
Vol.:(0123456789)

TOP (2021) 29:177–203
https://doi.org/10.1007/s11750-020-00577-8

1 3

ORIGINAL PAPER

Logistic constraints in container loading problems:
the impact of complete shipment conditions

I. Gimenez‑Palacios1 · M. T. Alonso1 · R. Alvarez‑Valdes2  · F. Parreño1

Received: 28 January 2020 / Accepted: 13 July 2020 / Published online: 24 July 2020
© Sociedad de Estadística e Investigación Operativa 2020

Abstract
Container loading problems (CLP), in which a set of boxes have to be loaded into
containers or onto trucks, are at the core of many transportation problems. Good
solutions to these packing problems are crucial for the efficient use of logistic
resources. However, to produce solutions that are useful in practice, besides the
basic conditions ensuring that boxes do not exceed the container dimensions and do
not overlap each other, other physical and logistic constraints have to be included
when solving the CLP. In this study, we focus on a special type of logistic constraint:
complete shipment constraints, which ensure that either all or none of the boxes in
each customer order are loaded. Although these constraints have seldom been con‑
sidered in the literature, they arise very often in practice. Customers do not want to
receive incomplete parts of their orders in successive deliveries and retailers do not
want to have to store incomplete orders and wait until the remaining boxes arrive to
deliver the orders to the customers. We include these constraints in an integer lin‑
ear formulation of the CLP and develop four heuristic strategies to deal with them
efficiently. An extensive computational study compares the relative performance of
these strategies and shows that when a good strategy is used the impact of these con‑
straints on the solution of the CLP is quite small.

Keywords  Container Loading · Logistic Constraints · VNS · Integer models

 *	 R. Alvarez‑Valdes
	 ramon.alvarez@uv.es

	 I. Gimenez‑Palacios
	 ivan.gimenez@uclm.es

	 M. T. Alonso
	 mariateresa.alonso@uclm.es

	 F. Parreño
	 francisco.parreno@uclm.es

1	 Department of Mathematics, University of Castilla-La Mancha, Albacete, Spain
2	 Department of Statistics and Operations Research, University of Valencia, Valencia, Spain

http://orcid.org/0000-0002-8450-629X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-020-00577-8&domain=pdf

178	 I. Gimenez‑Palacios et al.

1 3

Mathematics Subject Classification  90C11 · 90C27 · 90C90

1  Introduction

Every day millions of products are sent to customers, using a wide range of means
of transportation. These products are first packed in boxes and on pallets and then
loaded onto trucks or into containers. In long-distance, transoceanic traffic, the use
of containers has increased from 40 million TEUs (Twenty-foot Equivalent Units) in
1996 to 148 million TEUs in 2018 (UNCTAD 2018). Medium-range transportation
is mostly carried out by trucks and trains. According to EUROSTAT, in 2017 road
traffic between the 29 countries of the European Union amounted to 1.913.000 mil‑
lion tkm (tonne-kilometres), while trains moved 430.000 million tkm (EUROSTAT
2017). Most short-distance transportation is performed by small trucks, vans, and
other non-polluting means of transportation in the case of city logistics.

Efficient use of these means of transportation requires solving a packing problem
to decide how to place the small objects (boxes or pallets) in the large objects (con‑
tainers or trucks) so to as maximize an objective, such as the total volume occupied
or the total value of the objects packed. In the Cutting & Packing field, this prob‑
lem is usually known as the Container Loading Problem (CLP). Therefore, in this
study, without loss of generality, small objects will be called boxes and large objects
containers. The basic version of the CLP includes only geometric constraints: boxes
cannot exceed the dimensions of the container, and cannot overlap. These con‑
straints define a challenging three-dimensional combinatorial problem which has
been extensively studied in the scientific literature.

However, to be useful in practical applications, many other constraints have to be
taken into account besides the basic geometric conditions. A list of these constraints
was proposed by Bischoff and Ratcliff (1995). More recently, Bortfeldt and Wäscher
(2013) revisited this list, proposing a classification of constraints and reviewing
how they have been considered in the algorithms developed for the CLP. Practical
constraints can be classified into two main groups, physical and logistic. Physical
constraints are related to the physical characteristics of containers and boxes. They
include weight, orientation, load-bearing, and stability constraints. Weight con‑
straints limit not only the total weight, but also the weight on the axles in the case of
trucks, as well as the load balance, forcing the weight to be evenly spread along the
floor. Orientation constraints determine which rotations of the boxes are allowed and
which are forbidden. Load-bearing constraints limit the weight each box can bear to
avoid damage to the cargo. There are two types of stability constraints: static stabil‑
ity, when the container is not moving, and dynamic stability, when it is being moved
and is subject to acceleration, braking and turns.

Logistic constraints concern the way in which boxes are delivered to customers.
They include allocation, multi-drop, priority, and complete shipment constraints.
Allocation constraints may take the form of connectivity constraints, forcing a set
of boxes to be together in the same container, or separation constraints, forcing sub‑
sets of boxes to be in different containers. Multi-drop constraints arise when the
container contains boxes for different customers to be unloaded in order along the

179

1 3

Logistic constraints in container loading problems: the impact…

route and force the boxes for a given customer to be accessed without moving boxes
for clients to be served later. Priority constraints ensure that high-priority boxes are
loaded before low-priority boxes if they do not all fit into the container. In a similar
vein, complete shipment constraints ensure that for every order, either all or none of
its boxes are loaded.

Bortfeldt and Wäscher (2013) found that some of the physical constraints, such
as orientation, total weight limit, or static stability, had been used in many studies,
while others, such as axle-load, load-bearing and dynamic stability, had seldom been
considered. With regard to logistic constraints, multi-drop constraints had been con‑
sidered in combined routing and packing problems, but the others had been almost
entirely neglected. Bortfeldt and Wäscher (2013) also found that there were very few
studies that included several constraints simultaneously, as they arise in practice.
Since 2013, studies on the CLP have been considering more practical constraints,
and there have been interesting advances, especially in relation to stability, axle-load
and load-bearing constraints.

Nevertheless, some logistic constraints, such as complete shipment constraints,
have received very little attention, although there are many situations in which these
constraints are imposed. In the problem that inspired this study, a large furniture
factory sends its products to retail shops which in turn serve their customers. Very
often, customer orders include large items that are packed into several boxes to be
loaded onto trucks. Customers and shops do not want to receive only a subset of
these boxes and keep them in storage until the remaining boxes arrive. Similar situ‑
ations arise when containers or trucks are shipped on a regular basis and it is always
preferable to send complete orders rather than to fill the remaining space in contain‑
ers or trucks with boxes that will have to wait undelivered until all the other boxes
completing the order are shipped.

This paper focuses on these complete shipment constraints and their effect on the
solutions of the CLP. We propose an integer formulation and develop four heuris‑
tic strategies to solve large instances. The computational study shows that when an
efficient strategy is used the inclusion of these constraints produces only a small
decrease in the volume occupied in the container.

The structure of the paper is as follows. The relevant literature on the CLP and
practical constraints is reviewed in Sect. 2. Section 3 presents the definition of
the problem and an integer formulation. A VNS algorithm for the basic CLP is
described in Sect. 4 and the four heuristic strategies in Sect. 5. The computational
study is summarized in Sect. 6 and conclusions and future work are discussed in
Sect. 7

2 � Related work

The single container loading problem (CLP) plays a central role in Cutting and
Packing due to its many applications and extensions and it has been extensively
studied. The basic geometric constraints, preventing the boxes from exceeding the
dimensions of the container and from overlapping each other, already define a chal‑
lenging combinatorial optimization problem which is NP-hard (Scheithauer 1992).

180	 I. Gimenez‑Palacios et al.

1 3

According to the typology proposed by Wäscher et al. (2007), it can be classified as
a 3D-SLOPP (three-dimensional single large object placement problem), if the set of
boxes is weakly heterogeneous, or a 3D-SKP (Single Knapsack Problem) if the set
of boxes is strongly heterogeneous. Up to now, few exact solution approaches have
been proposed (Fekete et al. 2007; Martello et al. 2000; Junqueira et al. 2012a). In
contrast, many heuristic algorithms have been developed. Recent proposals can be
classified into two groups: metaheuristics and tree-search algorithms. Metaheuris‑
tics include genetic algorithms (Gehring and Bortfeldt 2002), tabu search (Bortfeldt
et al. 2003), simulated annealing (Mack et al. 2004), GRASP (Moura and Oliveira
2005; Parreño et al. 2008), and VNS (Parreño et al. 2010). Tree-search algorithms
proposed in recent years have been shown to produce the best results for the CLP
(Fanslau and Bortfeldt 2010; Zhu et al. 2012; Araya and Riff 2014; Araya et al.
2017).

Following the classification of practical constraints into physical and logistic con‑
straints, we will now review the use of these constraints in recent years.

2.1 � Physical constraints

A first group of physical constraints is related to weight. In almost all applications
there is a limit to the weight that can be loaded into the container (Bortfeldt et al.
2003; Egeblad et al. 2010). In the case of products being transported by trucks with
several axles, the weight that each axle can support is also limited (Lim et al. 2013;
Pollaris et al. 2016; Alonso et al. 2019). The weight of the cargo has to be evenly
distributed on the container floor. A simplified approach to this condition, com‑
monly used, is to require that the centre of gravity of the cargo has to be as close as
possible to the centre of the container (Bortfeldt and Gehring 2001). However, as
Ramos et al. (2018) have shown, this constraint does not guarantee compliance with
transportation regulations, so truck-specific load distribution diagrams have to be
considered and the corresponding constraints included.

As for the boxes, the most common constraint is related to their orientation. In
some cases, all six possible orientations of a box are allowed (Parreño et al. 2008),
but in most practical situations just one vertical orientation is permitted (This side
up!) and only 90◦ horizontal rotations are possible (Correcher et al. 2017; Toffolo
et al. 2017). In some cases, rotation is not allowed at all (Junqueira et al. 2012b).

Load-bearing constraints limit the weight a box can support and are used to
prevent boxes being damaged by excessive weight resting on them. They can be
expressed in different ways: limiting the number of boxes that can be placed on top
of others (Bischoff and Ratcliff 1995), classifying some boxes as fragile and pro‑
hibiting other boxes from being put above them (Paquay et al. 2016), or limiting
the maximum weight a box can support per unit area (Alonso et al. 2014; Junqueira
et al. 2012b).

Stability of the cargo is also a very important condition in practice. Static, or ver‑
tical, stability constraints ensure that loaded boxes do not fall when the container is

181

1 3

Logistic constraints in container loading problems: the impact…

not moving, especially during loading and unloading operations. Static stability has
usually been considered by imposing full support conditions, in which the base of
each box is completely supported by other boxes or by the container floor (Araujo
and Armentano 2007; Fanslau and Bortfeldt 2010), or partial base support, in which
the support can be reduced to a given percentage of the base (Jin et al. 2004; Junque‑
ira et al. 2012b). More recently, Ramos et al. (2016) have shown that this approach
may be too restrictive and have developed an alternative approach using mechani‑
cal equilibrium conditions. Dynamic, or horizontal, stability constraints are defined
to ensure that boxes will not move, and therefore will not be damaged, when the
container is moving and subjected to forces when accelerating, braking, or turning.
Ramos et al. (2015) have proposed new metrics, extending the initial proposals of
Bischoff and Ratcliff (1995). Alonso et al. (2017, 2019) have considered dynamic
stability conditions in their models for multiple container loading.

2.2 � Logistic constraints

Allocation constraints appear in many container loading problems. Sometimes, they
are connectivity constraints, requiring a particular subset of boxes to be loaded into
the same container (Liu et al. 2011), or relative positioning constraints, requiring
certain subsets of boxes to be placed together in the container, to facilitate their
delivery to specific customers (Makarem and Haraty 2010; Egeblad et al. 2010). In
contrast, there are situations in which separation constraints are imposed, prevent‑
ing incompatible types of products from being loaded into the same container (Eley
2003; Battarra et al. 2009).

Multi-drop conditions arise when the boxes to be loaded into the container belong
to different customers that are visited in a given order. The items for each customer
have to be placed together and they have to be accessed when the container reaches
the customer without moving any box corresponding to other customers that will be
visited later in the route. These constraints have been implemented in various ways.
One way is by imposing the condition that the boxes must be visible, meaning that
when the container reaches a customer, one side of each of their boxes must be com‑
pletely visible from the entrance of the container (usually its back door) or blocked
only by boxes for the same customer. This is the approach followed by Gendreau
et al. (2006) in their tabu search algorithm for combined routing and packing prob‑
lems, by Christensen and Rousøe (2009) in their tree-search algorithm, by Fuellerer
et al. (2010) in their Ant Colony Optimization algorithm, by Ceschia and Schaerf
(2013) in their local search procedure, and by Bortfeldt (2012), who developed
a tabu search for the routing part and a tree search for the packing part. Liu et al.
(2011) require not only visibility, but also reachability, considering the maximum
distance at which a box can be accessed by the unloading devices. Junqueira et al.
(2012b) define virtual walls separating boxes for different customers and include

182	 I. Gimenez‑Palacios et al.

1 3

a parameter indicating up to what distance boxes for one customer can be located
behind the wall separating them from the boxes for the next customer.

When the available space in the container is not enough to load all the boxes, a
decision has to be made about which boxes are to be loaded and which left out. In
some practical situations, boxes have priorities and loading high-priority boxes is
preferred. Usually these priorities are based on established delivery dates, although
they can also be related to the characteristics of the products (freshness, shelf-life).
Ren et al. (2011) considered only two types, high and low priorities, and established
that low-priority boxes should not be loaded if this leads to high-priority boxes being
left behind. Wang et al. (2013) also consider high and low priorities and propose
a beam search algorithm, imposing the condition that all high-priority boxes must
be loaded. A particular type of priority is introduced by Jamrus and Chien (2016).
In their problem, all the boxes fit into the container and priorities are used in their
genetic algorithm to place the boxes with higher priority closer to the container door
to be delivered earlier. Sheng et al. (2017) also consider two types of boxes, with
and without expiry dates, and develop an iterative procedure to load as many orders
composed of boxes with expiry dates as possible first, before considering loading
orders of boxes without expiry dates.

In addition to priority restrictions, another situation that can arise when not all
the boxes fit into the container is that boxes can be grouped into orders, and either
all the boxes for the same order must be loaded or none at all. This is known as the
complete shipment condition. It is usually considered in combined routing and pack‑
ing problems, in which when building a route that includes several customers, all the
boxes for each customer in the route have to fit into the container, also satisfying the
multi-drop constraints. However, it has seldom been considered in pure container
loading problems. It was listed by Bischoff and Ratcliff (1995) and mentioned as a
possible extension by Eley (2003), but to the best of our knowledge it has only been
implemented by Sheng et al. (2017). Their tree search packing procedure considers
guillotine cuts, which is not the usual situation in container loading. In the light of
the literature review, our objective is to study in depth how to incorporate complete
shipment constraints efficiently into the container loading problem.

3 � Loading with complete shipment constraints

In this problem, a container of dimensions (L, W, H) has to be filled with a set of
boxes. There are n box types with dimensions (lj,wj, hj), j = 1,… , n , and volume
vj = ljwjhj . Boxes are grouped in m orders, corresponding to the clients’ require‑
ments. For each order i = 1,… ,m , the number of required boxes of type j is nij .
Therefore, the volume of order i is Vi =

∑
j vjnij . The objective is to maximize the

volume occupied by boxes in the container, subject to several types of constraints. In
this study we are going to consider the basic geometric constraints, preventing boxes
from exceeding the dimensions of the container and overlapping each other. In addi‑
tion, the boxes have to be placed with their sides parallel to the sides of the container

183

1 3

Logistic constraints in container loading problems: the impact…

and each box has its own set of allowed orientations. We do not add any of the other
constraints described above and focus on the effect of imposing the complete ship‑
ment constraints.

The problem can be formulated as an integer linear model, taking the base model
by Junqueira et al. (2012a) (which is a direct extension of the model by Beasley
(1985)) and adding constraints for complete shipment. A Cartesian coordinate sys‑
tem is used with the origin in the front-left-bottom corner of the container. In this
system, (x, y, z) will be the coordinates of the front-left-bottom corner of a box. The
possible positions along the axes are defined by sets X = {0, 1,… , L −minj(lj)} ,
Y = {0, 1,… ,W −minj(wj)} , Z = {0, 1,… ,H −minj(hj)} , but these sets can be
reduced to the positions of the normal patterns (Christofides and Whitlock 1977):

In order to develop the non-overlapping constraints, we define the parameter:

which can be computed a priori for each (x, y, z) and (x�, y�, z�) if the dimensions of
each box type j are known.

The decision variables of the base model, ajxyz , with j = 1,… , n;x ∈ X, y ∈ Y , z ∈ Z ,
are defined as

For the complete shipment constraints, we add variables:

The model is:

(1)X = {x | x = ∑
j

�jlj, 0 ≤ x ≤ L −min
j
(lj), �j ∈ Z+, j = 1,… , n},

(2)Y = {y | y = ∑
j

�jwj, 0 ≤ y ≤ W −min
j
(wj), �j ∈ Z+, j = 1,… , n},

(3)Z = {z | z = ∑
j

�jhj, 0 ≤ z ≤ H −min
j
(hj), �j ∈ Z+, j = 1,… , n}.

cjxyzx�y�z� =

⎧
⎪⎨⎪⎩

1, if a box of type j placed with its front-left-bottom corner

at (x, y, z) occupies the position (x�, y�, z�)

0, otherwise,

ajxyz =

{
1, if a box of type j is placed with its front-left-bottom corner at(x, y, z)

0, otherwise.

rij =the number of boxes of type j assigned to orderi

zi =

{
1, if order i is completely loaded into the container

0, otherwise.

184	 I. Gimenez‑Palacios et al.

1 3

The objective function (4) maximizes the total volume of the complete orders loaded
into the container. Constraints (5) prevent the overlapping of boxes. Constraints (6)
and (7) ensure the complete shipment conditions. Constraints (6) define the number
of boxes of each type j assigned to each order i, and constraints (7) only allow an
order to be considered complete if all its boxes are loaded.

This initial formulation could be enhanced in many ways. For instance, we could
include a constraint limiting the total volume of the complete orders:

and cover inequalities could be derived from it, as in many other combinatorial opti‑
mization problems (Codas and Camponogara 2012; Shebalov et al. 2015; Dabia
et al. 2019).

Another useful way of reducing the computational effort for solving the model is
to reduce the possible positions of the boxes even further. Beyond the normal pat‑
terns used above, we could use raster points (Scheithauer and Terno 1996), reduced
normal patterns (Boschetti and Mingozzi 2002), or meet-in-the-middle patterns
(Côté and Iori 2018). A complete review and comparison of reduction methods can
be found in de Almeida Cunha et al. (2019).

In the test instances proposed by Bischoff and Ratcliff (1995) and Davies and
Bischoff (1999), the container has dimensions (587, 233, 220) and the box types
range from 3 to 100. These instances have been used in most studies of the container
loading problem and therefore they will also be used in our study. Considering that
the model requires a variable ajxyz for each possible position (x, y, z) and each box
type j, even with the reductions mentioned above the number of variables is too high
for the model to be solved in a reasonable time, even for small problems. In the fol‑
lowing sections, several heuristic strategies will be described.

(4)Maximize
∑
i

Vizi,

(5)st ∶

n∑
j=1

∑
x∈X

∑
y∈Y

∑
z∈Z

cjxyzx�y�z�ajxyz ≤ 1 x� ∈ X, y� ∈ Y , z� ∈ Z,

(6)
∑
x∈X

∑
y∈Y

∑
z∈Z

ajxyz =

m∑
i=1

rij∀j,

(7)rij ≥ nijzi∀j,∀i,

(8)
ajxyz ∈ {0, 1}, j = 1,… , n;x ∈ X, y ∈ Y , z ∈ Z;,

rij ∈ Z+, i = 1,… ,m, j = 1,… , n; zi ∈ {0, 1}, i = 1,… ,m.

(9)
m∑
i=1

Vizi ≤ LWH

185

1 3

Logistic constraints in container loading problems: the impact…

4 � A VNS algorithm for container loading

In several of the procedures developed in the following sections, we use the Variable
Neighborhood Search (VNS) algorithm developed by Parreño et al. (2010) as a starting
point, with some extensions to make it more efficient. This algorithm has been shown
to produce good results even when running for short times and it is flexible enough to
be used and adapted in many ways as part of other algorithms developed to address the
complete shipment constraints. The pseudocode of VNS appears in Algorithm 1.

The initial solution x is built by a constructive algorithm. It is an iterative procedure
in which at each iteration two decisions are made. First, the maximal empty space near‑
est to a corner of the container is selected to be filled. Second, homogeneous blocks,
that is, arrangements in rows and columns of the unpacked boxes of one box type, are
considered for filling the selected space, and the block producing the largest increase
in the occupied volume is chosen. This constructive algorithm is extremely fast and
obtains quite good results that can be used as starting solutions for more elaborate
procedures.

Six neighborhoods are used in the search:

•	 N1 : Block reduction
•	 N2 : Column insertion
•	 N3 : Box insertion
•	 N4 : Emptying a region and refilling it using the constructive algorithm
•	 N5 : Emptying a region and refilling it selecting at each step the block that best fits

into the space
•	 N6 : Removing a percentage of the last boxes in the solution and refilling the space

using the constructive algorithm

The moves can be classified into two groups. Moves defining N2 and N3 insert non-
packed boxes into a solution, remove the boxes in the solution overlapping them, and
fill the empty spaces using the constructive algorithm. The other four moves start by
removing some elements of the solution, producing empty spaces that are merged with
those existing in the solution, and then fill the empty spaces using either the construc‑
tive algorithm, as in N1 , N4 , and N6 , or another constructive algorithm with a different
block selection criterion, as in N5 . Moves defining N1 , N4 , and N6 differ in their impact
on the solution. N1 has a local impact on the region in which the reduced block was
placed. The region to be emptied in N4 (and also in N5 ) is determined by selecting two
empty spaces and building the minimum rectangle so as to include them. If these two
empty spaces are widely separated, a large part of the container is emptied, making a
global impact on the solution. In N6 the impact depends on the percentage of blocks
removed, but the way in which it removes them is completely different from N4 , thus
producing a different type of move.

The six neighborhoods are used in the shaking phase, but only N1 to N5 in the local
search. The stopping criterion is reaching a time limit, although the algorithm also
stops if all the boxes are loaded into the container, as no improvement is then possible.

186	 I. Gimenez‑Palacios et al.

1 3

Algorithm 1 VNS algorithm
Np= the set of neighborhood structures, for p = 1, ..., pmax for the shaking phase
Nl= the set of neighborhood structures, for l = 1, ..., lmax for the local search
x= Initial solution obtained by a constructive algorithm
T imeLimit = Maximum running time
for (T ime < TimeLimit) do

p = 1
while p < pmax do

(a) Shaking: Generate a neighbor x of x at random, in Np

(b) Local Search:
l = 1
while l < lmax do

Find the best neighbor x of x in Nl

if x is better than x then
x =x
l = 1

else
l = l+ 1

end if
end while
if x is better than x then

x = x
p = 1

else
p = p+ 1

end if
end while

end for

Two extensions have been added to the original algorithm:

•	 Score function The Parreño et al. (2010) algorithm considered two criteria for
selecting the block being packed at each step: the block that produces the larg‑
est increase in the volume occupied, and the block that fits best in the empty
space, filling three, two, or one of its dimensions. More recently, Araya et al.
(2017) have proposed a more complex score function which favours blocks
that fit well into the container, considering the blocks previously placed and
the empty spaces left. It also takes into account the volume of the block and
an estimate of the expected waste that will be produced if the block is chosen,
and tries to pack blocks composed of big boxes first. They have shown that
this score function produces better results than previous selection criteria and
we have therefore added it to our algorithm.

•	 Block generation The blocks considered in the original algorithm were exclu‑
sively homogeneous blocks: arrays of rows and columns using only one type
of box, always with the same orientation. Later studies have shown that more
general heterogeneous blocks, combining boxes of different types in different
orientations, provide more flexibility to the search and thus better results (Fan‑
slau and Bortfeldt 2010; Zhu et al. 2012). Consequently, we have extended the
block generation process to consider heterogeneous blocks.

187

1 3

Logistic constraints in container loading problems: the impact…

5 � Solution approaches with complete shipment

This section presents several strategies developed for solving the container loading
problem with complete shipment constraints heuristically.

5.1 � A local a priori strategy: selecting the next order to load

A simple loading strategy is to sort the orders into a list according to some crite‑
rion, such as volume or number of boxes, take the next order on the list, and try
to load all its boxes using the constructive deterministic algorithm which is part of
the VNS procedure. If all of them are loaded, the next order is considered. If all the
boxes cannot be loaded, the boxes in the incomplete order that have been loaded are
removed and the process moves on to the next order. When all the orders on the list
have been considered, some of them will have been loaded, resulting in a feasible
solution. The pseudocode of the procedure appears in Algorithm 2.

This can be seen as an a priori strategy, since at each step of the process the
order being loaded has been decided beforehand. It is a fairly intuitive way of ensur‑
ing that complete orders are loaded, but as will be seen in the following sections,
there are other alternative strategies. The procedure can be randomized if the list is
constructed using a biased or unbiased random criterion. Initially, the boxes in an
order will be placed close together in the container, which may be a desirable fea‑
ture in the loading and unloading process, but later in the procedure the boxes will
be loaded into the remaining empty spaces, which may be scattered throughout the
container.

 In Fig. 1a and b, we can see an example of this procedure. We have to load
five orders, sorted by non-increasing volume in Fig. 1a. Each order is composed of
only one box type and the number of boxes in the order appears below each box.
Figure 1b shows the final result, in which orders 1, 5, and 2, in this order, are fully
loaded into the truck, but orders 4 and 3 cannot be fitted in it. Some of the boxes in
order 4 could be loaded, but not the complete order of four boxes.

188	 I. Gimenez‑Palacios et al.

1 3

5.2 � A global a priori strategy: selecting a set of orders to load

Instead of selecting one order at a time to be loaded, an alternative consists in selecting a
subset of orders to be loaded together. Let TV1 be the total volume occupied in the solu‑
tion obtained by running the VNS algorithm without the complete shipment constraints.
This value TV1 is an upper bound on the total volume occupied in a solution in which
complete shipment is enforced if the VNS is used for loading. Therefore, a set of orders
that could potentially be completely loaded into the container can be obtained by solving
a knapsack problem:

Let S1 be the set of orders in the solution of this initial knapsack problem. We then
run the VNS algorithm again to fill the container, but only with the boxes belonging
to the S1 orders. There will be two possible outcomes: if all these boxes fit into the
container, the process ends with this feasible solution; otherwise, the container will
be filled to a total volume of TV2 , and some of the S1 orders will be incomplete. To
select a new set of orders to be considered for loading, we solve the integer model
(10)–(12) again, replacing the right-hand side of (11) by TV2 . The solution will be a
new set S2 and the VNS algorithm runs with the boxes of the orders in S2 . Again there
will be two possible results. If all the boxes do not fit into the container, the integer
model is run again with the right-hand side given by the total occupied volume in
the last application of VNS. This process is repeated as many times as necessary
until all the boxes in a set Sk fit into the container. The first time the boxes in a set Sk
fit into the container, instead of stopping, we try to recover part of the last decrease
and solve the integer model again with a right-hand side of (TVk−1 + TVk)∕2 in con‑
straint (11). If the boxes in the set of orders obtained in the solution fit, the RHS is

(10)Maximize
∑
i

Visi,

(11)st ∶
∑
i

Visi ≤ TV1,

(12)si ∈ {0, 1}∀i.

1

x 6

5

x 2

2

x 5

4

x 4

3

x 2

(a) Orders sorted by non-increasing
volume

1 1 1

1 1 1

5 5 2

2

2 2 2

(b) Loading complete orders according
to the sorted list

Fig. 1   An example of the local a priori strategy

189

1 3

Logistic constraints in container loading problems: the impact…

increased again to the midpoint between TVk and (TVk−1 + TVk)∕2 . The first time
the boxes in the selected orders do not fit, the process ends with the last feasible
solution obtained.

If the allowed runtime is TimeLimit, we set a maximum number of iterations
MaxIter and give a maximum time of TimeLimit/MaxIter to the first application of
the VNS and subsequent iterations in which the RHS has been decreased to allow
the total volume to decrease as much as necessary to find a feasible solution with
a set of complete orders in the container. The first time we obtain a set of orders
whose boxes fit into the container and the RHS is increased, we give the VNS all
the remaining time. If the VNS finds a new feasible solution without running out of
time, the RHS is increased again, as explained above, until the time is exhausted.

An example is shown in Fig. 2a and b, using the same data for five orders already
used in Fig. 1a. The integer model (10)–(12) selects the orders in Fig. 2a to be loaded.
In Fig. 2b, all these orders have been loaded into the container by the VNS algorithm.

5.3 � An a posteriori strategy

A different approach will be first to load as many boxes as possible into the container
and then to assign the loaded boxes to orders in an a posteriori strategy. As orders

190	 I. Gimenez‑Palacios et al.

1 3

are usually composed of boxes of the same types, from a solution with a high vol‑
ume occupancy and many boxes it could be possible to obtain a large set of complete
orders, at least for homogeneous instances with few box types. For the first step, we
can use the VNS algorithm described in Sect. 4 with an appropriate time limit. This
algorithm produces solutions with high volume utilization percentages. Let nj be the
number of boxes of type j in the solution of the VNS. The optimal assignment of boxes
to orders can be obtained by solving an integer linear model. If we define variables

the model is:

The objective function (13) maximizes the volume of complete orders in the con‑
tainer. Constraints (14) ensure that only the boxes in the solution are assigned to
orders. Constraints (15) allow an order i to be considered complete ( zi = 1 ) only
if all nij boxes of each type j forming the order i are assigned to it. Although all
the boxes in the solution are assigned by constraint (14), those belonging to incom‑
plete orders are considered unassigned, so after identifying the complete orders in
the solution there will be uj unassigned boxes of type j. In fact, they will have to be
removed from the container to get a feasible solution composed only of complete
orders.

zi =

{
1, if order i is completely loaded

0, otherwise

xij =number of type j boxes assigned to orderi,

(13)Maximize
∑
i

Vizi,

(14)st ∶
∑
i

xij = nj∀j,

(15)xij ≥ zinij∀i,∀j.

1

x 6

2

x 5

3

x 2

4

x 4

(a) Orders selected by the in-
teger model

3 3

1 1 2 2

2 2

1 1 1 1

2

4 4 4 4

(b) Loading the complete orders se-
lected

Fig. 2   An example of the global a priori strategy

191

1 3

Logistic constraints in container loading problems: the impact…

This a posteriori assignment strategy does not guarantee a large number of com‑
plete orders by itself. Boxes have been selected in the VNS algorithm without con‑
sidering to which order they belong and it can be difficult to assign them to form
complete orders, especially in strongly heterogeneous problems.

In order to improve the solutions obtained by this strategy, we have developed a
procedure that divides the set of incomplete orders in the solution into two sets: SC ,
the set of orders to be completed, and SR , the set of orders whose boxes in the solu‑
tion will be removed to make room for the boxes of orders in SC . To determine SC ,
we solve an integer problem to assign the unassigned boxes uj , removing the orders
that have been completed:

Constraints (17) force all the unassigned boxes in the solution to be assigned to
orders. In constraints (18), variable wi takes value 1 as soon as one box of any type
j is assigned to order i. The objective function minimizes the volume of orders with
wi = 1 , so in the solution we expect to find the boxes mostly assigned to almost com‑
plete orders, although orders with just a few boxes cannot be ruled out because all
unassigned boxes must be assigned.

The construction of set SC follows an iterative process in which initially SC = �
and all orders i with wi = 1 are included in SR . At each iteration, one of these three
criteria is randomly chosen:

•	 C1: The volume of the boxes that should be loaded into the container to com‑
plete the order: Ri =

∑
j vj max{nij − uj, 0},

•	 C2: The proportion of this volume with respect to the total volume of the order,
Pi = Ri∕Vi,

•	 C3: The volume of the unassigned boxes that can be assigned to the order,
Ai =

∑
j vjaij , where:

The best order in SR according to the chosen criterion is removed from it and
included in SC if the volume of the boxes to be loaded to complete the orders in
SC , multiplied by a factor randomly chosen in the interval [1.5, 3], is lower than the
volume of the boxes belonging to the orders in SR that will be removed. We consider
the volume of the boxes multiplied by a factor larger than 1 because we have to take
into account that the empty spaces created in the container by removing boxes can

(16)Minimize
∑
i

Viwi,

(17)st ∶
∑
i

xij = uj∀j,

(18)xij ≤ winij∀i,∀j.

aij =

{
nij, if nij < uj
uj, if nij ≥ uj.

192	 I. Gimenez‑Palacios et al.

1 3

sometimes be difficult to use for loading boxes, especially in the case of strongly
heterogeneous boxes with many different box dimensions.

Once set SC has been determined, all the boxes belonging to orders still in SR are
removed. If there are several boxes of one type and only some of them have to be
removed, those in the topmost positions are selected, trying to leave the empty spaces
as high as possible in the container. The boxes required to complete the orders in SC
are then loaded using a randomized constructive algorithm (Parreño et al. 2008). If not
all of them can be loaded, the orders in SC are considered for loading one at a time, in
a random sequence. The pseudocode of the procedure appears in Algorithm 4.

Figure 3a–d shows an example of this strategy. The five orders in Fig. 3a have to
be loaded. Figure 3b shows the solution obtained by the VNS algorithm. In Fig. 3c,
some of the boxes have been assigned by solving model (13)(15), completing orders
1, 3, and 4. White boxes are unassigned. In the second step, the three criteria will

193

1 3

Logistic constraints in container loading problems: the impact…

produce SC = {2} and SR = {5} . Removing the box belonging to order 5, the empty
space can be used to load the remaining box in order 2.

5.4 � A mixed strategy

An alternative to the previous strategy is not to fill the container up completely, but
only to a given percentage of its volume. When this percentage is reached, the fill‑
ing process stops and the model of expressions (13)–(15) is solved to assign the
loaded boxes to orders. Orders i in the solution that are not complete ( zi = 0 ), but
have some boxes in the solution ( ∃j | xij ≥ 1 ), are considered together for comple‑
tion, using a deterministic constructive algorithm. If all these boxes are loaded, the
remaining orders are considered for loading, one at a time, selected using the three
criteria described in the previous strategy. If not all the boxes can be loaded, all
orders, with or without boxes in the partial solution, are considered for loading, one
at a time, using the same procedure.

There are two main differences from the previous strategy. On the one hand, as the
filling process does not go up to the whole volume of the container, the VNS algorithm
with its improving procedures cannot be applied. Instead, we use a randomized construc‑
tive algorithm. On the other hand, as there will still be more empty space, it should be
easier to complete orders and even to consider new orders that did not have any box in
the partial solution. The pseudocode of the procedure appears in Algorithm 5.

1

x 6

2

x 5

3

x 2

4

x 4

5

x 2

(a) Orders to be loaded

1 1 1 4 4 4 1 3

2 2

3

5
4

2

2

1

1

(b) Solution of the VNS, without con-
sidering the orders to which the boxes
belong

1 1 1 4 4 4 1 3

2 2

3

5
4

2

2

1

1

(c) Assigning boxes to complete orders

1 1 1 4 4 4 1 3

2 2

3

2
4

2

2

1

1

(d) Removing unassigned boxes and
completing orders

Fig. 3   An example of the a posteriori strategy

194	 I. Gimenez‑Palacios et al.

1 3

In Fig. 4a–c, we can see an example of the mixed strategy. In Fig. 4a, the truck
is filled up to 50% with the VNS algorithm (phase 1). In Fig. 4b, model (13)–(15)
assigns boxes to orders 1 and 3, and order 2 is incomplete. In Fig. 4c, order 2 is
completed, and finally the complete order 5 is also introduced with the deterministic
constructive algorithm (phase 2).

6 � Computational study

We carried out an extensive computational analysis to study the effect of complete
shipment conditions on the loading plans and to compare the performance of the
strategies developed here to implement them.

We focused on answering the following research questions:

1.	 What is the effect of including complete shipment constraints in container load‑
ing? Is the volume occupied severely reduced when these constraints are added?

2.	 Which of the strategies developed to consider these constraints obtains the best
results?

3.	 How are the solutions affected by the size and heterogeneity of the orders?

195

1 3

Logistic constraints in container loading problems: the impact…

Our algorithm was implemented in C++11 on Visual Studio 2017 to Linux and
compiled with g++. The computer used was a Linux OS machine, Linux version
3.10.0-693.5.2.el7.x86-64, gcc version 4.8.5 20150623, Red Hat 4.8.5-16 (GCC),
with 1 Core at 2.40GHz, 4GB of RAM. For solving the integer linear programs we
used CPLEX 12.8.0.0.

6.1 � Test instances

The standard benchmark for the container loading problem was initially pro‑
posed by Bischoff and Ratcliff (1995) and then completed by Davies and Bischoff
(1999). There are 1500 instances, classified into 15 classes, BR1 to BR15, with
100 instances per class. The numbers of box types per class are 3, 5, 8, 10, 12, 15,
20, 30, 40, 50, 60, 70, 80, 90, 100, so the instances are weakly heterogeneous in
the first classes and evolve to strongly heterogeneous in the last classes. Usually,
BR1–BR7 are considered weakly heterogenous and BR8–BR15 strongly heteroge‑
neous. There is one container of dimensions (587, 233, 220) cm. The boxes gener‑
ated in each instance completely fill the volume of the container, without consider‑
ing three-dimensional geometric constraints, with an average of around 130 boxes
per instance.

Instances BR1–BR15 have been adapted to the complete shipment case by
grouping the boxes into orders. If m is the number of orders in the instance,
m ∈ {10, 15, 20, 25, 50} , the order to which each box belongs is chosen at random in
the interval [1, m], guaranteeing that each order has at least one box. The averages of
the numbers of boxes per order for the different numbers of orders appear in Table 1.
The lower the number of orders, the larger the number of boxes in each order, and
this could make it difficult to load complete orders.

Running times are adapted to the heterogeneity of the class. For each instance
of class k the running time of the algorithms applied to it will be 300 + 60k CPU
seconds. On the homogeneous instances in Class 1, with only 3 box types, the algo‑
rithms will run for 360 s, while longer times are assigned to strongly heterogeneous
classes, acknowledging their special difficulty. On Class 15, with 100 different box
types, the algorithms will run for 1200 s. Running times are rather long because this
study has been designed to assess the effect of the complete shipment constraints
and not to obtain solutions in short running times. By design, the proposed algo‑
rithms dealing with the complete shipment constraints will run up to the time limit.
The constructive algorithm, which is used in different ways by those algorithms, is
extremely fast, while the VNS algorithm, also used in several ways in the proposed
algorithms, is able to obtain good results even when it is only allowed to run for
very short times.

6.2 � Performance of the VNS algorithm

Table 2 shows the performance of the VNS algorithm for each class of instances
and for different time limits, without complete shipment constraints. It can be seen

196	 I. Gimenez‑Palacios et al.

1 3

that a significant improvement compared with the constructive algorithm is obtained
by running VNS for 100 seconds. Nevertheless, increasing the running times only
produces small improvements, as is usually the case in procedures based on local
search. In each column, for a fixed number of orders, the volume decreases as het‑
erogeneity increases, with differences of around 3% between classes BR1 and BR15.

6.3 � Comparing the strategies

6.3.1 � Results of the local a priori strategy

Table 3 contains the results of the local a priori strategy in which orders are taken
from a list and considered for loading one at a time. Although we considered deter‑
ministic criteria for building lists, such as total volume or number of boxes, they
did not obtain better results than the repeated execution of purely random lists, and
the results in the table were obtained by considering random lists until the allowed
running time was exhausted. The results exhibit three main characteristics. First, the
number of orders does not produce any difference, as can be observed by looking at
each row. Second, the percentage of volume decreases with increasing heterogene‑
ity, as the columns show. Third, and most important, containers are only filled up to
80%, which is on average more than 13% less than the volume occupied when the
VNS algorithm is used without considering the orders to which boxes belong. It is
clear that this strategy, using a simple constructive algorithm and having to select

3 3

1 1

1 1

1

1

2

2

(a) Loading boxes up to 50% of the con-
tainer volume

3 3

1 1

1 1

1

1

2

2

(b) Assignment of boxes to orders

3 3

1 1

1 1

1

1

2

2

2 2 2

5 5

(c) Unassigned orders are completed
and other complete orders packed

Fig. 4   An example of the mixed strategy

197

1 3

Logistic constraints in container loading problems: the impact…

among the boxes for only one order at each step, is not adequate when complete
shipment constraints are included in the container loading problem.

6.3.2 � Results of the global a priori strategy

The results of the global a priori strategy, in which at each iteration a subset of
orders is selected to be loaded by solving a knapsack problem, appear in Table 4.
Unlike the previous Table 3, here the results improve slightly with the number of
orders, confirming that orders with many boxes are more difficult to complete that
orders composed of a few boxes. The other characteristic, that the volume occupied
in the container decreases on average as the heterogeneity increases, is shared with
all the other strategies. What is especially important in Table 4 is that the average
volume occupancy is extremely high, with values of almost 90% for the most dif‑
ficult instances with few orders and strong heterogeneity, and values exceeding 95%
for the easiest instances, homogeneous and with many orders composed of few
boxes.

If these results are compared with those in the last column in Table 2, showing
the results of the VNS algorithm running for a long time and without the complete
shipment constraints, it can be observed that the percentages of volume occupancy
decrease by less than 3% for the most difficult instances and the difference falls to
2% when the number of orders increases. The results of this strategy clearly show
that including the complete shipment conditions in the standard container loading
problem does not have to result in a large decrease in container occupancy if a good
strategy is used.

6.3.3 � Results of the a posteriori strategy

Table 5 shows the results of the a posteriori strategy. There are two columns for
each number of orders and for all instances together. Ph.1 columns show the
results of the initial strategy, using the VNS algorithm without considering the
orders to which the boxes belong and then assigning boxes to orders, maximizing
the volume of orders completed. It can be observed that this strategy works well
for the first classes, which correspond to homogeneous instances. As expected, in
solutions with many boxes of few types, it is possible to complete many orders
because they are basically composed of the same types of boxes. In contrast,
the volume percentages of complete orders decrease sharply in progressively
more heterogeneous instances, especially when the number of orders is small

Table 1   Average number of boxes per order for each number of orders

Boxes per order 10 orders 15 orders 20 orders 25 orders 50 orders

Minimum 10.2 4.9 2.0 1.7 1.0
Average 13.3 8.8 6.6 5.3 2.7
Maximum 17.4 14.9 12.7 10.9 6.9

198	 I. Gimenez‑Palacios et al.

1 3

and therefore each order is composed of many boxes. Ph.2 columns show that
the improvement phase, in which some of the incomplete orders are chosen for

Table 2   Performance of the
VNS for different time limits

VNS

Class Constructive 100 s 200 s 500 s 1000 s

1 86.30 95.51 95.55 95.55 95.62
2 90.85 96.31 96.45 96.51 96.54
3 89.22 96.08 96.24 96.48 96.51
4 89.75 95.86 95.96 96.38 96.50
5 90.33 95.63 95.78 96.02 96.07
6 89.50 95.32 95.43 95.65 95.76
7 90.14 94.65 94.76 94.98 95.19
8 90.25 93.73 94.03 94.33 94.43
9 90.33 93.23 93.29 93.72 94.02
10 90.04 92.59 92.80 93.35 93.49
11 89.60 92.58 92.93 93.27 93.67
12 89.37 91.98 92.64 93.04 93.21
13 89.41 91.83 92.32 92.44 92.69
14 88.89 91.93 92.18 92.68 92.76
15 89.65 91.81 92.15 92.73 92.88
Average 89.56 93.94 94.17 94.48 94.62
Standard deviation 2.46 1.83 1.73 1.61 1.56

Table 3   Performance of the local a priori strategy

Class 10 orders 15 orders 20 orders 25 orders 50 orders Overall Std Dev

1 85.8 84.7 84.0 83.2 81.8 83.9 2.3
2 83.0 82.5 82.0 81.5 81.0 82.0 1.4
3 81.7 81.2 81.2 81.0 80.8 81.2 1.1
4 81.1 80.8 80.9 80.7 80.8 80.9 1.1
5 80.8 80.6 80.7 80.7 80.7 80.7 1.1
6 80.3 80.4 80.6 80.5 80.7 80.5 1.0
7 80.2 80.2 80.3 80.4 80.5 80.3 0.9
8 80.0 80.1 80.2 80.3 80.6 80.2 0.8
9 79.9 80.0 80.2 80.2 80.6 80.2 0.7
10 79.9 80.0 80.2 80.3 80.5 80.2 0.8
11 79.9 79.9 80.1 80.2 80.5 80.1 0.7
12 79.9 80.0 80.2 80.3 80.5 80.2 0.7
13 80.0 80.0 80.1 80.3 80.6 80.2 0.7
14 79.8 80.0 80.1 80.2 80.5 80.1 0.7
15 79.9 80.1 80.2 80.3 80.6 80.2 0.7
Average 80.8 80.7 80.8 80.7 80.7 80.7
Std Dev 1.9 1.6 1.4 1.2 1.0

199

1 3

Logistic constraints in container loading problems: the impact…

completion and the others for removal, obtains much better solutions, most sig‑
nificantly for strongly heterogeneous instances with orders including many boxes,
with an overall improvement of 6% in total volume occupancy. Nevertheless, even
with the improvement phase, the results of this strategy are clearly worse l those
of the previous global a priori strategy.

6.3.4 � Results of the mixed strategy

Table 6 presents the results of the mixed strategy. In order to test whether the per‑
centage to which the container is filled in the initial phase of the procedure influ‑
enced the results, several percentages (50%, 60%, 70%) were tested, but they did
not offer significantly different results; therefore the table only shows the results
for the � = 50% filling percentage. Unlike other procedures, there are almost no
differences with respect to the number of orders, but as in other cases, the vol‑
ume occupancy decreases with the heterogeneity of the instances. However, the
results are not as good as those obtained in previous cases. The main reason may
lie in the fact that the structure of the proposed procedure does not allow the
use of the powerful VNS algorithm, replaced here by a randomized constructive
algorithm. The flexibility obtained by not completely filling the container, leav‑
ing enough empty space for completing orders, does not seem to offset the initial
disadvantage.

Table 4   Performance of the global a priori strategy

Class 10 orders 15 orders 20 orders 25 orders 50 orders Overall Std Dev

1 92.5 94.6 95.2 95.4 95.6 94.7 1.9
2 92.7 95.1 95.5 95.7 95.9 95.0 1.6
3 92.7 95.1 95.4 95.5 95.8 94.9 1.4
4 92.8 94.9 95.1 95.1 95.6 94.7 1.3
5 92.8 94.7 94.7 94.8 95.2 94.4 1.1
6 92.7 94.3 94.2 94.3 94.7 94.0 1.0
7 92.6 93.5 93.5 93.6 93.9 93.4 0.8
8 91.9 92.2 92.1 92.1 92.6 92.2 0.8
9 91.5 91.5 91.5 91.7 91.8 91.6 0.8
10 91.2 91.2 91.1 91.0 91.4 91.2 0.8
11 90.8 90.7 90.6 90.6 90.9 90.7 0.8
12 90.7 90.5 90.4 90.4 90.9 90.6 0.8
13 90.4 90.2 90.2 90.3 90.5 90.3 0.7
14 90.2 90.1 90.0 90.2 90.3 90.2 0.8
15 90.0 89.9 89.9 89.7 90.0 89.9 0.8
Average 91.7 92.6 92.6 92.7 93.0 92.5
Std Dev 1.3 2.2 2.3 2.4 2.4

200	 I. Gimenez‑Palacios et al.

1 3

Table 5   Performance of the a posteriori strategy and its improvement phase

10 orders 15 orders 20 orders 25 orders 50 orders Overall Std Dev

Cl. Ph.1 Ph.2 Ph.1 Ph.2 Ph.1 Ph.2 Ph.1 Ph.2 Ph.1 Ph.2 Ph.1 Ph.2 Ph.1 Ph.2

1 92.0 92.0 94.0 94.0 94.9 94.9 95.2 95.2 95.7 95.7 94.3 94.3 2.1 2.1
2 91.6 91.7 93.8 93.8 94.7 94.7 95.2 95.2 96.1 96.1 94.3 94.3 2.1 2.1
3 90.6 90.7 92.7 92.7 94.0 94.1 94.7 94.7 96.1 96.1 93.6 93.7 2.4 2.4
4 89.4 89.8 91.7 91.9 92.9 93.2 94.1 94.2 95.7 95.7 92.8 93.0 3.0 2.7
5 87.9 88.8 90.7 91.2 92.4 92.6 93.0 93.3 95.2 95.2 91.8 92.2 3.6 2.9
6 85.4 86.7 89.1 89.9 90.7 91.5 91.9 92.2 94.7 94.8 90.4 91.0 4.1 3.5
7 81.5 84.0 86.3 87.7 88.1 89.3 89.9 90.6 93.4 93.5 87.8 89.0 5.0 4.0
8 75.1 82.8 80.4 85.0 82.9 86.4 85.3 88.2 90.9 91.3 82.9 86.7 6.7 3.9
9 69.5 82.6 75.5 84.3 80.0 85.7 82.9 86.6 89.1 89.9 79.4 85.8 8.2 3.6
10 65.2 81.4 72.4 83.9 76.3 84.6 79.4 86.1 87.8 89.1 76.2 85.0 8.9 3.8
11 63.0 81.8 71.0 83.5 74.2 84.4 78.1 85.5 86.4 88.2 74.5 84.7 9.4 3.4
12 57.0 81.4 66.8 83.8 71.3 84.4 75.7 84.8 84.8 87.2 71.1 84.3 10.8 3.2
13 54.7 81.0 64.1 83.4 68.6 83.7 73.2 84.9 83.8 86.9 68.9 84.0 11.2 3.2
14 54.7 81.3 63.5 83.1 68.4 84.1 73.3 84.7 83.9 86.6 68.8 84.0 11.7 3.0
15 52.4 80.6 61.8 83.0 66.6 83.5 72.5 84.3 83.3 86.1 67.3 83.5 12.0 3.1
Av. 74.0 85.1 79.6 87.4 82.4 88.5 85.0 89.4 90.5 91.5 82.3 88.4
SD 15.8 5.2 12.8 4.9 11.2 4.9 9.4 4.6 5.4 4.1

Table 6   Performance of the mixed strategy

Class 10 orders 15 orders 20 orders 25 orders 50 orders Overall Std Dev

1 90.4 90.9 90.8 90.9 90.1 90.6 2.1
2 89.7 89.9 90.1 90.3 89.9 90.0 1.4
3 88.3 88.9 89.3 89.4 88.9 89.0 1.2
4 87.6 88.2 88.7 88.8 88.3 88.3 1.3
5 86.6 87.7 88.3 88.5 87.8 87.8 1.3
6 85.7 87.2 87.6 87.9 87.2 87.1 1.3
7 84.7 86.4 87.0 87.1 86.8 86.4 1.3
8 84.6 86.3 86.8 87.2 87.0 86.4 1.3
9 84.1 85.7 86.5 86.8 86.7 85.9 1.4
10 83.8 85.3 86.1 86.4 86.6 85.6 1.4
11 83.6 84.9 85.7 86.3 86.4 85.4 1.4
12 83.3 84.6 85.5 86.1 86.4 85.2 1.5
13 83.1 84.3 85.1 85.8 86.4 84.9 1.5
14 82.7 84.0 85.1 85.7 86.3 84.7 1.6
15 82.2 83.9 84.8 85.5 86.3 84.6 1.7
Average 85.4 86.5 87.2 87.5 87.4 86.8
Std Dev 2.9 2.4 2.1 1.9 1.6

201

1 3

Logistic constraints in container loading problems: the impact…

7 � Conclusions

Complete shipment constraints, ensuring that either all the boxes in a customer order
or none at all are packed in the container, have to be explicitly included in con‑
tainer loading problems to produce useful solutions in many practical situations. As
the integer linear model including these constraints may be too large to be solved
for real world instances, we have explored several different strategies to solve the
problem heuristically. In line with the findings of Sheng et al. (2017), our exten‑
sive computational study shows that strategies based on selecting a subset of orders
by using an iteratively modified knapsack problem are the most efficient. The other
main finding of the study is that imposing complete shipment constraints does not
produce large decreases in the volume occupied in the container, if an appropriate
strategy is used. The code and the new instances generated can be accessed at https​
://githu​b.com/ivang​ipa/CLPCS​.

This study could be extended in a number of ways. Our experience and previous
work on container loading problems have basically involved adding practical con‑
straints progressively to the basic problem. In this line of study, our future work will
add these complete shipment constraints to other practical constraints, such as load
balance and static stability, and see how they interact and how the strategies devel‑
oped here can be applied or adapted to more complex situations.

Acknowledgements  This work has been partially supported by the Spanish Ministry of Science, Innova‑
tion, and Universities, project RTI2018-094940-B-I00, partially financed with FEDER funds and by the
Junta de Comunidades de Castilla-La Mancha, project SBPLY/17/180501/000282, partially financed with
FEDER funds.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of interest.

References

Alonso MT, Alvarez-Valdes R, Parreño F, Tamarit JM (2014) A reactive GRASP algorithm for the con‑
tainer loading problem with load-bearing constraints. Eur J Ind Eng 8(1):669–694

Alonso MT, Alvarez-Valdes R, Iori M, Parreño F, Tamarit JM (2017) Mathematical models for multicon‑
tainer loading problems. Omega 66:106–117

Alonso MT, Alvarez-Valdes R, Iori M, Parreño F (2019) Mathematical models for multi container load‑
ing problems with practical constraints. Comput Ind Eng 127:722–733

Araujo OCB, Armentano VA (2007) A multi-start random constructive heuristic for the container loading
problem. Pesqui Operac 27(2):311–331

Araya I, Riff MC (2014) A beam search approach to the container loading problem. Comput Oper Res
43:100–107

Araya I, Guerrero K, Nuñez E (2017) VCS: a new heuristic function for selecting boxes in the single con‑
tainer problem. Comput Oper Res 82:27–35

Battarra M, Monaci M, Vigo D (2009) An adaptive guidance approach for the heuristic solution of a
minimum multiple trip vehicle routing problem. Comput Oper Res 36:3041–3050

Beasley J (1985) An exact two-dimensional non-guillotine cutting tree search procedure. Oper Res
33(1):49–64

https://github.com/ivangipa/CLPCS
https://github.com/ivangipa/CLPCS

202	 I. Gimenez‑Palacios et al.

1 3

Bischoff EE, Ratcliff MSW (1995) Issues in the development of approaches to container loading. Omega
23(4):377–390

Bortfeldt A (2012) A hybrid algorithm for the capacitated vehicle routing problem with three-dimen‑
sional loading constraints. Comput Oper Res 39:2248–2257

Bortfeldt A, Gehring H (2001) A hybrid genetic algorithm for the container loading problem. Eur J Oper
Res 131(1):143–161

Bortfeldt A, Wäscher G (2013) Constraints in container loading. A state of the art review. Eur J Oper Res
229(1):1–20

Bortfeldt A, Gehring H, Mack D (2003) A parallel tabu search algorithm for solving the container load‑
ing problem. Parallel Comput 29(5):641–662

Boschetti M, Mingozzi A (2002) New upper bounds for the two-dimensional orthogonal non-guillotine
cutting stock problem. IMA J Manag Math 13(2):95–119

Ceschia S, Schaerf A (2013) Local search for amulti-drop multi-container loading problem. J Heuristics
19:275–294

Christensen SG, Rousøe DM (2009) Container loading with multi-drop constraints. Int Trans Oper Res
16:727–743

Christofides N, Whitlock C (1977) An algorithm for towo-dimensional cutting problems. Oper Res
25(1):30–44

Codas A, Camponogara E (2012) Mixed-integer linear optimization for optimal lift-gas allocation with
well-separator routing. Eur J Oper Res 217(1):222–231

Correcher JF, Alonso MT, Parreño F, Alvarez-Valdes R (2017) Solving a large multicontainer loading
problem in the car manufacturing industry. Comput Oper Res 82(1):139–152

Côté J, Iori M (2018) The meet-in-the-middle principle for cutting and packing problems. INF J Comput
30(4):646–661

Dabia S, Ropke S, Van Woensel T (2019) Cover inequalities for a vehicle routing problem with time win‑
dows and shifts. Transp Sci 53(5):1354–1371

Davies AP, Bischoff EE (1999) Weight distribution considerations in container loading. Eur J Oper Res
114(3):509–527

De Almeida Cunha JG, de Lima VL, de Queiroz TA (2019) Grids for cutting and packing problems: a
study in the 2D knapsack problem. 4OR-Q J Oper Res. https​://doi.org/10.1007/s1028​8-019-00419​-9

Egeblad J, Garavelli C, Lisi S, Pisinger D (2010) Heuristics for container loading of furniture. Eur J Oper
Res 200(3):881–892

Eley M (2003) A bottleneck assignment approach to the multiple container loading problem. OR Spectr
25:45–60

EUROSTAT (2017) Eurostat statistics explained, transport. https​://ec.europ​a.eu/euros​tat/. Online
Accessed 26 Dec 2019

Fanslau T, Bortfeldt A (2010) A tree search algorithm for solving the container loading problem. INF J
Comput 22(2):222–235

Fekete SP, Schepers J, Van der Veen JC (2007) An exact algorithm for higher-dimensional orthogonal
packing. Oper Res 55(3):569–587

Fuellerer G, Doerner K, Hartl RF, Iori M (2010) Metaheuristics for vehicle routing problems with three-
dimensional loading constraints. Eur J Oper Res 201:751–759

Gehring H, Bortfeldt A (2002) A parallel genetic algorithm for solving the container loading problem. Int
Trans Oper Res 9(4):497–511

Gendreau M, Iori M, Laporte G, Martello S (2006) A tabu search algorithm for a routing and container
loading problem. Transp Sci 40:342–350

Jamrus T, Chien CF (2016) Extended priority-based hybrid genetic algorithm for the less-than-container
loading problem. Comput Ind Eng 96:227–236

Jin Z, Ohno K, Du J (2004) An efficient approach for the three-dimensional container packing problem
with practical constraints. Asia-Pac J Oper Res 21(3):279–295

Junqueira L, Morabito R, Sato Yamashita D (2012a) MIP-based approaches for the container loading
problem with multi-drop constraints. Ann Oper Res 199(1):51–75

Junqueira L, Morabito R, Sato Yamashita D (2012b) Three-dimensional container loading models with
cargo stability and load bearing constraints. Comput Oper Res 39(1):74–85

Lim A, Ma H, Qiu C, Zhu W (2013) The single container loading problem with axle weight constraints.
Int J Prod Econ 144(1):358–369

Liu WY, Yue Y, Dong Z, Mapple C, Keech M (2011) A novel hybrid tabu search approach to container
loading. Comput Oper Res 38:797–807

https://doi.org/10.1007/s10288-019-00419-9
https://ec.europa.eu/eurostat/

203

1 3

Logistic constraints in container loading problems: the impact…

Mack D, Bortfeldt A, Gehring H (2004) A parallel hybrid local search algorithm for the container loading
problem. Int Trans Oper Res 11(5):511–533

Makarem OC, Haraty RA (2010) Smart container loading. Comput Methods Sci Technol 10:S231–S245
Martello S, Pisinger D, Vigo D (2000) The three-dimensional bin packing problem. Oper Res

48(2):256–267
Moura A, Oliveira JF (2005) A GRASP approach to the container-loading problem. IEEE Intell Syst

20(4):50–57
Paquay C, Schyns M, Limbourg S (2016) A mixed integer programming formulation for the three-

dimensional bin packing problem deriving from an air cargo application. Int Trans Oper Res
23(1):187–213

Parreño F, Alvarez-Valdes R, Tamarit JM, Oliveira JF (2008) A maximal-space algorithm for the con‑
tainer loading problem. INF J Comput 20(3):412–422

Parreño F, Alvarez-Valdes R, Oliveira JF, Tamarit JM (2010) Neighborhood structures for the container
loading problem: a VNS implementation. J Heuristics 16:1–22

Pollaris H, Braekers K, Caris A, Janssens G, Limbourg S (2016) Capacitated vehicle routing problem
with sequence-based pallet loading and axle weight constraints. EURO J Transp Logist 5:231–255

Ramos AG, Oliveira JF, Gonçalves JF, Lopes MP (2015) Dynamic stability metrics for the container
loading problem. Transp Res Part C Emerg Technol 60:480–497

Ramos AG, Oliveira JF, Lopes MP (2016) A physical packing sequence algorithm for the container load‑
ing problem with static mechanical equilibrium conditions. Int Trans Oper Res 23(1–2):215–238

Ramos A, Silva E, Oliveira J (2018) A new load balance methodology for container loading problem in
road transportation. Eur J Oper Res 266(3):1140–1152

Ren J, Tian Y, Sawaragi T (2011) A tree search method for the container loading problem with shipment
priorities. Eur J Oper Res 214:526–535

Scheithauer G (1992) Algorithms for the container loading problem. In: Gaul W, Bachem A, Habenicht
W, Runge W, Stahl WW (eds) Operations research proceedings. vol 1991. Springer, Berlin, Heidel‑
berg, pp 445–452

Scheithauer G, Terno J (1996) The g4-heuristic for the pallet loading problem. J Oper Res Soc
47(4):511–522

Shebalov S, Park Y, Klabjan D (2015) Lifting for mixed integer programs with variable upper bounds.
Discrete Appl Math 186(1):226–250

Sheng L, Xiuqin S, Changjian C, Hongxia Z, Dayong S, Feiyue W (2017) Heuristic algorithm for the
container loading problem with multiple constraints. Comput Ind Eng 108:149–164

Toffolo TAM, Esprit E, Wauters T, Vanden Berghe G (2017) A two-dimensional heuristic decomposition
approach to a three-dimensional multiple container problem. Eur J Oper Res 257(2):526–538

UNCTAD (2018) Report of maritime transport 2018. https​://uncta​d.org. Online Accessed 26 Dec 2019
Wang N, Lim A, Zhu W (2013) A multi-round partial beam search approach for the single container load‑

ing problem with shipment priority. Int J Prod Econ 145:531–540
Wäscher G, Haußner H, Schumann H (2007) An improved typology of cutting and packing problems. Eur

J Oper Res 183(3):1109–1130
Zhu W, Oon W, Lim A, Weng Y (2012) The six elements to block-building approaches for the single con‑

tainer loading problem. Appl Intell 37(3):1–15

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://unctad.org

	Logistic constraints in container loading problems: the impact of complete shipment conditions
	Abstract
	1 Introduction
	2 Related work
	2.1 Physical constraints
	2.2 Logistic constraints

	3 Loading with complete shipment constraints
	4 A VNS algorithm for container loading
	5 Solution approaches with complete shipment
	5.1 A local a priori strategy: selecting the next order to load
	5.2 A global a priori strategy: selecting a set of orders to load
	5.3 An a posteriori strategy
	5.4 A mixed strategy

	6 Computational study
	6.1 Test instances
	6.2 Performance of the VNS algorithm
	6.3 Comparing the strategies
	6.3.1 Results of the local a priori strategy
	6.3.2 Results of the global a priori strategy
	6.3.3 Results of the a posteriori strategy
	6.3.4 Results of the mixed strategy

	7 Conclusions
	Acknowledgements
	References

