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Abstract
Portfolio selection problems have been thoroughly studied under the risk-and-return 
paradigm introduced by Markowitz. However, the usefulness of this approach has 
been hindered by some practical considerations that have resulted in poorly diver-
sified portfolios, or, solutions that are extremely sensitive to parameter estimation 
errors. In this work, we use sampling methods to cope with this issue and com-
pare the merits of two approaches: a sample average approximation approach and 
a performance-based regularization (PBR) method that appeared recently in the lit-
erature. We extend PBR by incorporating three different risk metrics—integrated 
chance-constraints, quantile deviation, and absolute semi-deviation—and deriving 
the corresponding regularization formulas. Additionally, a numerical comparison 
using index-based portfolios is presented using historic data that includes the sub-
prime crisis.

Keywords  Portfolio optimization · Regularization · Cross-validation · Risk 
measures · Sample average approximation · Markowitz

Mathematics Subject Classification  90C15 · 46N10 · 91G10

1  Introduction

The seminal work of Markowitz (1952) changed the landscape of asset alloca-
tion problems, which up to that point were usually tackled in an ad-hoc fashion, 
see Kolm et  al. (2014). By casting portfolio selection as a well-defined optimiza-
tion problem, he established the risk-return paradigm which is still the fundamental 
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reference framework used by most investment professionals. In essence, he created 
the conceptual structure that gave birth to modern portfolio theory.

While Markowitz’s contribution cannot be overstated, the direct application of the 
method proposed in the original paper proved problematic in practice for a variety of 
reasons. First, the sensitivity of the solution to the inputs—expected returns and the 
covariance matrix—is considerable, and given that estimation errors are always pre-
sent the resulting portfolio was often deemed unreliable (see Kolm et al. 2014 and 
references therein). Second, it has been observed that in many cases the solution was 
not fully diversified. It is widely accepted that diversification is highly desirable in 
practice since it is an efficient way of protecting investors against unexpected events 
(e.g. situations of extreme volatility or geopolitical turmoil). However, forcing diver-
sification in an ad-hoc fashion can lead to poor quality solutions due to an overly 
constrained feasible set. In Green and Hollifield (1992) the authors derived theoreti-
cal conditions under which diversification occurs for the mean-variance problem.

On the other hand, using the variance as a risk measure brings both practical and 
theoretical limitations. Being symmetrical, the variance is sensitive to extreme val-
ues on both ends of the distribution. In essence, it mixes both, “positive” and “nega-
tive” events offering a distorted assessment of the true risk the investor is exposed 
to. In the last 60 years there has been a significant amount of research into differ-
ent ways of capturing risk (see the excellent surveys Krokhmal et al. 2011; Mansini 
et al. 2014), and we make use of some of those risk measures in the present work.

Markowitz optimization model assumes the parameters are known exactly, 
which, of course, in practice is not the case. Several different alternatives have been 
proposed to overcome this issue: popular choices include the assumption that the 
parameters follow a known distribution function, or that they belong to a specific 
uncertainty set. In the first case a widely-used methodology is the sample average 
approximation (SAA) approach described in Shapiro (2003). Given a distribution 
function for the returns, a deterministic approximation of the original stochastic 
problem can be constructed drawing samples from the given distribution. Under 
certain conditions, it can be shown that, as the sample size increases, the optimal 
solution and optimal value of the SAA problem converge to their exact counterparts 
in the original stochastic problem. More traditional methods in stochastic program-
ming often make assumptions regarding the underlying distribution of the problem. 
SAA is flexible, and it has been shown that even for problems with an astronomical 
number of scenarios good candidate solutions can be obtained by sampling a few 
thousand of those scenarios (e.g. Linderoth et al. 2006).

Another popular approach is robust optimization (RO), and its variations. First 
proposed by Soyster (1973) and later developed in Bertsimas and Sim (2004), RO 
pursues a worst-case approach—it attempts to protect the decision maker against all 
possible realizations of the random parameters by considering an uncertainty set. 
Thus, the decision maker needs to solve a deterministic problem to obtain a solu-
tion that offers protection against all possible realizations within this set. RO is also 
helpful to avoid estimation errors, generating portfolio less sensitive to parameter 
changes. Examples of RO applications in finance include DeMiguel and Nogales 
(2009), Fernandes et  al. (2016), Goldfarb and Iyengar (2003), Kawas and Thiele 
(2011), Wang et al. (2016) and Quaranta and Zaffaroni (2008).
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Building on these methods, more recent approaches consider risk-averse SAA 
formulations that combine machine learning and regularization schemes to obtain 
diversified portfolios with good out-of-sample performance. Machine learning tools, 
which are widely used in other areas such as regression analysis (see Bishop 2006) 
and data mining (see Witten et al. 2011), are recently making their way into portfo-
lio management. Algorithms developed by this discipline, like cross-validation and 
classification algorithms, can be of great importance for estimation procedures and 
as decision supporting tools.

Regularization techniques, commonly used in high-dimensional regression prob-
lems (e.g. Belloni and Chernozhukov 2013; Candes and Tao 2007), have also made 
an entrance in portfolio optimization due to their ability to cope with numerical 
stability issues (e.g. Tikhonov 1963) or sparsity of the solution  (e.g. Lasso, Tib-
shirani 1996). In Brodie et  al. (2009) the authors reformulated the mean-variance 
problem into a constrained least-squares regression, and added a � -1 penalty to the 
objective function that encourages sparse portfolios. The � -1 regularization is the 
most common approach to stabilize solution of portfolio problems, see Corsaro 
and De  Simone (2019) and Dai and Wen (2018) for additional examples. In Fas-
trich et al. (2015) the authors extend � -1 regularization by considering Lasso, and 
propose new non-convex regularization terms that exhibit good performance when 
applied to large data sets. The authors use cross-validation to estimate the parameter. 
By using tools from statistical learning theory (Still and Kondor 2010) use the � -2 
norm of the weight vector to induce diversification and achieve stability on out-of-
sample experiments.

Recently, Ban et al. (2016) proposed a method called performance-based regular-
ization (PBR) which focuses on both sides of the optimization problem: it acknowl-
edges parameter estimation difficulties, and aims at generating solutions that are 
more diversified, which is key in practice. The central idea is to exclude solutions 
that are in-sample optimal, but have potentially high out-of-sample variability. The 
authors considered the problem of minimizing two risk measures, the variance and 
the Conditional Value-at-Risk (CVaR), subject to having returns higher than some 
threshold, in addition to regularization constraints.

In this paper, we formulate an optimization problem based on a maximization-
of-return approach (instead of a minimization-of-risk approach), since we believe is 
more intuitive from a practical standpoint. With that as background our objective is 
twofold.

First, we consider three different risk measures to cast the portfolio optimization 
problem constraints: (i) integrated chance constraints, proposed by Haneveld (1986); 
ii) quantile deviation (see Cotton and Ntaimo 2015); and, absolute semi-deviation, 
proposed in Ogryczak and Ruszczyski (2002). We prove certain properties of these 
measures that are key to construct the corresponding PBR version of the relevant 
constraints.

Second, an extensive numerical comparison between a pure SAA approach and a 
PBR-based approach is presented using the three risk measures just described, in addi-
tion to the CVaR. In light of the mounting evidence in favor or passive strategies vis-à-
vis active portfolio selection strategies, we have chosen to cast the optimization prob-
lem based on indices rather than individual stocks or bonds (see Arnott et  al. 2000; 
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Bogle 1995; Elton and Blake 1996; Malkiel 1995, 1996), and we rebalance the portfo-
lio only once a year. The experiments cover the 10-year period between January 2003 
and December 2012, and thus, they include the subprime crisis, the most challenging 
market environment of the last 50 years. The strategy is based on a rolling horizon 
scheme, in which past data are used to estimate the portfolio optimization parameters, 
and the performance of the optimal solution is tested with samples obtained from a 
parameterized model of returns. By using different samples and risk measures, the 
results show that the formulation with PBR constraints results in higher levels of diver-
sification compared to solutions obtained with the SAA approach. Nevertheless, in 
periods of relative market stability, SAA outperforms PBR because the solutions with 
more variability end up being the ones with higher expected returns.

The rest of the paper is organized as follows. Section 2 describes common regular-
ized mean-risk formulations, including PBR, as well as our modification based on a 
max-return framework. In Sect. 3 we derived the relevant expressions to use the three 
risk measures mentioned within the context of PBR. Sect. 4 shows the numerical simu-
lation results, and Sect. 5 presents our conclusions.

2 � Regularized mean‑risk formulations

Consider the following mean-risk formulation:

where w ∈ ℝ
p is the investor’s portfolio, �p ∈ ℝ

p is a vector of ones, X ∈ ℝ
p is a 

random vector representing the return of p assets, � = �(X) is a vector of averages of 
each component of X and Risk ∶ X → ℝ is a risk measure defined on some space of 
random variables, e.g. the L1 space. The parenthesis in the last constraint indicates it 
is optional. For most risk measures—and most distribution functions—it is not pos-
sible to explicitly solve problem (1). The SAA formulation associated to problem (1) 
is given by

where � = (X1,… ,Xn) is a random vector representing observed returns, R̂isk(wT
�) 

is the sample estimator of Risk(wTX) and 𝜇̂ is the vector of sample averages based 
on the n observations of the random vector X, 𝜇̂ = (1∕n)

∑n

i=1
Xi.

(1)

min
w∈ℝp

Risk(wTX),

s.t. wT
�p = 1,

wT� = R,

(w ≥ 0),

(2)

min
w∈ℝp

�Risk(wT
�),

s.t. wT
�p = 1,

wT 𝜇̂ = R,

(w ≥ 0),
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It is well-known that the solution of problem (2) can be highly unreliable 
due to estimation errors. This happens when Risk(wTX) = wTΣw (the mean-
variance problem) as shown in Best and Grauer (1991), Broadie (1993), Chopra 
and Ziemba (1993), Frankfurter et  al. (1971), Frost and Savarino (1986), Frost 
and Savarino (1988) and Michaud (1989), and also when the risk measure is the 
CVaR (Lim et al. 2011). Recall that the CVaR at a confidence level � is defined as

where (a)+ denotes the maximum between a ∈ ℝ and 0. In order to overcome this 
problem, the work Ban et  al. (2016) proposes a performance-based regularization 
(PBR) to control the instability of the SAA solution in terms of its out-of-sample 
behavior. The main idea behind their method is to constrain the variances of the 
estimators of R̂isk(wT

�) and 𝜔T 𝜇̂ in order to move the SAA solution away from 
portfolios with high variability, which tend to be less diversified and yield poor out-
of-sample performance in many cases. This regularization method imposes two 
additional constraints to problem (2), as follows:

where SV(⋅) is the standard unbiased sample variance estimator of the variance, 
denoted by Var(⋅) , and U1 and U2 are real numbers that are obtained using cross-
validation on past data. The values are selected according to the solution that gives 
the highest Sharpe Ratio. Most importantly, the cross-validation procedure defines 
automatically the values of U1 and U2 , so they are not inputs that need to be defined 
by the investor. Note that constraint (4) does not depend on the choice of the risk 
measure and can be easily converted to a quadratic constraint by noting that

where Σ is the covariance matrix of X, which gives

where Σn is the sample estimator of Σ.
Expression (3) is more involved and when the risk measure is the variance, or 

the CVaR, Ban et al. (2016) derived explicit expressions for constraint (3). Recall 
that one of the purposes of this paper is to derive closed-form expressions for 
constraint (3) when using the three risk measures mentioned before. Our first step 
is to consider a mean-risk formulation different from problem (2), as follows:

CVaR�(w
TX) ∶= min

�∈ℝ
� +

1

1 − �
𝔼

[
(wTX − �

)+]
,

(3)SV

[
R̂isk(wT

�)
]
≤ U1,

(4)SV
[
wT 𝜇̂

]
≤ U2,

Var
[
wT 𝜇̂

]
= wTΣw,

SV
[
wT 𝜇̂

]
= wTΣnw,
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where k is a risk-tolerance parameter selected by the investor. We believe that formu-
lating the optimization problem in reference to a return-maximization framework is 
more intuitive from a practical viewpoint. Additionally, we think it is easier to select 
a priori an appropriate risk parameter than a desired return. (Returns, unlike risk 
tolerance levels, can be, at least in theory, unbounded). In the next section we derive 
explicit convex formulations of problem (5) for the three different risk measures.

3 � Extension to different risk measures

We start defining the three risk measures we will work with in this paper. In all 
cases let X ∈ ℝ

p be a random vector and w ∈ ℝ
p a vector that represents decisions. 

All proofs of propositions and lemmas are relegated to the appendix.

–	 Integrated chance constraints (ICC): In Haneveld (1986) the integrated chance 
constraints (ICC) are defined as 

 where h(�) ∈ ℝ is a random benchmark, e.g. an index, (x)+ = max{x, 0} . 
ICC imposes that the average violation from a target must be bounded by a 
given threshold, which will be given by the risk-tolerance parameter k. Let 
� = (Y1,… , Yn) be a random vector with Yi = (Xi,1,… ,Xi,p, hi) , Xi,j is the return 
of asset j in scenario i and hi is the value of the stochastic benchmark h(�) in sce-
nario i. We have Xi = (Xi,1,… ,Xi,p) as the vector representing the i-th sample of 
asset returns and � = (X1,… ,Xn) is the random vector of returns, as in formula-
tion (2). The sample estimator of ICC is 

–	 Absolute semideviation (ASD): In Ogryczak and Ruszczyski (2002) the absolute 
semideviation (ASD) is defined as 

(5)

max
w∈ℝp

wT 𝜇̂,

s.t. wT
�p = 1,

�Risk(wT
�) ≤ k,

SV

[
�Risk(wT

�)
]
≤ U1,

wTΣnw ≤ U2,

(w ≥ 0),

��

[(
h(�) − wTX(�)

)+]
,

(6)ÎCC(w;�) = ÎCC(w, h;�) =
1

n

n∑
i=1

(hi − wTXi)
+.

ASD(w) = �

[(
wTX − wT�

)+]
,
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 where � = �[X] is the vector of mean returns. ASD measures the average one-
sided excesses with respect to the mean. The sample estimator of ASD is 

 where 𝜇̂ =
1

n

∑n

i=1
Xi.

–	 Quantile deviation (QDEV): Let f ∶ ℝ
p × Ω → ℝ be a function such that 

�
[|f (w,X)|] < ∞ for every X ∈ Ω . Let � ∈ (0, 1) . In Ogryczak and Ruszczyski 

(2002), quantile deviation (QDEV) is defined as 

 where k� is the �-quantile of the distribution of f(w, x). Similar to the CVaR, in 
Ruszczyski and Shapiro (2006) QDEV�[w] is shown to be equivalent to the result 
of the following minimization problem: 

 with f (x,W) = wTX, � =
�2

�1+�2
 , and 𝜖1, 𝜖2 > 0 . The sample estimator of QDEV 

based on expression (8) is 

Before presenting the expressions for SV of the risk measures defined above, we 
introduce a useful definition and a lemma.

Definition 1  Let n ∈ ℕ , n ≥ 2 . We define Ωn as the matrix

where In is the n × n identity matrix and 1n = (1, 1,… , 1) ∈ ℝ
1×n.

Lemma 1  Let � = (z1,… , zn) be a sample from a given distribution F(⋅) . Then the 
sample variance is

3.1 � Regularized ICC constraint

For the ICC we have the following result:

Proposition 1  Let Y1,… ,Yn
i.i.d
∼ F , where the cumulative distribution F has finite 

second moment, and let ÎCCn(w;�) be defined as in (6). Then

(7)�ASD(w;�) =
1

n

n∑
i=1

(
wTXi − wT 𝜇̂

)+
,

QDEV�(w) = �

[
(1 − �)

(
(�� − 1)f (w,X)

)+
+ �

(
(1 − ��)f (w,X)

)+]
,

(8)QDEV�(w) = min
�∈ℝ

𝔼

[
�1
(
� − wTX

)+
+ �2

(
wTX − �

)+]
,

Q̂DEV�(w;�) = min
�∈ℝ

1

n

n∑
i=1

�1
(
� − wTXi

)+
+ �2

(
wTXi − �

)+
.

Ωn ∶=
1

n − 1

[
In − n−11n1

T
n

]
,

SV[�] = �
TΩn�.
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Corollary 1  Under the assumptions of Proposition 1 we have

where z = (z1,… , zn) and zi = (hi − wTXi)
+.

Proof  Direct application of Lemma 1 for � = (z1,… , zn) . 	�  ◻

3.2 � Regularized ASD constraint

Similarly, for the ASD we have the following proposition.

Proposition 2  Let X1,…Xn

i.i.d
∼ F , where the cumulative distribution F has finite sec-

ond moment, and let ÂSD[w;�] be defined as in (7). Then

where z = (z1,… , zn), zi = (wTXi − wT 𝜇̂)+ and 𝜇̂ = (1∕n)
∑n

i=1
Xi is the vector of 

sample averages of �.

3.3 � Regularized QDEV constraint

Finally, for QDEV we have

Proposition 3  Let X1,… ,Xn

i.i.d
∼ F be a random vector with finite second moments, 

and let F denote its distribution function. Let Q̂DEV�(w;�) be as above and �∗ ∈ ℝ 
such that

Then

Note that

For simplicity, write Zi = wTXi . From expression (9), and using 𝜖1, 𝜖2 > 0 we have

Var

[
ÎCC(w;�)

]
=

1

n
Var

[
(h − wTX)+

]
.

SV

[
ÎCC(w;�)

]
=

1

n
zTΩnz,

SV

[
ÂSD(w;�)

]
=

1

n
zTΩnz,

Q̂DEV�(w;�) =
1

n

n∑
i=1

�1
(
�∗ − wTXi

)+
+ �2

(
wTXi − �∗

)+
.

Var

[
Q̂DEV�(w;�)

]
=

1

n

{
Var

[
�1
(
�∗ − wTXi

)+
+ �2

(
wTXi − �∗

)+]}
.

(9)1 − � = 1 −
�2

�1 + �2
=

�1
�1 + �2

.
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The next lemma is essential to prove Proposition 3.

Lemma 2  Let p = ⌈n�⌉ − n� . Following the notation above, if p > 0 , then 
�∗ = Z(⌈n�⌉−1) is the unique minimizer of problem (10). Otherwise, if p = 0 , then 
�∗ = Z(⌈n�⌉) is one of the minimizers of problem (10).

Corollary 2  Under the assumptions of Proposition 3 we have

where z = (z1,… , zn) and zi = �1(�(p) − wTXi)
+ + �2(w

TXi − �(p))+.

Proof  Direct application of Lemma 1 for � = (z1,… , zn) . 	�  ◻

Note that for all three cases the resulting PBR constraints are quadratic, which 
makes the corresponding optimization problems amenable to be tackled with off-
the-shelf convex commercial solvers. In the next section we use the expressions pre-
sented in Propositions 1, 2 and 3 to test the performance of PBR in practice.

4 � Numerical Results

Due to the recent boom in passive investments, in addition to mounting evidence 
that passive (index-based) approaches tend to outperform active investment strate-
gies, we have designed our experiment using indices instead of individual assets. 
An additional advantage of choosing an investment strategy based on indices is 
that it offers a high degree of diversification while keeping the size of the optimi-
zation problem more manageable. In our study, following Walden (2015), we have 
selected thirteen indices that offer a wide exposure to the most popular asset classes, 
namely, stocks, bonds, real estate and commodities. The indices are described in 
Table 1. The period considered goes from January 2000 until December 2012; thus, 
it includes the subprime crisis, a time period of significant market turmoil, which we 
judge essential to assess the virtues of any investment strategy.

4.1 � Design of experiments

We use monthly returns from a 3-year period to cast the optimization problem 
directly, with no parametric estimation, and then we test the performance on year 
4. In order to perform extensive computations for year 4 we need some paramet-
ric assumption on returns. To this end, we assume that the vector of yearly returns 
r follows a multivariate normal distribution N(�, �) , and estimate the correspond-
ing parameters using past data from the 3-year window. Other possibilities could 

(10)Q̂DEV�(w;�) = (�1 + �2)min
�∈ℝ

1

n

n∑
i=1

(1 − �)
(
� − Zi

)+
+ �

(
Zi − �

)+
.

SV

[
Q̂DEV(w;�)

]
=

1

n
zTΩnz,
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have been selected as long as samples can be easily obtained by the parametric 
model. For each year starting in 2003 and for each risk measure, we sample 100 
yearly returns and evaluate the optimal solutions obtained by the SAA and PBR 
formulations, using the same sample in both cases. Such parametric approach 
allows us to have a more exhaustive and robust assessment of each method.

Thus, we initially start with [2000, 2001, 2002] and test our results with actual 
returns in 2003. We end with the window [2009, 2010, 2011], testing on 2012, 
for a total of 10 comparison years in a rolling horizon fashion. In each case (each 
3-year window) we solve the data-driven optimization problem (no paramet-
ric model is needed in this step) using the four metrics (the three presented in 
Sect. 3, plus the CVaR, based on the results derived in Ban et al. (2016)), for both 
the SAA and the PBR-based approach.

For the CVaR and QDEV we use � = 0.9 , which means we want to control 
average tail losses (beyond the 1–0.9 = 0.1 percentile) given that a loss occurred. 
For ICC we use h(�) = 5.5% , which is a benchmark of yearly returns. Finally, the 
values of k for the experiments are the smallest numbers such that problem (5) is 
feasible for each risk measure, which explains why they vary from experiment to 
experiment.

The code was written in Python 2.7.13 and the problems were solved using 
Gurobi (version 7.0.2) on a MacBook Pro with a 2 GHz Intel Core i5 and 8 GB 
of RAM. In Table 2 we report for SAA and PBR the time (in s) to simulate and 
solve the 100 problems, and to compute the statistics of interest for the 10 years in 
study. The difference in computational times across methods is remarkable. This is 
to be expected, considering that the cross-validation procedure that selects U1 and 
U2 involves solving several auxiliary optimization problems. Since both methods are 

Table 1   List of indices

Index name (Vanguard Ticker Symbol)

Stocks
Total Stock Market Index (VTSMX)
Total International Stock Index (VGTSX)
Small Cap Index (NAESX)
Emerging Markets Stock Index (VEIEX
European Stock Index (VEURX)
Pacific Stock Index (VPACX)
Developed Markets Index Admiral Fund (VTMGX)
Bonds
Total Bond Market Index (VBMFX)
High-Yield Corporate Fund (VWEHX)
Short Term Investment Grade Fund (VFSTX)
Alternatives
Inflation Protected Securities (VIPSX)
Real Estate Investment Trust (VGSIX)
Precious Metals and Mining (VGPMX)
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being implemented as passive investment strategies the computational times do not 
prevent the implementation of PBR in practice.

4.2 � Diversification

From a practical viewpoint, a fundamental aspect of the resulting portfolio is its 
degree of diversification. Following Woerheide and Persson (1992), we use a nor-
malized version of the complement of Herfindal’s diversification index (DI) to 
measure this property:

where wi is the weight of index i and n > 1 is the number of assets available for 
investment. According to this measure, a concentrated portfolio (only one position 
among the n assets) has a DI of zero; and a portfolio of equally weighted assets (the 
so-called 1/n portfolio), would have a DI of one, which corresponds to maximum 
diversification.

Figure  1 shows the average DI values, for the SAA and PBR portfolios, for 
each year between 2003 and 2012. The results indicate that the PBR portfolios 
are more diversified, and often the difference is significant. Moreover, in several 
cases the SAA portfolios have a DI = 0 for all samples, whereas PBR portfolios 
always have a positive average DI (in all years and for all four risk measures). 
Figure 1b (0.9-QDEV) reveals an extreme case—in 7 out of 10 years SAA portfo-
lios have a DI = 0 . The reason is that in cases where regularization is not present, 

DI =
1 −

∑n

i=1
w2
i

1 − 1∕n
,

Table 2   Computational times 
for each experiment

Risk measure Time (s)

SAA PBR

Pre-crisis period
5.5%-ICC, k = 5 23.52 1036.42
0.9-QDEV, k = 7 31.11 1762.72
0.9-CVaR, k = 9 23.44 941.50
ASD, k = 8 24.63 1066.14
The crisis of 2008
5.5%-ICC, k = 8 22.96 989.20
0.9-QDEV, k = 7 31.11 1762.72
0.9-CVaR, k = 10 23.07 942.66
ASD, k = 9 23.81 1074.16
Post-crisis period
5.5%-ICC, k = 8 22.96 989.20
0.9-QDEV, k = 9 30.55 1756.21
0.9-CVaR, k = 6 23.19 942.96
ASD, k = 19 23.86 1059.13
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there was one asset with a high return, and being fully invested in this asset did 
not violate the risk constraint. PBR constraints are designed to avoid that: solu-
tions that have high returns are often infeasible because their variability is too 
high.

It is also interesting to note that diversification is persistent over time, that is, 
the average DI for the PBR portfolios is not only higher than those of the SAA 
portfolios, but is also more stable over the 10 year-period under study. Figure 3 
shows the area below the SAA and PBR diversification trajectories displayed in 
Fig. 1. Total diversification—the 1/n portfolio—would have an area of 10. Thus, 
the entries in Table 3 can be thought of as the number of years in which the strat-
egy corresponds to complete diversification. We observe that the PBR values are 
roughly between 2 and 3 times those of the SAA portfolios, indicating, again, a 
much higher degree of diversification. 

Fig. 1   Average DI values for SAA and PBR simulated portfolios, using different risk measures and val-
ues of k. The red line corresponds to SAA and the blue line to PBR
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4.3 � Risk and returns

We now turn our attention to the performance of both methods with respect to 
returns and variability. The comparison will take place in three time windows: pre-
crisis (2003–2007), crisis (2008) and post-crisis period (2011–2012). Results in the 
recovery years (2009–2010) were similar between SAA and PBR and are available 
from the authors upon request.

4.3.1 � Pre‑crisis period

Table  4 shows summary statistics for realized returns during the pre-crisis years 
(2003–2007). All in all, SAA portfolios outperform the PBR portfolios, with dif-
ferences as high as 8% on a given year. This is not surprising since the stability 
provided by the PBR algorithm comes at the expense of ruling out high variability 
solutions, which, in turn, are the ones that yield the highest out-of-sample returns. 
It is also noteworthy that the differences in performance between the SAA and PBR 
portfolios are fairly consistent across all risk measures, which validates the robust-
ness of both methods.

4.3.2 � The crisis of 2008

During the subprime crisis, the PBR portfolios have smaller losses, not only in aver-
age terms, but also when the maximum and minimum returns are considered, as 
shown in Table 5. During the crisis PBR portfolios outperform SAA portfolios in 
every aspect and for all four risk measures. It should be noted that realized returns 
are significantly low with both approaches because the parameter estimation was 
based on data that was unable to anticipate the crisis. It is certainly beyond the scope 
of this study to identify or propose indicators that could predict crises. But it suf-
fices to say that not using regularization techniques can magnify the losses in those 
scenarios.

4.3.3 � Post‑crisis period

Let us now compare the two methods in 2011 and 2012. As shown in Tables 6 and 
7, the difference in performance is extraordinary, with the SAA portfolios exhibiting 

Table 3   Area below 
diversification trajectories

Risk measure Area

SAA PBR

5.5%-ICC, k = 5 1.1075 3.2965
0.9-QDEV, k = 7 0.277 3.216
0.9-CVaR, k = 9 1.8415 3.4795
ASD, k = 8 2.3385 4.07
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Table 4   Average realized 
returns of optimal portfolios 
determined by SAA and PBR, 
and using four different risk 
measures during years pre crisis 
(2003–2007)

The numbers in parentheses correspond to the minimum and maxi-
mum realized returns, respectively

Risk measure Year Average realized return (%)

SAA PBR

5.5%-ICC, k = 5 2003 50.41 42.54
(50.41; 50.41) (42.14; 42.88)

2004 1.89 2.06
(1.89; 1.89) (2.05; 2.07)

2005 39.00 31.51
(39.00; 39.00) (29.42; 33.22)

2006 26.76 23.43
(20.90; 27.27) (16.77; 26.66)

2007 31.48 22.66
(18.68; 36.46) (16.41; 31.97)

0.9-QDEV, k = 7 2003 50.41 42.55
(50.41; 50.41) (42.15; 42.89)

2004 1.89 2.07
(1.89; 1.89) (2.06: 2.07)

2005 39.00 31.51
(39.00; 39.00) (29.42; 33.23)

2006 26.76 23.44
(20.90; 27.27) (16.77; 26.66)

2007 31.48 22.64
(18.68; 36.46) (16.41; 31.97)

0.9-CVaR, k = 9 2003 50.41 42.55
(50.41; 50.41) (42.15; 42.89)

2004 1.97 2.09
(1.89; 2.25) (2.06; 2.28)

2005 35.538 30.38
(22.75; 39.00) (22.85; 33.23)

2006 23.80 22.51
(12.10; 27.27) (11.44; 26.95)

2007 31.48 22.46
(18.68; 36.46) (16.41; 31.97)

ASD, k = 8 2003 50.41 42.55
(50.41; 50.41) (42.15; 42.889)

2004 1.92 2.09
(1.89; 2.06) (2.06; 2.20)

2005 37.85 30.61
(32.17; 39.00) (26.2; 33.23)

2006 24.02 21.33
(20.07; 27.27) (16.08; 26.18)

2007 31.83 23.08
(18.68; 36.46) (16.41; 33.44)
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Table 5   Average realized 
returns of optimal portfolios 
determined by SAA and PBR, 
and using four different risk 
measures in 2008. The numbers 
in parentheses correspond to 
the minimum and maximum 
realized returns, respectively

Risk Measure Year Average realized return (%)

SAA PBR

5.5%-ICC, k = 8 2008 – 55.68 – 54.28
(– 64.55; – 55.01) (– 62.95; – 52.75)

0.9-QDEV, k = 7 2008 – 55.68 – 54.28
(– 64.55; – 55.01) (– 62.27; – 52.75)

0.9-CVaR, k = 10 2008 – 55.68 – 54.28
(– 64.55; – 55.01) (– 63.03; – 52.75)

ASD, k = 9 2008 – 55.68 – 54.3
(– 64.55; – 55.01) (– 63.58; – 52.75)

Table 6   Average realized 
returns of optimal portfolios 
determined by SAA and PBR, 
and using four different risk 
measures in 2011

The numbers in parentheses correspond to the minimum and maxi-
mum realized returns, respectively

Risk Measure Year Average realized return (%)

SAA PBR

5.5%-ICC, k = 8 2011 – 2.66 – 0.25
(– 13.57; 8.54) (– 8.59; 7.70)

0.9-QDEV, k = 9 2011 5.23 5.24
(– 1.30; 8.52) (– 1.30; 8.52)

0.9-CVaR, k = 6 2011 4.623 4.64
(.847; 7.488) (0; 7.488)

ASD, k = 9 2011 – 4.45 – 1.82
(– 10.76; 8.54) (– 7.89; 7.70)

Table 7   Average realized 
returns of optimal portfolios 
determined by SAA and PBR, 
and using four different risk 
measures in 2012

The numbers in parentheses correspond to the minimum and maxi-
mum realized returns, respectively

Risk Measure Year Average realized return (%)

SAA PBR

5.5%-ICC, k = 8 2012 13.13 11.20
(– 4.90; 16.14) (7.19; 16.07)

0.9-QDEV, k = 9 2012 14.38 13.75
(– 17.74; 16.18) (– 6.73; 16.16)

0.9-CVaR, k = 6 2012 2.97 2.97
(1.82; 5.10) (0.00;5.10)

ASD, k = 19 2012 14.408 13.774
(– 17.741; 16.176) (– 4.534; 16.158)
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significantly more dispersion. Moreover, the PBR portfolios offer more protection 
against extreme losses, without suffering a noticeable reduction in terms of either aver-
age or maximum returns.

4.4 � Discussion

For an investor dealing with an asset allocation problem it is by no means clear, unless 
additional information is provided, which risk measure will best fit his/her interests. 
The results suggest that the ASD produces more diversified portfolios, albeit with 
lower but more stable returns. On the other hand, the ICC results in the least diversified 
portfolios (lowest DI values), combined with the highest realized returns, which, not 
surprisingly, come with the highest variability. The CVaR portfolios are somewhere in 
between. Their returns are higher than those obtained by the ASD portfolios, but not 
as high as the ICC portfolios. Diversification for CVaR is on average higher but it is 
the only risk measure which generates completely concentrated portfolios ( DI = 0 ) for 
some—but never for all—of the sampled returns, in some years.

Lastly, QDEV offers a much more complex behavior, and its effects depend greatly 
on the value of � . Our experiments suggest that when this parameter gets closer to 0 
or 1, the portfolios tend to be more concentrated and riskier, but also, more rewarding. 
Interestingly, when � is closer to 0.5, those solutions behave similarly to those rendered 
by the ASD.

We close this section with a comment regarding the effects of the right-hand side 
constants, U1 and U2 , in the resulting portfolio. The constraint controlled by U2 [variance 
of returns, constraint (4)] is the one responsible for diversification, while U1 [variance 
of risk, constraint (3)] induces minor changes in the portfolio allocations. The former 
is binding more often, whereas low values of U2 are a common cause for infeasibilities. 
It is therefore possible to infer that controlling the variance of returns excludes unreli-
able solutions, while controlling the variance of the risk measure improves the out-of-
sample performance of the portfolio.

An important distinction must be made between the variability constraints defined 
by U1 and U2 , and the risk constraint defined by k. If infeasibilities are caused by a 
value of k which is too small, then, no combination of the indices will yield a portfolio 
with the acceptable level of risk—the only course of action is to simply increase the 
value of k until a solution is found. Infeasibilities induced by the U2 constraint are com-
pletely different. First, since this parameter is set via a machine learning procedure as 
described in Section 5.4 of Ban et al. (2016), we have no room to maneuver. Second, 
and more important, the lack of feasible solutions should be taken as a warning, since it 
means that the observed returns being used present high variability, which should serve 
as an alert to reframe the optimization problem using more data.
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5 � Conclusions

Since the publication of Markowitz’s seminal paper, the trade-off between risk 
and return within an optimization framework has attracted the attention of aca-
demics and investors alike. Nevertheless, the practical implementation of solu-
tions obtained from such model has been marred by estimation errors and have 
often resulted in poorly diversified portfolios. Several tools have been devel-
oped to overcome this shortcoming, and in this work we studied a performance-
based regularization (PBR) scheme, a novel regularization tool that incorporates 
machine learning to find the parameters that produce better out-of-sample perfor-
mance. Building on Ban et al. (2016), we developed explicit convex expressions 
to test the PBR formulation in combination with three risk measures: integrated 
chance-constraints, absolute semi-deviation and quantile deviation.

We show in our numerical results that PBR is capable of delivering more 
diversified portfolios than those of SAA, and also more stable, over time. Addi-
tionally, the experiments show that PBR can effectively protect the investors 
from portfolios with low out-of-sample performance. In particular, during times 
of crises, PBR’s performance was superior in maximum, average and minimum 
observed returns for the simulated portfolios. On more stable years, SAA outper-
forms PBR since the elimination of solutions with high variability—precisely the 
ones which perform better in those years—can damage returns when market con-
ditions are favorable. Finally, the right-hand sides of the regularized constraints 
are defined via cross-validation, freeing the investor of the problematic task of 
having to specify those parameters.

Our findings show that pure SAA techniques are not suitable to deal with prac-
tical portfolio selection problems. It is critical to impose some regularization 
to the problem, and our work shows that PBR is a viable and tractable choice, 
especially for mid–to long–term investments. Future work should focus on com-
paring PBR-based methods with robust or distributionally robust optimization, 
in combination with machine learning techniques. Another avenue of research 
is to explore regularization schemes in the context of stochastic dynamic—mul-
tistage—portfolio problems. It would be interesting to compare different mul-
tistage frameworks that have been studied lately, such as Expected Conditional 
Risk measures (Homem-de-Mello and Pagnoncelli 2016), nested risk measures 
(Kozmík and Morton 2015) and Expected Conditional Stochastic Dominance 
(Escudero et al. 2018), and understand the effect of including PBR in each case.

Acknowledgements  This work was supported by Fondecyt under Grant 1170178.

A Proofs

Proof  (Lemma 1) We have
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	�  ◻

Proof  (Proposition 1) From Definition 6, given that the Yi are independent and iden-
tically distributed we have

	�  ◻

Proof  (Proposition 2) Let � = (Y1,… , Yn) with Yi ∶= −Xi . Then the sample aver-
age of � verifies 𝜇
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where Ωn is as above, z̃ = (z̃1,… , z̃n) and z̃i =
(
wT�𝜇

�
− wTYi

)+ . Rewriting the result 
back in terms of � gives the desired result. 	�  ◻

Proof  (Lemma 2) The expression to be minimized in Problem (10), which 
we refer to as F(�) , is piecewise linear with breaking points at Z1,… , Zn . For 
m ∈ {−⌈n�⌉ + 1,… , ⌈n�⌉ + n − 1} we define

where Y(i) is the ith order statistic. Note that

From the definition, 0 ≤ p < 1 . Thus Δ(m) < 0 for m ≤ −1 and Δ(m) > 0 for m > 0 . 
If p > 0 , then Δ(0) > 0 and thus �∗ = Z(⌈n�⌉−1) is unique. If p = 0 , then Δ(0) = 0 , 
i.e.,

Since F(⋅) is piecewise linear, then its minimum value is F(Z⌈n�⌉) and � = Z(⌉n�⌉) is 
one of its minimizers, which concludes the proof. 	�  ◻

Proof  (Proposition 3) Using the notation above, Lemma 2 implies that

where �(p) can be Z(⌈n�⌉) or Z(⌈n�⌉−1) depending on the value of p. The result follows 
from the assumption that the Zi observations are i.i.d. 	� ◻
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