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Abstract
We propose a computational framework to quantify (measure) and to optimize the 
reliability of complex systems. The approach uses a graph representation of the sys-
tem that is subject to random failures of its components (nodes and edges). Under 
this setting, reliability is defined as the probability of finding a path between sources 
and sink nodes under random component failures and we show that this measure 
can be computed by solving a stochastic mixed-integer program. The stochastic pro-
gramming setting allows us to account for system constraints and general probability 
distributions to characterize failures and allows us to derive optimization formula-
tions that identify designs of maximum reliability. We also propose a strategy to 
approximately solve these problems in a scalable manner by using purely continuous 
formulations.

Keywords  Reliability · Design · Network · Topology

Mathematics Subject Classification  68M15 · 90B15 · 90C15 · 68R10

1  Introduction

In this work, we investigate the problem of quantifying the reliability of complex 
systems and of designing systems of maximum reliability. Such problems have a 
wide range of applications such as supply chains, transportation networks, energy 
networks, process networks, sensor networks, and control networks (Kim and Kang 
2013). In these applications, it is vital to design systems that maintain functionality 
in the face of natural and man-made events (e.g., mechanical failures, power out-
ages, weather, and cyber-attacks) (Yan et al. 2012). Despite its practical importance, 
quantifying the reliability of complex systems remains a technical challenge.
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Reliability has been traditionally defined as the probability that a system remains 
functional under component failures (Ogunnaike 2009). The most prominent model 
used in industry to quantify reliability is based on so-called reliability block dia-
grams (RBDs). Here, the system is modeled as a network (a directed graph) of 
series/parallel paths in which each path has a single source and sink node. The sys-
tem is said to function under a given failure if there exists at least one path between 
the source and the sink node. The RBD approach exploits the simple topology of 
series/parallel systems to analytically compute the reliability of the overall system 
from the reliability of its individual components (Thomaidis and Pistikopoulos 
1994). Here, it is also implicitly assumed that the probability of failure for every 
component can be chracterized using the same probability distribution. The avail-
ability of an analytical measure facilities the design of systems of maximum reliabil-
ity (Ye et al. 2018). Unfortunately, the RBD approach is difficult to apply to more 
complex settings that involve, for instance, topologies with multiple source and sink 
nodes and loops and components with different probability distributions. As a result, 
analytical reliability measures cannot be easily derived under such settings.

The recursive decomposition algorithm (DFA) is a technique that aims to 
quantify reliability of more complex network topologies by systematically explor-
ing paths between source and sink nodes (Bistouni and Jahanshahi 2014). This 
approach is more general but is not amenable for design tasks. Simulation-based 
approaches such as Monte Carlo (MC) sampling provide a general approach to 
quantify reliability. These approaches estimate reliability by “probing” the sys-
tem against failure scenarios and then determine the probability that the system 
remains functional by averaging the number of scenarios the system is able to 
withstand (Li et  al. 2013). These simulation-based approaches are computa-
tionally more expensive than the analytical RBD approach because they require 
repetitive simulations but can also enable the use of a wide range of stochastic 
programming formulations and solution techniques (Luedtke and Ahmed 2008). 
Specifically, we show that reliability can be computed by solving a stochastic 
mixed-integer program. This framework allows us to handle arbitrary system 
topologies, probability distributions to characterize different types of failures, and 
system constraints. Moreover, the stochastic program can be easily incorporated 
within optimal design formulations. We also provide evidence that accurate solu-
tions for large systems can be obtained by solving purely continuous relaxations.

The paper is structured as follows: Sect. 2 establishes the definition of reliability 
guiding this work and introduces basic notation. Section 3 provides stochastic pro-
gramming formulations to compute reliability and to design systems with maximum 
reliability. Section 4 presents case studies. Section 5 provides concluding remarks.

2 � Problem definition and setting

In this section, we present a general graph abstraction to model complex systems. 
This abstraction is used to motivate and define reliability measures.
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2.1 � Graph abstraction and model

We model a system as a directed graph G(N, E) with components N  (nodes) and 
E (edges). We use n ∈ N  and e ∈ E to represent specific nodes and edges in the 
graph, respectively. The set of edges originating at node n is denoted as Ein(n) ⊆ E 
and the set of edges ending a node n is denoted as Eout(n) ⊆ E . The set of sup-
porting nodes for an edge e (the pair of nodes connected by the edge) is denoted 
N(e) ⊆ N  . A schematic representation of the graph notation is provided in Fig. 1.

The topology of the system G(N, E) is encoded in the incidence matrix 
A ∈ ℝ

|N|×|E| where Ane = 1 if e ∈ Ein(n) , Ane = −1 if e ∈ Eout(n) , or Ane = 0 oth-
erwise. The nominal topology A is subject to failures of its components (nodes 
and edges); as such, we define the perturbed incidence matrix as a random matrix 
A(�N, �E) . Here, �N ∈ ℝ

|N| is the realization of a discrete (binary) random vector 
which indicates the set of nodes that function ( �N,n = 1 if node n functions) or 
do not function ( �N,n = 0 if n does not function). Similarly, �E ∈ ℝ

|E| denotes the 
realization of a binary random vector that indicates the set of nodes that func-
tion ( �E,e = 1 ) or do not function ( �E,e = 0 ). Under these definitions, the perturbed 
incidence matrix under realization � ∶= (�N, �E) can be computed as:

where ΞN ∈ ℝ
|N|×|N| , ΞE ∈ ℝ

|E|×|E| are diagonal matrices of the form ΞN = diag(�N) 
and ΞE = diag(�E) , respectively. In a stochastic programming context, one can inter-
pret A(�) as a random technology matrix (Birge and Louveaux 2011). The elements 
of the perturbed incidence matrix can also be written as:

In other words, Ane(�) = 0 (entry does not exist) if either node n or edge e fails (do 
not exist) in scenario �.

We use a network flow model to represent paths between nodes. Specifically, 
we define a set of source nodes as Nso ⊆ N  with associated source flows dn > 0 , 
a set of sink nodes as Nsi ⊆ N  with associated sink flows dn < 0 , and a set of 
relay nodes as Nre ⊆ N  with associated flows dn = 0 . We observe that the source 
and sink flows are fixed. Under these definitions, the network flow representation 
can be expressed as:

(2.1)A(�) ∶= ΞNAΞE,

(2.2)Ane(�) = Ane ⋅ �N,n ⋅ �E,e, n ∈ N, e ∈ E.

Fig. 1   Representation 
of a system as a directed 
graph with node set 
N = {n1, n2, n3, n4} and edge set 
E = {e12, e13, e23, e24, e34}
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where ze ∈ ℝ+ is the flow along edge e ∈ E . The network flow model can also be 
expressed in compact form as:

In our framework, we expand this basic network flow model to capture the possibil-
ity of readjusting flows in order to maintain system functionality. This can be done 
by allowing some nodes Nu ⊆ N  to have controllable flows un ∈ ℝ+ . Moreover, 
in many applications, the edge flows z and the controls u have physical meaning 
and are, thus, subject to constraints; we capture such constraints using feasible sets 
Z ⊆ ℝ

|E| and U ⊆ ℝ
|Nu| . With this, we define the extended network flow model as: 

 In this representation, the set U is constructed in a way that it restricts control at 
certain nodes. For instance, we consider the box control set:

For simplicity, we assume that the feasible set for flows is also a box set of the form:

2.2 � Reliability measures

A reliability measure seeks to quantify the probability that a system remains functional 
under random component failures. Under a graph representation, the system is said to 
be functional if there exists at least one path that connects each sink node to a source 
node. For a particular realization � (with associated topology A(�) ) and in the absence 
of controls and constraints, the functionality of a system can be checked using the reli-
ability function:

This function uses the network flow representation to check if there exist a set of 
flows z that connect sinks and sources. This is based on the observation that, if a 
path does not exist between a sink and at least one source node (e.g., the network 
becomes disconnected in a given failure scenario), then there is no set of flows z that 
satisfies the flow constraint A(�)z + d = 0.

(2.3)
∑

e∈E

Ane(�)ze + dn = 0, n ∈ N

(2.4)A(�)z + d = 0.

(2.5a)A(�)z + u + d = 0

(2.5b)u ∈ U, z ∈ Z.

(2.6)U = {u ∶ un = 0, n ∉ Nu & u
n
≤ un ≤ un, n ∈ Nu}.

(2.7)Z = {z ∶ z
e
≤ ze ≤ ze, e ∈ E}.

(2.8)�(A, �) ∶=

{
1 if ∃ z ∶ A(�)z + d = 0

0 otherwise.
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The traditional definition of reliability does not account for constraints and does 
not account for the possibility to control flows. To account for these features, we 
extend the reliability function as:

We use this extended function to define the reliability measure:

This measure function is the probability that the system remains functional. A simi-
lar measure has been proposed to measure system flexibility which, in our setting, 
would represent the ability of a system to withstand perturbations in the source and 
sink flows d (exogenous disturbances) (Straub and Grossmann 1993; Bansal et  al. 
1998; Swaney and Grossmann 1985; Pulsipher and Zavala 2018). Therefore, we 
highlight that a key distinction between flexibility and reliability is that the former 
deals with continuous perturbations, while the later deals with discrete perturbations.

2.3 � Designs of maximum reliability

We are interested in using the reliability measure to find system designs that maxi-
mize reliability. In this task, one often needs to trade-off cost c(A,Z,U) and reliabil-
ity, giving rise to the abstract problem:

where � ∈ ℝ is a cost budget that is spanned to find Pareto pairs (c∗,R∗) . We high-
light the dependence of the cost measure and reliability measure on the topological 
design (given by the incidence matrix A) and on the operational design (given by the 
constraint sets Z,U).

3 � Stochastic programming formulations

In this section, we provide stochastic programming formulations to compute the pro-
posed reliability measure and to design systems of maximum reliability. We show 
that these formulations can be easily derived from the network flow representation 
of the system.

3.1 � Computing the reliability measure

We motivate the discussion by considering a simple setting with a single-input 
and single-output graph. Under this setting, the sets Nso and Nsi are singletons 
and thus, the system is said to remain functional if there exists at least one path 
between the source and the sink node. Equivalently, given a fixed source flow, the 

(2.9)�(A, �,Z,U) ∶=

{
1 if ∃ z ∈ Z, u ∈ U ∶ A(�)z + u + d = 0

0 otherwise.

(2.10)R(A,Z,U) ∶= ℙ(�(A(�),Z,U) = 1).

(2.11)
max
A,Z,U

R(A,Z,U)

s.t. c(A,Z,U) ≤ �
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system is functional if we can find a set of edge flows that satisfy the fixed sink 
flow. Under this logic, we can compute �(A, �) by finding a feasible solution for 
a network flow problem and this problem can be cast as a mixed-integer linear 
program (MILP) of the form:

Here, we arbitrarily set the source and sink flows to dn = 1 and dn = −1 , respec-
tively. This is done without loss of generality because the flows do not necessarily 
have physical meaning (in more general settings they might have meaning). We use 
the binary variable y ∈ {0, 1} to relax the balances at the source and sink nodes (i.e., 
if y = 0 then the network flow system has a feasible solution and if y = 1 then it does 
not). If the network flow system does not have a solution, then we obtain the triv-
ial flow solution ze = 0 for all e ∈ E . We, thus, have that the reliability measure is 
given by �(A, �) = 1 − y∗ and we note that the maximization problem is equivalent 
to minimize y. The MILP can be relaxed by setting 0 ≤ y ≤ 1 ; interestingly, this LP 
is guaranteed to deliver an optimal (binary) solution for the MILP (see Appendix).

Problem (3.1) can be easily generalized to compute the reliability measure for 
graphs with multiple sources and sinks and with controllable flows. This can be 
done by solving the MILP:

This MILP determines if all the sink flows can be satisfied via the source flows (i.e., 
each sink has at least one path to a source); this is true whenever y = 0 (which indi-
cates that none of the source and/or sink nodes needs to be relaxed to achieve a fea-
sible solution).

(3.1)

�(A, �) = max
y,z

(1 − y)

s.t.
∑
e∈E

Ane(�)ze = 0, n ∈ Nre

∑
e∈E

Ane(�)ze + dn ⋅ (1 − y) = 0, n ∈ Nso

∑
e∈E

Ane(�)ze + dn ⋅ (1 − y) = 0, n ∈ Nsi

ze ≥ 0, e ∈ E

y ∈ {0, 1}.

(3.2)

�(A, �,Z,U) = max
y,z,u

(1 − y)

s.t.
∑
e∈E

Ane(�)ze = 0, n ∈ Nr

∑
e∈E

Ane(�)ze + dn ⋅ (1 − y) + un = 0, n ∈ Nso

∑
e∈E

Ane(�)ze + dn ⋅ (1 − y) + un = 0, n ∈ Nsi

u ∈ U, z ∈ Z

y ∈ {0, 1}.
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The MILP representation of the reliability function reveals that the measure 
R(A,Z,U) is a joint chance constraint. This chance constraint can be approximated 
using MC samples �k, k ∈ K as (Kim et al. 2015):

By the law of large numbers, this sample average approximation becomes asymp-
totically exact as the number of samples increases (Hsu and Robbins 1947); moreo-
ver, the approximation converges exponentially (Kleywegt et al. 2002). Combining 
problems (3.3) and (3.2), we obtain the following approximation of the reliability 
measure:

This problem is fully decoupled in the MC samples k ∈ K and, thus, can be trivially 
parallelized. It has been recently reported that a continuous relaxation of this prob-
lem (in combination with an appropriate rounding strategy) provides high-quality 
approximations of the exact solution (Pulsipher and Zavala 2019). Specifically, we 
can relax yk ∈ {0, 1} to 0 ≤ yk ≤ 1 and then round the optimized relaxed yk∗ values 
to 1 if they are nonzero. This approach is analogous to employing slack variables to 
identify active and inactive sets of constraints. In the following section, we provide 
numerical evidence that this relaxation approach is effective. The exact relaxation 
result for the simple reliability problem (3.1) provides some intuition as to why this 
happens. However, establishing a theoretical justification in a more complex setting 
with constraints and controllable flows is difficult and is left as a topic of future 
work.

The MILP representation can be extended in a number of ways to capture desirable 
decision-making logic. For instance, one might want to relax the requirement that paths 
must exist to all sink nodes and instead require that only a subset of nodes are reach-
able. This can be done by introducing binary variables for all sink nodes yk

n
 and by solv-

ing the problem:

(3.3)R(A,Z,U) ≈
1

|K|
∑

k∈K

�(A, �k,Z,U).

(3.4)

R(A,Z,U) ≈ max
yk ,zk ,uk

1

�K�
∑
k∈K

(1 − yk)

s.t.
∑
e∈E

Ane(�
k)zk

e
= 0, n ∈ Nre, k ∈ K

∑
e∈E

Ane(�
k)zk

e
+ dn ⋅ (1 − yk) + uk

n
= 0, n ∈ Nso, k ∈ K

∑
e∈E

Ane(�
k)zk

e
+ dn ⋅ (1 − yk) + uk

n
= 0, n ∈ Nsi, k ∈ K

zk ∈ Z, uk ∈ U, k ∈ K

yk ∈ {0, 1}, k ∈ K.
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Here, L(yk) is a logic function which is set to one if a subset of sinks of interest are 
reachable (or is set to zero otherwise).

3.2 � Optimal design

The design problem (2.11) aims to make topological and capacity changes to a nominal 
network to maximize reliability (under a given cost budget). To formulate this prob-
lem, we recall that the base topology of the system is given by the graph G(N, E) with 
associated incidence matrix A, nodes N  , and E . Our goal is this formulation to expand 
the number of edges to maximize reliability. This is done by defining an expanded set 
of edges Ē such that E ⊂ Ē . The expanded set of edges has an associated incidence 
matrix Ā . In other words, the new incidence matrix has an expanded set of connections 
between the nodes. We represent the added set of edges as Ê ∶= Ē⧵E . In our design 
problem, we also seek to expand the set of feasible edge flows and control flows (to 
model capacity expansions). The design problem is cast as the following MILP:

Here, the sets Z and U include possible design values for flow and control bounds. 
Also, v ∈ {0, 1}|Ê| denote topological design variables for selecting which of the 
candidate edges are included in the new design (if none are added then ve = 0 for all 
e ∈ Ê and the network retains its nominal topology). We note that the abstract design 
cost function c(A,Z,U ) can now be expressed in the parametric form c(v, z, z, u, u) . 

(3.5)

R(A,Z,U) ≈ max
yk ,zk ,uk

1

�K�
∑
k∈K

L(yk)

s.t.
∑
e∈E

Ane(�
k)zk

e
= 0, n ∈ Nre, k ∈ K

∑
e∈E

Ane(�
k)zk

e
+ dn ⋅ (1 − yk

n
) + uk

n
= 0, n ∈ Nso, k ∈ K

∑
e∈E

Ane(�
k)zk

e
+ dn ⋅ (1 − yk

n
) + uk

n
= 0, n ∈ Nsi, k ∈ K

zk ∈ Z, uk ∈ U, k ∈ K

yk
n
∈ {0, 1}, k ∈ K, n ∈ Nsi ∪Nso.

(3.6)

max
v,z,z,u,u,zk ,yk ,uk

1

�K�
∑
k∈K

L(yk)

s.t. c(v, z, z, u, u) ≤ 𝜖∑
e∈Ē

Ak
ne
zk
e
= 0, n ∈ Nre, k ∈ K

∑
e∈Ē

Ak
ne
zk
e
+ dn ⋅ (1 − yk

n
) + uk

n
= 0, n ∈ Nso, k ∈ K

∑
e∈Ē

Ak
ne
zk
e
+ dn ⋅ (1 − yk

n
) + uk

n
= 0, n ∈ Nsi, k ∈ K

Ak
ne
= Āne ⋅ 𝜉

k
N,n

⋅ 𝜉k
E,e
, n ∈ N, e ∈ Ē, k ∈ K

Ak
ne
= Āne ⋅ 𝜉

k
N,n

⋅ 𝜉k
E,e

⋅ ve, n ∈ N, e ∈ Ê, k ∈ K

z ≤ zk ≤ z, u ≤ uk ≤ u, k ∈ K

yk
n
∈ {0, 1}, n ∈ Nsi ∪Nso, k ∈ K

ve ∈ {0, 1}, e ∈ Ê

z, z ∈ Z, u, u ∈ U.
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The proposed design formulation seeks to highlight the modeling flexibility pro-
vided by the proposed stochastic programming framework.

4 � Case studies

We analyze the behavior of the proposed framework by applying it to distribution 
networks. We consider a simple three-node network and the IEEE-14 power distri-
bution network. We also consider a simple parallel–series RBD system to illustrate 
how the proposed stochastic programming framework is consistent with the analyti-
cal RBD solution. All formulations are implemented in JuMP 0.18.5 (Dunning et al. 
2017) and are solved using Gurobi 7.5.1 on a Intel®  Core™  i7-7500U machine 
running at 2.90 GHz with 4 hardware threads and 16 GB of RAM. All results can be 
reproduced using the scripts provided in https​://githu​b.com/zaval​ab/Julia​Box/tree/
maste​r/Relia​bleDe​sign.

4.1 � Reliability of parallel–series systems

We consider a simple parallel–series system to highlight that the stochastic program-
ming approach is consistent. The system of interest is represented by the reliability 
block diagram shown in Fig. 2. This system seeks to pump a flow stream using two 
pumps and valves in parallel. The parallel design topology enhances the reliability 
of the system (compared to a topology with a single pump and valve).

Traditional RBD methods can be leveraged to obtain an analytic representation 
for the overall reliability of the system since this system features a single source and 
sink (Bistouni and Jahanshahi 2014). In particular, the analytic reliability measure 
is computed by aggregating the component reliabilites according to their respective 
connectivities. Specifically, the reliability of m components in series configurations 
is given by:

The reliability of a parallel configuration is given by:

(4.1)Rs =

m∏

i

Ri.

Fig. 2   Reliability block diagram for a pump system

https://github.com/zavalab/JuliaBox/tree/master/ReliableDesign
https://github.com/zavalab/JuliaBox/tree/master/ReliableDesign
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Following these basic rules, the reliability of the system of interest can be computed 
as:

For simplicity, we let each component lifetime be described by an exponential distri-
bution with a mean lifetime of 100 years and we evaluate reliability after 5 years of 
operation. The reliability for each component is given by the exponential cumulative 
distribution function evaluated at 5 years (i.e., Ri = exp (−5∕100) ). From Eq. (4.3), 
we, thus, obtain the overall reliability Roverall = 89.66%.

To demonstrate the equivalence of the proposed stochastic programming setting, 
we use MC samples drawn from the component distribution functions (a compo-
nent fails if the lifetime is above the desired threshold of 5 years). We use a total of 
10,000 MC samples and solve Problem (3.4). Here, we let the throttle valve be the 
source node and the mixer be the sink node with dn = 1 and dn = −1 , respectively. 
Furthermore, we set U = � (no controls) and Z = ℝ

|E|
+  . Using this approach, the reli-

ability measure is R(A,Z,U) = 89.69% , which is close to the analytical solution.

4.2 � Network models

The systems under study are illustrated in Figs.  3 and 4. We consider a simple 
3-node distribution network and the IEEE 14-node power network benchmark prob-
lem. In these cases, the sink nodes n ∈ Nsi have a fixed flow dn and the source nodes 
n ∈ Nso are controllable with capacity ū . Furthermore, the edges have a finite capac-
ity z̄ . The 3-node network features a single source (a power plant) and three sink 
nodes (power consumers). The IEEE 14-node network exhibits a more complex 
topology with multiple sinks and sources. The data for this problem are obtained 
from MATPOWER (Zimmerman et al. 2010).

For our design studies, we consider a cost function of the form:

(4.2)Rp = 1 −

m∏

i

(1 − Ri).

(4.3)Roverall = R1(1 − (1 − R2R3)(1 − R4R5))R6.

Fig. 3   Schematic of 3-node 
distribution network
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We consider random failures for relay nodes, source nodes, and sink nodes. Here, 
we model the lifetimes of the components as exponential random variables with 
mean lifetimes of 100, 80, and 50 years, respectively. MC failure scenarios �k

N
, �k

E
 

are generated by sampling the exponential distributions and the components are set 
to failure mode if their lifetime is above a certain threshold value. The thresholds for 
the 3-node and IEEE 14-node networks were set to 5 and 2 years, respectively. Also, 
we use nominal line capacity limits of zmax = 100 for the IEEE 14-node network 
since these are not provided by MATPOWER.

4.3 � Design for maximum reliability (capacity expansion)

We first consider a design problem in which capacity is expanded (i.e., topologi-
cal expansion variables v are omitted). For the 3-node power network, we solve 
the MILP formulation to obtain 6 Pareto pairs and we use 1000 MC samples. The 
Pareto pairs are plotted in Fig. 5. Here, we note that the Pareto frontier shows abrupt 
changes; this is because this system is simple and, thus, the solution space is small. 
A manifestation of this limited spaces is that the maximum possible reliability for 
this system is just 51.4%. This indicates that, regardless of how much capacity is 
provided (unlimited budget), this network will never achieve a higher reliability 
because of its limiting topology. In other words, the only way to increase reliability 
is to add edges.

We explore the Pareto solutions obtained with � = 30 and � = 45 . The opti-
mized capacities for these solutions are shown in Fig.  6. Here, the increased 

(4.4)c(v, z, u) ∶=
∑

e∈E

(100 ⋅ ve + ze) +
∑

n∈Nu

un.

Fig. 4   Schematic of IEEE 14-node distribution network
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capacities relative to the base design are highlighted in red. In the first case, 
enough capacity is added to the edges connecting nodes 2, 3, and 1 to permit the 
network to function in the event that the edges connecting nodes 1 and 2 fails. In 
the other case, enough capacity is added to the edges to permit feasible operation 
if any one edge fails.

We apply the same design formulation to the IEEE-14 power network problem. 
We compute a total of 13 Pareto pairs by varying the budget � from 0 to 1800 and we 
use 2000 MC samples. The solutions obtained with the MILP formulation are pre-
sented in Fig. 7. We see that this system shows a smoother Pareto frontier because 
the solution space for this more complex system is larger. For this system, the largest 
possible reliability is 78.7% (this system has more degrees of freedom).

Fig. 5   Pareto frontier for optimal capacity design of 3-node network using 1000 MC samples

Fig. 6   Schematic of the 3-node 
network corresponding to Pareto 
pair shown in Fig. 5 with a 
design cost of 30
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The design obtained with a budget of � = 400 is shown in Fig. 8. The expanded 
capacities are highlighted in red. The capacity of the supplier attached to relay node 
6 is significantly expanded (which occurs because it is the only supplier that serves 

Fig. 7   Pareto frontier for optimal design problem of IEEE 14-node network

Fig. 8   Schematic of the IEEE 14-node network corresponding to Pareto pair shown in Fig. 7 with a cost 
of 400
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the right side of the network). The capacities of two edges attached to node 6 are 
also increased such that the internal demands can be satisfied if either edge fails. It 
is interesting to note that these 3 simple changes to the network design significantly 
increase the overall reliability of the system (they increase it by 24.4%).

4.4 � Continuous approximation for design problem

We consider a continuous relaxation of the design problem; here, integer solu-
tions are obtained by solving the relaxation and then using simple rounding. This 
technique is first applied to the 3-node power network using the same samples 
and � values considered above in Sect. 4.3. In Fig. 9, we juxtapose the resulting 
Pareto pairs. We observe that 5 out of 6 pairs are exactly recovered and a pair is 
underestimated. In Pulsipher and Zavala (2019) it is hypothesized that the quality 
of the approximations is the result of degeneracy associated with the joint chance 
constraint (i.e., multiple solutions yield the same optimal value). This simple net-
work exhibits little degeneracy at that solution because its solution space is small.

Table 1 summarizes the performance of the MILP formulation and the continu-
ous relaxation for the 3-node network. We observe that 5 of the 6 pairs are exactly 
equivalent since they have no differences in the active constraints. Also, the third 
pair only differs by 3.5% (which is a small gap). For this small network, the solu-
tion times are negligible; so, the benefits of the relaxation are not obvious.

Fig. 9   Pareto frontier for optimal capacity design of the 3-node network juxtaposing the pairs obtained 
from the full MILP formulation and its continuous relaxation
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The relaxation strategy was also applied to the IEEE 14-node power network 
using the same conditions specified above in Sect. 4.3. A juxtaposition of the Pareto 
pairs is shown in Fig.  10. We observe that the frontier is approximated well (the 
majority of the pairs being exactly reproduced). Some of the minor discrepancies 
are attributed to numerical precision. A summary of the results is shown in Table 2. 
With the exception of the third pair, the Pareto pairs only exhibit differences in the 
active constraints of less than 1%. We can, thus, see that the relaxation indeed deliv-
ers high-quality approximation. Importantly, we observe that the computational time 
is reduced by 96%. This enables us to handle much larger networks than would be 
possible using the full MILP formulation.

Table 1   Performance results obtained for 3-node network using the MILP design formulation and con-
tinuous relaxation

Cost MILP R (%) LP R (%) MILP time (s) LP time (s) Active 
difference 
(%)

0 43.4 43.4 0.0467 0.0349 0
15 43.4 43.4 0.0400 0.0468 0
30 46.9 43.4 0.0407 0.0478 3.5
45 51.4 51.4 0.0562 0.0478 0
60 51.4 51.4 0.0526 0.0478 0
75 51.4 51.4 0.0443 0.0458 0

Fig. 10   Pareto frontier for optimal capacity design of the IEEE 14-node network juxtaposing the pairs 
obtained from the full MILP formulation and its continuous relaxation
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4.5 � Design for maximum reliability (topological expansion)

We apply the MILP formulation to the 3-node power network including the use of 
the topological design variables v. We recall that these design variables determine 
if a particular edge is added to the system. In other words, this more complex for-
mulation chooses an optimal design configuration of edges and capacities where it 
enforces a fixed upfront cost for the use of each edge. A total of 7 Pareto solutions 
were computed by varying the budget � from 0 to 750 and the same samples men-
tioned above are used. These solutions are presented in Fig. 11. A nonzero R index 
is not obtained until a budget of 600 is employed since at least 6 edges are required 
to allow the network to function and the capital cost of each line is 100. After this, 
capacity increases help improve the network until the R index is maximized by add-
ing all the edges and adding extra capacity resulting in the same best possible opti-
mal design considered shown in Fig. 6.

The optimal design for a budget of 650 is depicted in Fig. 12 (left) and this is 
compared against the design with maximum budget (right). The edges that are 
switched off are plotted in gray. Here, we observe that the trade-off design is able to 
effectively operate relative to the sample set without one of the relay edges with the 
addition of some capacity. The design of maximum budget employs all of the edges 
with enough capacity to operate if any relay edge fails (making it the most robust 
design).

We also considered topology and capacity design decisions for the IEEE 
14-node power network. A total of 27 Pareto pairs were obtained by varying the 
budget � from 0 to 4700. The solutions are shown in Fig.  13. The Pareto fron-
tier was obtained using the continuous relaxation. An average of 56 seconds were 

Table 2   The performance results obtained for the IEEE 14-node network using the mixed-integer and 
continuous capacity design formulations

Design cost (–) MILP R (%) LP R (%) MILP time (s) LP time (s) Active 
difference 
(%)

0 0 0 5.42 1.23 0
50 51.3 51.3 58.84 12.84 0
100 62 54.9 78.62 3.68 7.1
150 62.25 62.25 95.09 5.75 0.5
200 69.45 68.4 83.35 4.75 1.05
400 75.7 74.85 124.46 4.84 0.85
600 77.3 77.1 168.61 7.39 0.8
800 78 77.9 185.11 3.97 0.2
1000 78.3 78.1 205.75 7.2 0.5
1200 78.5 78.45 186.34 3.27 0.05
1400 78.65 78.55 125.08 4.14 0.1
1600 78.65 78.65 151.48 2.57 0.1
1800 78.7 78.7 108.57 1.72 0
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needed to compute the frontier. The reduced solution times allow us to explore 
more designs and to explore the reliability limits of the system. In other words, 
even if the relaxation cannot be guaranteed to provide an exact solution, it cap-
tures general behavior and, thus, can be used as a exploratory tool.

The Pareto pair with a budget of 2500 is shown in Fig. 14. The modified capac-
ities are highlighted in red and the edges not in use are colored gray. Here, we 
observe that reliable performance can be obtained simply by adding capacity to 
the right supplier and most of the edges, except the edges connecting relay nodes 
1–2 and 4–7. Interestingly, this analysis shows that these edges do not impact 
reliability and can be eliminated (this elimination is not obvious). This highlights 

Fig. 11   Pareto frontier for optimal topological and capacity design of the 3-node network obtained from 
the full MILP formulation

Fig. 12   Schematic of the 3-node 
network corresponding to the 
Pareto pair shown in Fig. 11 
with a design cost of 650
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Fig. 13   Pareto frontier for optimal topological and capacity design for IEEE 14-node network (using 
continuous relaxation)

Fig. 14   Schematic of the IEEE 14-node network corresponding to Pareto pair shown in Fig. 13 with a 
cost of 2500



644	 J. L. Pulsipher, V. M. Zavala 

1 3

that the use of systematic reliability analysis techniques in being can help to 
determine which components are truly needed and avoid over-engineering.

5 � Conclusions

We propose stochastic programming formulations to compute the reliability of com-
plex systems. Specifically, the proposed reliability measure uses a graph representa-
tion of the system and aims to identify the probability that sink nodes are reachable 
by source nodes. This measure can be computed by solving a network flow problem, 
can be easily extended to incorporate constraints, and can be easily embedded in 
design formulations. We also show that the reliability measure can be computed by 
solving a stochastic mixed-integer program and that a continuous relaxation of this 
problem provides high-quality solutions. Case studies are provided to demonstrate 
the developments.

Acknowledgements  This work was supported by the U.S. Department of Energy under Grant 
DE-SC0014114.

Appendix: Quality of relaxation for simple setting

Theorem 1  The relaxation of problem (3.1) is exact.

Proof  We express problem (3.1) (denoted as P) in vector form as:

where we define d̂ ∶= −d to express the constraints in a standard linear form. The 
relaxed problem (denoted as P̄ ) is obtained by replacing y ∈ {0, 1} with ȳ ∈ [0, 1] . 
We denote optimal solutions for P̄ and P as ȳ∗ and y∗ , respectively. We show that P̄ 
delivers optimal solutions for P by analyzing three possible cases. First consider the 
case in which d̂ ∈ R(A(𝜉)) (where R(⋅) denotes the range of the input matrix) and 
there exists a nontrivial flow solution ( z∗

j
> 0 for some j) such that A(𝜉)z∗ = d̂ . This 

implies that all values of y are feasible since (1 − y)d̂ ∈ R(A(𝜉)), ∀y ∈ ℝ . Thus, 
y∗ = ȳ∗ = 0 must be optimal solutions (yielding the largest possible objective), since 
any other feasible value of y would have a lower objective. The second case is that in 
which d̂ ∈ R(A(𝜉)) and there does not exist a nontrivial solution ( z∗

j
> 0 for some j) 

such that A(𝜉)z∗ = d̂ . In this case, the only feasible solution is the trivial solution 
z∗ = 0 and thus y∗ = ȳ∗ = 1 . The third and final case corresponds to d̂ ∉ R(A(𝜉)) ; it 
follows that (1 − y)d̂ ∈ R(A(𝜉)) if and only if y = 1 since any scalar multiple of d̂ 
will lie outside of R(A(�)) except for the trivial case that d̂ = 0 . Thus, the only feasi-
ble (and, therefore, optimal) solution to both problems is y∗ = ȳ∗ = 1 . 	�  ◻

𝜓(A, 𝜉) = max
y,z

(1 − y)

s.t. A(𝜉)z = d̂ ⋅ (1 − y)

z ≥ 0

y ∈ {0, 1},
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