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Abstract
We study a multi-objective scheduling problem on two dedicated processors. The 
aim is to minimize simultaneously the makespan, the total tardiness and the total 
completion time. This NP-hard problem requires the use of well-adapted methods. 
For this, we adapted genetic algorithms to multi-objective case. Four methods are 
presented to solve this problem. The first is an aggregative genetic algorithm (GA), 
the second is a Pareto GA, the third is a non-dominated sorting GA (NSGA-II) and 
the fourth is a constructive algorithm based on lower bounds (CABLB). We pro-
posed some adapted lower bounds for each criterion to evaluate the quality of the 
found results on a large set of instances. Indeed, these bounds also make it pos-
sible to determine the dominance of one algorithm over another based on the dif-
ferent results found by each of them. We used two metrics to measure the quality 
of the Pareto front: the hypervolume indicator (HV) and the number of solutions in 
the Pareto front (ND). The obtained results show the effectiveness of the proposed 
algorithms.
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1  Introduction

This work aims at optimizing the computer control systems when these systems 
have two dedicated processors: the assignment of tasks to these processors is fixed. 
For this problem, we have three types of tasks. Some tasks must be processed only 
by the first processor, others by the second processor, and the remaining tasks need 
simultaneously both processors. This problem represents a practical issue in com-
puter control systems, where a task is performed in several copies on different pro-
cessors to ensure better safety of the system. In production management, we can cite 
the case where a task requires several operators for its execution.

The contribution of our work is to propose lower bounds for the three studied 
criteria (makespan, total tardiness and total completion time) and to develop genetic 
algorithms to solve this problem in the multi-objective case. The lower bounds 
allow us to assess the quality of the feasible solutions and the genetic algorithms 
incorporates the optimization part. We implemented our approach by consider-
ing aggregative, NSGA-II and Pareto scenarios on a large set of instances. The 
results show the effectiveness of the implemented algorithms. The studied problem 
is P2�fixj, rj�Cmax,

∑
Tj,

∑
Cj according the standard ternary notation, where P2 

denotes two processors; fixj indicates that each task has one or two dedicated pro-
cessors and the assignment of each task is fixed; rj denotes the release date; Cmax , ∑

Tj and 
∑

Cj indicates the makespan, the total tardiness and the total completion 
time, respectively.

The next section is a review of existing research related to the studied problem. In 
Sect. 3, a mathematical formulation model is proposed, some notations are detailed 
and the proposed lower bounds for the makespan, total completion time and total 
tardiness are given. In Sect. 4, we present the solving approaches. Four methods to 
solve the considered problem are developed. The first one is aggregative GA with 
Uniform Design, the second is Pareto GA, the third is the NSGA-II and the fourth 
is CABLB algorithm. Section 5 deals with the generation of instances, the different 
parameters used to develop the proposed algorithms, the proposed metrics to meas-
ure the quality of the Pareto front, the computational results and the qualitative and 
quantitative analysis. Finally concluding remarks are given in Sect. 6.

2 � Literature review

Few studies have dealt with this problem. The most important studies are mentioned 
in the following paragraphs.

Coffman et al. (1985) studied the file transfer problem in the field of computer 
networks where each computer has a number of different ports for data exchange. 
File transfer uses a subset of ports, therefore, a multiprocessor task on dedicated 
processors. The boot time of the transfers is also taken into account, then differ-
ent transfer protocols are proposed, and performance results are demonstrated. 
Drozdowski (1996) cited this paper to describe the actual applications of scheduling 
problems on dedicated processors.
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Craig et al. (1988) studied the problem in testing integrated circuits VLSI (very 
large-scale integration). To test a component of these circuits, several other elec-
tronic components are needed simultaneously. The authors addressed the problems 
in case when the processing times are unitary or arbitrary. A heuristic based on the 
maximum degree of incompatibility has been proposed to solve these two problems 
P|fixj, pj = 1|Cmax and P|fixj|Cmax ( pj denotes the processing time of task j).

These works (Coffman et al. 1985; Craig et al. 1988), which cover several fields 
of application, made it possible to form the first theoretical basis for scheduling 
problems on dedicated processors. This topic has been widely investigated dur-
ing the past years. The most remarkable work has been devoted to the study of the 
complexity.

Hoogeveen et al. (1994) showed that the problem P2�fixj�∑wjCj is NP-hard in 
the strong sense ( wj the weight and Cj the completion time of task j). The preemp-
tion of tasks does not make the problem easier. Oguz and Ercan (2005) proved that 
the problem P2�fixj, pmtn�∑wjCj is NP-hard in the strong sense (pmtn allows us the 
preemption of tasks). Afrati et al. (1999) proposed a polynomial time approximation 
scheme (PTAS) for the problem Pm�fixj, pmtn�∑Cj and a second PTAS approxima-
tion scheme proposed by Afrati and Milis (2006).

Chu (1992) proposed a lower bound for the minimization of total tardiness prob-
lem; the calculation involves the SRPT priority rule (Shortest Remaining processing 
Time) for a relaxed problem with preemption. The main idea is that each time the 
processor becomes available, an unfinished task available with the shortest remain-
ing processing time is set. The execution of a task is interrupted when its remaining 
processing time is strictly greater than the length of processing task that becomes 
available.

Leung and Wang (2000) proposed a genetic algorithm with multiple fitness func-
tions to conduct research to solve a multi-objective problem. The authors applied an 
experimental design method called Uniform Design to select the weights used with 
the objective functions and diversify uniformly selected solutions.

Kacem (2007) developed two lower bounds for tardiness minimization problem 
on a single machine with Family Setup Times. The first lower bound is based on 
Emmons theorem (Emmons 1969) and the SPT rule (Shortest Processing Time), 
the second is achieved by sorting tasks by processing times and the idea of due 
dates exchange. Another idea for solving the linear programming problem was also 
proposed.

Berrichi et al. (2007) studied a bi-objective model of parallel machine problem 
using reliability models to take into account the service side. Two genetic algorithms 
were developed to obtain an approximation of the Pareto front: One algorithm that 
uses the two objectives weighted and NSGA-II algorithm.

Rebai et  al. (2010) introduced three lower bounds for minimization tardiness 
problem on one machine to schedule preventive maintenance tasks. The first lower 
bound is based on the Lagrangian relaxation of mathematical model. The second is 
obtained by the sum of M costs calculated for M tasks, and the third is an adaptation 
of the lower bound given by Li (1997) for the problem of earliness tardiness minimi-
zation with a single due date for each task.
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Manaa and Chu (2010) proposed a branch-and-bound method to minimize the 
makespan. In their article, the authors presented a lower bound that has been proven. 
This method can treat all instances generated up to 30 tasks for the most difficult 
cases in less than 15 min.

Vallada and Ruiz (2011) studied the unrelated parallel machine scheduling prob-
lem. A genetic algorithm is developed to solve this problem. The proposed method 
includes a fast local search and a local search enhanced crossover operator. The 
computational and statistical analysis shows an excellent performance in a compre-
hensive benchmark set of instances.

Bradstreet (2011) introduced the hypervolume indicator (HV) to measure the 
quality of the Pareto front. The hypervolume is one of the most famous indicator 
that can reflect the dominance of Pareto fronts.

An approximation algorithm is proposed by Alhadi et al. (2020) to minimize the 
maximum lateness and makespan on parallel machines. In this paper, the authors 
presented polynomial time approximation schemes to generate an approximate 
Pareto Frontier.

Kacem and Dammak (2019) studied the problem of bi-objective scheduling of 
multi-processor tasks on two dedicated processors. The authors adapted the genetic 
algorithm to solve the problem of minimizing the makespan and the total tardi-
ness for the large size instances. The results found showed the effectiveness of the 
proposed genetic algorithms and the encouraging quality of the lower bounds con-
structed in Manaa and Chu (2010), Kacem and Dammak (2017).

The most three main criteria analyzed in the case of scheduling problems with 
one processor and with parallel processors are the schedule length, the mean flow 
time and the lateness (Blazewicz et  al. 2019). In addition, these criteria are com-
pletely different: the schedule length and the flow time involving release dates. The 
lateness involves due dates. For that, we decided to study a new extension of this 
problem with these three criteria since they are the most relevant. According the 
standard ternary notation, the studied problem is P2�fixj, rj�Cmax,

∑
Tj,

∑
Cj.

3 � Problem statement

In this section, we detail some notations, we propose a mathematical model for our 
studied problem and we give a lower bounds for the three criteria: the makespan, the 
total tardiness and the total completion time.

3.1 � Notation

The following fields used in the studied problem P2�fixj, rj�Cmax,
∑

Tj,
∑

Cj denote:

•	 P2: Two processors.
•	 fixj : Each task has one or two dedicated processors and the assignment of each 

task is fixed.
•	 rj : Release date of task j.
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•	 Cmax : Makespan.
•	 Tj : Tardiness of task j; Tj = max

{
Cj − dj;0

}
 with dj the due date of task j.

•	 Cj : the completion time of task j.

The set of parameters and variables necessary for our model are presented below:

•	 xl,k =

{
1 if task lcompletes before task k starts

0 else;

•	 pj : Processing time of task j.
•	 P1 : The set of tasks requiring the first processor.
•	 P2 : The set of tasks requiring the second processor.
•	 P1,2 : The set of tasks requiring both processors simultaneously.
•	 M: Constant penalty.

3.2 � Mathematical model

We propose here a mathematical formulation of our multi-objective scheduling 
problem.

Subject to:

Equation (1) expresses the three criteria: the makespan, the total tardiness and the 
total completion time. In the constraints (2) and (3), for each task k sequenced after 

(1)Minimize {Cmax,
∑

Tj,
∑

Cj}

(2)Ck ≥ Cl + pk + (xl,k − 1).M ∀(l, k) ∈ (P1 ∪ P1,2)
2 with l ≠ k

(3)Ck ≥ Cl + pk + (xl,k − 1).M ∀(l, k) ∈ (P2 ∪ P1,2)
2 with l ≠ k

(4)xl,k + xk,l = 1 ∀(l, k) ∈ (P1 ∪ P1,2)
2 with l ≠ k

(5)xl,k + xk,l = 1 ∀(l, k) ∈ (P2 ∪ P1,2)
2 with l ≠ k

(6)Cmax ≥ Cj ∀j ∈ (P1 ∪ P2 ∪ P1,2)

(7)Tj ≥ Cj − dj ∀j ∈ (P1 ∪ P2 ∪ P1,2)

(8)Tj ≥ 0 ∀j ∈ (P1 ∪ P2 ∪ P1,2)

(9)Cj ≥ rj + pj ∀j ∈ (P1 ∪ P2 ∪ P1,2)

(10)xk,l ∈ {0, 1} ∀k ≠ l ∀(k, l) ∈ ((P1 ∪ P1,2)
2 ∪ (P2 ∪ P1,2)

2)
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task l completes, the completion time of task k is greater than or equal to the com-
pletion time of task l plus the processing time of task k. The constraints (4) and (5) 
make it possible two tasks to complete one before the second task starts. The con-
straint (6) ensures that the makespan is greater than or equal to the completion time 
for each task j. The constraints (7) and (8) compute the tardiness and ensures that 
Tj = max

{
Cj − dj;0

}
 . Constraint (9) defines the completion time and shows that it is 

greater than or equal to the release date plus the processing time of task j. The con-
straint (10) defines the domain of definition of the parameters of the model.

We study three scheduling problems (makespan, total tardiness and total comple-
tion time) on two dedicated processors. To assess the quality of the results found by 
such a method, we use the following lower bounds for each criterion.

3.3 � Lower bound LBC for problem P2|fixj, rj|Cmax

Manaa and Chu (2010) proposed two ideas to construct a lower bound for the con-
sidered problem:

•	 The idea of dividing the problem into two sub-problems on one processor by 
relaxing the studied problem.

•	 The idea of Bianco et al. (1997) an optimal solution to minimize the makespan 
for one-processor problem.

The relaxation of the studied problem allows us to obtain two simple problems: 

(a)	 Scheduling tasks that necessitate using simultaneously both processors and tasks 
that require the first processor.

(b)	 Scheduling tasks that require employing simultaneously both processors and 
tasks that necessitate the second processor.

The optimal solutions of problems (a) and (b) can be found by scheduling tasks 
according to the order of their release dates.

The lower bound for the studied problem corresponds to the maximum value of 
the solutions of problems (a) and (b).

3.4 � Lower bound LBTC for problem P2�fixj, rj�∑ Cj

In this study, we use and combine three ideas to build a lower bound:

–	 The idea of reducing the problem into two sub-problems on one processor by 
partitioning the bi-processor tasks.

–	 The idea of dividing the mono- processor tasks into two tasks.
–	 The idea of under-estimating the completion times of the tasks on a single pro-

cessor (originally proposed by Chu 1992).
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The first of this lower bound is to partition the bi- processor tasks into two mono-
processor tasks, each of them on one of the processors. We get two independent 
problems on each processor.

On the first processorP1 , we consider the n1 mono-processor tasks jj with a weight 
w1
j
= 1 , and the n12 bi- processor sub-tasks jj on processor P1 a weight w1

j
= w , with 

w ∈ [0, 1].
Similarly, we consider the second processor P2 , the n2 mono-processor tasks jj 

with a weight w2
j
= 1 . However, the bi-processor sub-tasks jj on processor P2 a 

weight w2
j
= 1 − w . Thus, we obtain a problem on each processor: 1�fixj, rj�∑w1

j
Cj 

and 1�fixj, rj�∑w2
j
Cj.

We consider w =
1

2
 . The next step is to divide the mono-processor tasks (with a 

weight w1
j
= 1 ) in two tasks. We get for each divided task two sub tasks jj1 and jj2 

with release date rj1 = rj ; rj2 = rj +
pj

2
 and processing time pj1 = pj2 =

pj

2
.

We divide the weight on for each sub tasks. We are getting w1
j
=

1

2
 if 

∀jj ∈
{
P1;P12

}
 . From where, 

Lb1 = Lb
�
1�fixj, rj�∑w1

j
Cj

�
= Lb

�
1�fixj, rj�∑ 1

2
Cj

�
+
∑

j∈P1

pj

4
 , with 

∑
j∈P1

pj

4
 is a 

penalty to be added according to Webster formula.

We apply the same principle for the problem 1�fixj, rj�∑w2
j
Cj . We are getting 

Lb2 = Lb
�
1�fixj, rj�∑ 1

2
Cj

�
+
∑

j∈P2

pj

4
=

1

2
Lb

�
1�fixj, rj�∑Cj

�
+
∑

j∈P2

pj

4
  . 

LBTC = Lb1 + Lb2 is then a lower bound for problem P2�fixj, rj�∑Cj . The calcula-
tion of the lower bounds of completion times for the problem on each processor uses 
the following theorem for 1�rj, pre�∑Cj.

Theorem 1  (Chu 1992) Let C[i](�) be the completion time of the task in the ith posi-
tion of a feasible schedule. C′

i
 is the completion time of the task in the i th position of 

a feasible schedule constructed by the SRPT (Shortest Remaining Processing Time) 
priority rule. Chu proved that for every feasible schedule � , we have: C[i](�) ≥ C�

i

Lb1 = Lb
(
1|fixj, rj|

∑ 1

2
Cj

)
+
∑
j∈P1

pj

4
=

1

2
Lb

(
1|fixj, rj|

∑
Cj

)
+
∑
j∈P1

pj

4
.

Table 1   Example j rj pj P

j1 2 6 P1

j2 4 2 P1

j3 1 2 P12

j4 0 8 P1

j5 3 2 P2

j6 2 6 P2

j7 1 2 P2
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By applying the theorem in Chu (1992), we compute a lower bound on the com-
pletion time of each job.

Example  Let us consider the instance in Table 1.

We apply the principle of calculation of the lower bound mentioned above and 
we get two sub-problems on each processor. On the first processor P1 , we sched-
ule the tasks 

{
j1, j2, j3, j4

}
 . We divide the tasks 

{
j1, j2, j4

}
 on into two, we get the 

following tasks: 
{
j11, j12, j21, j22, j41, j42

}
with the following parameters described in 

Table 2.
The sequence built by the SRPT rule with preemption gives the solution 

described in Fig. 1.
The total of completion time, giving the following lower bound: 

Lb1 =
1

2
Lb

�
1�fixj, rj�∑Cj

�
+
∑

j∈P1

pj

4
=

3+5+6+8+11+14+18

2
+

3+3+1+1+4+4

4
= 36, 5   . 

Respectively, we calculate the lower bound Lb2 for the problem on P2.
Thus, we consider LBTC = Lb1 + Lb2 as a lower bound for the problem 

P2�fixj, rj�∑Cj . .

3.5 � Lower bound LBTT for the problem P2�fixj, rj�∑ Tj

Kacem and Dammak (2017) proposed an adapted lower bound for the problem 
of minimization of total tardiness on two dedicated processors. The authors 
exploited and combined three ideas to construct this lower bound:

Table 2   Results division on P1 j rj pj P

j1.1 2 3 P1

j1.2 5 3 P1

j2.1 4 1 P1

j2.2 5 1 P1

j3 1 2 P1

j4.1 0 4 P1

j4.2 4 4 P1

Fig. 1   SRPT representation on P1
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–	 The idea of reducing the problem in two sub-problems on one processor by 
partitioning the bi-processor tasks.

–	 The idea of under-estimating the completion time of the tasks (initially sug-
gested by Chu 1992).

–	 The idea of calculating the lower bound by assigning the due dates to the 
reduced completion times (originally proposed in Rebai et  al. (2010) for 
another scheduling problem).

The first step of this lower bound is to divide the bi-processor tasks into two mono-
processor tasks; each of which is executed on one of the two processors. Conse-
quently, we obtain two independent problems on each processor. On the first proces-
sor P1 , we consider the n1 mono-processor tasks Jj with a weight �1

j
= 1 , and the n12 

bi-processor sub-tasks Jj on processor P1 having a weight �1
j
= � with � ∈ [0, 1].

Similarly, we consider, on the second processor P2 , the n2 mono-processor tasks 
Jj with a weight �2

j
= 1 . However, the n12 bi-processor sub-tasks Jj on the processor 

P2 have a weight �2
j
= 1 − � . Thus, we obtain a problem on each processor 

1�fixj, rj�∑ �
1
j
Tj and 1�fixj, rj�∑ �

2
j
Tj.

Using the idea of Chu (1992) (described in the previous section), we compute a 
lower bound on the completion time of each task.

The next step of computing the lower bound is based on the idea of assigning the 
weight and the due date of each task to completion times’ lower bounds. The total 
tardiness is minimized by the Hungarian algorithm.

Let Costi,j be the cost of assigning a reduced C′
i
 to the task Jj supposed to end at 

the ith position of the schedule. This cost can be calculated according to the follow-
ing formula: Costi,j = �j ∗ max

{
C�
i
− dj;0

}
.

This assignment technique, presented by Rebai et al. (2010), allows us to elabo-
rate a new lower bound. We apply the Hungarian algorithm to determine, from the 
assignment matrix CostP1

i,j
 , a lower bound (Lb1) to solve the following problem 

1�fixj, rj�∑ �
1
j
Tj.

Applying the same process, we calculate Lb2 for the 1�fixj, rj�∑ �
2
j
Tj problem. Thus, 

we consider LBTT = Lb1 + Lb2 as a lower bound for the problem P2�fixj, rj�∑Tj.
Optimization of the lower bound LBTT To improve the constructed lower 

bound, we look for the weights �∗
j
 , which maximize LBTT. The idea is to associate 

the better weight �∗
j
 for each bi-processor task Jj which maximizes the tardiness cal-

culated by the Hungarian algorithm. We use the following method to optimize the 
bound LBTT.

(11)

Lb1 =min
�

xi,jCosti,j

⎧⎪⎨⎪⎩

∑
i xi,j = 1∑
j xi,j = 1

xi,j ∈ {0, 1}
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–	 For a bi-processor task Jj ∈ (P1,2) , we calculate the gap ej ∗ between TP1

j∗
 and TP2

j∗
 

(where TP1

j∗
 (respectively, TP2

j∗
 ) is the tardiness of task j associated to the sub-prob-

lem on P1 (respectively, P2 ) obtained by the Hungarian algorithm).
–	 According to the gap, ej ∗ , we increase the � value for a negative gap (and we 

reduce it, respectively, for a positive gap).
–	 We apply the Hungarian algorithm to the new matrix and we calculate a new 

lower bound LBTT�.
–	 We repeat this procedure ∀Jj ∈ (P1,2).

Next, we present the study of the problem P2�fixj, rj�Cmax,
∑

Cj,
∑

Tj.

4 � Solving approaches

We adapt a genetic algorithm to the multi-objective case. We propose four algo-
rithms to solve the considered problem. The first is an aggregative GA, the second is 
a Pareto GA, the third is a NSGA-II and the fourth is a constructive algorithm based 
on lower bounds.

4.1 � The genetic algorithm

To represent the data of the studied problem, we used a standard coding technique. 
This coding consists in representing an individual with a permutation containing N 
distinct numbers that correspond to the set {1, 2, 3, ..,N}.

To form the diversified initial population, we used a random method to create a 
feasible sequence and to generate the other individuals of the initial population.

To assess the quality of individuals in a population, we have presented three 
methods to evaluate the studied problem in a given sequence.

The literature has several selection techniques such as proportional selection by 
tournament, by rank, random selection, etc (see Karasakal and Silav 2016). For our 
algorithm, we implemented three selection approaches: the aggregative approach, 
the Pareto one and NSGA-II.

The process of crossover between two parents leads to the birth of two children. 
In this case, an exchange position is randomly determined (see Vallada and Ruiz 
2011). The first part of the first child is directly obtained from the first parent. The 
second part is provided by respecting the order of the remaining tasks as they appear 
in the second parent tasks. The same process is applied to the second child by revers-
ing the parents. For our algorithm, we implemented the one-point crossover, which 
is a folklore (see Holland 1975).

Several methods of mutation exist in the literature such as the method of per-
mutation, insertion and inversion. In our case, we used the permutation method of 
swapping two positions of the individual.
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4.2 � Aggregative approach

To adapt our genetic algorithm to the multi-objective case, we constructed an aggre-
gative selection method that consists in generating weights for each sequence of a 
given population. To calculate the weights, we used an experimental design method 
called Uniform Design (Leung and Wang 2000). We choose a new population by a 
scaling method, which consists in calculating the weighted sum of normalized objec-
tive functions. Several combinations of weight are considered for the three objec-
tive functions (makespan, total tardiness and completion time). Each combination of 
these weights transforms the problem into a mono-objective case. Accordingly, the 
search directions are uniformly dispersed to the Pareto front in the objective space. 
With multiple fitness functions, we design a selection scheme to maintain the qual-
ity and the diversity of the population. This selection scheme consists in applying 
at every iteration the fitness functions (See Equation 19) and to sort the individuals 
of the current population in increasing order according to the Scaling method (See 
Sect. 4.2.2). The best individuals are selected to form a new population.

In what follows, we will describe the Uniform Design method used for calculat-
ing the weight and we will give the formula for the scaling method for the selection 
of a new population.

4.2.1 � Calculation of weight with uniform design

The main objective of the Uniform Design is to sample a small set of points from a 
given set of points, so that the selected points are uniformly dispersed. This method 
is a branch of statistics that has been used to calculate the weight. As an illustration 
of the Uniform Design method, the reader could consult (Leung and Wang 2000).

We consider a unit hyper-cube C in a K dimensions space (K is the number 
of objectives) and h a point in C, Where h = (h1, h2, .., hK)

T , such that 0 ≤ hi ≤ 1 
∀1 ≤ i ≤ K.

For any item h from the hyper-cube C, we can create a hyper-rectangle R(h) 
between the center O and h, with O = (0, 0, .., 0)T . This hyper-rectangle is described 
by the following formula:

We consider a set of X points from C, we can associate with each point h, a subset 
of X points that belongs to the hyper-rectangle R(h). Let X(h) be the cardinality of 
such a sub set and X(h)/X the fraction of the points included in the hyper-cube C 
and 

∏K

i=1
hi is the fraction of volume value of the hyper-rectangle R(h). The uni-

form design is to determine X points in C such that the following discrepancy is 
minimized.

(12)R(h) =
{
a ∈ C∕a = (a1, a2, .., aK), 0 ≤ ai ≤ hi,∀1 ≤ i ≤ K

}
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The authors presented the X points solution calculated using the uniform matrix 
U(K,X)

{
Ur,i

}
X∗K

 given by Fang and Li (1994). With Ur,i = (r.�i−1modX) + 1 and � 
is a parameter that depends on X and K.

Now, we consider our problem studied, which consists in optimizing three objec-
tives. In our case, we have K = 3 , we take X = 7 , so � = 3 see (Leung and Wang 
2000). Using the formula Ur,i given by Fang and Li (1994), we get the following 
uniform matrix:

U(3, 7)
�
Ur,i

�
X∗K

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 4 3

3 7 5

4 3 7

5 6 2

6 2 4

7 5 6

1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

We consider the weighting vector Wr = (wr
1
,wr

2
, ..,wr

K
)T . The components of this 

vector are calculated by the following formula:

4.2.2 � Scaling method

We use the weight components vector calculated using the Uniform Design to build 
a scaling method that allows us to choose a new population by sorting individuals of 
the current population in ascending order according to the following formula:

Such that,

(13)Sup
h∈C

|X(h)
X

−

K∏
i=1

hi|

(14)wr
i
=

Ur,i

Ur,1 + Ur,2 +⋯ + Ur,K

,∀1 ≤ r ≤ X,∀1 ≤ i ≤ K

(15)H(s) = wr
1
∗ C(s) + wr

2
∗ TT(s) + wr

3
∗ TC(s)

(16)C(s) =

⎛⎜⎜⎝

Cmax(s) − min
x∈P

�
Cmax(x)

�

max
x∈P

�
Cmax(x)

�
− min

x∈P

�
Cmax(x)

�
⎞⎟⎟⎠

(17)TT(s) =

(
T(s) − min

x∈P
{T(x)}

max
x∈P

{T(x)} − min
x∈P

{T(x)}

)
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where wr
i
 are the vector components of the weight described in the above section, s 

is a feasible solution from population P and Cmax(x) , T(x), Ctime(x) , are, respectively, 
the makespan, the total tardiness and total completion time of a solution x ∈ P.

By exploiting the uniform matrix, we obtain seven evaluation functions (fitness). 
The list of functions is given by the following formula:

Each combination of these weights transforms the problem into a mono-objective 
case. For each combination, the genetic algorithm is applied simultaneously, the best 
feasible solutions are selected to form a new population by sorting the individuals of 
the current population in increasing order of the weighted objective and the popula-
tion is stored. At the end of this process, such populations are merged and only the 
non-dominated solutions are kept.

4.3 � Pareto approach

We adapt the classical genetic algorithm for multi-objective case using the Pareto 
approach (Pareto 1896). For each generation, we transform the population P by 
crossing the non-dominated solutions and mutating the dominated solutions. 
Then, we concatenate the current population P and the new individuals created by 
crossover and mutation (see Alberto and Mateo 2011). The new population is then 
obtained by keeping all non-dominated solutions. In case the number of non-domi-
nated solutions is less than the population size, we complete the remaining popula-
tion by the best individuals according to three fairly studied criteria: the one-third of 
the remaining population by the best individuals according to the makespan crite-
rion and the one-third of the remaining population by the best individuals according 
to the total tardiness criterion. The best individuals according to the total completion 
time criterion will complement the rest of the population. In the last generation, only 
non-dominated solutions are kept.

(18)TC(s) =

⎛
⎜⎜⎝

Ctime(s) − min
x∈P

�
Ctime(x)

�

max
x∈P

�
Ctime(x)

�
− min

x∈P

�
Ctime(x)

�
⎞
⎟⎟⎠

(19)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

fitness1 =
2

9
∗ C(s)+

4

9
∗ TT(s)+

3

9
∗ TC(s)

fitness2 =
3

15
∗ C(s)+

7

15
∗ TT(s)+

5

15
∗ TC(s)

fitness3 =
4

14
∗ C(s)+

3

14
∗ TT(s)+

7

14
∗ TC(s)

fitness4 =
5

13
∗ C(s)+

6

13
∗ TT(s)+

2

13
∗ TC(s)

fitness5 =
6

12
∗ C(s)+

2

12
∗ TT(s)+

4

12
∗ TC(s)

fitness6 =
7

18
∗ C(s)+

5

18
∗ TT(s)+

6

18
∗ TC(s)

fitness7 =
1

3
∗ C(s)+

1

3
∗ TT(s)+

1

3
∗ TC(s)
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4.4 � NSGA‑II algorithm

The NSGA-II algorithm is based on the following principles (Deb et al. 2002):

–	 With each generation g, merging the population of parents Pg of size s with the 
population of children Eg of the same size to build a new population Rg = Pg ∪ Eg 
of size 2 ∗ s.

–	 Sort the Rg results population according to the non-dominance criterion. This 
makes it possible to distribute Rg in several fronts 

(
F1,F2, ...

)
 . The first fronts 

contain the best individuals.
–	 Building the new parent population Pg+1 by adding the Fi fronts while the size of 

Pg+1 does not exceed s. In the case where the size of the new population is less 
than s, the crowding method is applied.

The calculation of the crowding distance of an individual is based on the following 
principles:

–	 Repeat these steps for all objectives.
–	 Sort the solutions of an objective in ascending order.
–	 Assign infinite distance for the individuals having extreme values (the first and 

last according to the sorts).
–	 For all other individuals, calculate the normalized difference of the two adjacent 

solutions. Add the value and calculate the distance of the current individual.

After calculating the crowding distance of the ith front Fi from Rg , the list of Fi solu-
tions must be sorted in a descending order. The best solution is selected using the 
crowded comparison-operator (≺n) ; between two different rank solutions, we choose 
the one with the smallest rank, if they have the same rank we choose the solution 
that has the greatest crowding distance.

4.5 � Constructive algorithm based on lower bounds

We exploit and combine the ideas of the proposed lower bounds for each criterion 
(makespan, total completion time and total tardiness) to build a new Constructive 
Algorithm Based on Lower Bounds (CABLB). The main ideas of this algorithm is 
to create a feasible schedule using the lower bounds on each processors for each cri-
terion. To diversify the selected solutions we transform the set of solutions obtained 

Fig. 2   Feasible schedule using the lower bounds LBTC on P1
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by crossing the non-dominated solutions and mutating the dominated solutions. At 
the end, only the non-dominated solutions are kept.

Example  Let us consider the instance in Table 1. Now, we apply the lower bound 
LBTC to this instance. We obtain two sub-problems on each processor. On the first 
processor P1 , we have to perform the following tasks 

{
j1, j2, j3, j4

}
 . According to the 

SRPT rule (see Fig. 1), we obtain the following tasks 
{
j3, j2, j1, j4

}
 to create a feasi-

ble schedule with a lower bound on the completion time on P1.

The next step is to insert on the second processor P2 the mono-processor tasks {
j5, j6, j7

}
 which only request the second processor P2 according to their order by 

using the SRPT rule. We have to perform the following tasks 
{
j5, j7, j6

}
 . Figure 2 

represents a feasible schedule using the lower bounds LBTC on P1 applied to the 
instance in Table 1.

Similarly, we create a feasible schedule using the lower bound LBTC on P2 . Then, 
we insert on the first processor P1 the mono-processor tasks which only request the 
first processor P1 according to their order by using the SRPT rule.

To generate the set of solutions, we applied this principle to all the proposed 
lower bounds (LBC, LBTC and LBTT) on each processor.

The CALB algorithm is based on the following steps:

–	 Step 1 Create a feasible schedule s1 using the lower bounds LBTC on P1 and the 
mono-processor tasks which only request the second processor P2 according to 
their order by the SRPT rule.

–	 Step 2 Create a feasible schedule s2 using the lower bounds LBTC on P2 and the 
mono-processor tasks which only request the first processor P1 according to their 
order by the SRPT rule.

–	 Step 3 Create a feasible schedule s3 using the lower bounds LBTT on P1 and the 
mono-processor tasks which only request the second processor P2 according to 
their order by the SRPT rule.

–	 Step 4 Create a feasible schedule s4 using the lower bounds LBTT on P2 and the 
mono-processor tasks which only request the first processor P1 according to their 
order by the SRPT rule.

–	 Step 5 Create a feasible schedule s5 using the lower bounds LBC on P1 and the 
mono-processor tasks which only request the second processor P2 according to 
their order by the release dates.

Table 3   Problem types
Number tasks Type1 Type2 Type3 Type4 Type5

n1 = n n n n [n/2]
n2 = [n/2] n [n/2] n [n/2]
n12 = [n/2] [n/2] n n n
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–	 Step 6 Create a feasible schedule s6 using the lower bounds LBC on P2 and the 
mono-processor tasks which only request the first processor P1 according to their 
order by the release dates.

–	 Step 7 Generate from the set of solutions S =
{
s1, s2, s3, s4, s5, s6

}
 a new set of 

solutions S′ by crossing the non-dominated solutions and mutating the dominated 
solutions.

–	 Step 8 Select from S ∪ S� the non-dominated solutions.

5 � Numerical results

In this section, we present some experimental results obtained on randomly gener-
ated instances. Then, we analyze these results and we provide some conclusions.

We implemented our genetic algorithm using a DEV C + + compiler on an Intel 
CoreTM i3 4005U CPU 1.7 GHz, 1.7 GHz and 4 GB of RAM.

We randomly generated instances by taking into account five types of problems 
illustrated in Table 3 presented by Manaa and Chu (2010). The parameter n is an 
integer ( n ∈ {10, 20} ), and [x] corresponds to the integer part of x. The variables 
n1 , n2 and n12 , respectively, represent the number of P1 − tasks , P2 − tasks and 
P12 − tasks.

For these five types of problems (Manaa and Chu 2010), considered the distribu-
tion of the three types of tasks and the number of tasks on each processor (load on 
the processor).

For Type4, the distribution of tasks is balanced ( n1 = n2 = n12 = n ) and the dis-
tribution of the load on each processor ( P1 ∶ n1 + n12 = 2n and P2 ∶ n2 + n12 = 2n ) 
is, therefore, balanced.

For Type1, the number of tasks n1 exceeds that of the two other types ( n1 > n2 and 
n1 > n12 ), while the processor P1 is more loaded than P2. For Type5, the number of 
tasks P12 , which requires the use of the two processors, exceeds that of tasks of the 
other two types ( n12 > n1 and n1 > n2 ). But, the distribution of load on the proces-
sors is balanced.

For Type2, the load on the processors is balanced, which is not the case for Type3. 
The processing times are randomly generated from the set {0, .., 50}.

The values rj are randomly generated from the set {0..L} , with L equal to the inte-
ger part of: � ∗ (s1 + s2 + s12) , where � ∈ {0.5, 1, 1.5} and s1, s2 and s12 are, respec-
tively, the totals of the processing time of P1 − tasks , P2 − tasks and P12 − tasks.

The due dates dj are randomly generated from the set 
{
rj + pj, .., rj + pj + L

}
.

We consider that the group of instances represents the set of instances having the 
same parameters n, � and Type.

In the next subsection, we will detail the different parameters used to develop the 
proposed algorithms and we will present the proposed metrics used to measure the 
quality of our algorithms.
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5.1 � Parameters and metrics

It was shown that the effectiveness of a genetic algorithm depends on the size of the 
population, the maximum number of generations and the crossover and mutation 
rate.

The size of the population should vary between N and 3N (where N is the prob-
lem size). The maximum number of generations should represent a compromise of 
the quality of the solutions and the computation time. To obtain new structures in 
the population, the crossover rate should generally vary between 60 and 100% and 
the mutation rate should be between 0.1 and 5%.

In our GA (Aggregative approach and NSGA-II algorithm), we applied these 
parameters. In Pareto approach, we transform the current population by crossing the 
non-dominated solutions and by muting the dominated solutions. In this case, the 
number of non-dominated solutions represents the crossing rate and the number of 
dominated solutions is equal to the mutation rate.

We fixed the number of generations to 2Nb for each population where Nb is the 
number of tasks to be processed. The size of the population is then Nb. For the 
experimental results, ten instances of each group are generated and the average val-
ues are provided. Some preliminary tests have motivated our choices.

We used two metrics to measure the quality of the Pareto front: the hypervolume 
indicator (HV) and the number of non-dominated solutions in Pareto front (ND). 
The hypervolume is one of the most popular metrics for multi-objective optimisation 
problems (Bradstreet 2011; Lopez-Ibanez and Stutzle 2014). For that, we will use 
this indicator to measure and compare the performance of the aggregative, Pareto, 
NSGA-II and CABLB algorithms proposed to solve the studied problem.

To calculate the hypervolume of a set of non-dominated points, we used the pro-
gram implemented by Fonseca et al. (2018). The hypervolume measure uses a refer-
ence point (the worst value in each criterion). In this paper, we use the initial solu-
tions calculated by the proposed methods to determine the reference points.

To compare the performance of the proposed algorithms, we used the HV ratio 
(denoted by HVr ). The following formula compute HVr the distance between the 
solutions and the lower bounds:

Fig. 3   One step of calculation of the hypervolume using HSO algorithm (reproduced from While et al. 
(2006))
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Where, HVLB is the volume of the space covered by the point represent the lower 
bound and the reference point (initial solutions).

Let a(11, 4, 4), b(9, 2, 5), c(5, 6, 7) and d(3. 3, 10) be a set of non-dominated 
points presented in an orthonormal coordinate system. The coordinates (x, y, z) cor-
respond to criterion 1, criterion 2, and criterion 3, respectively. The hypervolume of 
the set is the volume of the space covered by points a-b-c-d.

To calculate the hypervolume, (Fonseca et al. 2018) implemented they program 
using HSO algorithm (Hypervolume by Slicing Objectives) proposed by While et al. 
(2006).

Figure 3 presents one step in HSO algorithm, including the slicing of the hyper-
volume, the allocation of points to each slice, and the elimination of newly domi-
nated points. As an illustration of the calculation of the hypervolume using HSO 
algorithm, the reader could consult (While et al. 2006).

The remainder of this section is organized as follows. In Sect. 5.2, we will present 
the numerical results in terms of average computation of time. Section 5.3 compares 
the results of the four proposed approaches.

5.2 � Computation time

Tables 4 summarizes the numerical results in terms of average computation of time 
(seconds). These results show the importance of distinguishing not only the total 

(20)HVr =

(
1 −

HVLB − HVAlgorithm

HVLB

)

Table 4   Computation time for 
n=10 (in second)

CABLB results

n = 10 Type1 Type2 Type3 Type4 Type5

� = 0.5 0.086 0.120 0.188 0.260 0.111
� = 1 0.135 0.111 0.141 0.134 0.157
� = 1.5 0.098 0.128 0.122 0.130 0.115
Note: Aggregative GA results
� = 0.5 0.040 0.055 0.126 0.100 0.058
� = 1 0.060 0.059 0.078 0.81 0.091
� = 1.5 0.048 0.073 0.099 0.088 0.084
Note: Pareto GA results
� = 0.5 0.072 0.121 0.188 0.260 0.112
� = 1 0.128 0.112 0.151 0.144 0.158
� = 1.5 0.104 0.129 0.122 0.130 0.125
Note: NSGA-II results
� = 0.5 0.038 0.068 0.092 0.112 0.056
� = 1 0.046 0.066 0.087 0.108 0.052
� = 1.5 0.042 0.072 0.069 0.068 0.050
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number of tasks and the length of the release dates interval, but also the different 
types of problems. The results also show that instances corresponding to the prob-
lem of Type4 (with the largest number of tasks compared to other types and the 
tightest distribution of the release dates with � = 0.5 ) are the most difficult to solve.

Table 5   Computation time for n=20 (in second)

Note: CABLB results

n = 20 Type1 Type2 Type3 Type4 Type5

� = 0.5 0.152 0.170 0.237 0.225 0.168
� = 1 0.186 0.180 0.300 0.278 0.192
� = 1.5 0.139 0.217 0.227 0.285 0.204
Note: Aggregative GA results
� = 0.5 0.085 0.125 0.105 0.088 0.086
� = 1 0.071 0.120 0.228 0.287 0.240
� = 1.5 0.124 0.161 0.223 0.250 0.168
Note: Pareto GA results
� = 0.5 0.152 0.170 0.241 0.218 0.172
� = 1 0.186 0.178 0.281 0.289 0.186
� = 1.5 0.140 0.121 0.231 0.300 0.192
Note: NSGA-II results

n = 10 Type1 Type2 Type3 Type4 Type5

� = 0.5 0.082 0.086 0.122 0.142 0.088
� = 1 0.102 0.116 0.128 0.164 0.102
� = 1.5 0.096 0.104 0.116 0.158 0.110

Table 6   Quality of Aggregative 
GA for n = 10

(Type, �) C/LBC TT/LBTT TC/LBTC ND HVr(%)

(1, 0.5) 1.111 1.277 1.410 2.5 43.479
(1, 1) 1.124 4.542 1.212 2.8 45.390
(1, 1.5) 1.028 8.200 1.160 2.8 78.070
(2, 0.5) 1.120 3.163 1.505 2.3 44.134
(2, 1) 1.111 5.054 1.360 3.2 46.209
(2, 1.5) 1.089 35.000 1.350 2.9 44.287
(3, 0.5) 1.129 2.155 1.718 2.3 30.175
(3, 1) 1.128 8.323 1.389 2.4 45.802
(3, 1.5) 1.103 20.222 1.341 2.6 39.948
(4, 0.5) 1.192 1.943 1.781 2.5 31.052
(4, 1) 1.201 12.659 1.466 2.6 35.217
(4, 1.5) 1.151 15.938 1.325 2.5 24.329
(5, 0.5) 1.121 1.172 1.602 2.5 40.113
(5, 1) 1.087 3.214 1.274 2.3 64.183
(5, 1.5) 1.031 13.889 1.198 2.8 78.984
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For the aggregative and NSGA-II methods, our genetic algorithm requires an 
average of computation time equal to 0.260 s for the type of problem Type4 (with 
� = 0.5 ). For the Pareto method, the average of computation time is equal to 0.100 s. 
The problem of Type1 remains the easiest to solve. The numerical results also reveal 
that the aggregative GA, NSGA-II and Pareto GA require an average of computation 
time more than the CABLB algorithm.

From Table 5, our genetic algorithm with NSGA-II approach requires an average 
computation time equal to 0, 300 s for the type of problem Type4 (with � = 1.5 ). In 

Table 7   Quality of Pareto GA 
for n = 10

(Type, �) C/LBC TT/LBTT TC/LBTC ND HVr(%)

(1, 0.5) 1.215 1.614 1.499 2.3 14.913
(1, 1) 1.194 2.958 1.162 2.9 26.078
(1, 1.5) 1.046 7.900 1.151 2.1 66.143
(2, 0.5) 1.326 3.050 1.582 2.2 43.716
(2, 1) 1.243 3.000 1.298 3.3 12.818
(2, 1.5) 1.050 15.222 1.181 3.2 65.201
(3, 0.5) 1.257 2.521 1.808 2.9 39.814
(3, 1) 1.217 4.677 1.328 3.3 22.822
(3, 1.5) 1.133 6.222 1.258 3.2 29.033
(4, 0.5) 1.244 1.385 1.652 2.9 20.596
(4, 1) 1.141 5.205 1.335 3.7 50.022
(4, 1.5) 1.137 11.469 1.297 4.1 28.614
(5, 0.5) 1.289 1.167 1.629 3.1 24.805
(5, 1) 1.120 2.786 1.213 4.1 52.979
(5, 1.5) 1.121 9.000 1.118 2.9 35.172

Table 8   Quality of NSGA-II for 
n = 10

(Type, �) C/LBC TT/LBTT TC/LBTC ND HVr(%)

(1, 0.5) 1.181 1.422 1.449 4.3 22.261
(1, 1) 1.209 4.929 1.188 4.7 22.822
(1, 1.5) 1.077 7.100 1.143 2.9 47.854
(2, 0.5) 1.154 3.025 1.530 2.4 33.307
(2, 1) 1.202 3.054 1.304 2.6 20.354
(2, 1.5) 1.058 18.222 1.204 1.9 60.583
(3, 0.5) 1.157 2.294 1.751 3.5 21.338
(3, 1) 1.186 4.935 1.267 3.1 29.630
(3, 1.5) 1.156 11.167 1.271 3.5 21.746
(4, 0.5) 1.225 1.930 1.700 3.7 24.070
(4, 1) 1.208 7.114 1.330 2.2 33.697
(4, 1.5) 1.177 13.813 1.335 2.6 17.627
(5, 0.5) 1.156 1.036 1.567 5.1 29.078
(5, 1) 1.212 2.893 1.281 3.6 29.292
(5, 1.5) 1.148 6.444 1.162 3.6 26.050
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Manaa and Chu (2010), the branch-and-bound algorithm to minimize the makespan 
criterion, needs in average more than 574 s to find the optimal solution. The prob-
lem of Type1 (having the smallest number of tasks compared to others) requires less 
computation time compared to other problems. This can be justified by the fact that 
the processors are loaded with less than the number of bi-processor tasks compared 
to other cases.

5.3 � Solution quality

The following fields (C; TT; TC) denote respectively the makespan, the total tardi-
ness and the total completion time. (LBC; LBTT; LBTC) denote, respectively, the 
lower bounds of makespan, total tardiness and total completion time.

To compare the three objectives of our Aggregative, Pareto, NSGA and CABLB 
algorithms, we use the average quality of the three objectives: C/LBC, TT/LBTT and 
TC/LBTC. Furthermore, the number of non-dominated solutions and HV ratio will 
be used to measure the performance of the four proposed algorithms.

Tables 6, 7, 8 and 9 present the results of the aggregative, Pareto, NSGA-II and 
CABLB algorithms for n = 10 . Column 1 indicates the types of problems (Type, �) 
considered in the distribution of the three types of tasks and the number of tasks on 
each processor. In columns 2, 3 and 4, (C/LBC, TT/LBTT, TC/LBTC) indicates the 
average quality of the makespan, the total tardiness and the total completion time, 
respectively, from instances randomly generated. Column 5 presents the average 
number of non-dominated solutions for each problem. Finally, in column 6, we pre-
sent the results of the HV ratios.

The results for the four algorithms listed in Tables Tables 6, 7, 8 and 9 show that 
the aggregative GA is more effective on the makespan criterion for the problems of 
Type1, Type2 with(� = 0.5 , � = 1 ), Type3 with(� = 1 , � = 1.5 ) and Type5. For the 

Table 9   Quality of CABLB for 
n=10

(Type, �) C/LBC TT/LBTT TC/LBTC ND HVr(%)

(1, 0.5) 1.264 1.687 1.419 1.8 7.636
(1, 1) 1.254 4.917 1.193 2.2 14.701
(1, 1.5) 1.144 6.800 1.165 2.1 20.965
(2, 0.5) 1.154 2.925 1.508 2.0 33.703
(2, 1) 1.243 3.270 1.299 2.8 12.818
(2, 1.5) 1.047 14.222 1.216 2.6 66.792
(3, 0.5) 1.124 2.000 1.865 2.8 31.851
(3, 1) 1.233 5.097 1.337 2.6 19.850
(3, 1.5) 1.103 6.778 1.286 3.0 39.948
(4, 0.5) 1.178 1.411 1.668 2.1 34.416
(4, 1) 1.265 6.000 1.351 2.7 23.080
(4, 1.5) 1.133 12.094 1.302 3.0 30.146
(5, 0.5) 1.225 1.176 1.636 2.4 13.461
(5, 1) 1.255 2.821 1.295 3.0 21.109
(5, 1.5) 1.169 8.667 1.180 2.6 20.354
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problems of Type2 with ( � = 1.5 ), Type3 with ( � = 0.5 , � = 1.5 ) and Type4 with 
( � = 0.5 , � = 1.5 ) CABLB algorithm is more efficient. For the problems of Type4 
with ( � = 1 ) Pareto is more efficient.

The quality of the solutions found by the NSGA-II approach is good on total 
tardiness criterion for the problem of Type5 with ( � = 0.5 , � = 1.5 ). For the prob-
lem of Type1 with ( � = 1 ), Type2 with ( � = 1 ), Type3 with ( � = 1 , � = 1.5 ), Type4 
and Type5 with ( � = 1 ) Pareto is more efficient. The results of aggregative GA are 
very bad for the problem of Type2 with ( � = 1.5 ) and more efficient for the prob-
lem of Type1 with ( � = 0.5 ). For the problems of Type1 with ( � = 1.5 ), Type2 with 
( � = 0.5 , � = 1.5 ) and Type3 with ( � = 0.5 ) CABLB algorithm is more efficient on 
total tardiness criterion.

For the total completion time criterion, the results with NSGA-II algorithm is 
more efficient. The results with the aggregative GA and Pareto GA are close to the 
lower bounds in some cases and quite far from these lower bounds for the other 

Fig. 4   Average number of non-dominated solutions for n =1

Fig. 5   Hypervolume ratios for n = 10



716	 A. Kacem, A. Dammak 

1 3

cases. The results found by the CABLB algorithm are quite far from these lower 
bounds on total completion time criterion.

The graphical representation of the front size described in Fig. 4 shows that the 
space of solutions found by NSGA-II and Pareto technique are the most diverse in 
many cases containing a significant number of non-dominated solutions (between 
2 and 5 solutions). This is justified by the fact that this approach ensures elitism by 
archiving non-dominated solutions in the evolution from one generation to another. 

Table 10   Quality of aggregative 
GA for n = 20

(Type, �) C/LBC TT/LBTT TC/LBTC ND HVr(%)

(1, 0.5) 1.213 4.339 1.923 2.3 21.058
(1, 1) 1.205 15.904 1.512 1.9 31.696
(1, 1.5) 1.060 58.857 1.412 1.7 61.917
(2, 0.5) 1.298 3.328 1.984 2.5 19.100
(2, 1) 1.210 15.962 1.630 2.2 21.514
(2, 1.5) 1.108 99.889 1.579 2.0 38.618
(3, 0.5) 1.263 4.803 2.204 1.4 16.517
(3, 1) 1.302 11.643 1.703 1.8 19.300
(3, 1.5) 1.157 86.722 1.593 2.4 28.814
(4, 0.5) 1.357 4.345 2.198 2.7 12.109
(4, 1) 1.303 20.399 1.823 2.6 12.395
(4, 1.5) 1.134 45.449 1.629 2.2 35.425
(5, 0.5) 1.299 2.827 2.057 2.4 16.703
(5, 1) 1.232 9.337 1.592 1.0 27.990
(5, 1.5) 1.132 26.362 1.519 2.3 37.857

Table 11   Quality of Pareto GA 
for n = 20

(Type, �) C/LBC TT/LBTT TC/LBTC ND HVr(%)

(1, 0.5) 1.249 3.751 1.868 3.2 14.496
(1, 1) 1.156 7.137 1.372 2.3 43.479
(1, 1.5) 1.062 40.429 1.356 5.6 61.002
(2, 0.5) 1.292 2.331 1.890 5.3 20.002
(2, 1) 1.189 12.278 1.512 5.2 26.078
(2, 1.5) 1.083 68.815 1.507 4.4 49.480
(3, 0.5) 1.188 3.328 2.124 4.1 31.028
(3, 1) 1.198 6.889 1.628 4.1 37.696
(3, 1.5) 1.188 47.417 1.538 5.9 20.810
(4, 0.5) 1.352 3.719 2.111 1.7 12.632
(4, 1) 1.293 19.214 1.928 3.1 13.698
(4, 1.5) 1.165 43.494 1.572 6.1 26.176
(5, 0.5) 1.296 1.994 1.912 2.2 17.147
(5, 1) 1.111 4.251 1.398 10.2 58.132
(5, 1.5) 1.141 11.224 1.351 6.6 35.141
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The solution space remains the least diversified with the aggregative GA and 
CABLB algorithm, but they are most effective for the makespan criterion.

Figure 5 presents the results of the HV ratios for the four proposed algorithms. 
The results for the three criteria show that the aggregative selection technique 
is more effective for problems of Type1, Type2 with ( � = 1 ), Type3 with ( � = 1 ) 
and Type5. For the problems of Type3 with ( � = 0.5 , � = 1.5 ) and Type4 with 
( � = 1.5 ), the NSGA-II algorithm is slightly less efficient. For the CABLB algo-
rithm, the HV ratio is very bad and strongly decreases with the problem of Type1, 

Table 12   Quality of NSGA-II 
for n = 20

(Type, �) C/LBC TT/LBTT TC/LBTC ND HVr(%)

(1, 0.5) 1.179 3.257 1.618 2.0 28.519
(1, 1) 1.196 12.904 1.508 2.5 33.858
(1, 1.5) 1.089 44.762 1.400 1.8 47.563
(2, 0.5) 1.351 2.889 1.907 2.7 12.500
(2, 1) 1.180 14.128 1.571 2.8 28.071
(2, 1.5) 1.122 76.519 1.514 3.0 33.336
(3, 0.5) 1.242 4.342 2.162 1.8 19.925
(3, 1) 1.346 8.609 1.597 2.0 13.705
(3, 1.5) 1.146 66.500 1.494 1.6 32.168
(4, 0.5) 1.342 1.943 2.144 2.4 13.722
(4, 1) 1.175 15.679 1.515 2.6 35.770
(4, 1.5) 1.192 40.831 1.571 3.2 19.474
(5, 0.5) 1.379 2.517 2.043 2.0 7.948
(5, 1) 1.240 6.611 1.591 2.5 26.567
(5, 1.5) 1.125 13.500 1.399 2.1 40.128

Table 13   Quality of CABLB 
for n = 20

(Type, �) C/LBC TT/LBTT TC/LBTC ND HVr(%)

(1, 0.5) 1.219 4.374 1.641 2.1 19.742
(1, 1) 1.196 16.219 1.514 2.0 33.856
(1, 1.5) 1.095 47.524 1.419 1.8 45.287
(2, 0.5) 1.310 3.061 1.903 2.2 17.377
(2, 1) 1.243 14.496 1.616 2.3 15.374
(2, 1.5) 1.090 77.815 1.577 2.1 46.282
(3, 0.5) 1.268 4.509 2.264 1.9 15.731
(3, 1) 1.352 10.821 1.657 1.8 13.039
(3, 1.5) 1.168 70.722 1.527 2.0 25.702
(4, 0.5) 1.295 4.255 2.200 2.3 19.760
(4, 1) 1.236 16.583 1.607 2.0 22.526
(4, 1.5) 1.182 46.315 1.659 2.1 21.940
(5, 0.5) 1.338 2.761 2.059 2.3 11.964
(5, 1) 1.217 8.240 1.576 1.9 30.987
(5, 1.5) 1.175 17.052 1.500 2.1 25.575
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Type2 with ( � = 1 , � = 1.5 ) and Type5. It is more effective for problems of Type2 
with ( � = 1.5).

For the problems of Type4 with ( � = 0.5 ), the Pareto GA less efficient. It is 
more effective for problems of Type4 with ( � = 1).

Tables 10, 11, 12 and 13 present the results of the four proposed algorithms for 
n = 20.

The results for the makespan criterion described in these tables show that 
the aggregative GA is more effective for the problems of Type1 with ( � = 1.5 ) 
and Type4 with ( � = 1.5 ). For the problems of Type1 with ( � = 1 ), Type2 with 
( � = 0.5 , � = 1.5 ), Type3 with ( � = 0.5 , � = 1 ) and Type5 with ( � = 0.5 , � = 1 ) 
Pareto GA is more effective. For the problems of Type1 with ( � = 0.5 ), Type2 
with ( � = 1 ), Type3 with ( � = 1.5 ), Type4 with ( � = 1 ) and Type5 with ( � = 1.5 ) 
NSGA-II is more effective. For other cases, the CABLB is more effective. For 

Fig. 6   Average number of non-dominated solutions for n = 20

Fig. 7   Hypervolume ratios for n = 20
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the five types of problems studied with the makespan criterion, the NSGA-II and 
Pareto are identical.

The results for the total tardiness criterion described in Tables 10 to 13 show 
that the Pareto approach is more effective for the problems of Type1 with ( � = 1 , 
� = 1.5 ), Type2, Type3 and Type5. For the problem of Type1 with ( � = 0.5 ) and 
Type4 NSGA-II is the most effective. The aggregative GA and CALBLB algo-
rithm are less effective on the total tardiness criterion.

The numerical results of the total completion time criterion show that the Pareto 
technique is more effective in many cases (Type1 with ( � = 1 , � = 1.5 ), Type2, 
Type3 with ( � = 0.5 ), Type4 with ( � = 0.5 ) and Type5). For other cases, NSGA-II 
is more effective. By looking at these numerical values, we conclude that the four 
approaches are almost identical and the averages values found are very close.

Figure  6 summarizes average number of non-dominated solutions for n = 20 . 
The space of solutions found by Pareto technique are the most diverse containing 
a significant number of non-dominated solutions (between 2 and 10 solutions). The 
solution space remains the least diversified with the aggregative GA and CABLB 
algorithm.

Figure 7 presents the results of the HV ratios for the four proposed algorithms 
(for n = 20 ). The results for the three criteria show that the Pareto technique is more 
effective for problems of Type1 with ( � = 1 ), Type2 with ( � = 0.5 , � = 1.5 ), Type3 
with ( � = 0.5 , � = 1 ) and Type5 with ( � = 0.5 , � = 1 ). For the problems of Type1 
with ( � = 1.5 ) and Type4 with ( � = 1.5 ), the aggregative GA is more efficient.

For the NSGA method, the HV ratio is very bad and strongly decreases with the 
problem of Type2 with ( � = 0.5 ), Type4 with ( � = 0.5 ) and Type5 with ( � = 0.5 ). 
For the problems of Type1 with ( � = 0.5 ), Type2 with ( � = 1 ), Type3 with ( � = 1.5 ), 
Type4 with ( � = 1 ) and Type5 with ( � = 1.5 ) the NSGA-II method is more efficient.

For the CABLB algorithm, the HV ratio is very bad and strongly decreases with 
the problem of Type2 with ( � = 1 ) and Type3 with ( � = 0.5 , � = 1 ). For the prob-
lems of Type4 with ( � = 0.5 ) the CABLB algorithm is more efficient.

The results found by four approaches listed in the Table 6 to 13 are close to the 
lower bounds for the makespan criterion. In many cases, the results for the total 
completion time are close to the lower bounds for NSGA-II and Pareto approach. For 
total tardiness, the results are quite far from lower bounds with the four approaches 
studied.

6 � Conclusions and perspectives

We studied a multi-objective scheduling problem on two dedicated processors to 
optimize three criteria; the makespan, the total tardiness and the total completion 
time. In this study, we exploited the lower bound constructed for each criterion, the 
hypervolume indicator (HV) and the number of solutions in the optimal front (ND) 
to assess the quality of the solutions found by aggregative GA, Pareto GA, NSGA-
II and CABLB algorithm proposed for solving the multi-objective problem. To 
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generate the weight for the aggregative GA, we used the method of Uniform Design 
(proposed by Leung and Wang (2000)) to choose a variety of solutions uniformly 
dispersed.

The results of the studied problems are encouraging and promising for the makes-
pan and the total completion time criteria. Each studied technique (aggregative, 
Pareto, NSGA-II or CABLB) has an advantage compared to the others according 
one criterion. In some cases, Pareto techniques and NSGA-II are almost identical. 
Therefore, it is interesting to study other extensions of these problems in a future 
work, like the study of scheduling problem on parallel processors. For example 
minimizing the makespan for the problem P2|sizej, rj|Cmax where sizej is the num-
ber of processors required by the task j. This problem was proved NP-hard in the 
strong sense in Blazewicz et al. (2002). Therefore, it is interesting to test the pro-
posed methods for scheduling these problems on parallel processors (Vallada and 
Ruiz 2012; Venkata et al. 2018).
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