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Abstract In this paper,we investigate a resource-constrained project scheduling prob-
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random-key genetic algorithm for computing feasible solutions for the referred prob-
lem. We study different decoding mechanisms: an already existing method in the
literature, a new adapted serial scheduling generation scheme, and a combination of
both. The new procedure is tested using a set of benchmark instances of the prob-
lem. The results provide strong evidence that the new heuristic is robust and yields
high-quality feasible solutions.
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1 Introduction

The resource-constrained project scheduling problem (RCPSP) is a well-known prob-
lem that consists of scheduling a set of activities, each of which requiring specific
resources that are available in limited quantities. The goal is tominimize themakespan.
This problem has beenwidely studied in the literature alongwithmany variants. For an
overview on this topic, the reader can refer to Herroelen and Demeulemeester (1998),
Brucker et al. (1999), Hartmann and Briskorn (2010), and Węglarz et al. (2011), as
well as to the references therein.

In many RCPSPs, resources are flexible, which means that each resource masters
more than one skill. This is particularly true when human resources or multi-purpose
machines are involved in a project. Typically, in this context, activities require spe-
cific resource units of several skills to be processed. The assignment of a resource to
an activity comprehends the decision of the skill it will perform, chosen among the
skills required by that activity and mastered by this resource. This extension of the
RCPSP defines the basic setting of the so-called resource-constrained project schedul-
ing problem with flexible resources. Hereafter, we will shorten this name and refer to
the problem as the project scheduling problem with flexible resources (PSPFR). This
problem and some of its variants have been introduced and studied in the literature
as we detail next. Li and Womer (2009) develop a hybrid Benders decomposition for
a PSPFR whose objective function regards the minimization of the total cost associ-
ated with the resources, while assuring that a predefined deadline for the project is
satisfied. In such problem, each activity requires only one resource unit per each skill
needed for its execution. Correia et al. (2012) propose a mixed-integer linear program-
ming formulation for a PSPFR where the activities may require several resources per
each skill needed for their execution. The objective is to minimize the makespan of
the project. Several sets of additional inequalities and reduction tests are also pro-
posed. The impact of using fixed and variable costs in a PSPFR is studied by Correia
and Saldanha-da-Gama (2014) who develop a mixed-integer model with a non-linear
objective function. The model is linearized and is strengthened through the inclusion
of additional inequalities. Finally, the enhanced formulation is tested using an off-the-
shelf solver. More recently, Correia and Saldanha-da-Gama (2015) propose a general
modeling framework for a PSPFR. The authors discuss several modeling issues and
propose several procedures for enhancing the models.

Flexible resources have also been considered in the context of project portfolio prob-
lems, but, typically, with additional assumptions. For example, in theworks byGutjahr
et al. (2008) and Heimerl and Kolisch (2010), no sequencing decisions involving the
activities have to be made. The problem studied by Gutjahr et al. (2008) involves
the selection of the projects to be executed among a set of available projects. The
activities of each project must be executed within specific and predetermined time-
windows. Each activity requires resources, each of which mastering several skills at
different levels of efficiency that may change over time. Heimerl and Kolisch (2010)
address a project scheduling and staffing problem with hierarchical levels of skills
where the goal is to minimize the variable costs associated with the resources. A
related staffing problem, which also considers that the skills can be performed at
different levels of efficiency, was investigated by Walter and Zimmermann (2016).
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The problem investigated in the current paper is the PSPFR studied by Correia et al.
(2012). The methodology proposed in that paper turned out to be effective only for
small-sized instances. Almeida et al. (2016) proposed a heuristic for tackling larger
instances of such problem by extending the well-known parallel scheduling scheme
(Kolisch 1996a, b). Despite the significant advances represented by the work pub-
lished by Almeida et al. (2016), much work still remains to be done namely in terms
of improving the quality of the feasible solutions obtained. The current paper emerges
in this context. In particular, we propose a constructive heuristic for the PSPFR based
on the serial scheduling scheme as well as a biased random-key genetic algorithm
(BRKGA) aiming at coordinating that scheme with the parallel scheduling scheme of
Almeida et al. (2016). To the best of the authors’ knowledge, a BRKGA has never
been proposed for a PSPFR, although it has been applied successfully to RCPSPs
(see Gonçalves et al. 2008; Mendes et al. 2009, and Gonçalves et al. 2011). BRKGA
algorithms have also been successfully applied to other optimization problems such
as packing (Gonçalves and Resende 2013), facility layout (Gonçalves and Resende
2015), capacitated minimum spanning trees (Ruiz et al. 2015), among others.

We note that the need for the development of heuristics for the PSPFR has also
been observed for the RCPSP as attested, for instance, in the works by Hartmann and
Kolisch (2000), Kolisch and Hartmann (1999), and Kolisch and Hartmann (2006),
who provide valuable contributions in this context.

The remainder of this paper is organized as follows. In Sect. 2, we describe the
PSPFR and some of its properties and additional concepts. Sect. 3 is dedicated to the
heuristic we propose. Finally, in Sect. 4, we report the computational tests performed
to evaluate the BRKGA. The paper ends with an overview of the work done and with
some directions for further research.

2 Problem description and properties

As we have already mentioned, the problem studied in this work is the PSPFR studied
by Correia et al. (2012). To make the paper self-contained, we describe next the
problem. In addition, we introduce some relevant concepts for the remainder of the
paper.

Consider a project represented by an activity-on-node network G = (V, E) where
V = {0, 1, . . . , j, . . . , n + 1} denotes the set of activities and E is the set of arcs
representing the precedence relations between the activities. Activities 0 and n+1 are
dummy activities that represent the start and the conclusion of the project, respectively.
An arc (i, j) is in E if activity i is a direct predecessor of activity j . For every
j ∈ V \{0}, we denote by Pred( j) the set of predecessors of j ; for j ∈ V \{n + 1},
Succ( j) is the set of its successors. The weight of an arc (i, j) is denoted by pi and
represents the processing time of activity i . Preemption is not allowed, i.e., once an
activity starts being executed, it cannot be interrupted.

A set of renewable resources R = {1, . . . , k, . . . , K } mastering one or several
skills is required to execute the activities. The pool of available skills is denoted by
L = {1, . . . , l, . . . , L}. The set of skills mastered by resource k ∈ R is denoted by
Lk , and the set of skills required by an activity j ∈ V is represented by L j . The
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number of resources mastering skill l ∈ L j required by activity j ∈ V is denoted by
r jl . A resource can be involved in only one activity at a time and for a single skill;
furthermore, once it is assigned to an activity with a skill, it remains so during the
whole processing time of this activity.

The goal of the PSPFR is to determine for each activity j ∈ V \{0, n + 1}, (i) its
starting time, hereafter denoted by S j and (ii) the pairs (resource, skill) that should be
assigned to it. The objective is to minimize the project’s makespan.

In thePSPFR, it is also assumed that the values p j and r jl ( j ∈ V \{0, n+1}; l ∈ L j )
are positive integers and are zero for the dummy activities. As a result, the makespan
of the project is a positive integer less than or equal to

∑
j∈V p j , which is the value

obtained by a sequential execution of the activities.

2.1 Additional concepts and properties

The upper bound given by
∑

j∈V p j can usually be improved when some activities
can be executed in parallel, i.e., can have their execution overlapping for some time.
However, in the PSPFR, it is not trivial to check whether two or more activities can
be executed in parallel. The difficulty emerges from the fact that we have (multi-skill)
resource constraints in addition to the usual precedence ones. This aspect may be
crucial when it comes to obtaining good feasible solutions for the problem. Above all,
it is important to have a mechanism, as efficient as possible, to check whether two or
more activities can overlap in time. We discuss this issue next.

Assume that, at a given time t > 0, some activities have already been scheduled
to have their execution time starting before t . Denote by UV the activities still to
be scheduled and by Wt a subset of UV containing only activities (not necessarily
all), such that all their predecessors are already completed at time t (or that have no
predecessors). Can we set to t the starting time of all the activities in Wt?

This query has a positive answer if all the resources available at time t can meet the
skill requirements of all the activities inWt at the same time. In that case, the literature
on PSPFR denominates Wt as a set of compatible activities (see Correia et al. 2012).
This concept is equivalent to the notion of feasible set proposed by Mingozzi et al.
(1998) for the RCPSP. Checking the existence of precedence relations between each
pair of activities can be done straightforwardly. However, this is not the case when we
need to verify whether there are enough resources to meet all the skill requirements
of the activities in Wt simultaneously.

Let us denote by ZWt the set of resources that are available at time t and which
master at least one skill required by at least one activity in Wt . In addition, denote by
LWt the set of skills required to process the activities in Wt . Checking whether the
set of activities Wt is compatible can be done in polynomial time by solving a flow
feasibility problem in an appropriate network that we denote by GWt = (VWt , EWt ),
which is built as follows:

• The set of nodes VWt contains: (i) a source node, v0; (ii) a set of nodes—one for
each resource in ZWt ; (iii) a set of nodes—one for each skill in LWt ; (iv) a sink
node, vs .
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Fig. 1 Illustration of the auxiliary graph GWt

• The set of arcs EWt is defined by: (i) a set of arcs (v0, k), k ∈ ZWt with minimum
throughput 0, capacity 1 and unitary cost 0; (ii) a set of arcs (k, l), l ∈ (Lk ∩LWt )

with minimum throughput 0, capacity 1 and unitary cost 0; (iii) a set of arcs (l, vs),
l ∈ LWt with minimum throughput and capacity given by rWt l and unitary cost
equal to 0, where rWt l denotes the number of resource units required to process
skill l for all the activities in Wt .

The network GWt is illustrated in Fig. 1. If a feasible flow exists in this auxiliary
network, then we know that there are enough resources to start processing all the
activities in Wt , at time t . However, as we explain next, we can go deeper in this
analysis, which requires revisiting some additional concepts.

2.1.1 Resource weights

A feasible flow in GWt induces an assignment of the resources in ZWt to the skills
required by the activities in Wt . Such a flow may not be unique due to the flexible
nature of the resources, which may render different possibilities of meeting the skill
demands of Wt by varying (i) the selected resources from the set ZWt or (ii) the skill
l ∈ LWt that each resource in (i) is assigned to perform, or both (i) and (ii).

Since each resource k masters a specific set of skills, Lk , we may characterize a
resource as being more versatile than others (e.g., by mastering more skills), more
important (e.g., by mastering scarce or highly required skills), etc. Hence, to compute
feasible solutions, it becomes relevant to determine the best resource to meet each
unitary skill demand, because this assignment may have impact in future iterations
and thus compromise the quality of the derived schedule. In Almeida et al. (2016),
this fact motivated the development of a new concept—the weight of a resource: for
some resource k ∈ R, its weight is denoted by wk and represents a measure resulting
from selecting that resource to execute a skill mastered by it and required by at least
one activity j ∈ Wt .
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2.1.2 Resource assignment

Almeida et al. (2016) propose assigning the resources to the skills required by Wt by
solving a min-cost flow problem in a modified network G̃Wt = (VWt , EWt ) obtained
from GWt = (VWt , EWt ) by replacing the weight of each arc (v0, k), k ∈ ZWt , by the
corresponding resource weight, wk . That problem will be named MCNFP(G̃Wt ).

Again, a feasible flow in G̃Wt indicates that Wt is a set of compatible activities.
However, an optimal solution to MCNFP(G̃Wt ) only provides an assignment of the
resources k ∈ ZWt to the skills l ∈ (Lk ∩ LWt ); it does not indicate the activity each
resource is allocated to. In particular, for every l ∈ LWt , we obtain a set of resources
XWtl ⊆ ZWt that meet the skill requirements of activity l. In Almeida et al. (2016),
a heuristic procedure is proposed for assigning the resources with larger weights to
the activities with smaller processing times, in an attempt to make those resources
(looked as valuable) free as soon as possible and thus available to be assigned to other
activities that may need them.

2.1.3 Activity priorities

Likewise for the resources,whenwe lookdeeply into the activities,we realize that a sort
of ranking can be devised. In an attempt to use some rational mechanism for building
that rank, Almeida et al. (2016) computed a priority value, pv j , for each activity
j ∈ V \{0, n+1} using the well-known activity priority rules already proposed for the
RCPSP (Kolisch 1996a; Demeulemeester and Herroelen 2002). In the next section,
we show that the priority values for the activities can be dynamically adapted.

3 A new constructive heuristic

In this section, we detail the new heuristic proposed in this work for the PSPFR. We
start by reviewing basic aspects related with the underlying metaheuristic, and then,
we introduce the specifications for our problem.

3.1 BRKGAs

In a BRKGA, a population of chromosomes evolves over a number of generations
until the defined stopping criteria are met (cf. Gonçalves and Resende 2011). Each
chromosomeencodes a solution of the problemand is represented by anm-dimensional
vector of real numbers in the interval [0,1]—the random keys. The BRKGA differs
from the classical genetic algorithm in the following aspects: (i) the chromosomes
with the best fitness values in one generation (elite population) are copied unchanged
to the next generation; (ii) in each generation, a new set of chromosomes is generated
from scratch and is included in the population—the mutants, instead of using the
classical mutation operators; (iii) a parameterized crossover occurs between a parent
selected from the set of elite chromosomes and a parent select from the set of non-elite
chromosomes. Algorithm 1 depicts a generic BRKGA where p denotes the number
of chromosomes in the population; m is the number of genes in each chromosome;
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pe and pm denote the percentage of elite and mutant chromosomes in the population,
respectively; ρe represents the probability of a descendant inheriting an allele from its
elite parent; U [0, 1] denotes a random number in the interval [0, 1]; g is a generation
counter; and finally, c∗ and f ∗ denote, respectively, the best chromosome and its fitness
value.

Algorithm 1: A Biased Random-Key Genetic Algorithm (BRKGA)
Data: p, pe, pm , m, ρe
Result: c∗, f ∗

1 begin
2 Generate initial population P1 with p chromosomes where each allele is U [0, 1];
3 Compute the fitness of the p chromosomes using the decoder;
4 Initialize f ∗ and c∗;
5 g ←− 1;
6 while the stoping criteria are not satisfied do
7 Save in the set Pe

g the �pe × p� most fit chromosomes of Pg ;

8 Copy Pe
g into Pg+1;

9 Generate �pm × p� mutants, compute their fitness and add them to Pg+1;
10 for i = 1 to (p − �pe × p� − �pm × p�) do
11 Randomly select parent c1 from Pe

g and parent c2 from Pg\Pe
g ;

12 for j = 1 to m do
13 u = U [0, 1];
14 if u < ρe then
15 c3[ j] ←− c1[ j];
16 else
17 c3[ j] ←− c2[ j];
18 end
19 end
20 Compute the fitness of c3, using the decoder, and copy c3 to Pg+1;
21 end
22 g ←− g + 1;
23 if a better chromosome was f ound then
24 Update f ∗ and c∗;
25 end
26 end
27 end

3.2 Application to the PSPFR

In this section, we introduce the structure of the chromosomes and the decoder that
we propose for the PSPFR. These are the components of Algorithm 1 that are specific
to each particular problem.

3.2.1 Decoder

Since the PSPFR is an extension of the RCPSP, two natural decoders for the former
emerge from extending thewell-known parallel and serial scheduling schemes existing
for the latter designated by PSS and SSS, respectively (cf. Kolisch 1996b).
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Although the SSS and the PSS can be looked at as simple heuristic strategies for
the RCPSP, their extension to the PSPFR is more complex due to the selection and
assignment of the flexible resources to the activities of the project.

The PSS was extended to the PSPFR by Almeida et al. (2016). This is an iterative
method where, initially, the time counter is set to 0. In each iteration, which is asso-
ciated with a specific moment in time t , the set of precedence feasible activities Wt

is built. If Wt is empty, the value of t is incremented to the next time in which some
activity becomes available for execution due to the completion of all its predecessors.
Otherwise, either there are enough resources—among those available at time t—to
meet all the skill requirements of the activities in Wt , and hence, all these activities
are set to start being processed at time t , or this is not the case; and thus, the activity
with the smallest priority value is successively removed from Wt until the resulting
set is either empty or all the skill requirements of its activities can be met. The reader
should refer to Almeida et al. (2016) for all the details.

Concerning the SSS, we propose next its adaptation to the PSPFR. Again, it consists
of an iterative procedure that starts by setting the time counter t to 0. In each iteration,
the activity j∗ with the highest priority value and whose predecessors have already
been executed is selected to be scheduled. The time counter t is then set to themaximum
completion time across all the predecessors of j∗. Activity j∗ is scheduled to start at
time t if the resources available from time t to time t + p j∗ − 1 are enough to fulfil
all its skill requirements; otherwise, t , is moved forward to the next completion time
of the activities already scheduled. Again, the availability of resources is checked.
This process repeats until eventually activity j∗ is scheduled. In the SSS that we are
proposing, the set Wt contains only the activity selected to be scheduled next. This
means that, in this case, we no longer need to consider this set. Nevertheless, we keep
it for exposition purposes, because this notation was also used in Almeida et al. (2016).
The new scheme which we are proposing is fully detailed in Algorithm 2.

In contrast to the PSS, in the SSS which we are proposing, it is possible to have
already scheduled activities which start after time t . In fact, when an activity, say j∗,
is selected to be scheduled, the time t is moved to the maximum completion time of all
predecessors of j∗. Therefore, it is possible to have other already scheduled activities
which have the necessary resources allocated and their starting times higher than t .
Hence, for a given time t , deciding whether activity j∗ can start being processed at
that time, requires checking if the resources available in every time slot where j∗ will
be in progress, from t to its provisional finish time t + p j∗ − 1, can fulfil all its skill
requirements.

The PSS by Almeida et al. (2016) and the SSS just presented can also be applied to
the problem obtained by reversing all the arcs in the precedence network. This prob-
lem is equivalent to planning the project backwards starting at the end and moving
regressively to the beginning. Naturally, the problem to be solved is the same, but
the order by which each activity is scheduled may be different, and hence, a differ-
ent resource selection and assignment may occur, which results in a schedule with,
possibly, a different makespan. This concept of backward planning has already been
applied to the RCPSP by Li and Willis (1992), Özdamar (1999), Klein (2000), and
Alcaraz and Maroto (2001), to mention a few.
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Algorithm 2: A Serial Scheduling Scheme (SSS) for the PSPFR (Decoder)

Data: V, E, Pred( j), Succ( j),R,L,L j ,Lk , p j , r jl , pv j , wk : j ∈ V, k ∈ R, l ∈ L j
Result: makespan

1 begin
2 UV ←− V \{0, n + 1}; t ←− 0; S0 ←− 0; S j ←− ∞, j ∈ UV ;
3 while UV 
= ∅ do
4 Find j∗ : pv j∗ = max{pv j : j ∈ UV ∧ Pred( j) ∩UV = ∅};
5 if Pred( j∗) = ∅ then
6 t ←− 0;
7 else
8 t ←− max{Si + pi : i ∈ Pred( j∗)};
9 end

10 ComputeR j∗ = {k ∈ R : Lk ∩ L j∗ 
= ∅} // resources with skills required by activity j∗;
11 Wt ←− { j∗};
12 while j∗ unscheduled do
13 ZWt ←− ∅;
14 for k ∈ R j∗ do
15 if k is available in every time instant {t, ..., t + p j∗ − 1} then
16 ZWt ←− ZWt ∪ {k};
17 end
18 end
19 Solve the MCNFP(G̃Wt );
20 if MCNFP(G̃Wt ) has a feasible solution then
21 S j∗ ←− t ;
22 For each skill l ∈ L j∗ , assign the resources k ∈ XWt l and set them busy within

t ∈ {S j∗ , . . . , S j∗ + p j∗ − 1};
23 UV ←− UV \{ j∗} ;
24 else
25 t ←− min{Su + pu : u /∈ UV ∧ Su + pu > t} // increment t ;
26 end
27 end
28 end
29 makespan ←− max{S j + p j : j ∈ V } ;
30 end

3.2.2 Chromosomes’ structure

The structure of the chromosomes that we propose is inspired on the chromosomes
considered by Alcaraz and Maroto (2001, 2006), Hartmann (2002), Gonçalves et al.
(2008), Mendes et al. (2009), and Gonçalves et al. (2011). We define a chromosome
as having m = n + K + 2 genes, where n is the number of non-dummy activities, K
is the number of resources, and the last two positions are associated with the decoder.
In particular, one of the last two genes indicates the scheduling generation scheme
(PSS or SSS), while the other refers to the precedence network scheme (original or
reversed). Figure 2 illustrates this chromosome structure. A chromosome with a gene
indicating whether a PSS or a SSS shall be used was proposed by Hartmann (2002),
while Alcaraz and Maroto (2001) consider a chromosome with an additional gene
that indicates whether the original or reversed precedence network is used. In Alcaraz
and Maroto (2006), both genes were included in a chromosome structure which they
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Fig. 2 Generic chromosome for the developed BRKGA

Table 1 Decoder parameters

Gene number Parameter 0 ≤ ui < 0.5 0.5 ≤ ui ≤ 1

n + K + 1 Scheduling scheme SSS PSS

n + K + 2 Precedence network Original Reversed

Fig. 3 Example of a chromosome

propose for the RCPSP. To the best of the authors’ knowledge, a chromosome that
includes genes associated with the resources along with a gene for decoder selection
and a gene for encoding the precedence network scheme has never been attempted
before.

The PSS and SSS for the PSPFR require a priority value, pv j , to each activity
j ∈ V \{0, n + 1} and a weight value, wk , to each resource k ∈ R. This information
will be embedded in the chromosome structure which we propose where each allele
is a random uniform number in [0,1]. In particular, the value of the first n genes will
give the priority value of the corresponding activity, while the value of the next K
genes will give the weights of the resources. The information associated with the last
two genes is provided in Table 1.

Figure 3 illustrates a chromosome within our BRKGA that will be decoded with
the PSS applied to the reverse precedence network.

Using this chromosome structure, the same sequence of activities’ priority values
and resources’ weight values may originate four different feasible solutions for the
PSPFR, by changing the values of the last two genes. This kind of structure may help
diversifying the exploration of the solution space. Another positive feature of this
representation is its versatility. In fact, if the values of the last two genes are fixed for
all the chromosomes generated in the BRKGA, this means that all chromosomes will
be decoded with the same algorithm.
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4 Computational experience

In this section, we report the numerical experiments performed to evaluate the per-
formance of the BRKGA. The algorithm and the decoders were coded in C++. The
min-cost flow problems were solved by integrating IBM ILOG CPLEX 12.6 with
C++ through Concert Technology. All computational experiments were performed on
a machine running an Intel Core i7 4770K with 32 GB of RAM.

This section is organized as follows. In Sect. 4.1, we present the benchmark
instances used in the tests. In Sect. 4.2, we discuss the fine-tuning of the algorithm.
Finally, in Sect. 4.3, the computational results are reported.

4.1 Test instances

Two different sets of instances, hereafter denoted by Set 1 and Set 2, were considered.
The Set 1 contains the 216 instances generated by Correia et al. (2012), whereas Set
2 refers to 216 larger instances built using the generator proposed by Almeida et al.
(2015), which were already used by Almeida et al. (2016). The reader should refer to
those works for all the details regarding the instances used.

From thework byCorreia et al. (2012), we know the optimal value for 203 instances
of Set 1 and a lower bound for the remaining 13 instances in this set.

Apart from other parameters, the instances were generated with different values of
network complexity (NC), skill factor (SF), and modified resource strength (MRS).

4.2 Fine-tuning the BRKGA

By making use of a set of preliminary tests, it was possible to find good values for the
parameters of the BRKGA.Nevertheless, to get a hint in terms of good ranges for those
parameters, we referred again to Gonçalves et al. (2008), Mendes et al. (2009), and
Gonçalves et al. (2011). The preliminary experiments were performed on instances
from Set 1, since we know the optimal value for most of them.We start by considering
three variants of the BRKGAwith regard to the type of decoder employed, namely: (i)
all the chromosomes are decoded with the PSS; (ii) all the chromosomes are decoded
with the SSS; and (iii) the decoder applied to each chromosome depends on the value
of the allele in the position n + K + 1. These experiments allow us to evaluate if
one of the variants performs better than the others. Regarding the precedence network
schemes (original or reversed), the computational results provided by Almeida et al.
(2016) indicate no dominance. Moreover it was not even possible to identify any class
of instances (defined by SF, NC, and MRS) where a precedence network scheme
performs better than the other. Therefore, we decided to use both network schemes to
diversify the search space and this means that, in each chromosome, the gene n+K+2
indicates the scheme used by the decoder.

Regarding the other BRKGA parameters, Table 2 presents the values considered
whose combination originates 36 distinct configurations. Each BRKGA configuration
was set to run 5 times for each instance (using a distinct seed for the random number
generation at the beginning of each run). Accordingly, for each instance tested, it is
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Table 2 Preliminary tests—range of values for the BRKGA parameters

Population size (p) 5 × n Chromosomes

Probability of inheriting an allele from the elite parent (ρe) 0.7

Percentage of elite solutions in each generation (pe) {10, 15}
Percentage of mutant solutions in each generation (pm ) {15, 20, 30}
Decoder (δ)* {PSS, SSS,Both}
Stopping criterion (G) n/2 and 5 × n generations

Fitness Makespan (smaller is better)

∗ We considered both original and reversed precedence networks

possible to compute the average and minimum values for the makespan. The runs are
independent from each other and terminate when themaximum number of generations
is reached.

We present in Table 3 the overall results for every configuration tested. This table
consists of two main sets of columns: (i) columns 4–8 refer to the results after n/2
generations and (ii) columns 9–13 to the results after 5×n generations. The scheduling
generation scheme considered as well as the values of pe and pm are presented in
columns 1–3, respectively. Each row depicts the average values for the 216 instances
in Set 1. In terms of percentage gaps, their average andminimumvalues are indicated in
columns 4 and 9, and columns 5 and 10, respectively. The averagemakespan values and
their associated standard deviations are presented in columns 6 and 11, and columns
7 and 12, respectively. Columns 8 and 13 contain the CPU time (in seconds) used in
the 5 runs until reaching n

2 generations and 5× n generations, respectively. Each gap
(in percentage) is computed as 100× (ZB − ZLB)/ZLB , where ZB denotes the upper
bound provided by the BRKGA and ZLB denotes the optimal value or the best known
lower bound.

The makespan values and gaps presented in Table 3 allow us to conclude that, as
expected, with 5 × n generations, it was possible to obtain better upper bounds than
those obtained with n/2 generations. However, this improvement in the quality of the
feasible solutions was achieved at the expense of a CPU time one order of magnitude
higher, which seems not to be compensatory. Hence, we narrow our analysis using the
results obtained after n/2 generations.

Looking into such results (max. n/2 generations), we conclude that the use of the
PSS in all chromosomes provided the best results in terms of the average percentage
gaps and CPU time. However, the use of both decoders yielded the best minimum
gaps for the majority of the combinations of pe and pm . Among the six combinations
of pe and pm , we adopt pe = 10% and pm = 30%, since this combination originated
the best average and minimum gaps.

In Almeida et al. (2016), we observe that higher percentage gaps were obtained for
instances having less resources. Since those instances were also the ones that required
less computational time, we take advantage of this behavior and consider a population
size determined not only by the number of activities (n) but also by the number of
resources (K ) in each instance. Once again, we used all the instances in Set 1 and
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tested a population p = 5×� n×n
K �, considering the adopted values of pe and pm , and

decoding all chromosomes with the PSS. By fixing the number of activities (which
is 20 for all these instances), such value for p originates larger population sizes for
the instances with a smaller number of resources. The preliminary computations show
that this p value yields an improvement in the average solution gaps (when compared
to the population of size p = 5× n) of roughly 6%, at the expense of an 8% increase
in the total time, for the BRKGA configuration having pe = 10%, pm = 30% and
only the PSS decoder.

Considering the information resulting from the preliminary computations, we
decided to deepen our computational tests considering the following configurations: (i)
p = 5×� n×n

K �, pe = 10%, pm = 30%, ρe = 0.7, and δ = PSS; (ii) p = 5×� n×n
K �,

pe = 10%, pm = 30%, ρe = 0.7, and δ = Both. The maximum number of genera-
tions assumed as the stopping criterion is n/2.

4.3 Computational results

Wediscuss separately the results obtained for instances in Sets 1 and 2. Inwhat follows,
we denote the BRKGA with the single decoder PSS as BRKGAPSS and the BRKGA
with the two decoders as BRKGABoth.

4.3.1 Results for the instances in Set 1

In Table 4, we present the results for the instances in Set 1 considering the 36 groups
induced by the values of SF, NC, and MRS. Each row aggregates six instances. The
gaps were computed as explained above. In Table 5, we summarize these results.

The information presented in Tables 4 and 5 is organized as follows: columns 1–3
indicate the characteristics of the instances; columns 4–10 contain the results obtained
with the BRKGAPSS. In particular, columns 4, 5, and 6 are associatedwith the average,
minimum, andmaximumgaps achieved; columns 7 and 8 depict the averagemakespan
values and their associated standard deviation, respectively; and column 9 contains the
total CPU time (seconds) required to perform the 5 runs; columns 10–14 contain the
same information as before but for BRKGABoth; finally, columns 15–16 contain the
gaps obtained by the heuristic proposed in Almeida et al. (2016) and the corresponding
CPU time.

From Table 4, we observe that the average, minimum, and maximum gaps achieved
by the BRKGAPSS improve the results provided byAlmeida et al. (2016) in 26, 27, and
23 out of the 36 classes of instances, respectively. In terms of average and minimum
gaps, the BRKGAPSS achieved the same results as the heuristic of Almeida et al.
(2016) in 8 classes of instances, 7 of which correspond to a gap of 0.0%. The 12
classes of instances whose minimum gaps obtained by the BRKGAPSS are highlighted
in boldface indicate that the BRKGAPSS was able to find the optimal value of all these
72 instances, but the constructive heuristic of Almeida et al. (2016) was not.

The higher gaps yielded by the BRKGAPSS are associated with instances with
SF = var., NC = 1.5, andMRS = 0.1667. The higher values of the standard deviation
of the makespan occur more often in the sets of instances associated with the smallest
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values of MRS, which correspond to the hardest instances with a fewer resources,
hence having larger population sizes and thus being more time consuming.

The last row of Table 4 presents the average results across all the 216 instances in
Set 1. We observe that the overall average gap provided by the multi-pass heuristic
was improved by the BRKGAPSS from 2.65 to 1.10% (average gaps) and to 0.79%
(minimum gaps).

In terms of CPU time, the BRKGAPSS requires an average time of one minute,
while the heuristic by Almeida et al. (2016) needs, on average, 1 s. However, the
supremacy of the BRKGAPSS is clear in terms of the quality of the obtained gaps and
1 min of average time is still negligible when we look into the difficulty of the PSPFR.

Similar conclusions canbedrawn from the results obtainedwhenusingBRKGABoth.
In fact, the BRKGABoth achieves better results than those obtained by the heuristic
of Almeida et al. (2016) for 26 classes out of 36 classes of instances both in terms
of average and minimum gaps. Regarding the maximum gaps, better results were
obtained for 22 classes of instances out of 36 classes. The 9 classes of instances whose
minimum gaps obtained by the BRKGABoth are highlighted in boldface indicate that
the BRKGABoth was able to find the optimal value of all these 54 instances, but the
heuristic of Almeida et al. (2016) was not.

In Table 4, we can also observe the supremacy of the BRKGABoth over the
BRKGAPSS regarding average gaps for 4 classes of instances, regarding minimum
gaps for also 4 classes of instances and in terms of maximum gaps for 7 classes of
instances. Furthermore, the BRKGABoth was able to reach the optimal solutions for
the 12 instances in the classes defined by SF = var.,NC = 1.8,MRS = 0.2083,
and SF = 0.5,NC = 1.5,MRS = 0.1875, whereas this was not the case with the
BRKGAPSS. This behavior may be associated with the use of the SSS decoder which
was also the responsible for the BRKGABoth requiring a slightly higher computational
time than the BRKGAPSS.

From Table 5 and considering the BRKGAPSS, one can conclude that as the
SF decreases, the gaps also decrease, while the computational time increases. This
increase may be justified by the fact that instances with a smaller SF have fewer
resources and thus originate larger population sizes. For instances having SF = 0.5,
the BRKGAPSS produced solutions that correspond to an improvement of 6 and 22.8
times the results of Almeida et al. (2016), for average and minimum percentage gaps,
respectively. Concerning NC, we observe that an increase in this parameter leads, as
expected, to a reduction in the gaps of the BRKGA. The BRKGAPSS was able to
reduce the minimum gaps of the instances having NC = 2.1 to nearly 0.0%.

The instances having MRS = 0.1625 were the ones where the BRKGAPSS pro-
duced the smallest gaps with values of 0.16% and 0% for average and minimum gaps,
respectively. We point out that all these instances have SF = 0.5 and thus correspond
to cases that were among the hardest to tackle by the procedure of Almeida et al.
(2016). In this subset of “harder” instances, we also find those with small values of
MRS, such as MRS = 0.1250, where the BRKGA originates a minimum gap of
0.83%. This correspond to a major improvement, since the heuristic of Almeida et al.
(2016) produced gaps roughly six times higher.
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The BRKGABoth improve the results obtained by the BRKGAPSS for MRS =
0.1563 and MRS = 0.1875, regarding average gaps and for SF = 1, MRS = 0.1875,
and MRS = 0.2083 in terms of minimum gaps.

4.3.2 Results for the instances in Set 2

The heuristic of Almeida et al. (2016) provides the optimalmakespan for five instances
in Set 2 and an upper bound on that value for the remaining ones. This is all the
information that can be used for evaluating the performance of the BRKGA which
we are proposing.

A closer look into the results of Almeida et al. (2016) reveals the unsuitability
of using an off-the-shelf solver to tackle the mixed-integer linear programming for-
mulation proposed by Correia et al. (2012) for the instances in Set 2. In fact, it was
observed that, after 10 h of CPU time, CPLEX was unable to find a solution of at least
the same quality of the one produced by the heuristic of Almeida et al. (2016) for 156
instances (more than 70% of the instances in Set 2). For the remaining 60 instances,
the solver required, on average, 4861 s of CPU time to find a solution with at least
the same objective value. Therefore, the development of efficient heuristics for the
PSPFR is of great relevance and the CPU time which they consume shall be assessed
considering the effort required by an alternative approach, such as the use of a solver.
We will observe that the BRKGAPSS and BRKGABoth improve the solutions provided
by the heuristic of Almeida et al. (2016), on average. Hence, we expect the solver to
require an even greater CPU time to reach a solution of at least the same quality of
that obtained by either BRKGA configuration.

To evaluate the results provided by the BRKGAPSS and by the BRKGABoth and
due to the lack of information regarding the optimal solutions of almost all instances,
we introduce a new concept referred to as Performance Ratio (PR). This is a relative
ratio that we compute both for the makespan values (PRm) and for the gaps (PRg) as

follows: PRm = ZB∗−ZH

ZH × 100%, and PRg = DB∗−DH

DH × 100%. In the previous

expressions, ZB∗
(DB∗

) denotes the best upper bound (minimum gap) provided by
the BRKGAPSS or by the BRKGABoth and ZH (DH ) denotes the upper bound (gap)
obtained by the heuristic of Almeida et al. (2016).

Suppose that for some instance, and considering the BRKGAPSS, we obtain
DB∗

=8% and DH =10%.1 In this case, PRg = -20%, which indicates that the
BRKGAPSS provides a gap 20% lower than the heuristic proposed by Almeida et al.
(2016).

The analysis of improvements involving themakespan (PRm) is also of great interest
in particular when no lower bound besides the critical path length is available. In fact,
the latter is often a poor lower bound for this problem (Correia et al. 2012), because
it only considers information related to the precedence network.

Table 6 details the results for each class of instances. Each row of this table aggre-
gates six instances. The results are then summarized in Table 7.

1 The percentage gaps are computed as explained in Sect. 4.2, with the lower bound for each instance being
equal to the length of the corresponding critical path.
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Tables 6 and 7 are organized as follows: columns 1–3 contain the characteristics of
each class of instances; columns 5–9 present the results obtained by the BRKGAPSS.
In particular, columns 5 and 6 show the results associated with the PRm and PRg,
respectively; columns 7–9 present the average makespan, standard deviation, and total
CPU time required by the 5 runs, respectively; columns 10–14 refer to the results
provided by the BRKGABoth and follow the above structure of 5–9; column 15 depicts
the total time required by the heuristic of Almeida et al. (2016).

We note that the BRKGAPSS found the optimal solutions for all the five instances
for which Almeida et al. (2016) also found the optimal value. These instances are
indicated in column 4 and they were not used to compute the values presented in
Tables 6 and 7.

From Table 6, we observe the BRKGAPSS performed better than the heuristic of
Almeida et al. (2016) in all the 36 classes of instances. The best results in terms of
PRm were generally attained for the instances with smaller values of MRS, with a
particular emphasis for the instances having SF = 0.5 and MRS = 0.0625. In fact,
the class of instances which reported the highest improvement regarding PRm (−
13.86%) is actually defined by SF = 0.5, NC = 1.5, and MRS = 0.0625. The PRg
values seem to follow a different direction. This result may be related to the fact that
smaller makespans are associated with higher values of MRS (thus allowing a greater
degree of parallelization) for fixed values of SF and NC. In fact, the class of instances
with SF = 0.5, NC = 2.1 and MRS = 0.0938 is the one associated with the smallest
improvement in the makespan and the one having the greatest improvement in the gap.
BRKGABoth improved the results of the BRKGAPSS for 25 out of the 36 classes of
instances and the best results have been found in the same class of instances where the
BRKGAPSS performed the best. The average time required to solve all the instances
was 9% higher than the one required by the BRKGAPSS which, nonetheless, is still
negligible considering both the difficulty of the PSPFR and the disastrous performance
of a solver as reported in Almeida et al. (2016) and described at the beginning of this
section. Looking into Table 7, we conclude that the quality of the results achieved
by the BRKGAPSS increases and the computational effort decreases as the values of
SF become smaller. Instances having SF = 0.5 are associated with higher values
of standard deviation of makespan—as observed for the instances in Set 1. These
instances can, in fact, be looked at as “difficult” to tackle. Moreover it is for these
instances that the best results regarding both PRm and PRg were achieved.

Concerning the network complexity (NC), we observe that an increase in its value
leads to a slight decrease in the CPU time. Instances having higher values of NC
tend to be easier, because a smaller number of activities are likely to be processed in
parallel due to the increased number of precedence relations. Amongst the different
NC values, the largest improvements in terms of both PRm and PRg were achieved
for the instances having NC = 1.8.

Regarding MRS, the best results for PRm and PRg are associated with MRS =
0.0625 and MRS = 0.0938, respectively. The latter can be explained by the fact that
the instances with higher MRS are also the ones associated with smaller values of
the average makespan. As discussed before, these instances typically allow a greater
degree of parallelization, and hence, their corresponding optimal values can be closer
to the value of the associated critical path length.
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We observe overall values of PRm = −5.69% and PRg = −21.10% for the
BRKGAPSS. This represents a significant improvement over the results obtained by
Almeida et al. (2016). TheBRKGABoth achieved the best results for this set of instances
with an overall PRm = −6.05% and a PRg = −22.25% and may hence be more
appropriate for dealing with instances of large dimensions. In fact, the use of the two
decoders may have contributed to a better exploration of the search space of feasible
solutions which is larger for the instances in Set 2.

5 Conclusions

In this paper, we proposed a BRKGA for the PSPFR along with a new constructive
heuristic for this problem based on a serial scheduling generation scheme (SSS). The
BRKGA considers two decoding algorithms: the PSS heuristic proposed by Almeida
et al. (2016) and the SSS.

Computational experiments were performed on 432 instances of the problem, par-
titioned into two sets. The computational results indicate that the BRKGA with the
single decoder PSS provides the best results for the smaller sized instances, whereas
the BRKGA with the two decoders, the PSS and SSS, achieves the best results for the
set of larger instances. Furthermore, we could observe that the proposed approximate
method is extremely robust in the sense that it has the ability of finding solutions of a
similar quality for a given instance, in distinct runs.

Some directions for future research include the development of fast algorithms for
deriving good lower bounds for the PSPFR. This would be of great relevance, since
it would allow a more accurate evaluation of heuristics specially when it comes to
tackling large-scale instances.

The fact that quite effective heuristic schemes exist for the PSPFR encourages the
study of extensions of the problem investigated in this work. Some possibilities include
non-homogeneous resources, multiple-skill contribution of a resource to the execution
of an activity and preemption.

Another interesting direction for further research concerns the application to the
PSPFR of a genetic algorithmwhose chromosomes are encoded according to an activ-
ity list representation instead of random keys. This is something that requires using
another genetic algorithm, since in a BRKGA, as the name indicates, all alleles are
random values (random keys) in the interval [0,1].

Another aspect thatwe are neglecting in thiswork concerns the cost of the resources.
The problem that we have studied emerges, for instance, in the context of software
development and construction projects where the salary of the (human) resources is
fixed and independent from the effort they put on the project. However, if this is
not the case (e.g. in some consulting projects), then like for many project scheduling
problem, accounting for time and cost may be altogether relevant for the decision-
making process. This is an interesting and challenging research direction to explore.
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