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Abstract
Container loading problems (CLP), in which a set of boxes have to be loaded into 
containers or onto trucks, are at the core of many transportation problems. Good 
solutions to these packing problems are crucial for the efficient use of logistic 
resources. However, to produce solutions that are useful in practice, besides the 
basic conditions ensuring that boxes do not exceed the container dimensions and do 
not overlap each other, other physical and logistic constraints have to be included 
when solving the CLP. In this study, we focus on a special type of logistic constraint: 
complete shipment constraints, which ensure that either all or none of the boxes in 
each customer order are loaded. Although these constraints have seldom been con‑
sidered in the literature, they arise very often in practice. Customers do not want to 
receive incomplete parts of their orders in successive deliveries and retailers do not 
want to have to store incomplete orders and wait until the remaining boxes arrive to 
deliver the orders to the customers. We include these constraints in an integer lin‑
ear formulation of the CLP and develop four heuristic strategies to deal with them 
efficiently. An extensive computational study compares the relative performance of 
these strategies and shows that when a good strategy is used the impact of these con‑
straints on the solution of the CLP is quite small.
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1  Introduction

Every day millions of products are sent to customers, using a wide range of means 
of transportation. These products are first packed in boxes and on pallets and then 
loaded onto trucks or into containers. In long-distance, transoceanic traffic, the use 
of containers has increased from 40 million TEUs (Twenty-foot Equivalent Units) in 
1996 to 148 million TEUs in 2018 (UNCTAD 2018). Medium-range transportation 
is mostly carried out by trucks and trains. According to EUROSTAT, in 2017 road 
traffic between the 29 countries of the European Union amounted to 1.913.000 mil‑
lion tkm (tonne-kilometres), while trains moved 430.000 million tkm (EUROSTAT 
2017). Most short-distance transportation is performed by small trucks, vans, and 
other non-polluting means of transportation in the case of city logistics.

Efficient use of these means of transportation requires solving a packing problem 
to decide how to place the small objects (boxes or pallets) in the large objects (con‑
tainers or trucks) so to as maximize an objective, such as the total volume occupied 
or the total value of the objects packed. In the Cutting & Packing field, this prob‑
lem is usually known as the Container Loading Problem (CLP). Therefore, in this 
study, without loss of generality, small objects will be called boxes and large objects 
containers. The basic version of the CLP includes only geometric constraints: boxes 
cannot exceed the dimensions of the container, and cannot overlap. These con‑
straints define a challenging three-dimensional combinatorial problem which has 
been extensively studied in the scientific literature.

However, to be useful in practical applications, many other constraints have to be 
taken into account besides the basic geometric conditions. A list of these constraints 
was proposed by Bischoff and Ratcliff (1995). More recently, Bortfeldt and Wäscher 
(2013) revisited this list, proposing a classification of constraints and reviewing 
how they have been considered in the algorithms developed for the CLP. Practical 
constraints can be classified into two main groups, physical and logistic. Physical 
constraints are related to the physical characteristics of containers and boxes. They 
include weight, orientation, load-bearing, and stability constraints. Weight con‑
straints limit not only the total weight, but also the weight on the axles in the case of 
trucks, as well as the load balance, forcing the weight to be evenly spread along the 
floor. Orientation constraints determine which rotations of the boxes are allowed and 
which are forbidden. Load-bearing constraints limit the weight each box can bear to 
avoid damage to the cargo. There are two types of stability constraints: static stabil‑
ity, when the container is not moving, and dynamic stability, when it is being moved 
and is subject to acceleration, braking and turns.

Logistic constraints concern the way in which boxes are delivered to customers. 
They include allocation, multi-drop, priority, and complete shipment constraints. 
Allocation constraints may take the form of connectivity constraints, forcing a set 
of boxes to be together in the same container, or separation constraints, forcing sub‑
sets of boxes to be in different containers. Multi-drop constraints arise when the 
container contains boxes for different customers to be unloaded in order along the 
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route and force the boxes for a given customer to be accessed without moving boxes 
for clients to be served later. Priority constraints ensure that high-priority boxes are 
loaded before low-priority boxes if they do not all fit into the container. In a similar 
vein, complete shipment constraints ensure that for every order, either all or none of 
its boxes are loaded.

Bortfeldt and Wäscher (2013) found that some of the physical constraints, such 
as orientation, total weight limit, or static stability, had been used in many studies, 
while others, such as axle-load, load-bearing and dynamic stability, had seldom been 
considered. With regard to logistic constraints, multi-drop constraints had been con‑
sidered in combined routing and packing problems, but the others had been almost 
entirely neglected. Bortfeldt and Wäscher (2013) also found that there were very few 
studies that included several constraints simultaneously, as they arise in practice. 
Since 2013, studies on the CLP have been considering more practical constraints, 
and there have been interesting advances, especially in relation to stability, axle-load 
and load-bearing constraints.

Nevertheless, some logistic constraints, such as complete shipment constraints, 
have received very little attention, although there are many situations in which these 
constraints are imposed. In the problem that inspired this study, a large furniture 
factory sends its products to retail shops which in turn serve their customers. Very 
often, customer orders include large items that are packed into several boxes to be 
loaded onto trucks. Customers and shops do not want to receive only a subset of 
these boxes and keep them in storage until the remaining boxes arrive. Similar situ‑
ations arise when containers or trucks are shipped on a regular basis and it is always 
preferable to send complete orders rather than to fill the remaining space in contain‑
ers or trucks with boxes that will have to wait undelivered until all the other boxes 
completing the order are shipped.

This paper focuses on these complete shipment constraints and their effect on the 
solutions of the CLP. We propose an integer formulation and develop four heuris‑
tic strategies to solve large instances. The computational study shows that when an 
efficient strategy is used the inclusion of these constraints produces only a small 
decrease in the volume occupied in the container.

The structure of the paper is as follows. The relevant literature on the CLP and 
practical constraints is reviewed in Sect.  2. Section  3 presents the definition of 
the problem and an integer formulation. A VNS algorithm for the basic CLP is 
described in Sect. 4 and the four heuristic strategies in Sect. 5. The computational 
study is summarized in Sect.  6 and conclusions and future work are discussed in 
Sect. 7

2 � Related work

The single container loading problem (CLP) plays a central role in Cutting and 
Packing due to its many applications and extensions and it has been extensively 
studied. The basic geometric constraints, preventing the boxes from exceeding the 
dimensions of the container and from overlapping each other, already define a chal‑
lenging combinatorial optimization problem which is NP-hard (Scheithauer 1992). 
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According to the typology proposed by Wäscher et al. (2007), it can be classified as 
a 3D-SLOPP (three-dimensional single large object placement problem), if the set of 
boxes is weakly heterogeneous, or a 3D-SKP (Single Knapsack Problem) if the set 
of boxes is strongly heterogeneous. Up to now, few exact solution approaches have 
been proposed (Fekete et al. 2007; Martello et al. 2000; Junqueira et al. 2012a). In 
contrast, many heuristic algorithms have been developed. Recent proposals can be 
classified into two groups: metaheuristics and tree-search algorithms. Metaheuris‑
tics include genetic algorithms (Gehring and Bortfeldt 2002), tabu search (Bortfeldt 
et al. 2003), simulated annealing (Mack et al. 2004), GRASP (Moura and Oliveira 
2005; Parreño et al. 2008), and VNS (Parreño et al. 2010). Tree-search algorithms 
proposed in recent years have been shown to produce the best results for the CLP 
(Fanslau and Bortfeldt 2010; Zhu et  al. 2012; Araya and Riff 2014; Araya et  al. 
2017).

Following the classification of practical constraints into physical and logistic con‑
straints, we will now review the use of these constraints in recent years.

2.1 � Physical constraints

A first group of physical constraints is related to weight. In almost all applications 
there is a limit to the weight that can be loaded into the container (Bortfeldt et al. 
2003; Egeblad et al. 2010). In the case of products being transported by trucks with 
several axles, the weight that each axle can support is also limited (Lim et al. 2013; 
Pollaris et al. 2016; Alonso et al. 2019). The weight of the cargo has to be evenly 
distributed on the container floor. A simplified approach to this condition, com‑
monly used, is to require that the centre of gravity of the cargo has to be as close as 
possible to the centre of the container (Bortfeldt and Gehring 2001). However, as 
Ramos et al. (2018) have shown, this constraint does not guarantee compliance with 
transportation regulations, so truck-specific load distribution diagrams have to be 
considered and the corresponding constraints included.

As for the boxes, the most common constraint is related to their orientation. In 
some cases, all six possible orientations of a box are allowed (Parreño et al. 2008), 
but in most practical situations just one vertical orientation is permitted (This side 
up!) and only 90◦ horizontal rotations are possible (Correcher et al. 2017; Toffolo 
et al. 2017). In some cases, rotation is not allowed at all (Junqueira et al. 2012b).

Load-bearing constraints limit the weight a box can support and are used to 
prevent boxes being damaged by excessive weight resting on them. They can be 
expressed in different ways: limiting the number of boxes that can be placed on top 
of others (Bischoff and Ratcliff 1995), classifying some boxes as fragile and pro‑
hibiting other boxes from being put above them (Paquay et  al. 2016), or limiting 
the maximum weight a box can support per unit area (Alonso et al. 2014; Junqueira 
et al. 2012b).

Stability of the cargo is also a very important condition in practice. Static, or ver‑
tical, stability constraints ensure that loaded boxes do not fall when the container is 
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not moving, especially during loading and unloading operations. Static stability has 
usually been considered by imposing full support conditions, in which the base of 
each box is completely supported by other boxes or by the container floor (Araujo 
and Armentano 2007; Fanslau and Bortfeldt 2010), or partial base support, in which 
the support can be reduced to a given percentage of the base (Jin et al. 2004; Junque‑
ira et al. 2012b). More recently, Ramos et al. (2016) have shown that this approach 
may be too restrictive and have developed an alternative approach using mechani‑
cal equilibrium conditions. Dynamic, or horizontal, stability constraints are defined 
to ensure that boxes will not move, and therefore will not be damaged, when the 
container is moving and subjected to forces when accelerating, braking, or turning. 
Ramos et al. (2015) have proposed new metrics, extending the initial proposals of 
Bischoff and Ratcliff (1995). Alonso et al. (2017, 2019) have considered dynamic 
stability conditions in their models for multiple container loading.

2.2 � Logistic constraints

Allocation constraints appear in many container loading problems. Sometimes, they 
are connectivity constraints, requiring a particular subset of boxes to be loaded into 
the same container (Liu et  al. 2011), or relative positioning constraints, requiring 
certain subsets of boxes to be placed together in the container, to facilitate their 
delivery to specific customers (Makarem and Haraty 2010; Egeblad et al. 2010). In 
contrast, there are situations in which separation constraints are imposed, prevent‑
ing incompatible types of products from being loaded into the same container (Eley 
2003; Battarra et al. 2009).

Multi-drop conditions arise when the boxes to be loaded into the container belong 
to different customers that are visited in a given order. The items for each customer 
have to be placed together and they have to be accessed when the container reaches 
the customer without moving any box corresponding to other customers that will be 
visited later in the route. These constraints have been implemented in various ways. 
One way is by imposing the condition that the boxes must be visible, meaning that 
when the container reaches a customer, one side of each of their boxes must be com‑
pletely visible from the entrance of the container (usually its back door) or blocked 
only by boxes for the same customer. This is the approach followed by Gendreau 
et al. (2006) in their tabu search algorithm for combined routing and packing prob‑
lems, by Christensen and Rousøe (2009) in their tree-search algorithm, by Fuellerer 
et al. (2010) in their Ant Colony Optimization algorithm, by Ceschia and Schaerf 
(2013) in their local search procedure, and by Bortfeldt (2012), who developed 
a tabu search for the routing part and a tree search for the packing part. Liu et al. 
(2011) require not only visibility, but also reachability, considering the maximum 
distance at which a box can be accessed by the unloading devices. Junqueira et al. 
(2012b) define virtual walls separating boxes for different customers and include 
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a parameter indicating up to what distance boxes for one customer can be located 
behind the wall separating them from the boxes for the next customer.

When the available space in the container is not enough to load all the boxes, a 
decision has to be made about which boxes are to be loaded and which left out. In 
some practical situations, boxes have priorities and loading high-priority boxes is 
preferred. Usually these priorities are based on established delivery dates, although 
they can also be related to the characteristics of the products (freshness, shelf-life). 
Ren et al. (2011) considered only two types, high and low priorities, and established 
that low-priority boxes should not be loaded if this leads to high-priority boxes being 
left behind. Wang et  al. (2013) also consider high and low priorities and propose 
a beam search algorithm, imposing the condition that all high-priority boxes must 
be loaded. A particular type of priority is introduced by Jamrus and Chien (2016). 
In their problem, all the boxes fit into the container and priorities are used in their 
genetic algorithm to place the boxes with higher priority closer to the container door 
to be delivered earlier. Sheng et al. (2017) also consider two types of boxes, with 
and without expiry dates, and develop an iterative procedure to load as many orders 
composed of boxes with expiry dates as possible first, before considering loading 
orders of boxes without expiry dates.

In addition to priority restrictions, another situation that can arise when not all 
the boxes fit into the container is that boxes can be grouped into orders, and either 
all the boxes for the same order must be loaded or none at all. This is known as the 
complete shipment condition. It is usually considered in combined routing and pack‑
ing problems, in which when building a route that includes several customers, all the 
boxes for each customer in the route have to fit into the container, also satisfying the 
multi-drop constraints. However, it has seldom been considered in pure container 
loading problems. It was listed by Bischoff and Ratcliff (1995) and mentioned as a 
possible extension by Eley (2003), but to the best of our knowledge it has only been 
implemented by Sheng et al. (2017). Their tree search packing procedure considers 
guillotine cuts, which is not the usual situation in container loading. In the light of 
the literature review, our objective is to study in depth how to incorporate complete 
shipment constraints efficiently into the container loading problem.

3 � Loading with complete shipment constraints

In this problem, a container of dimensions (L, W, H) has to be filled with a set of 
boxes. There are n box types with dimensions (lj,wj, hj), j = 1,… , n , and volume 
vj = ljwjhj . Boxes are grouped in m orders, corresponding to the clients’ require‑
ments. For each order i = 1,… ,m , the number of required boxes of type j is nij . 
Therefore, the volume of order i is Vi =

∑
j vjnij . The objective is to maximize the 

volume occupied by boxes in the container, subject to several types of constraints. In 
this study we are going to consider the basic geometric constraints, preventing boxes 
from exceeding the dimensions of the container and overlapping each other. In addi‑
tion, the boxes have to be placed with their sides parallel to the sides of the container 
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and each box has its own set of allowed orientations. We do not add any of the other 
constraints described above and focus on the effect of imposing the complete ship‑
ment constraints.

The problem can be formulated as an integer linear model, taking the base model 
by Junqueira et  al. (2012a) (which is a direct extension of the model by Beasley 
(1985)) and adding constraints for complete shipment. A Cartesian coordinate sys‑
tem is used with the origin in the front-left-bottom corner of the container. In this 
system, (x, y, z) will be the coordinates of the front-left-bottom corner of a box. The 
possible positions along the axes are defined by sets X = {0, 1,… , L −minj(lj)} , 
Y = {0, 1,… ,W −minj(wj)} , Z = {0, 1,… ,H −minj(hj)} , but these sets can be 
reduced to the positions of the normal patterns (Christofides and Whitlock 1977):

In order to develop the non-overlapping constraints, we define the parameter:

which can be computed a priori for each (x, y, z) and (x�, y�, z�) if the dimensions of 
each box type j are known.

The decision variables of the base model, ajxyz , with j = 1,… , n;x ∈ X, y ∈ Y , z ∈ Z , 
are defined as

For the complete shipment constraints, we add variables:

The model is:

(1)X = {x | x = ∑
j

�jlj, 0 ≤ x ≤ L −min
j
(lj), �j ∈ Z+, j = 1,… , n},

(2)Y = {y | y = ∑
j

�jwj, 0 ≤ y ≤ W −min
j
(wj), �j ∈ Z+, j = 1,… , n},

(3)Z = {z | z = ∑
j

�jhj, 0 ≤ z ≤ H −min
j
(hj), �j ∈ Z+, j = 1,… , n}.

cjxyzx�y�z� =

⎧
⎪⎨⎪⎩

1, if a box of type j placed with its front-left-bottom corner

at (x, y, z) occupies the position (x�, y�, z�)

0, otherwise,

ajxyz =

{
1, if a box of type j is placed with its front-left-bottom corner at(x, y, z)

0, otherwise.

rij =the number of boxes of type j assigned to orderi

zi =

{
1, if order i is completely loaded into the container

0, otherwise.
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The objective function (4) maximizes the total volume of the complete orders loaded 
into the container. Constraints (5) prevent the overlapping of boxes. Constraints (6) 
and (7) ensure the complete shipment conditions. Constraints (6) define the number 
of boxes of each type j assigned to each order i, and constraints (7) only allow an 
order to be considered complete if all its boxes are loaded.

This initial formulation could be enhanced in many ways. For instance, we could 
include a constraint limiting the total volume of the complete orders:

and cover inequalities could be derived from it, as in many other combinatorial opti‑
mization problems (Codas and Camponogara 2012; Shebalov et  al. 2015; Dabia 
et al. 2019).

Another useful way of reducing the computational effort for solving the model is 
to reduce the possible positions of the boxes even further. Beyond the normal pat‑
terns used above, we could use raster points (Scheithauer and Terno 1996), reduced 
normal patterns (Boschetti and Mingozzi 2002), or meet-in-the-middle patterns 
(Côté and Iori 2018). A complete review and comparison of reduction methods can 
be found in de Almeida Cunha et al. (2019).

In the test instances proposed by Bischoff and Ratcliff (1995) and Davies and 
Bischoff (1999), the container has dimensions (587,  233,  220) and the box types 
range from 3 to 100. These instances have been used in most studies of the container 
loading problem and therefore they will also be used in our study. Considering that 
the model requires a variable ajxyz for each possible position (x, y, z) and each box 
type j, even with the reductions mentioned above the number of variables is too high 
for the model to be solved in a reasonable time, even for small problems. In the fol‑
lowing sections, several heuristic strategies will be described.

(4)Maximize
∑
i

Vizi,

(5)st ∶

n∑
j=1

∑
x∈X

∑
y∈Y

∑
z∈Z

cjxyzx�y�z�ajxyz ≤ 1 x� ∈ X, y� ∈ Y , z� ∈ Z,

(6)
∑
x∈X

∑
y∈Y

∑
z∈Z

ajxyz =

m∑
i=1

rij∀j,

(7)rij ≥ nijzi∀j,∀i,

(8)
ajxyz ∈ {0, 1}, j = 1,… , n;x ∈ X, y ∈ Y , z ∈ Z;,

rij ∈ Z+, i = 1,… ,m, j = 1,… , n; zi ∈ {0, 1}, i = 1,… ,m.

(9)
m∑
i=1

Vizi ≤ LWH
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4 � A VNS algorithm for container loading

In several of the procedures developed in the following sections, we use the Variable 
Neighborhood Search (VNS) algorithm developed by Parreño et al. (2010) as a starting 
point, with some extensions to make it more efficient. This algorithm has been shown 
to produce good results even when running for short times and it is flexible enough to 
be used and adapted in many ways as part of other algorithms developed to address the 
complete shipment constraints. The pseudocode of VNS appears in Algorithm 1.

The initial solution x is built by a constructive algorithm. It is an iterative procedure 
in which at each iteration two decisions are made. First, the maximal empty space near‑
est to a corner of the container is selected to be filled. Second, homogeneous blocks, 
that is, arrangements in rows and columns of the unpacked boxes of one box type, are 
considered for filling the selected space, and the block producing the largest increase 
in the occupied volume is chosen. This constructive algorithm is extremely fast and 
obtains quite good results that can be used as starting solutions for more elaborate 
procedures.

Six neighborhoods are used in the search:

•	 N1 : Block reduction
•	 N2 : Column insertion
•	 N3 : Box insertion
•	 N4 : Emptying a region and refilling it using the constructive algorithm
•	 N5 : Emptying a region and refilling it selecting at each step the block that best fits 

into the space
•	 N6 : Removing a percentage of the last boxes in the solution and refilling the space 

using the constructive algorithm

The moves can be classified into two groups. Moves defining N2 and N3 insert non-
packed boxes into a solution, remove the boxes in the solution overlapping them, and 
fill the empty spaces using the constructive algorithm. The other four moves start by 
removing some elements of the solution, producing empty spaces that are merged with 
those existing in the solution, and then fill the empty spaces using either the construc‑
tive algorithm, as in N1 , N4 , and N6 , or another constructive algorithm with a different 
block selection criterion, as in N5 . Moves defining N1 , N4 , and N6 differ in their impact 
on the solution. N1 has a local impact on the region in which the reduced block was 
placed. The region to be emptied in N4 (and also in N5 ) is determined by selecting two 
empty spaces and building the minimum rectangle so as to include them. If these two 
empty spaces are widely separated, a large part of the container is emptied, making a 
global impact on the solution. In N6 the impact depends on the percentage of blocks 
removed, but the way in which it removes them is completely different from N4 , thus 
producing a different type of move.

The six neighborhoods are used in the shaking phase, but only N1 to N5 in the local 
search. The stopping criterion is reaching a time limit, although the algorithm also 
stops if all the boxes are loaded into the container, as no improvement is then possible. 
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Algorithm 1 VNS algorithm
Np= the set of neighborhood structures, for p = 1, ..., pmax for the shaking phase
Nl= the set of neighborhood structures, for l = 1, ..., lmax for the local search
x= Initial solution obtained by a constructive algorithm
T imeLimit = Maximum running time
for (T ime < TimeLimit) do

p = 1
while p < pmax do

(a) Shaking: Generate a neighbor x of x at random, in Np

(b) Local Search:
l = 1
while l < lmax do

Find the best neighbor x of x in Nl

if x is better than x then
x =x
l = 1

else
l = l+ 1

end if
end while
if x is better than x then

x = x
p = 1

else
p = p+ 1

end if
end while

end for

Two extensions have been added to the original algorithm:

•	 Score function The Parreño et al. (2010) algorithm considered two criteria for 
selecting the block being packed at each step: the block that produces the larg‑
est increase in the volume occupied, and the block that fits best in the empty 
space, filling three, two, or one of its dimensions. More recently, Araya et al. 
(2017) have proposed a more complex score function which favours blocks 
that fit well into the container, considering the blocks previously placed and 
the empty spaces left. It also takes into account the volume of the block and 
an estimate of the expected waste that will be produced if the block is chosen, 
and tries to pack blocks composed of big boxes first. They have shown that 
this score function produces better results than previous selection criteria and 
we have therefore added it to our algorithm.

•	 Block generation The blocks considered in the original algorithm were exclu‑
sively homogeneous blocks: arrays of rows and columns using only one type 
of box, always with the same orientation. Later studies have shown that more 
general heterogeneous blocks, combining boxes of different types in different 
orientations, provide more flexibility to the search and thus better results (Fan‑
slau and Bortfeldt 2010; Zhu et al. 2012). Consequently, we have extended the 
block generation process to consider heterogeneous blocks.
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5 � Solution approaches with complete shipment

This section presents several strategies developed for solving the container loading 
problem with complete shipment constraints heuristically.

5.1 � A local a priori strategy: selecting the next order to load

A simple loading strategy is to sort the orders into a list according to some crite‑
rion, such as volume or number of boxes, take the next order on the list, and try 
to load all its boxes using the constructive deterministic algorithm which is part of 
the VNS procedure. If all of them are loaded, the next order is considered. If all the 
boxes cannot be loaded, the boxes in the incomplete order that have been loaded are 
removed and the process moves on to the next order. When all the orders on the list 
have been considered, some of them will have been loaded, resulting in a feasible 
solution. The pseudocode of the procedure appears in Algorithm 2.

This can be seen as an a priori strategy, since at each step of the process the 
order being loaded has been decided beforehand. It is a fairly intuitive way of ensur‑
ing that complete orders are loaded, but as will be seen in the following sections, 
there are other alternative strategies. The procedure can be randomized if the list is 
constructed using a biased or unbiased random criterion. Initially, the boxes in an 
order will be placed close together in the container, which may be a desirable fea‑
ture in the loading and unloading process, but later in the procedure the boxes will 
be loaded into the remaining empty spaces, which may be scattered throughout the 
container. 

 In Fig.  1a and b, we can see an example of this procedure. We have to load 
five orders, sorted by non-increasing volume in Fig. 1a. Each order is composed of 
only one box type and the number of boxes in the order appears below each box. 
Figure 1b shows the final result, in which orders 1, 5, and 2, in this order, are fully 
loaded into the truck, but orders 4 and 3 cannot be fitted in it. Some of the boxes in 
order 4 could be loaded, but not the complete order of four boxes.
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5.2 � A global a priori strategy: selecting a set of orders to load

Instead of selecting one order at a time to be loaded, an alternative consists in selecting a 
subset of orders to be loaded together. Let TV1 be the total volume occupied in the solu‑
tion obtained by running the VNS algorithm without the complete shipment constraints. 
This value TV1 is an upper bound on the total volume occupied in a solution in which 
complete shipment is enforced if the VNS is used for loading. Therefore, a set of orders 
that could potentially be completely loaded into the container can be obtained by solving 
a knapsack problem:

Let S1 be the set of orders in the solution of this initial knapsack problem. We then 
run the VNS algorithm again to fill the container, but only with the boxes belonging 
to the S1 orders. There will be two possible outcomes: if all these boxes fit into the 
container, the process ends with this feasible solution; otherwise, the container will 
be filled to a total volume of TV2 , and some of the S1 orders will be incomplete. To 
select a new set of orders to be considered for loading, we solve the integer model 
(10)–(12) again, replacing the right-hand side of (11) by TV2 . The solution will be a 
new set S2 and the VNS algorithm runs with the boxes of the orders in S2 . Again there 
will be two possible results. If all the boxes do not fit into the container, the integer 
model is run again with the right-hand side given by the total occupied volume in 
the last application of VNS. This process is repeated as many times as necessary 
until all the boxes in a set Sk fit into the container. The first time the boxes in a set Sk 
fit into the container, instead of stopping, we try to recover part of the last decrease 
and solve the integer model again with a right-hand side of (TVk−1 + TVk)∕2 in con‑
straint (11). If the boxes in the set of orders obtained in the solution fit, the RHS is 

(10)Maximize
∑
i

Visi,

(11)st ∶
∑
i

Visi ≤ TV1,

(12)si ∈ {0, 1}∀i.
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(a) Orders sorted by non-increasing
volume

1 1 1

1 1 1

5 5 2
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(b) Loading complete orders according
to the sorted list

Fig. 1   An example of the local a priori strategy
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increased again to the midpoint between TVk and (TVk−1 + TVk)∕2 . The first time 
the boxes in the selected orders do not fit, the process ends with the last feasible 
solution obtained.

If the allowed runtime is TimeLimit, we set a maximum number of iterations 
MaxIter and give a maximum time of TimeLimit/MaxIter to the first application of 
the VNS and subsequent iterations in which the RHS has been decreased to allow 
the total volume to decrease as much as necessary to find a feasible solution with 
a set of complete orders in the container. The first time we obtain a set of orders 
whose boxes fit into the container and the RHS is increased, we give the VNS all 
the remaining time. If the VNS finds a new feasible solution without running out of 
time, the RHS is increased again, as explained above, until the time is exhausted.

An example is shown in Fig. 2a and b, using the same data for five orders already 
used in Fig. 1a. The integer model (10)–(12) selects the orders in Fig. 2a to be loaded. 
In Fig. 2b, all these orders have been loaded into the container by the VNS algorithm.

5.3 � An a posteriori strategy

A different approach will be first to load as many boxes as possible into the container 
and then to assign the loaded boxes to orders in an a posteriori strategy. As orders 
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are usually composed of boxes of the same types, from a solution with a high vol‑
ume occupancy and many boxes it could be possible to obtain a large set of complete 
orders, at least for homogeneous instances with few box types. For the first step, we 
can use the VNS algorithm described in Sect. 4 with an appropriate time limit. This 
algorithm produces solutions with high volume utilization percentages. Let nj be the 
number of boxes of type j in the solution of the VNS. The optimal assignment of boxes 
to orders can be obtained by solving an integer linear model. If we define variables

the model is:

The objective function (13) maximizes the volume of complete orders in the con‑
tainer. Constraints (14) ensure that only the boxes in the solution are assigned to 
orders. Constraints (15) allow an order i to be considered complete ( zi = 1 ) only 
if all nij boxes of each type j forming the order i are assigned to it. Although all 
the boxes in the solution are assigned by constraint (14), those belonging to incom‑
plete orders are considered unassigned, so after identifying the complete orders in 
the solution there will be uj unassigned boxes of type j. In fact, they will have to be 
removed from the container to get a feasible solution composed only of complete 
orders.

zi =

{
1, if order i is completely loaded

0, otherwise

xij =number of type j boxes assigned to orderi,

(13)Maximize
∑
i

Vizi,

(14)st ∶
∑
i

xij = nj∀j,

(15)xij ≥ zinij∀i,∀j.

1
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(a) Orders selected by the in-
teger model

3 3

1 1 2 2

2 2

1 1 1 1

2
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(b) Loading the complete orders se-
lected

Fig. 2   An example of the global a priori strategy
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This a posteriori assignment strategy does not guarantee a large number of com‑
plete orders by itself. Boxes have been selected in the VNS algorithm without con‑
sidering to which order they belong and it can be difficult to assign them to form 
complete orders, especially in strongly heterogeneous problems.

In order to improve the solutions obtained by this strategy, we have developed a 
procedure that divides the set of incomplete orders in the solution into two sets: SC , 
the set of orders to be completed, and SR , the set of orders whose boxes in the solu‑
tion will be removed to make room for the boxes of orders in SC . To determine SC , 
we solve an integer problem to assign the unassigned boxes uj , removing the orders 
that have been completed:

Constraints (17) force all the unassigned boxes in the solution to be assigned to 
orders. In constraints (18), variable wi takes value 1 as soon as one box of any type 
j is assigned to order i. The objective function minimizes the volume of orders with 
wi = 1 , so in the solution we expect to find the boxes mostly assigned to almost com‑
plete orders, although orders with just a few boxes cannot be ruled out because all 
unassigned boxes must be assigned.

The construction of set SC follows an iterative process in which initially SC = � 
and all orders i with wi = 1 are included in SR . At each iteration, one of these three 
criteria is randomly chosen:

•	 C1: The volume of the boxes that should be loaded into the container to com‑
plete the order: Ri =

∑
j vj max{nij − uj, 0},

•	 C2: The proportion of this volume with respect to the total volume of the order, 
Pi = Ri∕Vi,

•	 C3: The volume of the unassigned boxes that can be assigned to the order, 
Ai =

∑
j vjaij , where: 

The best order in SR according to the chosen criterion is removed from it and 
included in SC if the volume of the boxes to be loaded to complete the orders in 
SC , multiplied by a factor randomly chosen in the interval [1.5, 3], is lower than the 
volume of the boxes belonging to the orders in SR that will be removed. We consider 
the volume of the boxes multiplied by a factor larger than 1 because we have to take 
into account that the empty spaces created in the container by removing boxes can 

(16)Minimize
∑
i

Viwi,

(17)st ∶
∑
i

xij = uj∀j,

(18)xij ≤ winij∀i,∀j.

aij =

{
nij, if nij < uj
uj, if nij ≥ uj.
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sometimes be difficult to use for loading boxes, especially in the case of strongly 
heterogeneous boxes with many different box dimensions.

Once set SC has been determined, all the boxes belonging to orders still in SR are 
removed. If there are several boxes of one type and only some of them have to be 
removed, those in the topmost positions are selected, trying to leave the empty spaces 
as high as possible in the container. The boxes required to complete the orders in SC 
are then loaded using a randomized constructive algorithm (Parreño et al. 2008). If not 
all of them can be loaded, the orders in SC are considered for loading one at a time, in 
a random sequence. The pseudocode of the procedure appears in Algorithm 4. 

Figure 3a–d shows an example of this strategy. The five orders in Fig. 3a have to 
be loaded. Figure 3b shows the solution obtained by the VNS algorithm. In Fig. 3c, 
some of the boxes have been assigned by solving model (13)(15), completing orders 
1, 3, and 4. White boxes are unassigned. In the second step, the three criteria will 
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produce SC = {2} and SR = {5} . Removing the box belonging to order 5, the empty 
space can be used to load the remaining box in order 2.

5.4 �  A mixed strategy

An alternative to the previous strategy is not to fill the container up completely, but 
only to a given percentage of its volume. When this percentage is reached, the fill‑
ing process stops and the model of expressions (13)–(15) is solved to assign the 
loaded boxes to orders. Orders i in the solution that are not complete ( zi = 0 ), but 
have some boxes in the solution ( ∃j | xij ≥ 1 ), are considered together for comple‑
tion, using a deterministic constructive algorithm. If all these boxes are loaded, the 
remaining orders are considered for loading, one at a time, selected using the three 
criteria described in the previous strategy. If not all the boxes can be loaded, all 
orders, with or without boxes in the partial solution, are considered for loading, one 
at a time, using the same procedure.

There are two main differences from the previous strategy. On the one hand, as the 
filling process does not go up to the whole volume of the container, the VNS algorithm 
with its improving procedures cannot be applied. Instead, we use a randomized construc‑
tive algorithm. On the other hand, as there will still be more empty space, it should be 
easier to complete orders and even to consider new orders that did not have any box in 
the partial solution. The pseudocode of the procedure appears in Algorithm 5.
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(a) Orders to be loaded
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(b) Solution of the VNS, without con-
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(c) Assigning boxes to complete orders
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(d) Removing unassigned boxes and
completing orders

Fig. 3   An example of the a posteriori strategy
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In Fig. 4a–c, we can see an example of the mixed strategy. In Fig. 4a, the truck 
is filled up to 50% with the VNS algorithm (phase 1). In Fig. 4b, model (13)–(15) 
assigns boxes to orders 1 and 3, and order 2 is incomplete. In Fig.  4c, order 2 is 
completed, and finally the complete order 5 is also introduced with the deterministic 
constructive algorithm (phase 2).

6 � Computational study

We carried out an extensive computational analysis to study the effect of complete 
shipment conditions on the loading plans and to compare the performance of the 
strategies developed here to implement them.

We focused on answering the following research questions: 

1.	 What is the effect of including complete shipment constraints in container load‑
ing? Is the volume occupied severely reduced when these constraints are added?

2.	 Which of the strategies developed to consider these constraints obtains the best 
results?

3.	 How are the solutions affected by the size and heterogeneity of the orders?
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Our algorithm was implemented in C++11 on Visual Studio 2017 to Linux and 
compiled with g++. The computer used was a Linux OS machine, Linux version 
3.10.0-693.5.2.el7.x86-64, gcc version 4.8.5 20150623, Red Hat 4.8.5-16 (GCC), 
with 1 Core at 2.40GHz, 4GB of RAM. For solving the integer linear programs we 
used CPLEX 12.8.0.0.

6.1 � Test instances

The standard benchmark for the container loading problem was initially pro‑
posed by Bischoff and Ratcliff (1995) and then completed by Davies and Bischoff 
(1999). There are 1500 instances, classified into 15 classes, BR1 to BR15, with 
100 instances per class. The numbers of box types per class are 3, 5, 8, 10, 12, 15, 
20, 30, 40, 50, 60, 70, 80, 90, 100, so the instances are weakly heterogeneous in 
the first classes and evolve to strongly heterogeneous in the last classes. Usually, 
BR1–BR7 are considered weakly heterogenous and BR8–BR15 strongly heteroge‑
neous. There is one container of dimensions (587, 233, 220) cm. The boxes gener‑
ated in each instance completely fill the volume of the container, without consider‑
ing three-dimensional geometric constraints, with an average of around 130 boxes 
per instance.

Instances BR1–BR15 have been adapted to the complete shipment case by 
grouping the boxes into orders. If m is the number of orders in the instance, 
m ∈ {10, 15, 20, 25, 50} , the order to which each box belongs is chosen at random in 
the interval [1, m], guaranteeing that each order has at least one box. The averages of 
the numbers of boxes per order for the different numbers of orders appear in Table 1. 
The lower the number of orders, the larger the number of boxes in each order, and 
this could make it difficult to load complete orders.

Running times are adapted to the heterogeneity of the class. For each instance 
of class k the running time of the algorithms applied to it will be 300 + 60k CPU 
seconds. On the homogeneous instances in Class 1, with only 3 box types, the algo‑
rithms will run for 360 s, while longer times are assigned to strongly heterogeneous 
classes, acknowledging their special difficulty. On Class 15, with 100 different box 
types, the algorithms will run for 1200 s. Running times are rather long because this 
study has been designed to assess the effect of the complete shipment constraints 
and not to obtain solutions in short running times. By design, the proposed algo‑
rithms dealing with the complete shipment constraints will run up to the time limit. 
The constructive algorithm, which is used in different ways by those algorithms, is 
extremely fast, while the VNS algorithm, also used in several ways in the proposed 
algorithms, is able to obtain good results even when it is only allowed to run for 
very short times.

6.2 � Performance of the VNS algorithm

Table  2 shows the performance of the VNS algorithm for each class of instances 
and for different time limits, without complete shipment constraints. It can be seen 
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that a significant improvement compared with the constructive algorithm is obtained 
by running VNS for 100 seconds. Nevertheless, increasing the running times only 
produces small improvements, as is usually the case in procedures based on local 
search. In each column, for a fixed number of orders, the volume decreases as het‑
erogeneity increases, with differences of around 3% between classes BR1 and BR15.

6.3 � Comparing the strategies

6.3.1 � Results of the local a priori strategy

Table 3 contains the results of the local a priori strategy in which orders are taken 
from a list and considered for loading one at a time. Although we considered deter‑
ministic criteria for building lists, such as total volume or number of boxes, they 
did not obtain better results than the repeated execution of purely random lists, and 
the results in the table were obtained by considering random lists until the allowed 
running time was exhausted. The results exhibit three main characteristics. First, the 
number of orders does not produce any difference, as can be observed by looking at 
each row. Second, the percentage of volume decreases with increasing heterogene‑
ity, as the columns show. Third, and most important, containers are only filled up to 
80%, which is on average more than 13% less than the volume occupied when the 
VNS algorithm is used without considering the orders to which boxes belong. It is 
clear that this strategy, using a simple constructive algorithm and having to select 
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Fig. 4   An example of the mixed strategy
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among the boxes for only one order at each step, is not adequate when complete 
shipment constraints are included in the container loading problem.

6.3.2 � Results of the global a priori strategy

The results of the global a priori strategy, in which at each iteration a subset of 
orders is selected to be loaded by solving a knapsack problem, appear in Table 4. 
Unlike the previous Table 3, here the results improve slightly with the number of 
orders, confirming that orders with many boxes are more difficult to complete that 
orders composed of a few boxes. The other characteristic, that the volume occupied 
in the container decreases on average as the heterogeneity increases, is shared with 
all the other strategies. What is especially important in Table 4 is that the average 
volume occupancy is extremely high, with values of almost 90% for the most dif‑
ficult instances with few orders and strong heterogeneity, and values exceeding 95% 
for the easiest instances, homogeneous and with many orders composed of few 
boxes.

If these results are compared with those in the last column in Table 2, showing 
the results of the VNS algorithm running for a long time and without the complete 
shipment constraints, it can be observed that the percentages of volume occupancy 
decrease by less than 3% for the most difficult instances and the difference falls to 
2% when the number of orders increases. The results of this strategy clearly show 
that including the complete shipment conditions in the standard container loading 
problem does not have to result in a large decrease in container occupancy if a good 
strategy is used.

6.3.3 � Results of the a posteriori strategy

Table 5 shows the results of the a posteriori strategy. There are two columns for 
each number of orders and for all instances together. Ph.1 columns show the 
results of the initial strategy, using the VNS algorithm without considering the 
orders to which the boxes belong and then assigning boxes to orders, maximizing 
the volume of orders completed. It can be observed that this strategy works well 
for the first classes, which correspond to homogeneous instances. As expected, in 
solutions with many boxes of few types, it is possible to complete many orders 
because they are basically composed of the same types of boxes. In contrast, 
the volume percentages of complete orders decrease sharply in progressively 
more heterogeneous instances, especially when the number of orders is small 

Table 1   Average number of boxes per order for each number of orders

Boxes per order 10 orders 15 orders 20 orders 25 orders 50 orders

Minimum 10.2 4.9 2.0 1.7 1.0
Average 13.3 8.8 6.6 5.3 2.7
Maximum 17.4 14.9 12.7 10.9 6.9
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and therefore each order is composed of many boxes. Ph.2 columns show that 
the improvement phase, in which some of the incomplete orders are chosen for 

Table 2   Performance of the 
VNS for different time limits

VNS

Class Constructive 100 s 200 s 500 s 1000 s

1 86.30 95.51 95.55 95.55 95.62
2 90.85 96.31 96.45 96.51 96.54
3 89.22 96.08 96.24 96.48 96.51
4 89.75 95.86 95.96 96.38 96.50
5 90.33 95.63 95.78 96.02 96.07
6 89.50 95.32 95.43 95.65 95.76
7 90.14 94.65 94.76 94.98 95.19
8 90.25 93.73 94.03 94.33 94.43
9 90.33 93.23 93.29 93.72 94.02
10 90.04 92.59 92.80 93.35 93.49
11 89.60 92.58 92.93 93.27 93.67
12 89.37 91.98 92.64 93.04 93.21
13 89.41 91.83 92.32 92.44 92.69
14 88.89 91.93 92.18 92.68 92.76
15 89.65 91.81 92.15 92.73 92.88
Average 89.56 93.94 94.17 94.48 94.62
Standard deviation 2.46 1.83 1.73 1.61 1.56

Table 3   Performance of the local a priori strategy

Class 10 orders 15 orders 20 orders 25 orders 50 orders Overall Std Dev

1 85.8 84.7 84.0 83.2 81.8 83.9 2.3
2 83.0 82.5 82.0 81.5 81.0 82.0 1.4
3 81.7 81.2 81.2 81.0 80.8 81.2 1.1
4 81.1 80.8 80.9 80.7 80.8 80.9 1.1
5 80.8 80.6 80.7 80.7 80.7 80.7 1.1
6 80.3 80.4 80.6 80.5 80.7 80.5 1.0
7 80.2 80.2 80.3 80.4 80.5 80.3 0.9
8 80.0 80.1 80.2 80.3 80.6 80.2 0.8
9 79.9 80.0 80.2 80.2 80.6 80.2 0.7
10 79.9 80.0 80.2 80.3 80.5 80.2 0.8
11 79.9 79.9 80.1 80.2 80.5 80.1 0.7
12 79.9 80.0 80.2 80.3 80.5 80.2 0.7
13 80.0 80.0 80.1 80.3 80.6 80.2 0.7
14 79.8 80.0 80.1 80.2 80.5 80.1 0.7
15 79.9 80.1 80.2 80.3 80.6 80.2 0.7
Average 80.8 80.7 80.8 80.7 80.7 80.7
Std Dev 1.9 1.6 1.4 1.2 1.0
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completion and the others for removal, obtains much better solutions, most sig‑
nificantly for strongly heterogeneous instances with orders including many boxes, 
with an overall improvement of 6% in total volume occupancy. Nevertheless, even 
with the improvement phase, the results of this strategy are clearly worse l those 
of the previous global a priori strategy.

6.3.4 � Results of the mixed strategy

Table 6 presents the results of the mixed strategy. In order to test whether the per‑
centage to which the container is filled in the initial phase of the procedure influ‑
enced the results, several percentages (50%, 60%, 70%) were tested, but they did 
not offer significantly different results; therefore the table only shows the results 
for the � = 50% filling percentage. Unlike other procedures, there are almost no 
differences with respect to the number of orders, but as in other cases, the vol‑
ume occupancy decreases with the heterogeneity of the instances. However, the 
results are not as good as those obtained in previous cases. The main reason may 
lie in the fact that the structure of the proposed procedure does not allow the 
use of the powerful VNS algorithm, replaced here by a randomized constructive 
algorithm. The flexibility obtained by not completely filling the container, leav‑
ing enough empty space for completing orders, does not seem to offset the initial 
disadvantage.

Table 4   Performance of the global a priori strategy

Class 10 orders 15 orders 20 orders 25 orders 50 orders Overall Std Dev

1 92.5 94.6 95.2 95.4 95.6 94.7 1.9
2 92.7 95.1 95.5 95.7 95.9 95.0 1.6
3 92.7 95.1 95.4 95.5 95.8 94.9 1.4
4 92.8 94.9 95.1 95.1 95.6 94.7 1.3
5 92.8 94.7 94.7 94.8 95.2 94.4 1.1
6 92.7 94.3 94.2 94.3 94.7 94.0 1.0
7 92.6 93.5 93.5 93.6 93.9 93.4 0.8
8 91.9 92.2 92.1 92.1 92.6 92.2 0.8
9 91.5 91.5 91.5 91.7 91.8 91.6 0.8
10 91.2 91.2 91.1 91.0 91.4 91.2 0.8
11 90.8 90.7 90.6 90.6 90.9 90.7 0.8
12 90.7 90.5 90.4 90.4 90.9 90.6 0.8
13 90.4 90.2 90.2 90.3 90.5 90.3 0.7
14 90.2 90.1 90.0 90.2 90.3 90.2 0.8
15 90.0 89.9 89.9 89.7 90.0 89.9 0.8
Average 91.7 92.6 92.6 92.7 93.0 92.5
Std Dev 1.3 2.2 2.3 2.4 2.4
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Table 5   Performance of the a posteriori strategy and its improvement phase

10 orders 15 orders 20 orders 25 orders 50 orders Overall Std Dev

Cl. Ph.1 Ph.2 Ph.1 Ph.2 Ph.1 Ph.2 Ph.1 Ph.2 Ph.1 Ph.2 Ph.1 Ph.2 Ph.1 Ph.2

1 92.0 92.0 94.0 94.0 94.9 94.9 95.2 95.2 95.7 95.7 94.3 94.3 2.1 2.1
2 91.6 91.7 93.8 93.8 94.7 94.7 95.2 95.2 96.1 96.1 94.3 94.3 2.1 2.1
3 90.6 90.7 92.7 92.7 94.0 94.1 94.7 94.7 96.1 96.1 93.6 93.7 2.4 2.4
4 89.4 89.8 91.7 91.9 92.9 93.2 94.1 94.2 95.7 95.7 92.8 93.0 3.0 2.7
5 87.9 88.8 90.7 91.2 92.4 92.6 93.0 93.3 95.2 95.2 91.8 92.2 3.6 2.9
6 85.4 86.7 89.1 89.9 90.7 91.5 91.9 92.2 94.7 94.8 90.4 91.0 4.1 3.5
7 81.5 84.0 86.3 87.7 88.1 89.3 89.9 90.6 93.4 93.5 87.8 89.0 5.0 4.0
8 75.1 82.8 80.4 85.0 82.9 86.4 85.3 88.2 90.9 91.3 82.9 86.7 6.7 3.9
9 69.5 82.6 75.5 84.3 80.0 85.7 82.9 86.6 89.1 89.9 79.4 85.8 8.2 3.6
10 65.2 81.4 72.4 83.9 76.3 84.6 79.4 86.1 87.8 89.1 76.2 85.0 8.9 3.8
11 63.0 81.8 71.0 83.5 74.2 84.4 78.1 85.5 86.4 88.2 74.5 84.7 9.4 3.4
12 57.0 81.4 66.8 83.8 71.3 84.4 75.7 84.8 84.8 87.2 71.1 84.3 10.8 3.2
13 54.7 81.0 64.1 83.4 68.6 83.7 73.2 84.9 83.8 86.9 68.9 84.0 11.2 3.2
14 54.7 81.3 63.5 83.1 68.4 84.1 73.3 84.7 83.9 86.6 68.8 84.0 11.7 3.0
15 52.4 80.6 61.8 83.0 66.6 83.5 72.5 84.3 83.3 86.1 67.3 83.5 12.0 3.1
Av. 74.0 85.1 79.6 87.4 82.4 88.5 85.0 89.4 90.5 91.5 82.3 88.4
SD 15.8 5.2 12.8 4.9 11.2 4.9 9.4 4.6 5.4 4.1

Table 6   Performance of the mixed strategy

Class 10 orders 15 orders 20 orders 25 orders 50 orders Overall Std Dev

1 90.4 90.9 90.8 90.9 90.1 90.6 2.1
2 89.7 89.9 90.1 90.3 89.9 90.0 1.4
3 88.3 88.9 89.3 89.4 88.9 89.0 1.2
4 87.6 88.2 88.7 88.8 88.3 88.3 1.3
5 86.6 87.7 88.3 88.5 87.8 87.8 1.3
6 85.7 87.2 87.6 87.9 87.2 87.1 1.3
7 84.7 86.4 87.0 87.1 86.8 86.4 1.3
8 84.6 86.3 86.8 87.2 87.0 86.4 1.3
9 84.1 85.7 86.5 86.8 86.7 85.9 1.4
10 83.8 85.3 86.1 86.4 86.6 85.6 1.4
11 83.6 84.9 85.7 86.3 86.4 85.4 1.4
12 83.3 84.6 85.5 86.1 86.4 85.2 1.5
13 83.1 84.3 85.1 85.8 86.4 84.9 1.5
14 82.7 84.0 85.1 85.7 86.3 84.7 1.6
15 82.2 83.9 84.8 85.5 86.3 84.6 1.7
Average 85.4 86.5 87.2 87.5 87.4 86.8
Std Dev 2.9 2.4 2.1 1.9 1.6



201

1 3

Logistic constraints in container loading problems: the impact…

7 � Conclusions

Complete shipment constraints, ensuring that either all the boxes in a customer order 
or none at all are packed in the container, have to be explicitly included in con‑
tainer loading problems to produce useful solutions in many practical situations. As 
the integer linear model including these constraints may be too large to be solved 
for real world instances, we have explored several different strategies to solve the 
problem heuristically. In line with the findings of Sheng et  al. (2017), our exten‑
sive computational study shows that strategies based on selecting a subset of orders 
by using an iteratively modified knapsack problem are the most efficient. The other 
main finding of the study is that imposing complete shipment constraints does not 
produce large decreases in the volume occupied in the container, if an appropriate 
strategy is used. The code and the new instances generated can be accessed at https​
://githu​b.com/ivang​ipa/CLPCS​.

This study could be extended in a number of ways. Our experience and previous 
work on container loading problems have basically involved adding practical con‑
straints progressively to the basic problem. In this line of study, our future work will 
add these complete shipment constraints to other practical constraints, such as load 
balance and static stability, and see how they interact and how the strategies devel‑
oped here can be applied or adapted to more complex situations.
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