mono-processor tasks which only request the first processor P1 according to their
order by the SRPT rule.

– Step 5 Create a feasible schedule s5 using the lower bounds LBC on P1 and the
mono-processor tasks which only request the second processor P2 according to
their order by the release dates.

Table 3 Problem types
Number tasks Type1 Type2 Type3 Type4 Type5

n1 = n n n n [n/2]
n2 = [n/2] n [n/2] n [n/2]
n12 = [n/2] [n/2] n n n

709

1 3

Multi-objective scheduling on two dedicated processors

– Step 6 Create a feasible schedule s6 using the lower bounds LBC on P2 and the
mono-processor tasks which only request the first processor P1 according to their
order by the release dates.

– Step 7 Generate from the set of solutions S =
{
s1, s2, s3, s4, s5, s6

}
 a new set of

solutions S′ by crossing the non-dominated solutions and mutating the dominated
solutions.

– Step 8 Select from S ∪ S� the non-dominated solutions.

5 Numerical results

In this section, we present some experimental results obtained on randomly gener-
ated instances. Then, we analyze these results and we provide some conclusions.

We implemented our genetic algorithm using a DEV C + + compiler on an Intel
CoreTM i3 4005U CPU 1.7 GHz, 1.7 GHz and 4 GB of RAM.

We randomly generated instances by taking into account five types of problems
illustrated in Table 3 presented by Manaa and Chu (2010). The parameter n is an
integer (n ∈ {10, 20}), and [x] corresponds to the integer part of x. The variables
n1 , n2 and n12 , respectively, represent the number of P1 − tasks , P2 − tasks and
P12 − tasks.

For these five types of problems (Manaa and Chu 2010), considered the distribu-
tion of the three types of tasks and the number of tasks on each processor (load on
the processor).

For Type4, the distribution of tasks is balanced (n1 = n2 = n12 = n) and the dis-
tribution of the load on each processor (P1 ∶ n1 + n12 = 2n and P2 ∶ n2 + n12 = 2n)
is, therefore, balanced.

For Type1, the number of tasks n1 exceeds that of the two other types (n1 > n2 and
n1 > n12), while the processor P1 is more loaded than P2. For Type5, the number of
tasks P12 , which requires the use of the two processors, exceeds that of tasks of the
other two types (n12 > n1 and n1 > n2). But, the distribution of load on the proces-
sors is balanced.

For Type2, the load on the processors is balanced, which is not the case for Type3.
The processing times are randomly generated from the set {0, .., 50}.

The values rj are randomly generated from the set {0..L} , with L equal to the inte-
ger part of: � ∗ (s1 + s2 + s12) , where � ∈ {0.5, 1, 1.5} and s1, s2 and s12 are, respec-
tively, the totals of the processing time of P1 − tasks , P2 − tasks and P12 − tasks.

The due dates dj are randomly generated from the set
{
rj + pj, .., rj + pj + L

}
.

We consider that the group of instances represents the set of instances having the
same parameters n, � and Type.

In the next subsection, we will detail the different parameters used to develop the
proposed algorithms and we will present the proposed metrics used to measure the
quality of our algorithms.

710 A. Kacem, A. Dammak

1 3

5.1 Parameters and metrics

It was shown that the effectiveness of a genetic algorithm depends on the size of the
population, the maximum number of generations and the crossover and mutation
rate.

The size of the population should vary between N and 3N (where N is the prob-
lem size). The maximum number of generations should represent a compromise of
the quality of the solutions and the computation time. To obtain new structures in
the population, the crossover rate should generally vary between 60 and 100% and
the mutation rate should be between 0.1 and 5%.

In our GA (Aggregative approach and NSGA-II algorithm), we applied these
parameters. In Pareto approach, we transform the current population by crossing the
non-dominated solutions and by muting the dominated solutions. In this case, the
number of non-dominated solutions represents the crossing rate and the number of
dominated solutions is equal to the mutation rate.

We fixed the number of generations to 2Nb for each population where Nb is the
number of tasks to be processed. The size of the population is then Nb. For the
experimental results, ten instances of each group are generated and the average val-
ues are provided. Some preliminary tests have motivated our choices.

We used two metrics to measure the quality of the Pareto front: the hypervolume
indicator (HV) and the number of non-dominated solutions in Pareto front (ND).
The hypervolume is one of the most popular metrics for multi-objective optimisation
problems (Bradstreet 2011; Lopez-Ibanez and Stutzle 2014). For that, we will use
this indicator to measure and compare the performance of the aggregative, Pareto,
NSGA-II and CABLB algorithms proposed to solve the studied problem.

To calculate the hypervolume of a set of non-dominated points, we used the pro-
gram implemented by Fonseca et al. (2018). The hypervolume measure uses a refer-
ence point (the worst value in each criterion). In this paper, we use the initial solu-
tions calculated by the proposed methods to determine the reference points.

To compare the performance of the proposed algorithms, we used the HV ratio
(denoted by HVr). The following formula compute HVr the distance between the
solutions and the lower bounds:

Fig. 3 One step of calculation of the hypervolume using HSO algorithm (reproduced from While et al.
(2006))

711

1 3

Multi-objective scheduling on two dedicated processors

Where, HVLB is the volume of the space covered by the point represent the lower
bound and the reference point (initial solutions).

Let a(11, 4, 4), b(9, 2, 5), c(5, 6, 7) and d(3. 3, 10) be a set of non-dominated
points presented in an orthonormal coordinate system. The coordinates (x, y, z) cor-
respond to criterion 1, criterion 2, and criterion 3, respectively. The hypervolume of
the set is the volume of the space covered by points a-b-c-d.

To calculate the hypervolume, (Fonseca et al. 2018) implemented they program
using HSO algorithm (Hypervolume by Slicing Objectives) proposed by While et al.
(2006).

Figure 3 presents one step in HSO algorithm, including the slicing of the hyper-
volume, the allocation of points to each slice, and the elimination of newly domi-
nated points. As an illustration of the calculation of the hypervolume using HSO
algorithm, the reader could consult (While et al. 2006).

The remainder of this section is organized as follows. In Sect. 5.2, we will present
the numerical results in terms of average computation of time. Section 5.3 compares
the results of the four proposed approaches.

5.2 Computation time

Tables 4 summarizes the numerical results in terms of average computation of time
(seconds). These results show the importance of distinguishing not only the total

(20)HVr =

(
1 −

HVLB − HVAlgorithm

HVLB

)

Table 4 Computation time for
n=10 (in second)

CABLB results

n = 10 Type1 Type2 Type3 Type4 Type5

� = 0.5 0.086 0.120 0.188 0.260 0.111
� = 1 0.135 0.111 0.141 0.134 0.157
� = 1.5 0.098 0.128 0.122 0.130 0.115
Note: Aggregative GA results
� = 0.5 0.040 0.055 0.126 0.100 0.058
� = 1 0.060 0.059 0.078 0.81 0.091
� = 1.5 0.048 0.073 0.099 0.088 0.084
Note: Pareto GA results
� = 0.5 0.072 0.121 0.188 0.260 0.112
� = 1 0.128 0.112 0.151 0.144 0.158
� = 1.5 0.104 0.129 0.122 0.130 0.125
Note: NSGA-II results
� = 0.5 0.038 0.068 0.092 0.112 0.056
� = 1 0.046 0.066 0.087 0.108 0.052
� = 1.5 0.042 0.072 0.069 0.068 0.050

712 A. Kacem, A. Dammak

1 3

number of tasks and the length of the release dates interval, but also the different
types of problems. The results also show that instances corresponding to the prob-
lem of Type4 (with the largest number of tasks compared to other types and the
tightest distribution of the release dates with � = 0.5) are the most difficult to solve.

Table 5 Computation time for n=20 (in second)

Note: CABLB results

n = 20 Type1 Type2 Type3 Type4 Type5

� = 0.5 0.152 0.170 0.237 0.225 0.168
� = 1 0.186 0.180 0.300 0.278 0.192
� = 1.5 0.139 0.217 0.227 0.285 0.204
Note: Aggregative GA results
� = 0.5 0.085 0.125 0.105 0.088 0.086
� = 1 0.071 0.120 0.228 0.287 0.240
� = 1.5 0.124 0.161 0.223 0.250 0.168
Note: Pareto GA results
� = 0.5 0.152 0.170 0.241 0.218 0.172
� = 1 0.186 0.178 0.281 0.289 0.186
� = 1.5 0.140 0.121 0.231 0.300 0.192
Note: NSGA-II results

n = 10 Type1 Type2 Type3 Type4 Type5

� = 0.5 0.082 0.086 0.122 0.142 0.088
� = 1 0.102 0.116 0.128 0.164 0.102
� = 1.5 0.096 0.104 0.116 0.158 0.110

Table 6 Quality of Aggregative
GA for n = 10

(Type, �) C/LBC TT/LBTT TC/LBTC ND HVr(%)

(1, 0.5) 1.111 1.277 1.410 2.5 43.479
(1, 1) 1.124 4.542 1.212 2.8 45.390
(1, 1.5) 1.028 8.200 1.160 2.8 78.070
(2, 0.5) 1.120 3.163 1.505 2.3 44.134
(2, 1) 1.111 5.054 1.360 3.2 46.209
(2, 1.5) 1.089 35.000 1.350 2.9 44.287
(3, 0.5) 1.129 2.155 1.718 2.3 30.175
(3, 1) 1.128 8.323 1.389 2.4 45.802
(3, 1.5) 1.103 20.222 1.341 2.6 39.948
(4, 0.5) 1.192 1.943 1.781 2.5 31.052
(4, 1) 1.201 12.659 1.466 2.6 35.217
(4, 1.5) 1.151 15.938 1.325 2.5 24.329
(5, 0.5) 1.121 1.172 1.602 2.5 40.113
(5, 1) 1.087 3.214 1.274 2.3 64.183
(5, 1.5) 1.031 13.889 1.198 2.8 78.984

713

1 3

Multi-objective scheduling on two dedicated processors

For the aggregative and NSGA-II methods, our genetic algorithm requires an
average of computation time equal to 0.260 s for the type of problem Type4 (with
� = 0.5). For the Pareto method, the average of computation time is equal to 0.100 s.
The problem of Type1 remains the easiest to solve. The numerical results also reveal
that the aggregative GA, NSGA-II and Pareto GA require an average of computation
time more than the CABLB algorithm.

From Table 5, our genetic algorithm with NSGA-II approach requires an average
computation time equal to 0, 300 s for the type of problem Type4 (with � = 1.5). In

Table 7 Quality of Pareto GA
for n = 10

(Type, �) C/LBC TT/LBTT TC/LBTC ND HVr(%)

(1, 0.5) 1.215 1.614 1.499 2.3 14.913
(1, 1) 1.194 2.958 1.162 2.9 26.078
(1, 1.5) 1.046 7.900 1.151 2.1 66.143
(2, 0.5) 1.326 3.050 1.582 2.2 43.716
(2, 1) 1.243 3.000 1.298 3.3 12.818
(2, 1.5) 1.050 15.222 1.181 3.2 65.201
(3, 0.5) 1.257 2.521 1.808 2.9 39.814
(3, 1) 1.217 4.677 1.328 3.3 22.822
(3, 1.5) 1.133 6.222 1.258 3.2 29.033
(4, 0.5) 1.244 1.385 1.652 2.9 20.596
(4, 1) 1.141 5.205 1.335 3.7 50.022
(4, 1.5) 1.137 11.469 1.297 4.1 28.614
(5, 0.5) 1.289 1.167 1.629 3.1 24.805
(5, 1) 1.120 2.786 1.213 4.1 52.979
(5, 1.5) 1.121 9.000 1.118 2.9 35.172

Table 8 Quality of NSGA-II for
n = 10

(Type, �) C/LBC TT/LBTT TC/LBTC ND HVr(%)

(1, 0.5) 1.181 1.422 1.449 4.3 22.261
(1, 1) 1.209 4.929 1.188 4.7 22.822
(1, 1.5) 1.077 7.100 1.143 2.9 47.854
(2, 0.5) 1.154 3.025 1.530 2.4 33.307
(2, 1) 1.202 3.054 1.304 2.6 20.354
(2, 1.5) 1.058 18.222 1.204 1.9 60.583
(3, 0.5) 1.157 2.294 1.751 3.5 21.338
(3, 1) 1.186 4.935 1.267 3.1 29.630
(3, 1.5) 1.156 11.167 1.271 3.5 21.746
(4, 0.5) 1.225 1.930 1.700 3.7 24.070
(4, 1) 1.208 7.114 1.330 2.2 33.697
(4, 1.5) 1.177 13.813 1.335 2.6 17.627
(5, 0.5) 1.156 1.036 1.567 5.1 29.078
(5, 1) 1.212 2.893 1.281 3.6 29.292
(5, 1.5) 1.148 6.444 1.162 3.6 26.050

714 A. Kacem, A. Dammak

1 3

Manaa and Chu (2010), the branch-and-bound algorithm to minimize the makespan
criterion, needs in average more than 574 s to find the optimal solution. The prob-
lem of Type1 (having the smallest number of tasks compared to others) requires less
computation time compared to other problems. This can be justified by the fact that
the processors are loaded with less than the number of bi-processor tasks compared
to other cases.

5.3 Solution quality

The following fields (C; TT; TC) denote respectively the makespan, the total tardi-
ness and the total completion time. (LBC; LBTT; LBTC) denote, respectively, the
lower bounds of makespan, total tardiness and total completion time.

To compare the three objectives of our Aggregative, Pareto, NSGA and CABLB
algorithms, we use the average quality of the three objectives: C/LBC, TT/LBTT and
TC/LBTC. Furthermore, the number of non-dominated solutions and HV ratio will
be used to measure the performance of the four proposed algorithms.

Tables 6, 7, 8 and 9 present the results of the aggregative, Pareto, NSGA-II and
CABLB algorithms for n = 10 . Column 1 indicates the types of problems (Type, �)
considered in the distribution of the three types of tasks and the number of tasks on
each processor. In columns 2, 3 and 4, (C/LBC, TT/LBTT, TC/LBTC) indicates the
average quality of the makespan, the total tardiness and the total completion time,
respectively, from instances randomly generated. Column 5 presents the average
number of non-dominated solutions for each problem. Finally, in column 6, we pre-
sent the results of the HV ratios.

The results for the four algorithms listed in Tables Tables 6, 7, 8 and 9 show that
the aggregative GA is more effective on the makespan criterion for the problems of
Type1, Type2 with(� = 0.5 , � = 1), Type3 with(� = 1 , � = 1.5) and Type5. For the

Table 9 Quality of CABLB for
n=10

(Type, �) C/LBC TT/LBTT TC/LBTC ND HVr(%)

(1, 0.5) 1.264 1.687 1.419 1.8 7.636
(1, 1) 1.254 4.917 1.193 2.2 14.701
(1, 1.5) 1.144 6.800 1.165 2.1 20.965
(2, 0.5) 1.154 2.925 1.508 2.0 33.703
(2, 1) 1.243 3.270 1.299 2.8 12.818
(2, 1.5) 1.047 14.222 1.216 2.6 66.792
(3, 0.5) 1.124 2.000 1.865 2.8 31.851
(3, 1) 1.233 5.097 1.337 2.6 19.850
(3, 1.5) 1.103 6.778 1.286 3.0 39.948
(4, 0.5) 1.178 1.411 1.668 2.1 34.416
(4, 1) 1.265 6.000 1.351 2.7 23.080
(4, 1.5) 1.133 12.094 1.302 3.0 30.146
(5, 0.5) 1.225 1.176 1.636 2.4 13.461
(5, 1) 1.255 2.821 1.295 3.0 21.109
(5, 1.5) 1.169 8.667 1.180 2.6 20.354

715

1 3

Multi-objective scheduling on two dedicated processors

problems of Type2 with (� = 1.5), Type3 with (� = 0.5 , � = 1.5) and Type4 with
(� = 0.5 , � = 1.5) CABLB algorithm is more efficient. For the problems of Type4
with (� = 1) Pareto is more efficient.

The quality of the solutions found by the NSGA-II approach is good on total
tardiness criterion for the problem of Type5 with (� = 0.5 , � = 1.5). For the prob-
lem of Type1 with (� = 1), Type2 with (� = 1), Type3 with (� = 1 , � = 1.5), Type4
and Type5 with (� = 1) Pareto is more efficient. The results of aggregative GA are
very bad for the problem of Type2 with (� = 1.5) and more efficient for the prob-
lem of Type1 with (� = 0.5). For the problems of Type1 with (� = 1.5), Type2 with
(� = 0.5 , � = 1.5) and Type3 with (� = 0.5) CABLB algorithm is more efficient on
total tardiness criterion.

For the total completion time criterion, the results with NSGA-II algorithm is
more efficient. The results with the aggregative GA and Pareto GA are close to the
lower bounds in some cases and quite far from these lower bounds for the other

Fig. 4 Average number of non-dominated solutions for n =1

Fig. 5 Hypervolume ratios for n = 10

716 A. Kacem, A. Dammak

1 3

cases. The results found by the CABLB algorithm are quite far from these lower
bounds on total completion time criterion.

The graphical representation of the front size described in Fig. 4 shows that the
space of solutions found by NSGA-II and Pareto technique are the most diverse in
many cases containing a significant number of non-dominated solutions (between
2 and 5 solutions). This is justified by the fact that this approach ensures elitism by
archiving non-dominated solutions in the evolution from one generation to another.

Table 10 Quality of aggregative
GA for n = 20

(Type, �) C/LBC TT/LBTT TC/LBTC ND HVr(%)

(1, 0.5) 1.213 4.339 1.923 2.3 21.058
(1, 1) 1.205 15.904 1.512 1.9 31.696
(1, 1.5) 1.060 58.857 1.412 1.7 61.917
(2, 0.5) 1.298 3.328 1.984 2.5 19.100
(2, 1) 1.210 15.962 1.630 2.2 21.514
(2, 1.5) 1.108 99.889 1.579 2.0 38.618
(3, 0.5) 1.263 4.803 2.204 1.4 16.517
(3, 1) 1.302 11.643 1.703 1.8 19.300
(3, 1.5) 1.157 86.722 1.593 2.4 28.814
(4, 0.5) 1.357 4.345 2.198 2.7 12.109
(4, 1) 1.303 20.399 1.823 2.6 12.395
(4, 1.5) 1.134 45.449 1.629 2.2 35.425
(5, 0.5) 1.299 2.827 2.057 2.4 16.703
(5, 1) 1.232 9.337 1.592 1.0 27.990
(5, 1.5) 1.132 26.362 1.519 2.3 37.857

Table 11 Quality of Pareto GA
for n = 20

(Type, �) C/LBC TT/LBTT TC/LBTC ND HVr(%)

(1, 0.5) 1.249 3.751 1.868 3.2 14.496
(1, 1) 1.156 7.137 1.372 2.3 43.479
(1, 1.5) 1.062 40.429 1.356 5.6 61.002
(2, 0.5) 1.292 2.331 1.890 5.3 20.002
(2, 1) 1.189 12.278 1.512 5.2 26.078
(2, 1.5) 1.083 68.815 1.507 4.4 49.480
(3, 0.5) 1.188 3.328 2.124 4.1 31.028
(3, 1) 1.198 6.889 1.628 4.1 37.696
(3, 1.5) 1.188 47.417 1.538 5.9 20.810
(4, 0.5) 1.352 3.719 2.111 1.7 12.632
(4, 1) 1.293 19.214 1.928 3.1 13.698
(4, 1.5) 1.165 43.494 1.572 6.1 26.176
(5, 0.5) 1.296 1.994 1.912 2.2 17.147
(5, 1) 1.111 4.251 1.398 10.2 58.132
(5, 1.5) 1.141 11.224 1.351 6.6 35.141

717

1 3

Multi-objective scheduling on two dedicated processors

The solution space remains the least diversified with the aggregative GA and
CABLB algorithm, but they are most effective for the makespan criterion.

Figure 5 presents the results of the HV ratios for the four proposed algorithms.
The results for the three criteria show that the aggregative selection technique
is more effective for problems of Type1, Type2 with (� = 1), Type3 with (� = 1)
and Type5. For the problems of Type3 with (� = 0.5 , � = 1.5) and Type4 with
(� = 1.5), the NSGA-II algorithm is slightly less efficient. For the CABLB algo-
rithm, the HV ratio is very bad and strongly decreases with the problem of Type1,

Table 12 Quality of NSGA-II
for n = 20

(Type, �) C/LBC TT/LBTT TC/LBTC ND HVr(%)

(1, 0.5) 1.179 3.257 1.618 2.0 28.519
(1, 1) 1.196 12.904 1.508 2.5 33.858
(1, 1.5) 1.089 44.762 1.400 1.8 47.563
(2, 0.5) 1.351 2.889 1.907 2.7 12.500
(2, 1) 1.180 14.128 1.571 2.8 28.071
(2, 1.5) 1.122 76.519 1.514 3.0 33.336
(3, 0.5) 1.242 4.342 2.162 1.8 19.925
(3, 1) 1.346 8.609 1.597 2.0 13.705
(3, 1.5) 1.146 66.500 1.494 1.6 32.168
(4, 0.5) 1.342 1.943 2.144 2.4 13.722
(4, 1) 1.175 15.679 1.515 2.6 35.770
(4, 1.5) 1.192 40.831 1.571 3.2 19.474
(5, 0.5) 1.379 2.517 2.043 2.0 7.948
(5, 1) 1.240 6.611 1.591 2.5 26.567
(5, 1.5) 1.125 13.500 1.399 2.1 40.128

Table 13 Quality of CABLB
for n = 20

(Type, �) C/LBC TT/LBTT TC/LBTC ND HVr(%)

(1, 0.5) 1.219 4.374 1.641 2.1 19.742
(1, 1) 1.196 16.219 1.514 2.0 33.856
(1, 1.5) 1.095 47.524 1.419 1.8 45.287
(2, 0.5) 1.310 3.061 1.903 2.2 17.377
(2, 1) 1.243 14.496 1.616 2.3 15.374
(2, 1.5) 1.090 77.815 1.577 2.1 46.282
(3, 0.5) 1.268 4.509 2.264 1.9 15.731
(3, 1) 1.352 10.821 1.657 1.8 13.039
(3, 1.5) 1.168 70.722 1.527 2.0 25.702
(4, 0.5) 1.295 4.255 2.200 2.3 19.760
(4, 1) 1.236 16.583 1.607 2.0 22.526
(4, 1.5) 1.182 46.315 1.659 2.1 21.940
(5, 0.5) 1.338 2.761 2.059 2.3 11.964
(5, 1) 1.217 8.240 1.576 1.9 30.987
(5, 1.5) 1.175 17.052 1.500 2.1 25.575

718 A. Kacem, A. Dammak

1 3

Type2 with (� = 1 , � = 1.5) and Type5. It is more effective for problems of Type2
with (� = 1.5).

For the problems of Type4 with (� = 0.5), the Pareto GA less efficient. It is
more effective for problems of Type4 with (� = 1).

Tables 10, 11, 12 and 13 present the results of the four proposed algorithms for
n = 20.

The results for the makespan criterion described in these tables show that
the aggregative GA is more effective for the problems of Type1 with (� = 1.5)
and Type4 with (� = 1.5). For the problems of Type1 with (� = 1), Type2 with
(� = 0.5 , � = 1.5), Type3 with (� = 0.5 , � = 1) and Type5 with (� = 0.5 , � = 1)
Pareto GA is more effective. For the problems of Type1 with (� = 0.5), Type2
with (� = 1), Type3 with (� = 1.5), Type4 with (� = 1) and Type5 with (� = 1.5)
NSGA-II is more effective. For other cases, the CABLB is more effective. For

Fig. 6 Average number of non-dominated solutions for n = 20

Fig. 7 Hypervolume ratios for n = 20

719

1 3

Multi-objective scheduling on two dedicated processors

the five types of problems studied with the makespan criterion, the NSGA-II and
Pareto are identical.

The results for the total tardiness criterion described in Tables 10 to 13 show
that the Pareto approach is more effective for the problems of Type1 with (� = 1 ,
� = 1.5), Type2, Type3 and Type5. For the problem of Type1 with (� = 0.5) and
Type4 NSGA-II is the most effective. The aggregative GA and CALBLB algo-
rithm are less effective on the total tardiness criterion.

The numerical results of the total completion time criterion show that the Pareto
technique is more effective in many cases (Type1 with (� = 1 , � = 1.5), Type2,
Type3 with (� = 0.5), Type4 with (� = 0.5) and Type5). For other cases, NSGA-II
is more effective. By looking at these numerical values, we conclude that the four
approaches are almost identical and the averages values found are very close.

Figure 6 summarizes average number of non-dominated solutions for n = 20 .
The space of solutions found by Pareto technique are the most diverse containing
a significant number of non-dominated solutions (between 2 and 10 solutions). The
solution space remains the least diversified with the aggregative GA and CABLB
algorithm.

Figure 7 presents the results of the HV ratios for the four proposed algorithms
(for n = 20). The results for the three criteria show that the Pareto technique is more
effective for problems of Type1 with (� = 1), Type2 with (� = 0.5 , � = 1.5), Type3
with (� = 0.5 , � = 1) and Type5 with (� = 0.5 , � = 1). For the problems of Type1
with (� = 1.5) and Type4 with (� = 1.5), the aggregative GA is more efficient.

For the NSGA method, the HV ratio is very bad and strongly decreases with the
problem of Type2 with (� = 0.5), Type4 with (� = 0.5) and Type5 with (� = 0.5).
For the problems of Type1 with (� = 0.5), Type2 with (� = 1), Type3 with (� = 1.5),
Type4 with (� = 1) and Type5 with (� = 1.5) the NSGA-II method is more efficient.

For the CABLB algorithm, the HV ratio is very bad and strongly decreases with
the problem of Type2 with (� = 1) and Type3 with (� = 0.5 , � = 1). For the prob-
lems of Type4 with (� = 0.5) the CABLB algorithm is more efficient.

The results found by four approaches listed in the Table 6 to 13 are close to the
lower bounds for the makespan criterion. In many cases, the results for the total
completion time are close to the lower bounds for NSGA-II and Pareto approach. For
total tardiness, the results are quite far from lower bounds with the four approaches
studied.

6 Conclusions and perspectives

We studied a multi-objective scheduling problem on two dedicated processors to
optimize three criteria; the makespan, the total tardiness and the total completion
time. In this study, we exploited the lower bound constructed for each criterion, the
hypervolume indicator (HV) and the number of solutions in the optimal front (ND)
to assess the quality of the solutions found by aggregative GA, Pareto GA, NSGA-
II and CABLB algorithm proposed for solving the multi-objective problem. To

720 A. Kacem, A. Dammak

1 3

generate the weight for the aggregative GA, we used the method of Uniform Design
(proposed by Leung and Wang (2000)) to choose a variety of solutions uniformly
dispersed.

The results of the studied problems are encouraging and promising for the makes-
pan and the total completion time criteria. Each studied technique (aggregative,
Pareto, NSGA-II or CABLB) has an advantage compared to the others according
one criterion. In some cases, Pareto techniques and NSGA-II are almost identical.
Therefore, it is interesting to study other extensions of these problems in a future
work, like the study of scheduling problem on parallel processors. For example
minimizing the makespan for the problem P2|sizej, rj|Cmax where sizej is the num-
ber of processors required by the task j. This problem was proved NP-hard in the
strong sense in Blazewicz et al. (2002). Therefore, it is interesting to test the pro-
posed methods for scheduling these problems on parallel processors (Vallada and
Ruiz 2012; Venkata et al. 2018).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

Afrati F, Milis I (2006) Designing ptass for min-sum scheduling problems. Discr Appl Math 154(4):622–639
Afrati F, Bampis E, Chekuri C, Karger D, Kenyon C, Khanna S, Milis I, Queyranne M, Sartinutella M, Stein

C, Sviridenko M (1999) Approximation schemes for minimizing average weighted completion time
with release dates. In: IEEE symposium on foundations of computer science, pp 32–44

Alberto I, Mateo P (2011) A crossover operator that uses pareto optimality in its definition. Top 19(1):67–92
Alhadi G, Kacem I, Laroche P, Osman I (2020) Approximation algorithms for minimizing the maximum

lateness and makespan on parallel machines. Ann Oper Res 285:369–395
Berrichi A, Amodeo L, Yalaoui F, Chatelet E, Mezghiche M (2007) Biobjective optimization algorithms

for joint production and maintenance scheduling: application to the parallel machine problem. J Intell
Manuf 20(4):389–400

Bianco L, Blazewicz J, Dell’Olmo P, Drozdowski M (1997) Preemptive multiprocessor task scheduling with
release times and time windows. Ann Oper Res 70(1):43–55

Blazewicz J, Dell’Olmo P, Drozdowski M (2002) Scheduling multiprocessor tasks on two parallel proces-
sors. RAIRO-Oper Res 36(1):37–51

Blazewicz J, Ecker K, Pesch E, Schmidt G, Weglarz J (2019) Handbook on scheduling. Springer, New York
Bradstreet L (2011) The hypervolume indicator for multi-objective optimisation: calculation and use. PhD

thesis, University of Western Australia
Chu C (1992) A branch and bound algorithm to minimize the total of tardness with different release date.

Naval Res Log 39(2):256–283
Coffman E, Garey M, Johnson D, LaPaugh AS (1985) Scheduling file transfers. SIAM J Comput

14(4):743–780
Craig G, Kime CR, Saluja K (1988) Test scheduling and control for vlsi built-in self-test. IEEE Trans Com-

put 37(9):1099–1109
Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga ii.

IEEE Trans Evol Comput 6(2):182–197
Drozdowski M (1996) Scheduling multiprocessor tasks an overview. Eur J Oper Res 94(2):215–230
Emmons H (1969) Some new uniform design. Oper Res 17(4):701–715
Fang K, Li J (1994) Multi-objective genetic algorithms made easy: selection, sharing and mating restrictions.

Hong Kong, Baptist Univ., Hong Kong, Tech. Rep. Math-042

721

1 3

Multi-objective scheduling on two dedicated processors

Fonseca LC, Mand P, López-Ibñáez M, Guerreiro AP (2018) Computation of the hypervolume indicator.
http://lopez -ibane z.eu/hyper volum e. Accessed 3 Feb 2019

Holland J (1975) Adaptation in natural and artificial systems. Michigan Press, University of Michigan Press,
USA

Hoogeveen J, de Velde SLV, Veltman B (1994) Complexity of scheduling multiprocessor tasks with pre-
specified processors allocations. Discr Appl Math 55(3):259–272

Kacem A, Dammak A (2017) A genetic algorithm to minimize the total of tardiness multiprocessing tasks
on two dedicated processors. In: IEEE control, decision and information technologies, Barcelona, Spain
5-7 April. 2017:85–90

Kacem A, Dammak A (2019) Bi-objective scheduling on two dedicated processors. Eur J Ind Eng 5:681–700
Kacem I (2007) Lower bounds for tardiness minimization on a single machine with family setup times. Int J

Oper Res 4(1):18–31
Karasakal E, Silav A (2016) A multi-objective genetic algorithm for a bi-objective facility location problem

with partial coverage. Top 24(1):206–232
Leung Y, Wang Y (2000) Multiobjective programming using uniform design and genetic algorithm. IEEE

Trans Syst Man Cybern 30(C):293–303
Li G (1997) Single machine earliness and tardiness scheduling. Eur J Oper Res 96(3):546–558
Lopez-Ibanez M, Stutzle T (2014) Automatically improving the anytime behaviour of optimisation algo-

rithms. Eur J Oper Res 235(3):569–582
Manaa A, Chu C (2010) Scheduling multiprocessor tasks to minimise the makespan on two dedicated pro-

cessors. Eur J Ind Eng 4(3):265–279
Oguz C, Ercan M (2005) A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks. J

Sched 8(4):323–351
Pareto V (1896) Cours économie politique. Lausane Switzerland, Switzerland
Rebai M, Kacem I, Adjallah K (2010) Earliness tardiness minimization on a single machine to schedule pre-

ventive maintenance tasks: metaheuristic and exact methods. J Intell Manuf 23(4):1207–1224
Vallada E, Ruiz R (2011) A genetic algorithm for the unrelated parallel machine scheduling problem with

sequence dependent setup times. Eur J Oper Res 211(3):612–622
Vallada E, Ruiz R (2012) Scheduling unrelated parallel machines with sequence dependent setup times and

weighted earliness–tardiness minimization. In: Just-in-time systems, Springer, pp 67–90
Venkata P, Usha M, Viswanath K (2018) Order acceptance and scheduling in a parallel machine environment

with weighted completion time. Eur J Ind Eng 12(4):535–557
While L, Hingston P, Barone L, Husband S (2006) A faster algorithm for calculating hypervolume. IEEE

Trans Evol Comput 10(1):29–38

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://lopez-ibanez.eu/hypervolume

	Multi-objective scheduling on two dedicated processors
	Abstract
	1 Introduction
	2 Literature review
	3 Problem statement
	3.1 Notation
	3.2 Mathematical model
	3.3 Lower bound LBC for problem
	3.4 Lower bound LBTC for problem
	3.5 Lower bound LBTT for the problem

	4 Solving approaches
	4.1 The genetic algorithm
	4.2 Aggregative approach
	4.2.1 Calculation of weight with uniform design
	4.2.2 Scaling method

	4.3 Pareto approach
	4.4 NSGA-II algorithm
	4.5 Constructive algorithm based on lower bounds

	5 Numerical results
	5.1 Parameters and metrics
	5.2 Computation time
	5.3 Solution quality

	6 Conclusions and perspectives
	References

