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Abstract
This paper introduces the concept of cooperative users in facility location problems
with a median or a covering objective. Cooperative users can act as intermediate facili-
ties which are more accessible than primary facilities to excentric users. Four versions
of location problems with cooperative users are modeled, for all four combinations
of median and covering objectives. Several families of valid inequalities are then pre-
sented. This is followed by the development of a non-linear model to assess the fair
price of cooperation. The results of computational experiments on randomly generated
and benchmark instances demonstrate the positive effect of having cooperative users
on the solution structure and cost, as well the impact of the valid inequalities on the
LP relaxation value and on the CPU time.

Keywords Location problems · Cooperative users · Median objective · Covering
objective · Price of cooperation

1 Introduction

Two objective functions are frequently used in location models. The first, called a
median objective, minimizes the total access cost of the users to facilities. The second,
called a covering objective, minimizes the number of facilities needed to serve all
users within a covering radius r of a facility, or maximizes the number of users
covered by a fixed number of facilities. The first of the two problems is called the full
covering problem, while the second is called the maximal covering problem. These
two objectives have given rise to several variants depending on whether the number of

B Mercedes Landete
landete@umh.es

Gilbert Laporte
gilbert.laporte@cirrelt.ca

1 Departamento de Estadística, Matemáticas e Informática, Instituto Universitario Centro de
Investigación Operativa, Universidad Miguel Hernández de Elche, Avenida Universidad s/n,
03202 Elche, Alicante, Spain

2 HEC Montréal, 3000 chemin de la Côte-Sainte-Catherine, Montréal H3T 2A7, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-018-00496-9&domain=pdf


126 M. Landete, G. Laporte

facilities is given or is a decision variable, in which case fixed operating costs are often
introduced. Several models also contain capacitated facilities, but we will not consider
this extension. For recent surveys on median objectives, we refer the reader to Daskin
and Maass (2015) and to Fernández and Landete (2015); covering location problems
have been surveyed by Kolen and Tamir (1990) and García and Marín (2015).

When the spatial distribution of the users is more or less uniform, the median and
covering objective functions tend to yield sensible and similar solutions. However,
there exist several contexts where the users are not uniformly distributed. For example,
population density tends to decrease when moving away from city centers to the
suburbs, and in many cases there exist isolated pockets of users. In such contexts, the
solution of a median problem may be overly influenced by excentric users located too
far from a facility. On the other hand, a full covering solution may result in locating
too many facilities in outlying areas, while a maximal covering solution will leave
excentric users uncovered.

An interesting study exemplifying these issues in a humanitarian setting was
conducted by Rancourt et al. (2015). It concerned the distribution of food to rural
populations in Kenya. The food was first shipped to a depot (called the main ware-
house) and thence to intermediate facilities (called distribution centers) to which the
users would walk to receive their food rations. Since the food is packed in heavy bags
(close to 25 kg), the users often rent a donkey to carry it on the way home. Most of the
users could be served within a reasonable walking distance from a potential facility
site, but some would have to walk up to 55 km. The authors of the study solved a
median location problem without considering the users living more than r km from
a potential site and generated several solutions by letting r vary between five and 55.
In effect they actually solved a covering-median problem. It is important to observe
that even if some users were not included in the solution of the covering-median
problem, they nevertheless had access to a facility at the cost of walking more than
r km. In that study, when r was equal to 25, 3.62% of the users lived beyond that
range.

The scientific contribution of this paper is to introduce an alternativemethodology to
deal with the situation just described. It involves selecting some cooperative userswho
can act as intermediate facilities which can more easily be reached by the excentric
users. More specifically, in the Kenya example, a cooperative user will walk back
and forth to a facility in order to collect his food and that of other users that he will
later serve. Users living far from an open facility have the option of walking to a
facility or to a cooperative user located closer to them. At the second distribution
level, a median or coverage objective can be used. In fact, considering that such
a cooperative system operates at two levels, four variants can be considered by a
planner: (1) cooperative median-median (CMM), (2) cooperative covering-covering
(CCC), (3) cooperative median-covering (CMC) and (4) cooperative covering-median
(CCM).

In all these variants, the goal is to decide where to locate facilities and cooperative
users in such a way that the total cost is minimized and some constraints are satisfied.
In the CMM problem, the total cost is the installation cost of the facilities and of
the cooperative users, plus the total access cost of the users to facilities and of the
non-cooperative users to cooperative users. The constraints are that all users must be
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connected to a facility or to a cooperative user, and all cooperative users are connected
to a facility. In the CCC problem, the total cost is the installation cost of the facilities
and of the cooperative users. The constraints are that all cooperative users arewithin the
covering radius of the facilities, and all non-cooperative users are within the covering
radius of a facility or of a cooperative user. In the CMC problem, the objective is the
installation cost of the facilities and of the cooperative users, plus the access cost of the
users to the facilities. The constraints state that all cooperative users must be connected
to facilities and all non-cooperative users are either connected to a facility or lie within
the covering radius of a cooperative user. In the CCM problem, the objective is the
installation cost of the facilities and of the cooperative users, plus the access cost of
the non-cooperative users to cooperative users. The constraints are that all cooperative
users must lie within the covering radius of a facility, and all non-cooperative users
are either connected to a non-cooperative users or lie within the covering radius of
a facility. Figure 1a–h illustrates all variants. In Fig. 1, the square node represents
a depot, empty stars represent closed facilities, full stars are open facilities, small
circles represent non-cooperative users, and medium circles are cooperative users.
Figure 1a shows the network common to all cases and Fig. 1b, c depicts solutions
when median or coverage objective are considered, respectively. Figure 1d shows a
covering-median solution where users are served both if they are within the covering
radius of a facility or if they pay the access cost to a facility. Finally, Fig. 1e–h illustrates
solutions for the four considered variants when a cooperative system operates at two
levels.

To our knowledge, this paper is the first to formally introduce user cooperation in
a location context, although cooperation among already located facilities is common
in the public sector (e.g., Walker et al. 1979; Hagtvedt et al. 2009) and in the private
sector (e.g., Mercer and Tao 1996; Paterson et al. 2011; Fiestras-Janeiro et al. 2015).
Problems possessing a similar structure, but no cooperation in an strict sense, also
exist in some two-level commercial applications (e.g., Aardal et al. 1996; Marín and
Pelegrín 1999; Marín 2007; Cuda et al. 2015; Gendron et al. 2016, 2017). Note that
in most two-level problems end-users are exclusively served by facilities located at
the second level whereas we allow them to be served at either level, and we also
handle a covering objective. An example arises in firms that produce photo albums.
Here, the users send their photos electronically to a company which then offers the
users to receive their album by direct home delivery or to collect it from a designated
store in their neighbourhood. In such a context, the store acts as a cooperative user.
The location structure used in the example is median-covering since direct delivery
costs are incurred by the firm at the first level but the user access costs to the stores
are not considered. At the second level, the firm only ensures that all end-users can
access a store within a reasonable radius. Another application of cooperative users
arises in crowd-shipping where individuals accept to perform deliveries for a fee from
a distribution center to the homes of on-line shoppers (Archetti et al. 2016; Buldeo
et al. 2017; Savelsbergh and Van Woensel 2016). In our models, cooperative users act
in a location-allocation context as crowd-shippers do in delivery routing problems. In
both cases, the goal is reduce the total cost by modifying the role of the users, and the
cooperative users may be compensated for their service.
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Fig. 1 Locations of the depot, of the potential facilities and of the users
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In this paper, since products can be transshipped between facilities and cooperative
users, between cooperative users and non-cooperative users, and also between facil-
ities and non-cooperative users, our model corresponds to a multi-echelon network.
We refer the reader to Gendron and Semet (2009) for a review of different formula-
tions for multi-echelon problems, and to Ortiz-Astorquiza et al. (2018) for a recent
comprehensive review on multi-level facility location problems as well as for a recent
literature review of multi-echelon facility location and routing problems.

The remainder of this paper is organized as follows. In Sect. 2, wemodel the various
cases depicted in Fig. 1. In Sect. 3, we discuss the value of user cooperation. This will
be followed in Sect. 4 by an extensive numerical analysis showing the difference
between the solutions produced by the various models and illustrating the benefit of
user cooperation in a location context. Conclusions follow in Sect. 5.

2 Mathematical models

The first two location problems depicted in Fig. 1b, c are the classical median and
covering problem which are well known. The covering-median problem shown in
Fig. 1d has been modeled by Rancourt et al. (2015). Here, we provide models for the
four cooperation problems of Fig. 1e–h, all of which are NP-hard.We will first present
the models in Sects. 2.1–2.4, followed by valid inequalities in Sect. 2.5.

We use the following notation in the models of this section. Denote by I , J and
K ⊆ J the set of potential location facilities, the set of users and the set of potential
cooperative users, respectively. Note that not all users can always act as potential
cooperative users either because they do not wish to do so or they are not deemed to
be sufficiently reliable. The cost parameters are as follows: gi is the cost of operating
a facility; hk is the price set by user k to act as a cooperative user; c ji is the positive
allocation cost of j ∈ J to i ∈ I ∪ K . As usual, all costs are assumed to be borne
by the planner and relate to the same planning horizon. Also note that gi includes
the travel cost from the depot (not explicitly used in the models) to the potential
facility i . Alternatively, if there is no depot, then gi is the cost of building a service
facility at site i . Although depots are more commonly related to routing problems
than to location problems, we consider that it is relevant to consider them in our
models. The demand of user j is denoted by d j . Let the binary parameters a ji and
b jk be equal to one if and only if user j is located within a distance r of potential
facility i and user j is located within a distance s of potential cooperative user k,
respectively. The variables are as follows: The variable x ji is equal to one if and only
if user j is allocated to potential facility i; yi is equal to one if and only if a facility
is opened at site i; w jk is equal to one if and only if user j is allocated to potential
cooperative user k; zk is equal to one if and only if user k is selected as a cooperative
user.

The models of Sects. 2.1–2.4 can be adapted to situations in which facilities or
cooperative users are subject to capacity constraints, and also to situations in which
their capacities are limited by those of their facilities.

123



130 M. Landete, G. Laporte

2.1 The cooperative median-median (CMM)model

The cooperative median-median (CMM) model is as follows:

(CMM) minimize
∑

i∈I
gi yi +

∑

k∈K
hkzk +

∑

j∈J

∑

i∈I
d j c ji x ji +

∑

j∈J

∑

k∈K
d j c jkw jk (1)

subject to
∑

i∈I
x ji +

∑

k∈K
w jk = 1 j ∈ J (2)

x ji ≤ yi i ∈ I , j ∈ J (3)

w jk ≤ zk j ∈ J , k ∈ K (4)
∑

i∈I
xki ≥ zk k ∈ K (5)

yi , zk, x ji , w jk ∈ {0, 1} i ∈ I , j ∈ J , k ∈ K . (6)

In this model, the objective function minimizes the sum of the facility opening costs,
of the cooperative user selection costs and of the allocation costs. Constraints (2) state
that a user j must either be allocated to a facility or to a cooperative user. Constraints
(3) and (4) restrict the allocation of users to open facilities and to selected cooperative
users, respectively. Constraints (5) ensure that cooperative users are allocated to open
facilities. Constraints (6) define the domains of the variables. Note that the x ji and
w jk variables could be declared as continuous in the interval [0, 1].

Note that the price hk includes the transportation costs of all the units of product
that cooperative user k transships from his assigned facility to his location for other
customers. The problem described in Rancourt et al. (2015) fits with this definition
of price since the cooperative users set their price equal to that of hiring a donkey. In
general, each customer k could charge a different price hk for his service. Although
hk is known before the assignments are determined, its value may not depend on
them. On the other hand, it may happen that a potential cooperative user will know in
advance who are the non-cooperative users who will interact with him, which is the
case when the facilities are located far from the customers. In any case, if the number
of assignments is uncertain, cooperative users can always set an upper bound on hk .

2.2 The cooperative covering-covering (CCC) model

The cooperative covering-covering (CCC) model is as follows:

(CCC) minimize
∑

i∈I
gi yi +

∑

k∈K
hkzk

subject to
∑

i∈I
a ji yi +

∑

k∈K
b jk zk ≥ 1 j ∈ J (7)

∑

i∈I
aki yi ≥ zk k ∈ K

yi , zk ∈ {0, 1} i ∈ I , k ∈ K . (8)
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In this model, there is no allocation cost since we only consider covering objectives.
Constraints (7) state that user j must be covered within a radius r by at least one
open facility or within a radius s by at least one selected cooperative user. Constraints
(8) ensure that cooperative users are covered within a radius r by at least one open
facility.

2.3 The cooperative median-covering (CMC) model

The cooperative median-covering (CMC) model is as follows:

(CMC) minimize
∑

i∈I
gi yi +

∑

k∈K
hkzk +

∑

j∈J

∑

i∈I
d j c ji x ji

subject to
∑

i∈I
x ji +

∑

k∈K
b jk zk ≥ 1 j ∈ J

x ji ≤ yi i ∈ I , j ∈ J
∑

i∈I
xki ≥ zk k ∈ K

yi , zk, x ji ∈ {0, 1} i ∈ I , j ∈ J , k ∈ K . (9)

In this model, constraints (9) state that a user j must either be allocated to an open
facility or be covered within a radius s by at least one selected cooperative user. Note
that it would be suboptimal to allocate a user to more than one facility.

2.4 The cooperative covering-median (CCM)model

The cooperative covering-median (CCM) model is as follows:

(CCM) minimize
∑

i∈I
gi yi +

∑

k∈K
hkzk +

∑

j∈J

∑

k∈K
d j c jkw jk

subject to
∑

i∈I
a ji yi +

∑

k∈K
w jk ≥ 1 j ∈ J

w jk ≤ zk j ∈ J , k ∈ K
∑

i∈I
aki yi ≥ zk k ∈ K

yi , zk, w jk ∈ {0, 1} i ∈ I , j ∈ J , k ∈ K . (10)

In this model, constraints (10) state that a user must be covered within a radius r by
at least one open facility or one selected cooperative user. It is suboptimal to allocate
a user to two selected cooperative users.
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2.5 Valid inequalities and fixed variables

From constraints (5), the cooperative users must be allocated to an open facility. Then,
from constraints (2) and (4) it follows that

wkk = 0 k ∈ K . (11)

Valid inequalities can be used to strengthen the CMM, CMC and CCM models.

Proposition 1 Let R = {i1, . . . , ie} be an ordered subset of K . If e ≥ 4 is even, then

wiei1 +
e−1∑

t=1

wit it+1 +
e/2∑

t=1

wi2t i2t−1 ≤ e/2 (12)

is a valid inequality for CMM. If e ≥ 3 is odd, then

wiei1 +
e−1∑

t=1

wit it+1 ≤ (e − 1)/2 (13)

is a valid inequality for CMM.

Proof In the following, t must be interpreted as t mod e. Let e be an even number.
Then, the left-hand side of (12) can be rearranged as:

wiei1 +
e−1∑

t=1

wit it+1 +
e/2∑

t=1

wi2t i2t−1

= (wi1i2 + wi2i3 + wi2i1) + (wi3i4 + wi4i5 + wi4i3) + · · ·
+(wie−1ie + wiei1 + wieie−1). (14)

In the right-hand side of (14), the sum of the three terms in each of the parentheses
can never exceed 1. Therefore, the left-hand side of (12) is the sum of e/2 sums, each
of which is at most 1.

Let e be an odd number. If all terms of the left-hand side are zero, then the inequality
holds trivially. If wit it+1 is equal to 1 for a certain t ∈ {1, . . . , e − 1}, then as above
wit−1it + wit it+1 + wit+1it+2 ≤ 1 and the remaining e− 3 terms of the left-hand side of
(13) can be rearranged into (e− 3)/2 sums of the type wi�i�+1 +wi�+1i�+2 which never
exceed 1. Therefore, the left-hand side of (13) never exceeds 1+(e−3)/2 = (e−1)/2.

��
Remark 1 Constraints (2), (4) and (5) imply

wt j +
∑

k∈K
w jk ≤ 1 j ∈ J , t ∈ K (15)
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which are set packing constraints. Let P be the polyhedron defined by (15). The
inequalities (13) are odd-hole inequalities ofP.The separation of odd-hole inequalities
can be performed exactly by solving a shortest path problem (Grötschel et al. 1988).
The first step is to build a bipartite graph such that one group of nodes is the set of
w-variables, the second group of nodes are copies of the first nodes and an edge in
the bipartite graph exists if and only if a node in the first set shares a constraint with
a node in the second set. The weight of an edge in the bipartite graph is equal to one,
minus the sum of fractional values of the variables associated with the end-nodes of
the edge. The separation problem reduces to the problem of determining a shortest
path between every node and its copy in this bipartite graph.

Proposition 2 Consider a user j ∈ J and let t1, . . . t|I∪K | be the elements of I ∪ K
ranked in non-increasing order of allocation costs with respect to j, i.e., c j t1 ≥ · · · ≥
c jt|I∪K | . Now consider tp ∈ I ∪ K with p ≥ 2. Define Tp = {t1, . . . , tp−1}. Then, the
inequalities

ytp +
∑

i∈I∩Tp
x ji +

∑

k∈K∩Tp
w jk ≤ 1 if tp ∈ I (16)

ztp +
∑

i∈I∩Tp
x ji +

∑

k∈K∩Tp
w jk ≤ 1 + z j if tp ∈ K (17)

are valid for optimal CMM solutions.

Proof Constraints (16) are valid for optimal CMM solutions since if ytp = 1, then j
cannot be allocated to a facility having a larger allocation cost. If ytp = 0, then the
inequality will not be violated because of (2). The validity of constraints (17) is proved
in a similar fashion when user j does not act as a cooperative user. If user j acts as a
cooperative user, constraints (17) trivially hold. ��

Similarly, the following two propositions can be stated without proof.

Proposition 3 Consider a user j ∈ J and let i1, . . . i|I | be the elements of I ranked
in non-increasing order of allocation costs with respect to j, i.e., c ji1 ≥ · · · ≥ c ji|I | .
Then, if |I | ≥ 2, the inequalities

yi p +
p−1∑

q=1

x jiq ≤ 1 p = 2, . . . , |I | (18)

are valid for optimal CMC solutions.

Note that the inequalities (18) are also valid for the classical p-median and for the
single plant location problems. Also observe that García et al. (2011) also derived a
p-median formulation based on distance ranking, albeit in a different way.
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Proposition 4 Consider a user j ∈ J and let k1, . . . , k|K | be the elements of K ranked
in non-increasing order of allocation costs with respect to j, i.e., c jk1 ≥ · · · ≥ c jk|K | .
Then, if |K | ≥ 2, the inequalities

zkp +
p−1∑

q=1

w jkq ≤ 1 p = 2, . . . , |K | (19)

are valid for optimal CCM solutions.

The valid inequalities (16)–(19) generalize the closest assignment constraints of
Wagner and Falkson (1975) to our models. The adequacy of these inequalities for
discrete location models has been studied in Espejo et al. (2012).

3 The price of cooperation

The four models of Sect. 2 all assume that the cooperation price hk is given as an
input by the potential cooperative user k. We now investigate what a fair value of hk
should be for user k and for the planner. To illustrate, consider the network depicted
in Fig. 2a. The circles represent users with demand equal to 1, and the stars represent
potential facility locations. All the distances are Euclidean. If the fixed cost of opening
a facility is 5.5, then the optimal solution of the simple plant location problem consists
of opening both facilities as indicated in Fig. 2b (full stars represent open facilities)
and the total cost is 2 × 5.5 + 10 + 2

√
5 = 25.47. The solution that only opens

the facility on the left has a larger cost 5.5 + 12 + 2
√
17 = 25.74. If cooperation is

allowed and all the users are potential cooperative users, i.e., K is the set of the six
circles, and the cost of having a cooperative user is zero, then the allocation is the one
depicted in Fig. 2c (the two users shown by large circles are cooperative users) which
has cost equal to 17.97 (= 13.5 + 2

√
5) in the CMM model. Therefore, a fair value

for cooperation, both for the planner and for the set of potential cooperative users, is
7.5 = 25.47 − 17.97, which is also the total saving realized by the non-cooperative
users and an upper bound on the total price that the potential cooperative users should
charge. The distribution of the total saving among cooperative users is a matter of

SPLP cost= 25.47

Coopera�ve
cost= 17.97

(a)

(b)

(c)

Fig. 2 Benefit of cooperation
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the planner. For example, it could be constant or proportional to the number of non-
cooperative users served. Alternatively, it could be based on the use of the Shapley
value (for an application, see Krajewska et al. 2008).

This brings the question of the fair price hk that potential cooperative user k should
receive if it acts in this capacity. This price should depend on the travel cost from its
allocated facility i to its location, and also on the demand of the non-cooperative users
allocated to it. For example in the Kenya problem (Rancourt et al. 2015), a cooperative
user k may have to hire extra donkeys to carry the load of non-cooperative users from
facility i . Because of potential economies of scale, the transport cost cki will not
necessarily be multiplied by the total demand of the non-cooperative users assigned
to k, but will be scaled down by a positive factor αk ≤ 1. The potential cooperative
user k may also bear a fixed transaction cost βk ≥ 0 to transfer the food to each of
these users.

More specifically, in general hk should satisfy

hk ≥
(

αk

∑

i∈I
cki xki + βk

)
∑

j∈J

d jw jk, (20)

where 0 ≤ αk ≤ 1 and βk ≥ 0. In the situation depicted in Fig. 2c if αk = 0.75 and
βk = 0, then the total price of cooperation, i.e.,

∑
k∈K hk, is 6 (= (1×2+3×2)×0.75),

which is smaller than 7.5. In the CMM problem (the other cases being similar) jointly
solving the planner’s problem and determining the hk prices are achieved by solving
the followingmodel, where hk is now a continuous variable which replaces the product
hkzk in (1):

(CMM2) minimize
∑

i∈I
gi yi +

∑

k∈K
hk+

∑

j∈J

∑

i∈I
d j c ji x ji +

∑

j∈J

∑

k∈K
d j c jkw jk

subject to (2)–(6), (20).

This model is non-linear because of the presence of the product xkiw jk in (20).
As usual, it can be linearized by introducing the binary variables ui jk = xkiw jk and
imposing additional constraints:

hk ≥ αk

∑

i∈I

∑

j∈J

d j cki ui jk + βk

∑

j∈J

d jw jk k ∈ K (21)

ui jk ≤ xki i ∈ I , j ∈ J , k ∈ K (22)

ui jk ≤ w jk i ∈ I , j ∈ J , k ∈ K (23)

xki + w jk ≤ ui jk + 1 i ∈ I , j ∈ J , k ∈ K (24)

ui jk ∈ {0, 1} i ∈ I , j ∈ J , k ∈ K . (25)
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Remark 2 All the valid inequalities of Sect. 2.5 for CMM are also valid inequalities
for CMM2 since all the variables in CMM are also variables of CMM2 and all the
constraints of CMM are also constraints of CMM2.

In the CCC, CMC and CCM models, we can apply the same approach in the same
way: the continuous variable hk replaces the product hkzk in (1) and constraints (21)–
(25) are added to the model. All these models, called CMM2, CCC2, CMC2 and
CCM2, benefit from the valid inequalities presented in Sect. 2.5.

Another way of linearizing constraints (20) is to rewrite them in terms of flow
variables. To avoid using the family of variables ui jk, we introduce a flow-based
formulation for the CMM problem with a fair price of cooperation. Let fik be the flow
from facility i to site k (k can be a cooperative user or a non-cooperative user), and let
vk j be the flow going from the cooperative user k to non-cooperative user j . Let M
be a sufficiently large number. Then, the CMM problem with fair price of cooperation
can be modeled as follows:

(CMM3) minimize
∑

i∈I
gi yi +

∑

k∈K
hk +

∑

i∈I

∑

j∈J

ci j d j xi j +
∑

k∈K

∑

j∈J

ck jvk j (26)

subject to
∑

i∈I
fi j +

∑

k∈K
vk j ≥ d j j ∈ J (27)

∑

i∈I
fik +

∑

t∈K
vtk −

∑

j∈J

vk j = dk k ∈ K (28)

∑

i∈I

∑

j∈J

fi j =
∑

j∈J

d j (29)

x ji ≤ yi i ∈ I , j ∈ J (30)

fi j ≤ Mx ji i ∈ I , j ∈ J (31)

hk ≥ αk

∑

i∈I
cik( fik − dkxki ) + βk

∑

j∈J

vk j k ∈ K (32)

yi , x ji ∈ {0, 1} i ∈ I , j ∈ J , k ∈ K (33)

hk, fi j , vk j ≥ 0 i ∈ I , j ∈ J , k ∈ K . (34)

Constraints (27) state that the demand of each user j is satisfied. Constraints (28)
mean that all the potential cooperative users keep their own demand, and Constraint
(29) that all the flow demand originates at the facilities. Constraints (30) and (31)
ensure that there is no flow if the facility is closed or if the user is not allocated the
potential facility. Constraints (32) guarantee that cooperative users receive a fair price
for their service. The first term of the right-hand side is the cost incurred by k to carry
to its site the demand of other users, while the second term is the cost of delivering the
demand of other users. Two families of variables are binary while the remaining ones
are continuous. The problems CCC3, CMC3 and CCM3 can be modeled in a similar
way.
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4 Computational results

The four models of Sect. 2 and the model of Sect. 3 were implemented in C++ and
experiments were conducted on a PC with a 2.33 GHz Intel Xeon dual core processor,
8.5GB of RAM, and operating system LINUX Debian 4.0. We used the optimization
engine CPLEX v11.0.

Since thesemodels follow a classical pattern and our contribution is not algorithmic
we have not attempted to solve them on large instances in order to push an algorithm
to its limit. Our purpose by carrying out numerical experiments is to gain insights on
various aspects of the models. To keep the number of tests within a reasonable limit,
we only present results on the CMMmodel. Our tests are made up of three parts. First,
we wish to study the effect of point distribution on the number of open facilities and
cooperative users in the solution, as well as on the various cost components. Second,
we investigate the effect of hk parameters with respect to the gi parameters on the same
solution attributes. We also compute solutions in which the hk values are optimized
as in the CMM2 model of Sect. 3. Third, we assess the effect of the valid inequalities
on the solution time and on the LP relaxation value. The first tests are performed on
randomly generated networks while the last two make use of 30 benchmark instances
for the simple plant location problem in the web page http://www.math.nsc.ru/AP/
benchmarks/UFLP/Engl/uflp_eucl_eng.html. All instances in the web page have 100
nodes which act both as users and as potential location of plants. Finally, demands are
fixed to one in all tests. The results are presented in Tables 1, 2, 3, 4, 5, and 6 having
the following column headings:

OF: Number of open facilities.
CU: Number of selected cooperative users.
f : Total facility cost in the solution.
h: Total cooperative user cost in the solution.
c(x): Total allocation cost to facilities in the solution.
c(w): Total allocation cost to cooperative users in the solution.
Total: Total solution cost.
CPU (s): CPU time in seconds.
Gap (%): (optimal cost − LP relaxation cost)/ (optimal cost).

4.1 Effect of the point distribution

To study the effect of the point distribution on solution characteristics, we have gen-
erated 120 random instances, 30 of each of four instance types, in circles of radius 30
with a depot 0 located at the center. In each there are 90 users, nine potential facilities
and 45 potential cooperative users. We define ci j as the Euclidean distance between i
and j, where i, j ∈ {0} ∪ I ∪ J . We set gi = 2c0i (i ∈ I ) and hk = 0 (k ∈ K ).

Type A: Uniform distribution for the users and the facilities. Randomly generate 90
users in the circle, 45 of which are potential cooperative users, and nine potential
facilities

Type B: Non-uniform distribution for the users and uniform distribution for the facil-
ities. The circle is partitioned into three concentric circles of radii 10, 20 and 30.
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Fig. 3 Three concentric circles
with varying user densities

H M L
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Table 1 Effect of the point distribution on the number of open facilities and cooperative users and on the
cost

Type Characteristics Facilities and cooperative
users

Cost

OF CU f h c (x) c (w) Total

A Uniform users and
facilities

3.4 20.3 98.7 0 211.5 314.5 624.7

B Non-uniform
users, uniform
facilities

3.2 20.4 93.3 0 200.9 291.8 586.0

C Uniform users,
non-uniform
facilities

4.0 21.0 82.1 0 216.1 297.9 596.0

D Non-uniform
users and
facilities

3.6 19.8 77.5 0 200.3 283.8 561.7

Randomly generate 50 users in the large circle, then 30 in the intermediate circle
and then 10 in the inner circle, half of which are potential cooperative users. This
process results in three user densities: high (H) in the inner circle; medium (M) in
the first ring; low (L) in the outer ring (Fig. 3). Randomly generate nine potential
facilities in the large circle.

Type C: Uniform distribution for the users and non-uniform distribution for the facili-
ties. Proceed as in Type B by first generating five, three and one potential facilities
on the three circles, and then 90 users in the large circle.

Type D: Non-uniform distribution for the users and for the facilities. Proceed as in
Type B to generate the users and as in Type C to generate the potential facilities.

Table 1 shows average results over the 30 instances of each type.
Table 1 shows that on average the total cooperative allocation cost (c(w)) is always

larger than the total facility allocation cost (c(x)). The number of selected cooperative
users (CU) is also always larger than the number of open facilities (OF). However,
the largest ratio CU/OF corresponds to Type B, which suggests that the value of
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Table 2 Effect of the hk parameters on the number of open facilities and cooperative users and on the cost

h̄ Facilities and
cooperative users

Cost

OF CU f h c (x) c (w) Total

0 6.4 25.6 19,300.0 0 25,347.4 31,409.7 76,057.1

0.25 f̄ 6.5 13.5 19,400.0 10,100.0 27,222.2 32,895.4 89,617.7

0.50 f̄ 10.0 5.2 30,100.0 7800.0 41,535.1 17,368.5 96,803.6

f̄ 13.6 0 40,900.0 0 57,154.2 0 98,054.2

∞ 13.6 0 40,900.0 0 57,154.2 0 98,054.2

having cooperative users ismore importantwhen the facilities are uniformlydistributed
but the users are not. Conversely, the smallest ratio CU/OF corresponds to Type C:
cooperative users are less relevant when users are uniformly distributed but facilities
are not. Finally, in terms of total cost the cheapest option corresponds to the case in
which neither the users nor the facilities are uniformly distributed.

4.2 Effect of the hk parameters

In Sect. 4.2 and 4.3, we consider the 100-node instances of the mentioned web page.
We set |K | = 0.5|J | and we randomly select the potential cooperative users from J .

To study the effect of the hk parameters, we assume that all of them are equal to a
common value h̄, and we successively set h̄ = 0, 0.25 f̄ , 0.50 f̄ , f̄ and ∞, where f̄
is the average value of the potential facility operating costs defined in the benchmark
library, and ∞ means that the option of having cooperatives users is not activated, as
in the simple plant location problem (Fernández and Landete 2015). The reason for
defining values of h̄ as a function of f̄ is that cooperative users act as small facilities and
then they should receive a consistent compensation. The results of these experiments
are reported in Table 2. All entries are average values over the 30 instances.

From Table 2, we see that the number of open facilities varies from 13.6 to 6.4
depending on the price set by the users to act as cooperative users. When h̄ = 0.25 f̄
or 0.50 f̄ , the installation cost of facilities is by far larger than that of cooperative users,
namely f /h is equal to 1.9 and 3.8, respectively. Trivially, in terms of total cost, the
cheaper is the price of cooperative users, the smaller is the total cost.

In order to gain an insight into the change in the total solution cost produced by
optimizing the price of cooperation, we have performed a second set of experiments.
First, the CMM2 model was solved by setting αk = 0.25, 0.50, 0.75 and βk = 0
for all k ∈ K . Then, h̄ was computed as the average of h divided by the average of
CU (for the 30 benchmark instances), and the CMM model was solved for this h̄.

Since the CMM2 model has too many variables, the first 30 nodes of each benchmark
instance were chosen. In particular, h̄ was set equal to 0.12 f̄ , 0.16 f̄ and 0.22 f̄ for
αk = 0.25, 0.50, 0.75, respectively. Figures 4, 5 and 6 show both the percentage
increase in the total solution cost and in the total facility allocation cost that the planner
would incur if each cooperative user had an individual price holding constraint (20)
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Fig. 4 Percentage increase of the total solution cost and the total allocation costs to facilities when the hk
values are optimized: αk = 0.25 and h̄ = 0.12 f̄

Fig. 5 Percentage increase of the total solution cost and the total allocation costs to facilities when the hk
values are optimized: αk = 0.50 and h̄ = 0.16 f̄

instead of a common cooperation cost equal to h̄. In Figs. 4, 5 and 6, the horizontal axis
shows the labels of the instances sorted in non-decreasing order of total increase of
the solution cost. The vertical axis is for the percentage increase. Figure 4 shows that
when αk = 0.25, the increase in the total solution cost (blue line) can be positive or
negative but it is always small, it varies from −0.387 to 3.54%. Figures 5 and 6 show
that when αk = 0.15 and αk = 0.05 the increase in the total cost is always positive and

123



Facility location problems with user cooperation 141

Fig. 6 Percentage increase of the total solution cost and the total allocation costs to facilities when the hk
values are optimized: αk = 0.75 and h̄ = 0.22 f̄

Table 3 Effect of individual prices

αk hk Facilities and
cooperative users

Cost

OF CU f h c (x) c (w) Total

0.25 Optimized 5.2 6.3 15,600.0 2363.9 13,915.9 8145.5 40,025.3

0.25 0.12 f̄ 4.2 5.8 12,700.0 2076.0 14,087.7 10,490.3 39,354.0

0.50 Optimized 6.2 4.1 18,700.0 1931.9 15,480.4 5524.5 41,636.8

0.50 0.16 f̄ 4.3 5.26 12,900.0 2496.0 14,501.6 10,117.0 40,014.5

0.75 Optimized 6.6 1.9 19,800.0 1214.7 16,799.9 4507.7 42,322.4

0.75 0.22 f̄ 4.6 4.1 13,700.0 2684.0 15,787.9 8685.9 40,857.8

still small, it goes from 1.28% to 7.51% or to 0.84% to 5.52%, respectively, i.e., paying
a common price is generally cheaper for the planner than paying individual prices. In
fact, if the increase is negative it is because αk is small. In contrast, the increase in total
facility allocation cost (orange line) can be large, positive or negative. In conclusion,
although the decision of which facilities to open and which potential cooperative users
to select can strongly differ between optimizing the price of cooperation or not, the
total solution cost moderately increases.

Table 3 summarizes the results of Figs. 4, 5 and 6. Since f̄ = 3000 in the data
benchmark, the coefficients 0.12, 0.16 and 0.22 in hk follow from2363.9/(6.3×3000),
1931.9/(4.1 × 3000), and 1214.7/1.9 × 3000), respectively.
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Table 4 Effect of the valid
inequalities on the CPU time and
on the optimality gap yielded by
the LP relaxation of CMM

Combination hk = 0.50 f̄ hk = 0.25 f̄

CPU (s) Gap (%) CPU (s) Gap (%)

None 8.6 1.9 215.3 5.0

V1 9.1 1.9 188.9 5.0

V2 10.4 1.9 169.1 5.0

V1 and V2 11.0 1.9 204.5 5.0

4.3 Effect of the valid inequalities

Finally, we test the impact of the valid inequalities on the CPU time and on the
optimality gap yielded by the LP relaxation of CMM and CMM2. We also report the
CPU time and the optimality gap of the CMM3 model. And as in Sect. 4.2, we set
|K | = 0.50|J |. For the purpose of these experiments, we classify the valid inequalities
of Sect. 2.5 into two types.

Type V1: Inequalities (12) and (13) of Proposition 2. We introduce in the model a
limited number of these inequalities for e = 3 and e = 4. For e = 4, we set
R = {i1 = j, i2 = j1, i3 = j2, i4 = j3} where j ∈ K , and j1, j2, j3 are the first,
second and third neighbours of j .For e = 3we set R = {i1 = j, i2 = j1, i3 = j2}.

Type V2: Inequalities (16) and (17) of Proposition 3. We introduce in the model a
limited number of these inequalities. For each j ∈ J , we define Tp as the set of
the five closest neighbors of j in I ∪ K .

The effect of the two types of inequalities was tested for the CMMand CMM2models.
For the CMM model, we successively set all hk values equal to 0.50 f̄ and 0.25 f̄ ,
and for the CMM2 model we successively set all αk values to 0.25, 0.50 and 0.75.
For CMM2, we only considered the 30 first nodes of each benchmark instance, as in
Sect. 4.2.

Equalities (11) are added to any combination and all entries in Tables 4, 5 and 6
are average values over the 30 instances.

Wedid no implement an exact separation for constraints (13) since ourmain aimwas
to determine whether it is worth integrating these valid inequalities within a branch-
and-cut algorithm. The heuristic separation of inequalities of Types V1 and V2 is
based on the idea that the sites in the neighbourhood of a user have more influence on
the role of this user than the sites that are further away.

Table 4 summarizes the results obtained by adding valid inequalities to the CMM
model. We have tested the three combinations of Types V1 and V2. Table 4 shows that
the instances with hk = 0.50 f̄ are very easy in terms of gap and CPU time, and do not
benefit from the introduction of valid inequalities. In fact, since all instances require
less than 12s of CPU time and have less than 2% of LP gap, adding more constraints
slows down the solver and yields the same LP gap. When hk = 0.25 f̄ , the instances
require more CPU time and the valid inequalities yield a small reduction in CPU time.
The best option is to only add inequalities of Type V2.

It is interesting to point out that the saving in time due to the inclusion of inequalities
of Type V2 results from the time saving on the difficult instances, as Fig. 7 shows. In
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Table 5 Effect of the valid
inequalities on the CPU time and
on the optimality gap yielded by
the LP relaxation of CMM2

αk CPU (s)

Gap(%) None V1 V2 V1+V2

0.25 12.05 38.7 36.5 37.6 39.4

0.50 15.43 284.7 208.6 136.9 130.6

0.75 16.81 125.2 203.3 175.2 173.8

Table 6 CMM2 with valid
inequalities versus CMM3

αk CMM2 CMM3

Gap (%) CPU (s) Gap (%) CPU (s)

0.25 12.05 36.5 86.5 14.0

0.50 15.43 112.2 86.2 15.2

0.75 16.81 112.0 86.2 13.4

Fig. 7 CPU time in seconds for solving the 30 benchmark instances

Fig. 7, the horizontal axis is for the instance (there are 30 in total) and the vertical axis
is for the CPU time in seconds. If the instances are ordered in non-decreasing order
of CPU time, the blue line represents the CPU time when no inequality is added and
the orange line represents the CPU time when inequalities of Type V2 are added. The
orange line increases slower than the blue line.

Table 5 summarizes the results obtained by adding valid inequalities to the CMM2
model. We only report the optimality gap yielded by the LP relaxation because none
of the inequalities reduces that gap. The effect on CPU time varies depending on the
value of αk . For αk = 0.25 the smallest CPU time corresponds to the addition of
inequalities of Type V1 exclusively. For αk = 0.50 and αk = 0.75, the best option is
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to add all the valid inequalities or none of them, respectively. Bold figures indicate the
best option in terms of CPU time for the different values of αk .

Table 6 compares the CPU time and the LP gap of the best implementation of the
CMM2 and CMM3 models. It shows that the CMM3 model requires by far less CPU
time although it yields larger gaps.

5 Conclusions

We have introduced the concept of cooperative users in facility location problems with
a median or a covering objective. We have modeled four classes of problems and we
have developed several families of valid inequalities.We have shown how the fair price
of cooperation can be determined through the solution of a non-linear mathematical
model. We have conducted several computational experiments on randomly generated
and benchmark instances in order to study the effect of point distribution on the number
of open facilities and cooperative users, the effect of the price set by cooperative
users, and the effect of the valid inequalities. Our results have shown that depending
on the values taken by the instance parameters, resorting to cooperative users can
help decrease the fixed costs and the allocation cost. In addition, one class of valid
inequalities helps reduce the CPU time, especially for the more difficult instances, and
all the valid inequalities are useful in a branch-and-cut algorithm.
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