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Abstract
A group of agents must be served in a facility. The facility can serve only one agent
at a time and agents incur waiting costs. The queueing problems is concerned with
finding the order to serve agents and the monetary transfers. It can be solved by
taking various approaches: the cooperative game theoretic approach, the normative
approach, the strategic approach, the bargaining approach, and the combination of
these approaches. In this paper, we provide a survey on the recent developments in the
queueing problem.
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1 Introduction

Suppose there is a group of agents who must be served in a facility which can process
only one agent at a time.Agents incurwaiting costs. An agent’swaiting cost is assumed
to be constant per unit of time, but differs across agents. For such a queueing problem,
we are interested in finding the order to serve agents and the monetary transfers they
should receive.

There are a number of real-life examples of the queueing problem. Queueing arises
when agents cannot coordinate amongst themselves on the service time (long queues
at the ticket office, department store, etc). Even if they can coordinate, queueing can
still arise because agentsmay have identical preferences regarding the service time and
technological constraints prevent all agents being served simultaneously. For example,
all faculty members of some department want to move into a new building as soon as
possible, consumers want to implement a new computer program as soon as they can
and so on.

There are two main approaches to the queueing problem. One is the strategic
approach which focuses on the fact that the waiting cost of an agent is typically
known to the agent only. Hence, incentives have to be provided to get agents to reveal
their private information truthfully. This literature examines the tradeoffs involved in
providing such incentives. The other approach assumes away the private information
aspect and focuses instead on the fairness aspect of the problem. Since all agents
cannot be served simultaneously in a queueing situation, some agents have to wait.
Fairness demands that agents served earlier compensate those served later. What is a
fair way of doing this? This question was raised by Maniquet (2003) and a large liter-
ature has developed in its wake. A more recent literature combines the strategic and
normative approaches. In this paper, we provide a survey on the recent developments
in the area of queueing problems.

After laying down the basic concepts in Sect. 2, Sect. 3 begins with the cooperative
game theoretic approach, which applies well-known solution concepts of cooperative
game theory to the queueing problem. In Sect. 4, we discuss the normative approach
that proposes a set of axioms which a desirable rule should satisfy and then charac-
terizes all rules satisfying those axioms. In Sect. 5, we investigate the existence of
rules satisfying strategy-proofness, which requires that an agent should not have an
incentive to misrepresent her waiting cost. In Sect. 6, we investigate the implications
of normative requirements such as egalitarian equivalence (Pazner and Schmeidler
1978) and the identical preferences lower bound together with queue-efficiency and
strategy-proofness. Section 7 tries to solve the queueing problem by adopting a bar-
gaining approachwhich builds up a bargaining protocol such that players can negotiate
among themselves to resolve the queueing conflicts. Finally, Section 8 discusses pos-
sible generalizations of the queueing problem for future research.

1.1 Brief history

An analysis on the queueing problem was initiated by Dolan (1978) who proposed
a strategy-proof, but not budget-balanced rule. Suijs (1996) and Mitra (2001, 2002)
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Recent developments in the queueing problem 3

provide a strategyproof and budget-balanced rule which has been later characterized
by Kayi and Ramaekers (2015), Hashimoto and Saitoh (2012), and Chun, Mitra, and
Mutuswami (in press). On the other hand, Maniquet (2003) focused on the fairness
aspect of the problem which he addressed by applying the Shapley value, one of the
mostwell-known solution concept of cooperative game theory. The resulting allocation
rule is now known as the minimal transfer rule. This approach has also been adopted
by Chun (2006a) who proposed a “pessimistic” definition for the worth of a coalition.
Even though he applied the same Shapley value, he obtained a different rule, namely,
themaximal transfer rule. Recent studies try to combine the strategic and the normative
points of view. They characterize all rules satisfying strategyproofness together with
some normative axioms (Kayi and Ramaekers 2010; Hashimoto and Saitoh 2012;
Chun et al. 2014b, in press; Chun and Yengin 2017). Finally, Ju et al. (2014) adopted
a bargaining approach to the queueing problem.1

2 Basic concepts

2.1 Themodel

Let I ≡ {1, 2, . . .} be an (infinite) universe of “potential” agents, andN be the family
of non-empty finite subsets of I .Each agent i ∈ I is characterized by her (unit) waiting
cost, θi ≥ 0.Given N ∈ N , each agent i ∈ N is assigned a position σi ∈ {1, . . . , |N |}
in a queue2 and a monetary transfer ti ∈ R. Each agent has one job to process and
the facility can serve only one agent at a time. Each agent needs the same amount
of processing time which is normalized to one. If agent i ∈ N is served in the σi th
position, her total waiting cost is (σi − 1)θi . Since each agent is assumed to have a
quasi-linear utility function, the utility of agent i from the bundle (σi , ti ) is given by

u(σi , ti ; θi ) = −(σi − 1)θi + ti .

A queueing problem for N ∈ N is defined as the vector of waiting costs of all
agents θ = (θi )i∈N ∈ R

N+ .3 LetQN be the class of all problems for N andQ = ∪QN .

An allocation for θ ∈ QN is a pair (σ, t), where for each i ∈ N , σi denotes agent i’s
position in the queue and ti the monetary transfer to her. An allocation is feasible if no
two agents are assigned the same position. Thus, the set of feasible allocations Z(θ)

consists of all pairs (σ, t) such that for all i, j ∈ N , i �= j implies σi �= σ j . For each
profile θ and each i ∈ N , let θN\{i} be the vector of waiting costs of all agents except
i .

Given θ ∈ QN , an allocation (σ, t) ∈ Z(θ) is queue-efficient if it minimizes the
aggregate waiting costs, that is, for all (σ ′, t ′) ∈ Z(θ),

∑
i∈N (σi −1)θi ≤ ∑

i∈N (σ ′
i −

1)θi . It is straightforward to check that an efficient queue serves agents in the non-
increasing order of their waiting costs and that any queue with this property is also

1 See Chun (2016) for a survey of the literature on the queueing problem.
2 For any set A, |A| denotes the cardinality of A.
3
R+ denotes the non-negative orthant of the real line.

123



4 Y. Chun et al.

efficient. The efficient queue of a problem does not depend on the transfers. Moreover,
it is unique except for agents with identical waiting costs. These agents have to be
served consecutively but in any order. The set of efficient queues for θ ∈ QN is
denoted by E(θ). An allocation (σ, t) ∈ Z(θ) is budget-balanced if

∑
i∈N ti = 0. An

allocation rule, or simply a rule, is a function ϕ defined on Q which associates with
each N ∈ N and each θ ∈ QN a tuple ϕ(θ) = (σ, t) of feasible allocations. The pair
ϕi (θ) = (σi , ti ) is the assignment to agent i by ϕ. Given θ ∈ QN , (σ, t) ∈ Z(θ), and
i ∈ N , let Pi (σ ) = { j ∈ N | σ j < σi } be the set of agents preceding agent i in the
queue σ and Fi (σ ) = { j ∈ N | σ j > σi } the set of agents following her in the queue
σ . The set of all possible queues for N is �(N ). Similarly, for all S ⊆ N , the set of
all possible queues for S is �(S).

Remark 2.1 The efficient queue is unique at all profiles where no two agents have
identical waiting costs. However, if there are some agents with identical waiting costs,
then the efficient queue is not unique. Since queue-efficiency is the only axiom that
we impose on the queue, it is not clear which queue we should choose for the profile.
In this paper, we implicitly assume the existence of a tie-breaking rule, which selects
an efficient queue whenever there is more than one such queue. The same rule is used
to break ties when a queue involving subsets of agents has to be selected. Let T be the
set of all possible tie-breaking rules for N and τ be a typical element of T . We note
that our result applies for any choice of tie-breaking rule.

Remark 2.2 A queueing problem can be generalized to a sequencing problem, which
is a list (r , θ), where r ≡ (ri )i∈N is the vector representing the processing time of
agents and θ ≡ (θi )i∈N is the vector of (unit) waiting costs. For a sequencing problem,
each agent is characterized by the processing time and the waiting cost. A queueing
problem is obtained by assuming that agents need the same amount of processing time,
that is, for each i ∈ N , ri = 1. On the other hand, a scheduling problem is obtained
by assuming that agents have the same waiting cost, that is, for each i ∈ N , θi = 1.
The sequencing problems4 has been studied by Suijs (1996), Mitra (2002), Hain and
Mitra (2004), van den Brink and Chun (2012), Parikshit and Mitra (2017), and others,
and the scheduling problem by Cres and Moulin (2001), Moulin (2007), and others.

2.2 Basic axioms

Now we introduce basic axioms which we will impose on rules. Queue-efficiency
requires that the rule should choose a queue which minimizes the aggregate waiting
costs. Budget-balance requires that the sum of all transfers should be equal to zero. It
is a strengthening of no budget deficit, or no-deficit, which requires that the sum of all
transfers should not be positive.

Queue-efficiency For all N ∈ N , all θ ∈ QN , and all (σ, t) ∈ ϕ(θ), σ ∈ E(θ).

Budget-balance For all N ∈ N , all θ ∈ QN , and all (σ, t) ∈ ϕ(θ),
∑

i∈N ti = 0.

No-deficit For all N ∈ N , all θ ∈ QN , and all (σ, t) ∈ ϕ(θ),
∑

i∈N ti ≤ 0.

4 Also, see Curiel et al. (1989) for a sequencing problem with an initial queue and Chun (2011) for a
sequencing problem with bilateral transfers.
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Equal treatment of equals requires that two agentswith the samewaiting cost should
end up with the same utilities. The identical preferences lower bound (Moulin 1990,
1991) requires that each agent should be at least as well off as she would be, under
queue-efficiency, budget-balance, and equal treatment of equals, if all other agents
had the same preferences as her. Note that if a rule satisfies queue-efficiency, budget-
balance, and equal treatment of equals and all agents have the same waiting costs
as agent i, then all agents end up with the same utilities of −|N |−1

2 θi . Therefore, the
identical preferences lower bound requires that all agents should be better off by not
having the same waiting cost.

Equal treatment of equals For all N ∈ N , all θ ∈ QN , all (σ, t) ∈ ϕ(θ), and all i,
j ∈ N , if θi = θ j , then u(σi , ti ; θi ) = u(σ j , t j ; θ j ).

Identical preferences lower bound For all N ∈ N , all θ ∈ QN , all (σ, t) ∈ ϕ(θ), and
all i ∈ N , u(σi , ti ; θi ) ≥ −|N |−1

2 θi .

2.3 Rules

We first consider a two-agent queueing problem. Suppose that there are two agents
denoted by agents 1 and 2 such that σ1 < σ2. If agent 2 moves up, then her utility
gains are θ2. She enjoys the same utility whether she receives θ2

2 at σ2 or pays the same
amount at σ1. On the other hand, if agent 1 is served later, then her utility losses are
θ1. She enjoys the same utility whether she pays θ1

2 at σ1 or receives the same amount
at σ2. Therefore, it is natural to expect the actual transfer will be determined by these
two bounds. The following two rules select an efficient queue and transfer either the
minimum or the maximum of these two bounds for two-agent problems.

Theminimal transfer rule (Maniquet 2003), which chooses the minimum of the two
bounds for two-agent problems, selects an efficient queue and transfers to each agent
a half of her unit waiting cost multiplied by the number of her predecessors minus a
half of the sum of the unit waiting costs of her followers:

Minimal transfer rule, ϕM : For all N ∈ N and all θ ∈ QN ,

ϕM (θ) =
⎧
⎨

⎩
(σ M , t M ) ∈ Z(θ)| σ M ∈ E(θ) and ∀i ∈ N ,

t Mi = (σ M
i − 1)

θi

2
−

∑

j∈Fi (σM )

θ j

2

⎫
⎬

⎭
.

On the other hand, the maximal transfer rule (Chun 2006a), which chooses the
maximum of the two bounds for two-agent problems, selects an efficient queue and
transfers to each agent a half of the sum of the unit waiting costs of her predecessors
minus a half of her unit waiting cost multiplied by the number of her followers:
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6 Y. Chun et al.

Maximal transfer rule, ϕC : For all N ∈ N and all θ ∈ QN ,

ϕC (θ) =
⎧
⎨

⎩
(σC , tC ) ∈ Z(θ)| σC ∈ E(θ) and ∀i ∈ N ,

tCi =
∑

j∈Pi (σC )

θ j

2
− (|N | − σC

i )
θi

2

⎫
⎬

⎭
.

Both the minimum transfer and the maximum transfer rules satisfy queue-efficiency,
budget-balance, equal treatment of equals, and the identical preferences lower bound.
Moreover, these two rules are obtained by applying the Shapley value (Shapley 1953),
one of the most widely discussed solution concept in cooperative games, to appropri-
ately defined queueing games (see Sect. 3 for details).

The next three rules satisfy strategyproofness, which requires truth telling to be a
dominant strategy for each agent and for each (announced) state. Thefirst rule, the sym-
metrically balanced VCG rule,5 was first introduced by Suijs (1996) and Mitra (2001)
and later characterized by Kayi and Ramaekers (2015), Chun, Mitra, and Mutuswami
(2014a, in press), and Hashimoto and Saitoh (2012).

Symmetrically balanced VCG rule, ϕB : For all N ∈ N with |N | ≥ 3 and all θ ∈ QN ,

ϕB(θ) =
⎧
⎨

⎩
(σ B, t B) ∈ Z(θ)| σ B ∈ E(θ) and ∀i ∈ N ,

t Bi =
∑

j∈Pi (σ B )

σ B
j − 1

|N | − 2
θ j −

∑

k∈Fi (σ B )

|N | − σ B
k

|N | − 2
θk

⎫
⎬

⎭
.

The symmetrically balanced VCG rule satisfies queue-efficiency, budget-balance,
equal treatment of equals, and the identical preferences lower bound.

Mitra andMutuswami (2011) introduce and characterize the family of pivotal rules
on the basis of pairwise strategyproofness, which requires that any pair of agents can
not benefit by deviating from truth-telling. The pivotal and the reward based pivotal
rules belong to this family of pivotal rules (see Subsect. 5.3 for details):

Pivotal rule, ϕP : For all N ∈ N and all θ ∈ QN ,

ϕP (θ) =
⎧
⎨

⎩
(σ P , t P ) ∈ Z(θ)| σ P ∈ E(θ) and ∀i ∈ N , t Pi = −

∑

j∈Fi (σ P )

θ j

⎫
⎬

⎭
.

5 The family of VCG rules is due to Vickrey (1961), Clarke (1971), and Groves (1973).
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Reward-based pivotal rule, ϕR : For all N ∈ N and all θ ∈ QN ,

ϕR(θ) =
⎧
⎨

⎩
(σ R, t R) ∈ Z(θ)| σ R ∈ E(θ) and ∀i ∈ N , t Ri =

∑

j∈Pi (σ R)

θ j

⎫
⎬

⎭
.

Both the pivotal and the reward-based pivotal rules satisfy queue-efficiency and equal
treatment of equals, but fail to satisfy budget-balance. The pivotal rule does not satisfy
the identical preferences lower bound, but the reward-based pivotal rule does.

We note that all five rules assign a unique allocation if and only if all agents have
different weighting costs. If two agents have the same waiting cost, then the efficient
queue is not unique, and consequently the allocations chosen by the rule are not unique
either. However, agents’ utilities do not depend on the choice of efficient queues if
the transfer is determined according to the five rules. Thus, all rules are essentially
single-valued in the sense that for a given problem, each agent’s utility is the same at
all allocations that each rule chooses. As a consequence, any efficient queue can be
chosen to calculate the utilities assigned by the rules.

3 Cooperative game theoretic approach

We discuss how the queueing problem can be solved by applying solutions developed
in cooperative game theory:

3.1 Cooperative games

Let N = {1, . . . , n} be the set of players. A nonempty subset S ⊆ N is a coalition. A
cooperative gamewith transferable utility, or agame, is a real-valued function v defined
on all coalitions S ⊆ N satisfying v(∅) = 0. The number v(S) is the worth of S. Let
�N be the class of games with player set N . A solution is a function φ : �N → R

N ,
which associates with every game v ∈ �N a vector φ(v) = (φi (v))i∈N ∈ R

N . The
number φi (v) represents the payoff to player i in game v.

For all v ∈ �N , let X(v) = {x ∈ RN | ∑
i∈N xi = v(N )} be the set of efficient

allocations and I (v) = {x ∈ X(v)| xi ≥ v({i}) for all i ∈ N } be the set of imputa-
tions. For all x ∈ I (v), its excess vector e(v, x) ∈ R2N is defined by setting for all
S ⊆ N , eS(v, x) = v(S) − ∑

i∈S xi . Each coordinate of the excess vector measures
the amount by which the worth of the coalition exceeds its total payoff at x . The core is
the set of imputations at which no excess is greater than zero: Core(v) = {x ∈ I (v)|
for all S ⊂ N ,

∑
i∈S xi ≥ v(S)}.

For all y ∈ R2N, let ỹ ∈ R2|N |
be obtained by rearranging the coordinates of y in

non-increasing order. For all y, z ∈ R2N , y is lexicographically smaller than z if either
(i) ỹ1 < z̃1 or (ii) there exists 	 > 1 such that ỹ	 < z̃	 and for all k < 	, ỹk = z̃k .

Themost well-known solutions for games are the Shapley value (Shapley 1953) and
the nucleolus (Schmeidler 1969). The Shapley value assigns to each player a payoff
equal to a weighted average of her marginal contributions to all possible coalitions,
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8 Y. Chun et al.

with weights being determined by the sizes of coalitions. The nucleolus chooses the
unique allocation from the set of imputations whichminimizes the excess of coalitions
in the lexicographic way.

Shapley value, Sh: For all v ∈ �N and all i ∈ N ,

Shi (v) =
∑

S⊆N ,S�i

(|S| − 1)!|N\S|!
|N |!

[
v(S) − v(S\{i})].

Nucleolus, Nu: For all v ∈ �N such that I (v) �= ∅,

Nu(v) =
{

x ∈ I (v)

∣
∣
∣
∣
for all x ′ ∈ I (v)\{x}, e(v, x) is
lexicographically smaller than e(v, x ′)

}

The prenucleolus chooses the unique allocation from the set of efficient allocations
which minimizes the excess of the coalitions in the lexicographic way. For some
cooperative games, the set of imputations can be empty and this is the reason we focus
on the prenucleolus.

Prenucleolus, PN: For all v ∈ �N ,

PN (v) =
{

x ∈ X(v)

∣
∣
∣
∣
for all x ′ ∈ X(v)\{x}, e(v, x) is
lexicographically smaller than e(v, x ′)

}

A game is convex if for all S, T ⊆ N , v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ). It is
well-known that a convex game has a non-empty core. Moreover, the Shapley value
and the nucleolus select allocations in the core.

3.2 The shapley value in queueing games

To apply the solutions of games to queueing problems, we need to define a worth
of each coalition. First, it can be defined as the minimum waiting cost incurred by
its members under the optimistic assumption that they are served before the non-
coalitionalmembers. That is, for all S ⊆ N , its worth vO(S) of the optimistic queueing
game is defined by setting:

vO(S) = −
∑

i∈S
(σ ∗

i − 1)θi ,

where θS = (θi )i∈S and σ ∗ ∈ E(θS). By applying the Shapley value to the optimistic
queueing game vO = (vO(S))S⊆N , we can show that the resulting payoff to each
player is equal to the utility assigned by the minimal transfer rule.

Theorem 3.1 (Maniquet 2003) Let θ ∈ QN . Let z = (σ, t) ∈ Z(θ) be such that
agents’ utilities at z are equal to the payoff vector obtained by applying the Shapley
value to vO . Then, σ ∈ E(θ) and for all i ∈ N , ti = (σi − 1) θi

2 − ∑
j∈Fi (σ )

θ j
2 .
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Alternatively, the worth of each coalition can be defined as the minimum waiting
cost incurred by its members under the pessimistic assumption that they are served
after the non-coalitional members. That is, for all S ⊆ N , its worth vP (S) is defined
by setting:

vP (S) = −
∑

i∈S
(|N | − |S| + σ ∗

i − 1)θi ,

where θS = (θi )i∈S and σ ∗ ∈ E(θS). Now we apply the Shapley value to pessimistic
queueing game vP = (vP (S))S⊆N and obtain the maximal transfer rule.

Theorem 3.2 (Chun 2006a) Let θ ∈ QN . Let z = (σ, t) ∈ Z(θ) be such that agents’
utilities at z are equal to the payoff vector obtained by applying the Shapley value to
vP . Then, σ ∈ E(θ) and for all i ∈ N , ti = ∑

j∈Pi (σ )

θ j
2 − (|N | − σi )

θi
2 .

These results show the importance of the definition of the worth of a coalition in
queueing problems. For some classes of problems,6 it makes no difference whether
the coalitional members have priority over the non-coalitional members, or the non-
coalitional members have priority over the coalitional members. If the Shapley value
is applied, we obtain the same recommendation. However, for queueing problems, this
is not the case: depending upon who has priority, the resulting rule has very different
properties.

3.3 Coincidence of solutions in queueing games

We apply the nucleolus to the pessimistic queueing game and identify the resulting
rule. Interestingly, we end up with the same rule: the Shapley value and the nucleolus
coincide for the pessimistic queueing game (Chun and Hokari 2007). To show this, we
introduce an auxiliary pessimistic queueing game ṽP , in which the worth of coalition
S is obtained by adding

∑
i∈S(n − 1)θi to vP (S), that is, for all S ⊆ N , ṽP (S) =

vP (S) + ∑
i∈S(n − 1)θi . Note that ṽP satisfies following conditions:

(i) for each i ∈ N , ṽP ({i}) = 0,
(ii) for each S ⊆ N such that |S| ≥ 2, ṽP (S) = ∑

T⊆S,|T |=2 ṽP (T ) and ṽP (S) ≥ 0.

As shown in Deng and Papadimitriou (1994) and van den Nouweland et al. (1996),
these two conditions are sufficient to guarantee the coincidence of the Shapley value
and the nucleolus. Finally, the coincidence for the pessimistic queueing game follows
from the fact that both the Shapley value and the nucleolus satisfy zero-independence,
which requires that adding a constant to the worth of coalitions containing player i
should affect her payoff by the constant.

Remark 3.3 For all v ∈ �N and all i ∈ N , let Mi (v) ≡ v(N ) − v(N\{i}) and
mi (v) ≡ v({i}). Then, the τ -value (Tijs 1987) selects the maximal feasible allocation
on the line connecting M(v) ≡ (Mi (v))i∈N and m(v) ≡ (mi (v))i∈N . The auxiliary
pessimistic queueing game ṽP is convex and m(ṽP ) = 0. Moreover, it is easy to see

6 For example, the bankruptcy problem discussed in Thomson (2003).
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10 Y. Chun et al.

that for all j ∈ N , ṽP (N )− ṽP (N\{ j}) = ∑
S� j,|S|=2 ṽP (S) and the τ -value chooses

the middle point on the line connecting M(ṽ) and m(ṽ). By using the fact that the
τ -value satisfies zero-independence, we can show that the τ -value coincides with the
Shapley value and the nucleolus for pessimistic queueing games.

For the optimistic queueing game, the set of imputations is empty. However, the
optimistic queueing game satisfies the following two conditions:

(i) for each i ∈ N , vO({i}) = 0,
(ii) for each S ⊆ N such that |S| ≥ 2, vO(S) = ∑

T⊆S,|T |=2 vO(T ).

As shown in Kar et al. (2009), these two conditions are sufficient to guarantee the
coincidence of the Shapley value and the prenucleolus. Therefore, these two solutions
make the same recommendation in the optimistic queueing game.7

Remark 3.4 As shown in Chun and Hokari (2007), the minimal transfer rule coincides
with the serial cost sharing rule8 (Moulin and Shenker 1992) and the maximal transfer
rule coincides with the decreasing serial cost sharing rule (de Frutos 1998).

4 Normative approach

We present characterizations of the minimal and the maximal transfer rules by impos-
ing various axioms specifying how a rule should respond to changes in the waiting
cost or population. Also, we explore the implications of no-envy (Foley 1967) and
discuss whether three fairness requirements, no-envy, the identical preferences lower
bound, and egalitarian equivalence, are compatible in the queueing problem.

4.1 Independence

Suppose that an agent’swaiting cost changes.One could take twodifferent perspectives
with regards to how the allocation should be affected by this change: (i) an increase in
an agent’s waiting cost would affect her predecessors, but not her followers, or (ii) a
decrease in an agent’swaiting costwould affect her followers, but not her predecessors.
Independence of preceding costs reflects the first perspective whereas independence
of following costs reflects the second perspective.

Independence of preceding costs: For all N ∈ N , all θ, θ ′ ∈ QN , all (σ, t) ∈ ϕ(θ),

all (σ ′, t ′) ∈ ϕ(θ ′), and all k ∈ N , if for all i ∈ N\{k}, θi = θ ′
i and θk < θ ′

k, then for
all j ∈ N such that σ j > σk, u j (σ j , t j ; θ j ) = u j (σ

′
j , t

′
j ; θ ′

j ).

Independence of following costs: For all N ∈ N , all θ, θ ′ ∈ QN , all (σ, t) ∈ ϕ(θ),

all (σ ′, t ′) ∈ ϕ(θ ′), and all k ∈ N , if for all i ∈ N\{k}, θi = θ ′
i and θk > θ ′

k, then for
all j ∈ N such that σ j < σk, u j (σ j , t j ; θ j ) = u j (σ

′
j , t

′
j ; θ ′

j ).

7 Kar et al. (2009), by taking a general set of queueing games that includes all convex combinations of
the optimistic queueing game and the pessimistic queueing game, obtained the coincidence between the
Shapley value and the prenucleolus.
8 Moulin (2007) makes the same observation for the scheduling problem.
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Recent developments in the queueing problem 11

We are ready to state our characterization results on the basis of independence
requirements.

Theorem 4.1 (1) (Maniquet 2003) The minimal transfer rule is the only rule satisfy-
ing queue-efficiency, budget-balance, equal treatment of equals, and independence of
preceding costs.9

(2) (Chun 2006a) Themaximal transfer rule is the only rule satisfying queue-efficiency,
budget-balance, equal treatment of equals, and independence of following costs.

4.2 Monotonicity and equal responsibility

Once again, suppose that the waiting cost of one agent increases. One could take two
different perspectives with regards to how the allocation should be affected by this
change: (i) one may feel that she deserves greater compensation for her waiting, which
will affect other agents in a negative direction or (ii) one may feel that she should be
required to pay more for having the service, which will affect other agents in a positive
direction. Negative cost monotonicity requires that an increase in an agent’s waiting
cost should cause all other agents to weakly lose. On the other hand, positive cost
monotonicity requires that an increase in an agent’s waiting cost should cause all other
agents to weakly gain.

Negative cost monotonicity: For all N ∈ N , all θ, θ ′ ∈ QN , all (σ, t) ∈ ϕ(θ), all
(σ ′, t ′) ∈ ϕ(θ ′), and all k ∈ N , if for all i ∈ N\{k}, θi = θ ′

i and θk < θ ′
k, then for all

i ∈ N\{k}, ui (σi , ti ; θi ) ≥ ui (σ ′
i , t

′
i ; θ ′

i ).

Positive cost monotonicity: For all N ∈ N , all θ, θ ′ ∈ QN , all (σ, t) ∈ ϕ(θ), all
(σ ′, t ′) ∈ ϕ(θ ′), and all k ∈ N , if for all i ∈ N\{k}, θi = θ ′

i and θk < θ ′
k, then for all

i ∈ N\{k}, ui (σi , ti ; θi ) ≤ ui (σ ′
i , t

′
i ; θ ′

i ).

The next two axioms are concerned with changes in the population. If some agent
in the queue leaves, then under queue-efficiency, the queue can be assumed to be
affected minimally, that is, her precedents remain at the same position, but her fol-
lowers move forward by one position. However, the monetary compensations may
need to be adjusted. Last-agent equal responsibility requires that upon the departure
of the agent served last; all other agents should remain at the same position and their
transfers should be affected by the same amount. On the other hand, first-agent equal
responsibility requires that upon the departure of the agent served first, all other agents
shouldmove forward by one position and their transfers should be affected by the same
amount. For all N ∈ N , all θ ∈ QN , and all k ∈ N , let θN\{k} = (θi )i∈N\{k}. Note
that θN\{k} ∈ QN\{k}.

Last-agent equal responsibility: For all N ∈ N , all θ ∈ QN , and all (σ, t) ∈ ϕ(θ), if
agent k ∈ N is such that σk = |N |, then there exists (σ ′, t ′) ∈ ϕ(θN\{k}) such that for
all i ∈ N\{k}, σ ′

i = σi and t ′i = ti + tk|N |−1 .

9 Since we assume an existence of a tie-breaking rule, we always have a unique queue satisfying queue-
efficiency. As a consequence, we do not need either Pareto-indifference or anonymity in the statement of
our theorems.
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12 Y. Chun et al.

First-agent equal responsibility: For all N ∈ N , all θ ∈ QN , and all (σ, t) ∈ ϕ(θ), if
agent k ∈ N is such that σk = 1, then there exists (σ ′, t ′) ∈ ϕ(θN\{k}) such that for
all i ∈ N\{k}, σ ′

i = σi − 1 and t ′i = ti + tk|N |−1 .

Our second characterizations of the two rules are based on cost monotonicity and
equal responsibility axioms.

Theorem 4.2 (1) (Maniquet 2003) The minimal transfer rule is the only rule satisfying
no-deficit, the identical preferences lower bound, negative cost monotonicity, and last-
agent equal responsibility.
(2) (Chun 2006a) The maximal transfer rule is the only rule satisfying no-deficit, the
identical preferences lower bound, positive cost monotonicity, and first-agent equal
responsibility.

4.3 No-envy

No-envy, introduced by Foley (1967), requires that no agent should end up with a
higher utility by consuming what any other agent consumes. It is a standard fairness
requirement studied in a wide class of problems (Thomson and Varian 1985; Thomson
2013). Given N ∈ N and θ ∈ QN , an allocation (σ, t) ∈ Z(θ) satisfies no-envy if
for all i, j ∈ N , ui (σi , ti ; θi ) ≥ ui (σ j , t j ; θi ). Let F(θ) be the set of all no-envy
allocations for θ ∈ QN .

No-envy: For all N ∈ N , all θ ∈ QN , and all (σ, t) ∈ ϕ(θ), (σ, t) ∈ F(θ).

Remark 4.3 As shown in Svensson (1983) in economies with indivisible goods and
Chun et al. (2014b) for queueing problems,10 no-envy implies queue-efficiency. Also,
no-envy is equivalent to group no-envy,11 and the set of envy-free allocations coincides
with the set of equal income Walrasian allocations.12

Now we present a simple way of checking whether a rule satisfies no-envy.:

Theorem 4.4 (Chun 2006b) A rule ϕ satisfies no-envy if and only if for all N ∈ N ,

all θ ∈ QN , and all (σ, t) ∈ ϕ(θ), σ ∈ E(θ) and for all σi = 1, . . . , |N | − 1,
θσi ≥ tσi+1 − tσi ≥ θσi+1.

Example 4.5 The minimal and the maximal transfer rules do not satisfy no-envy. On
the other hand, the symmetrically balanced VCG rule, the pivotal rule, and the reward-
based pivotal rule satisfy no-envy.

We investigate whether there is a rule satisfying budget-balance and no-envy
together with either one of two cost monotonicity axioms (Subsect. 4.2) or either
one of two independence axioms (Subsect. 4.1). The answer is no.

Theorem 4.6 (Chun 2006b) Let |N | ≥ 3. Then, there is no rule satisfying budget-
balance, no-envy, and either negative or positive costmonotonicity together. Also, there
is no rule satisfying budget-balance, no-envy, and either independence of preceding
costs or independence of following costs together.

10 For this, a position in a queue is considered as an indivisible good.
11 Group no-envy extends the notion of no-envy to groups. See Svensson (1983) for details.
12 These are allocations that can be supported as Walrasian equilibrium with an equal implicit income.
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Recent developments in the queueing problem 13

4.4 No-envy, the identical preferences lower bound, and egalitarian equivalence

Although no-envy plays an important role in the literature on fairness, there are other
interesting concepts. The following are the main ones: the identical preferences lower
bound and egalitarian equivalence (Pazner and Schmeidler 1978). Egalitarian equiv-
alence requires that there should be a reference bundle such that each agent enjoys the
same utility between her bundle and that reference bundle. Formally, given N ∈ N and
θ ∈ QN , an allocation (σ, t) ∈ Z(θ) is egalitarian equivalent if there is a reference
bundle (σ0, t0) such that for all i ∈ N , ui (σi , ti ; θi ) = ui (σ0, t0; θi ). Let EE(θ) be
the set of all egalitarian equivalent allocations for θ ∈ QN .

Egalitarian equivalence: For all N ∈ N , all θ ∈ QN , and all (σ, t) ∈ ϕ(θ), (σ, t) ∈
EE(θ).

Remark 4.7 In economies with indivisible goods, when there are as many objects as
agents, budget-balance and no-envy together imply the identical preferences lower
bound (Bevia 1996). Moreover, if there are only two agents, then budget-balance and
the identical preferences lower bound together imply no-envy. A similar observation
can be made for queueing problems. However, without budget-balance, no logical
relation exists between no-envy and the identical preferences lower bound.

Now we investigate whether a rule can satisfy no-envy and egalitarian equivalence
together. If there are only two agents, then any rule satisfying queue-efficiency, budget-
balance, and egalitarian equivalence satisfiesno-envy.Moreover, if there are only three
agents, then by choosing the middle position as a part of the reference bundle, we can
establish the existence of a rule satisfying budget-balance, no-envy, and egalitarian
equivalence. However, the positive result does not generalize to problems with more
than three agents.

Proposition 4.8 (Chun et al. 2014b) Let |N | ≥ 4. Then, there is no rule satisfying
no-envy and egalitarian equivalence together.

In economies with indivisible goods, there is no rule satisfying object-efficiency,13

egalitarian equivalence, and the identical preferences lower bound (Thomson 1990).
However, in queueing problems, we can construct a rule satisfying queue-efficiency,
budget-balance, egalitarian equivalence, and the identical preferences lower bound
(Chun 2006b).

5 Strategic approach

Strategy-proofness requires that an agent should not have an incentive to misrepresent
her waiting cost no matter what she believes other agents to be doing. We investigate
its implications in the context of queueing problems.14

13 Object-efficiency requires that there is no feasible allocation which makes every agent better off and at
least one agent strictly better off.
14 The literature on strategy-proofness is too large to give a comprehensive list of references. A recent
review of this literature, along with a list of references, can be found in Barberà (2011) and Thomson
(2013).
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5.1 Strategy-proofness and theVCG rules

Here we fix the set of agents and change the profile of waiting costs. To indicate the
dependence on the profile θ, we denote the allocation as μ(θ) = (σ (θ), t(θ)).15 For
each agent i ∈ N , let μi (θ) = (σi (θ), ti (θ)) be agent i’s assignment for the problem
θ and ui (μi (θ); θ ′

i ) = −(σi (θ) − 1)θ ′
i + ti (θ) be agent i’s utility when the profile of

announced waiting costs is θ and her true waiting cost is θ ′
i .

Strategy-proofness: For all N ∈ N , all θ ∈ QN , all i ∈ N , and all θ ′
i ∈ R+,

ui (μi (θ); θi ) ≥ ui (μi (θ
′
i , θN\{i}); θi ).

Remark 5.1 Holmström (1979) shows that when preferences are quasi-linear and the
domain of types is convex, the VCG rules are the only ones satisfying queue-efficiency
and strategy-proofness. For queueing problems, the preferences are completely spec-
ified by the profile of waiting costs, which is Rn+. Therefore, it follows that a rule
satisfies queue-efficiency and strategy-proofness if and only if it is a VCG rule.

We use the following notation: For all N ∈ N and all θ ∈ QN , suppose there is an
initial queue σ(θ) and agent i ∈ N leaves the queue. We define the “induced” queue
σ(θN\{i}) (of length n − 1) for the agents in N\{i} as follows:

σ j (θN\{i}) =
{

σ j (θ) if j ∈ Pi (θ),
σ j (θ) − 1 if j ∈ Fi (θ).

In words, σ(θN\{i}) is the queue formed by removing agent i and moving all agents
behind her up by one position.

We now formally define the VCG rules.

VCG rule associated with gi , μgi : For all N ∈ N and all θ ∈ QN , μgi (θ) =
(σ (θ), t(θ)) is defined as: σ(θ) ∈ E(θ) and for all i ∈ N ,

ti (θ) = −
∑

j∈Fi (σ )

θ j + gi (θN\{i}). (5.1)

Remark 5.2 The standard way of specifying the VCG transfers is as follows:

ti (θ) = −
∑

j �=i

(σ j (θ) − 1)θ j + hi (θN\{i}). (5.2)

This is equivalent to (5.1) since we can write without loss of generality

hi (θN\{i}) =
∑

j �=i

(σ j (θN\{i}) − 1)θ j + gi (θN\{i}). (5.3)

Substituting (5.3) in (5.2) and simplifying gives us (5.1).

15 Since t depends on the choice of the queue, we should denote the transfers by t(σ (θ)) instead of t(θ).
Note that our (single-valued) rule chooses a unique queue which in turn determines the unique transfers.
Therefore, we abuse the notation and write t(θ).
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Recent developments in the queueing problem 15

Remark 5.3 For a VCG rule, an agent’s utility is independent of the tie-breaking rule.
By queue-efficiency, all agents whose waiting cost is θi occupy the same set of con-
secutive queue positions in all efficient queues. By (5.1), the utility of agent i in two
different efficient queues can differ only through differences in gi (θN\{i}) across tie-
breaking rules but since gi is independent of θi , it cannot depend on the tie-breaking
rule either.

We investigate the implications of imposing equal treatment of equals together with
queue-efficiency and strategyproofness and characterize the family of anonymousVCG
rules.

Anonymous VCG rule associated with g, μg: For all N ∈ N and all θ ∈ QN ,

(1) μg is a VCG rule.
(2) For all i ∈ N , gi is symmetric, i.e., gi (x) = gi (y) whenever x and y are permu-

tations of one another.
(3) For all i, j ∈ N such that θi = θ j , gi (θN\{i}) = g j (θN\{ j}).

Remark 5.4 Given (2) and (3), we can write gi = g for all i ∈ N .

Our characterization result follows.

Proposition 5.5 (Chun et al. 2014a) A rule satisfies queue-efficiency, equal treatment
of equals, and strategy-proofness if and only if it is an anonymous VCG rule.

Remark 5.6 Anonymity inwelfare requires that a permutation ofwaiting costs implies a
permutation of welfare also. Hashimoto and Saitoh (2012) show that anonymity in wel-
fare and strategy-proofness together imply queue-efficiency. It is natural to askwhether
anonymity in welfare can be weakened to equal treatment of equals. However, equal
treatment of equals and strategy-proofness together do not imply queue-efficiency
(Chun et al. 2014a).

5.2 Further characterizations of VCG rules

We discuss how to single out some interesting rules from the class of anonymous VCG
rules characterized in Proposition 5.5.We beginwith the symmetrically balancedVCG
rule which satisfies many nice properties. It is queue-efficient, budget-balanced, and
strategy-proof, and hence “first-best” implementable (Suijs 1996; Mitra 2001). It also
satisfies no-envy (Chun 2006b). Recently, Kayi and Ramaekers (2015) characterize
the symmetrically balanced VCG rule and Chun, Mitra, and Mutuswami (in press)
provide an alternative simple proof for the characterization.

We note that all these characterizations, Kayi and Ramaekers (2015) and Chun,
Mitra, and Mutuswami (in press), assume that a rule is multi-valued and impose
Pareto-indifference in their characterizations. Pareto indifference requires that if an
allocation is chosen by a rule, then all other queue-efficient and budget-balanced
allocations which assign the same utilities to each agent should be chosen by the rule.
On the other hand, since we assume that a rule is single-valued, we can characterize
the symmetrically balanced VCG rule without imposing Pareto indifference,
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16 Y. Chun et al.

Theorem 5.7 (Chun et al. 2014a) Let n ≥ 3. A rule satisfies queue-efficiency, budget-
balance, equal treatment of equals, and strategy-proofness if and only if it is the
symmetrically balanced VCG rule.

To characterize the pivotal and the reward-based pivotal mechanisms, we use two
independence axioms introduced in Subsect. 4.1 together with a mild regularity con-
dition on the transfers saying that if all agents have zero waiting costs, then their
transfers must add up to zero.

Weak budget-balance: For all N ∈ N and all θ ∈ QN , if θ = (0, . . . , 0), then∑
i∈N ti (θ) = 0.

A characterization theorem follows:

Theorem 5.8 (Chun et al. 2014a) (1) The pivotal rule is the only rule satisfying queue-
efficiency, equal treatment of equals, strategy-proofness, independence of preceding
costs, and weak budget-balance.
(2) The reward-based pivotal rule is the only rule satisfying queue-efficiency, equal
treatment of equals, strategy-proofness, independence of following costs, and weak
budget-balance.

5.3 Group strategy-proofness and the k-pivotal rules

There are many ways of strengthening strategy-proofness to coalitional deviations.
Our first strengthening requires that there does not exist a deviation which makes all
deviating agents weakly better-off and at least one agent strictly better-off.

Strong group strategy-proofness: For all N ∈ N , all θ ∈ QN , all S ⊆ N , and all
θ ′
S ∈ R

|S|
+ , ui (μi (θ); θi ) ≤ ui (μi (θ

′
S, θN\S), θi ) for all i ∈ S implies ui (μi (θ); θi ) =

ui (μi (θ
′
S, θN\S), θi ) for all i ∈ S.

With strong group strategy-proofness, we have a negative result.

Theorem 5.9 (Mitra andMutuswami 2011)There is no rule satisfying queue-efficiency
and strong group strategy-proofness together.

We thus look at a weaker notion of group strategy-proofness, which requires that
there does not exist a deviation which makes all deviating agents strictly better-off.

Weak group strategy-proofness: For all N ∈ N , all θ ∈ QN , all S ⊆ N , and all
θ ′
S ∈ R

|S|
+ , ui (μi (θ); θi ) ≥ ui (μi (θ

′
S, θN\S), θi ) for some i ∈ S.

For any positive integer k and any N ∈ N such that |N | > k, we define the transfer
function as follows: For all θ ∈ QN ,

t̄ ki (θ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− ∑

j :σi (θ)<σ j (θ)≤k
θ j if σi (θ) < k,

0 if σi (θ) = k,∑

j :k≤σ j (θ)<σi (θ)

θ j if σi (θ) > k.
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k-pivotal rule, ϕk : Given any positive integer k, for all N ∈ N such that |N | ≥ k and
all θ ∈ QN , ϕk(θ) = {

(σ k, tk) ∈ Z(θ)| σ k ∈ E(θ) and ∀i ∈ N , tki (θ) = t̄ ki (θ)
}
.

It is not difficult to show that all k-pivotal rules satisfy weak group strategy-proofness.
Also, the pivotal rule is obtained by setting k = n and the reward-based pivotal rule
by setting k = 1.

To characterize the k-pivotal rules, we use a weaker notion of weak group strategy-
proofness, pairwise strategy-proofness, and a technical property called weak linearity
together with standard requirements of queue-efficiency and equal treatment of equals.
Pairwise strategy-proofness requires that there does not exist a deviation making all
deviating agents strictly better-off for a coalition of size at most two.

Pairwise strategy-proofness: For all N ∈ N , all θ ∈ QN , all S ⊆ N such that |S| ≤ 2,
and all θ ′

S ∈ R
|S|
+ , ui (μi (θ); θi ) ≥ ui (μi (θ

′
S, θN\S), θi ) for some i ∈ S.

Weak linearity: For all N ∈ N , all θ ∈ QN , all j ∈ N , and all θ ′
j such that σ(θ) =

σ(θ ′
j , θN\{ j}), ti (λθ + (1 − λ)(θ ′

j , θN\{ j})) = λti (θ) + (1 − λ)ti (θ ′
j , θN\{ j}) for all

λ ∈ [0, 1] and all i ∈ N .

Now we present a characterization of the k-pivotal rules.

Theorem 5.10 (Mitra and Mutuswami 2011) A rule satisfies queue-efficiency, equal
treatment of equals, pairwise strategy-proofness, and weak linearity if and only if it is
a k-pivotal rule.

One can relax weak linearity to obtain a larger class of group strategy-proof rules that
includes discontinuous VCG transfers (Mukherjee 2013).

We conclude this subsection by characterizing the subset of k-pivotal rules that
satisfy no-deficit. Let 〈x〉+ denote the smallest integer greater than or equal to x .

Proposition 5.11 (Mitra and Mutuswami 2011) A k-pivotal rule satisfies no-deficit if
and only if k ≥ 〈 n+1

2

〉
+.

6 Combining strategic and normative approaches

We investigate the implications of normative requirements such as egalitarian equiv-
alence (Pazner and Schmeidler 1978) and the identical preferences lower bound
(Moulin 1990, 1991) together with queue-efficiency and strategy-proofness.

6.1 Strategy-proofness and egalitarian equivalence

Our next theorem characterizes the complete family of rules satisfying queue-
efficiency, strategy-proofness, and egalitarian equivalence. It shows that the queue
position in the reference bundle must be the same for all profiles. Furthermore, the
choice of the queue position determines the transfers at all profiles up to a type-
independent constant.
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18 Y. Chun et al.

Theorem 6.1 (Chun et al. 2014b)A ruleμ = (σ, t) satisfies queue-efficiency, strategy-
proofness, and egalitarian equivalence if and only if it is a VCG rule and there exists
σ0 ∈ {1, . . . , n} and c ∈ R such that for all θ ∈ QN and all i ∈ N ,

ti (θ) =
∑

j∈N\{i}
(σ0 − σ j (θ))θ j + c. (6.1)

We now examine whether the rules characterized in Theorem 6.1 satisfy additional
desirable properties. One such property is budget-balancewhich requires that there be
no net transfer into or out of the problem.As it turns out, none of the rules characterized
inTheorem6.1 satisfiesbudget-balance.Whilebudget-balanced rules are not possible,
it turns out that there are rules satisfying feasibility together with queue-efficiency,
strategy-proofness, and egalitarian equivalence. The following theorem characterizes
all such rules:

Theorem 6.2 (Chun et al. 2014b) A rule μ satisfies queue-efficiency, strategy-
proofness, egalitarian equivalence, and feasibility if and only if it is a VCG rule
such that the transfers satisfy equation (6.1) with σ0 = 1 and c ≤ 0.

6.2 Strategy-proofness and the identical preferences lower bound

Mitra (2007) showed the existence of a VCG rule meeting the identical preferences
lower bound together with queue-efficiency and budget-balance. Here, we provide the
full characterization of the class of VCG rules meeting the identical preferences lower
bound. For each x > 0, let 〈x〉+ be the smallest integer greater than or equal to x and
〈x〉− the largest integer smaller than or equal to x .

Proposition 6.3 (Chun and Yengin 2017) (a) If a rule satisfies queue-efficiency,
strategy-proofness, and the identical preferences lower bound, then it is a VCG rule
μg,τ = (σ τ , t g,τ ) such that for each θ ∈ QN and each i ∈ N ,

gi (θ−i ) ≥
n−1∑

	=
〈
n+1
2

〉

+

(θ−i )[	]. (6.2)

(b) If a VCG rule μg,τ = (σ τ , t g,τ ) is such that for each θ ∈ QN and each i ∈ N ,

gi (θ−i ) ≥
n−1∑

	=
〈
n+1
2

〉

−

(θ−i )[	], (6.3)

then it meets the identical preferences lower bound.

Since the symmetrically balancedVCG rules satisfy the three axioms of Proposition
6.3(a), they also satisfy (6.2). If n is an odd number, then

〈 n+1
2

〉
− = 〈 n+1

2

〉
+ = n+1

2 .
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Hence, for problems with an odd number of agents, a rule minimizes the deficit in
each problem among all rules satisfying queue-efficiency, strategy-proofness, and the
identical preferences lower bound if and only if it is a k-pivotal rule with k = n+1

2 .
Now suppose that the center wants all agents to enjoy the highest possible levels

of welfare without violating the upper bound on the deficit. First, the center checks
whether it is possible to guarantee each agent her utility at the nth queue position
with zero transfer without violating the upper bound on the deficit. The n-welfare
lower bound can easily be met even when the center wants to generate no-deficit.
Next, the center checks whether it is possible to guarantee each agent her utility at the
(n − 1)th queue position with zero transfer without violating the upper bound on the
deficit. If this lower bound is feasible, then the center raises the bar further and checks
progressively for each k ∈ {n − 2, . . . , 1}, whether it can guarantee each agent her
utility at the kth queue position with zero transfer without violating the upper bound
on the deficit.

Formally, for each k ∈ {n, . . . , 1}, the k-welfare lower bound requires that each
agent should be guaranteed her utility at the kth queue position with zero transfer.
As k decreases, the lower bound on the utility increases. Hence, if a rule satisfies the
k-welfare lower bound, then it satisfies the (k + 1)-welfare lower bound.

k-welfare lower bound: For each θ ∈ QN and each i ∈ N , ui (μi (θ); θi ) ≥ −(k−1)θi .

We are searching for rules that generate the minimal deficit in each problem within
the class of VCG rules meeting the k-welfare lower bound. As it turns out, for each
k, the k-pivotal rules achieve our objective. Hence, our next characterization provides
an alternative normative justification for these rules.

Theorem 6.4 (Chun andYengin 2017)Let k ∈ {1, 2, ..., n}. A ruleminimizes the deficit
in each problem among all rules satisfying queue-efficiency, strategy-proofness, and
the k-welfare lower bound if and only if it is a k-pivotal rule.

7 Bargaining approach

The queueing problem can be solved by adopting a bargaining approach which builds
up a natural and intuitive bargaining protocol such that players can negotiate among
themselves to resolve the queueing conflicts.16 Players are assumed to be risk neutral
and expected utility maximizers.

The first game, called the first-served mechanism, is described as follows: At stage
1, all players participate in a multi-bidding auction competing for the first position of
a queue. In this auction, each player submits an (n−1)-tuple of numbers, one number
for each player (excluding herself). A positive number means a payment she makes to
another player and a negative number means a compensation she asks for from another
player. The player whose net bid (the difference between the sum of bids made by
the player and the sum of bids the other players made to her) is the highest wins the
first position while making the payment or receiving the compensation depending on

16 For various bargaining protocols implementing the Shapley value, see Gul (1989), Hart and Mas-Colell
(1996), Ju (2013), Ju and Wettstein (2009), and Pérez-Castrillo and Wettstein (2001).

123



20 Y. Chun et al.

her bid. At stage 2, the winner has two options. She can either keep the first position
or sell it to other players. If she decides to keep the position, then the rest of the
players play the game again from the first stage to bargain over the positions after
her. If she decides to sell the position, then this sale cannot be a bilateral one because
where to locate the winner after the sale affects other players’ positions. Therefore,
the winner makes a proposal that consists of a queue assigning positions to all players
and a vector of transfers specifying the amount each player is supposed to pay or
receive. Stage 3 is to approve or disapprove the proposal. The proposal is accepted if
all players agree. In case of acceptance, the proposal is implemented so that the queue
is formed with transfers in effect to all players. In case of rejection, the proposer
retains the first position. Meanwhile, all players except for the rejected proposer start
new round of negotiation. This first-served mechanism has a unique subgame perfect
equilibrium (SPE) outcome, which coincides with the payoff vector assigned by the
maximal transfer rule.

Theorem 7.1 (Ju et al. 2014) The first-served mechanism has a SPE outcome, which
coincides with the payoff vector assigned by the maximal transfer rule.

On the other hand, the second game, called the last-served mechanism, implements
the minimal transfer rule. Differently from the first-served mechanism, players com-
pete for the last position. Alternatively, one can think that players are now demanding
compensations for them to be served last, which is in the same light as the ALDB
(auctioning the leadership with differentiated bids) mechanism (Moulin 1981). The
one with the highest net bid (or lowest net compensation if the bids are negative) is
selected as the winner. The winner can decide to keep the last position or sell it to the
others. For the latter option, she makes a proposal of a queue and a vector of transfers.
If the proposal is rejected, she remains at the last position to be served after all the
participating players. The last-served mechanism has a unique SPE outcome, which
coincides with the payoff vector assigned by the minimal transfer rule.

Theorem 7.2 (Ju et al. 2014) The last-served mechanism has a unique SPE outcome,
which coincides with the payoff vector assigned by the minimal transfer rule.

In both mechanisms, the players have the same strategies. However, the two mech-
anisms assign different positions to a winner who decides to keep the position in
stage 2 or whose proposal is rejected in stage 3. In the first-served mechanism this
player gets the first position (after the already rejected players), while in the last-served
mechanism this player gets the last position (in front of the already rejected players).

As it turns out, in SPE, being the proposer in the first-served mechanism is so
attractive that the bids to become the proposer are so high that it eventually leads to
a combination of bids and offers such that the SPE outcome yields the utility payoffs
assigned by the maximal transfer rule. On the other hand, in SPE, being the proposer
in the last-servedmechanism is so unattractive that the bids to become the proposer are
so low (in fact, the players want to be paid to become the proposer) that it eventually
leads to a combination of bids and offers such that the SPE outcome yields the utility
payoffs assigned by the minimal transfer rule.
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8 Generalizations of the queueing problem

Even though the queueing problem has been studied frommany different perspectives,
its generalizations have not been studied in depth yet. Here, we discuss its possible
generalizations to indicate the directions for future research.

8.1 Queueing problems with an initial queue

In many queueing situations, agents are usually served on the first-come first-served
basis. Although it is easy to implement this rule, it may not be queue-efficient when
waiting in a queue is costly for agents and agents differ in their (unit) waiting costs.
Trading queue positions can be allowed to overcome the inefficiency resulted from the
initial queue. This queueing problem with an initial queue has been studied in Curiel
et al. (1989), Gershkov and Schweinzer (2010), and Chun et al. (2017).

8.2 Queueing problems withmultiple facilities

This queueing problem with one facility can be generalized to the queueing problem
with multiple facilities which allows to handle as many agents as the number of facili-
ties at one time. Chun andHeo (2008) generalize theminimal and themaximal transfer
rules to queueing problem with two facilities, but their generalizations to the queueing
problem with more than two facilities remain as open questions. On the other hand,
Mitra (2005) and Mukherjee (2013) study strategy-proof rule for queueing problems
with multiple facilities.

8.3 Slot allocation problems

A group of agents must be assigned to a slot located along a line. Only one agent
can be assigned to each slot. Agents differ in their (unit) waiting cost and the most
preferred slot position, called the peak. Each agent’s utility from her assignment is
equal to the amount of monetary transfer minus the (unit) waiting cost multiplied by
the distance between the peak and her assigned slot. The slot allocation problem tries to
find a way of assigning slots to agents and the monetary transfers they should receive.
It generalizes the queueing problem by allowing each agent to have a different peak.
Chun and Park (2017) studies a special subclass of the slot allocation problem inwhich
all agents have the identical waiting cost. Also, an ordinal version of this problem has
been studied by Hougaard et al. (2014) and a related problem of assigning landing
slots to airlines by Schummer and Vohra (2013) and Schummer and Abizada (2017).

8.4 Other generalizations

In the queueing problem, each agent has the same rankings over queue positions, but
differs in her waiting cost which is assumed to be constant per unit of time. It would
be an interesting extension if the (unit) waiting cost varies over queue positions. Also,
it would be worth to study another generalization of the queueing problem in which
an agent is assumed to have a different arrival time (Ghosh et al. 2018).
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