TOP (2019) 27:94-124
https://doi.org/10.1007/511750-018-00494-x

ORIGINAL PAPER ,
@CrossMark

MIP models and a matheuristic algorithm for an identical
parallel machine scheduling problem under multiple copies
of shared resources constraints

Emine Akyol Ozer' - Tugba Sarac?

Received: 4 July 2017 / Accepted: 27 November 2018 / Published online: 7 December 2018
© Sociedad de Estadistica e Investigacion Operativa 2018

Abstract

If parallel machines use shared resources during production, jobs on machines must
wait until the required resources are available. If the shared resource is single, only
one job can use it at a time, but if there are multiple copies of this resource, multi-
ple jobs can be scheduled up to the number of copies at a time. For this reason, it is
crucial to consider resource usage when scheduling this type of machine. In recent
years, various studies have been carried out to address identical parallel machine
scheduling problems. However, although shared resources in parallel machines are
an important aspect of this problem, resources are rarely considered in these studies
and, in fact, have not been studied for this particular aspect. In this study, an identical
parallel machine scheduling problem with sequence-dependent setup times, machine
eligibility restrictions and multiple copies of shared resources (IPMS-SMS) is consid-
ered. Mixed-integer programming (MIP) models and a model-based genetic algorithm
(matheuristic) are proposed, and the objective function of the problem seeks to min-
imize the total weighted completion time. Randomly generated instances are solved
using the proposed models and the matheuristic. Optimal schedules are obtained for
almost all small problems using a mixed-integer programming model. However, better
solutions are obtained for medium and large instances using the proposed matheuristic.

Keywords Matheuristic - Genetic algorithm - Identical parallel machine scheduling
problem - Sequence-dependent setup times - Machine eligibility restrictions -
Multiple copies of shared resources

B Emine Akyol Ozer
emineakyol @anadolu.edu.tr

Tugba Sarac
tsarac@ogu.edu.tr

Department of Industrial Engineering, Eskisehir Technical University, Iki Eylul
Campus, 26555 Eskisehir, Turkey

Department of Industrial Engineering, Osmangazi University, Meselik, 26480 Eskisehir, Turkey

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-018-00494-x&domain=pdf

MIP models and a matheuristic algorithm for an identical... 95

1 Introduction

The parallel machine scheduling problem is a generalization of the single machine
scheduling problem. Many production environments consist of several stages or
workcenters, each with a number of machines working in parallel (Pinedo 2009).
The parallel machine scheduling problem is significant because it is a common phe-
nomenon in real life and a subproblem of multistage complex problems.

Parallel machine scheduling is one of the most studied problems in the scheduling
literature. This problem is usually divided into three main classes based on the charac-
teristics of processing time in the machines (Pinedo 2011): identical parallel machines,
uniform parallel machines and unrelated parallel machines. Our problem is an identical
parallel machine scheduling problem. Identical parallel machine scheduling problems
can be studied along with different constraints. In this study, we consider an identical
parallel machine scheduling problem with constraints of sequence-dependent setup
time, machine eligibility and multiple copies of shared resources. Studies on parallel
machine scheduling with each of these constraints are briefly discussed below in a
separate paragraph.

The setup time is a period required to prepare a machine for processing. There
are many studies on identical parallel machine scheduling problems with sequence-
dependent setup times. In these studies, the objective of the problem is generally to min-
imize the makespan (Arnaout 2010; Montoya-Torres et al. 2009; Montoya-Torres et al.
2010; Kim and Kim 2011). Chung et al. (2009) analyzed a scheduling problem with
job-cluster processing time, machine capacity and daily production target volumes on a
polyimide printing process operation. They proposed a mixed-integer linear program-
ming (MIP) model. The problem is also transformed into a multiple tour maximum col-
lection problem. Driessel and Moench (2009) discussed an identical parallel machine
scheduling problem in semiconductor manufacturing and considered ready times of
the jobs, precedence constraints and sequence-dependent setup times. They suggested
a variable neighborhood search scheme for the problem. The proposed approach was
compared to heuristics based on the apparent tardiness cost of setups and the ready time
dispatching rule. Li et al. (2010) considered an identical parallel machine scheduling
problem with release date and due date. The objective function of the problem was to
minimize the makespan and total tardiness. They developed a 0-1 mixed-integer pro-
gram and a genetic algorithm (GA) with a fuzzy logic controller. Driessel and Moench
(2011) obtained an initial solution for a variable neighborhood search. The entire
scheme, with the initial solution obtained by the apparent tardiness cost with setups
and ready times, was also fast. Lin et al. (2011) studied an identical parallel machine
scheduling problem with sequence-dependent setup times and job release dates. The
objective was to minimize the maximum lateness. They developed an improved iter-
ated greedy heuristic and compared it with the basic iterated greedy heuristic. Turker
and Sel (2011) analyzed a scheduling problem on two identical parallel machines
with sequence-dependent setup times and setup operations. The objective was to min-
imize the makespan. They proposed an algorithm combining a genetic algorithm and
a tabu search. Gokhale and Mathirajan (2012) addressed a scheduling problem with
release times and machine eligibility restrictions for minimizing the total weighted
flow time. They proposed a mathematical model and a number of heuristic algorithms

@ Springer

96 E. Akyol Ozer, T. Sarac

to solve the problem. Park et al. (2012) took into account a parallel machine schedul-
ing problem with job splitting and sequence-dependent major/minor setup times. They
proposed heuristic algorithms for minimizing total tardiness. The performance of the
proposed heuristics was compared with that of three previous algorithms in the litera-
ture. Liet al. (2012) developed two meta-heuristics (FLC-NSGA-II and FLC-SPEA-II)
based on the traditional NSGA-II and SPEA-II for a parallel machine scheduling
problem. They considered a multiobjective optimization problem to minimize the
makespan and the total tardiness. Their experimental results showed the advantage
of the proposed FLC-NSGA-II algorithm compared to NSGA-II and FLC-SPEA-IIL.
Joo and Kim (2012) proposed two meta-heuristic algorithms for a parallel machine
scheduling problem with ready times, due times and sequence-dependent setup times.
The optimal solution was investigated with a mathematical model, and the perfor-
mances of the developed meta-heuristic algorithms were evaluated with optimal solu-
tions. Gedik et al. (2016) examined a parallel machine scheduling problem with setup
times and time windows. Each job had a profit and cost. They proposed a constraint
programming model and logic-based Benders algorithm to maximize total profit. The
models were tested on a real-life case study by the U.S. Army Corps of Engineers.

Some machines are incapable of processing a particular job. This is referred to as
machine eligibility restriction in the scheduling literature. There are also studies on
identical parallel machine scheduling problems with machine eligibility restrictions.
For example, Alagoz and Azizoglu (2003) analyzed a rescheduling problem in paral-
lel machine environments under machine eligibility constraints. Their objective was
to minimize total flow time, and they presented an optimizing algorithm. Eliiyi and
Azizoglu (2009) considered an identical parallel machine scheduling problem with
machine-dependent job weights. The objective was to maximize the total weight of
the processed jobs. They presented a branch and bound algorithm and obtained suc-
cessful results for large-sized problems. Additionally, Su et al. (2011) addressed an
identical parallel machine scheduling problem with job deadlines and machine eligi-
bility constraints to minimize the total job completion time. A heuristic and a branch
and bound algorithm was developed to solve the problem. The proposed heuristic gen-
erated a good-quality schedule in a reasonable time. Finally, Lee et al. (2013) provided
a brief overview of online scheduling in parallel machine environments with machine
eligibility constraints with an objective function to minimize makespan. They surveyed
different parallel machines and various types of machine eligibility restrictions.

In real-life problems, resources are used to produce products. Generally, jobs share
these resources. To obtain an efficient schedule, this case must be considered. Although
the use of resources is important for parallel machine scheduling problems, few studies
have considered resources. For example, Li et al. (2011) recently proposed a simu-
lated annealing algorithm to minimize makespan for an identical parallel machine
scheduling problem. The processing times were controllable by consumed resources,
and the total resource consumption was limited. Edis et al. (2012) addressed a real-life
problem that required the simultaneous scheduling of jobs and operators over parallel
machines. The operators were responsible for monitoring the machines, unloading
the parts and trimming extra material. They proposed integer and constraint pro-
gramming models for minimizing the completion time of the last job. Additionally,
Ruiz and Andrés-Romano (2011) considered an unrelated parallel machine schedul-

@ Springer

MIP models and a matheuristic algorithm for an identical... 97

ing problem and job sequence-dependent setup times. The duration of the setup times
depended on assignable resources. They developed a mixed-integer programming
model to minimize total completion time and the total amount of resources assigned.
Edis and Ozkarahan (2012) investigated a resource-constrained identical parallel
machine scheduling problem with machine eligibility restrictions. They developed
three optimization models: an integer programming model (IP), a constraint program-
ming model (CP) and a combined IP/CP model. Edis and Ozkarahan (2011) presented
mathematical models of static and dynamic parallel machine flexible resource schedul-
ing (PMFRS) and unspecified PMFRS problems. In this problem, additional flexible
resources could be freely allocated to any jobs and/or any machines. They proposed an
integer programming-based constraint programming approach for large-sized dynamic
PMFRS and UPMFRS problems. Fanjul-Peyro et al. (2017) focused on unrelated par-
allel machine scheduling problems with additional resource constraints in which the
number of resources depends on machine and job. First, the authors proposed two linear
programming models. Because of the NP-hard nature of the problem, they combined
matheuristic strategies with each of the two mathematical models and demonstrated the
success of the algorithms using computational tests. Afzalirad et al. (2016) addressed
an unrelated parallel machine scheduling problem with resource constraints, sequence-
dependent setup times, different release dates, machine eligibility and precedence
constraints. The considered problem is the implementation of a real-life problem that
is a block erection scheduling problem in a shipyard. The authors present a model and
two new meta-heuristics. The results are discussed.

Using the three-field classification, IPMS—SMS is denoted in the scheduling lit-
erature as Pylsjx, M;, shared resourcel >w ;Cj, where j and k indicate jobs, P,
and) w;C; denote identical parallel machines and the total weighted completion
times, respectively. No relevant previous study has considered these three constraints:
sequence-dependent setup times (sjx), machine eligibility restrictions (M;) and mul-
tiple copies of shared resources. Similar to that of Edis and Ozkarahan (2011), our
motivation is the scheduling of injection molding machines in factory manufactur-
ing plastic parts. Our problems are similar to those in their study, but there are three
important differences: (1) they did not consider sequence-dependent setup times, but
we did; (2) to cope with resource constraint, they assume that all the jobs used the
same mold, assigned to the same machine consecutively, but as this assumption may
hamper a search for better solutions, there is no such assumption in our study; and (3)
a time index was used in a description of their decision variable. Therefore, when the
scheduling horizon increases, the number of decision variables gradually increases,
even if the number of jobs is fixed. On the other hand, the number of decision variables
depends on the number of jobs in our study.

In this study, MIP models are proposed for IPMS-SMS. When the number of
machines is two and the objective is to minimize the total weighted completion times,
the parallel machine scheduling problem is NP-hard (Pinedo 2011). Although itis pos-
sible to find optimal solutions using mathematical models, this approach may require
an enormous amount of computation time with increasing problem size. A large num-
ber of articles presented mathematical models of an investigated parallel machine
scheduling problem. However, most of these articles used heuristic or meta-heuristic
approaches to tackle the problems. In recent years, the genetic algorithm has been

@ Springer

98 E. Akyol Ozer, T. Sarac

used as a significant meta-heuristic approach (Liu and Wu 2003; Chaudhry and Drake
2009; Chan et al. 2011; Keskinturk et al. 2012). However, if we want to use the GA
in the case with a shared resource use, it is not sufficient to merely determine the job
sequence for computing the value of the objective function (the fitness value). In addi-
tion, if jobs using a shared resource are scheduled at the same time, determining which
resource will primarily use the shared resource is also necessary. In other words, the
stage of determining the value of the objective function is also a matter of decision.
Therefore, if we want to use a GA to solve this problem, a solution algorithm should
be developed for computing the objective function. The proposed matheuristic is a GA
using a mathematical model to determine the value of the objective function. Since the
optimal value of the objective function can be found, better solutions can be obtained
for a classical GA with fewer population and generation sizes.

The remainder of this paper is organized as follows: In Sect. 2, the problem definition
and proposed mathematical models are given. The proposed matheuristic is introduced
in Sect. 3. Test problems and computational results are represented in Sect. 4. Finally,
Sect. 5 summarizes conclusions and recommendations for future research.

2 Problem definition and mathematical models of the problem

The scheduling of jobs is a major and difficult problem for most plastic parts manufac-
turers. Our motivation is scheduling plastic injection molding machines in the Boyplast
plastic factory. This factory produces several plastic parts for electrical home appliance
manufacturers.

There are three significant characteristics that should be considered in the injection
machine scheduling problem: (1) production of a plastic part using an injection mold-
ing machine is a single-stage production. Each job can be processed with the same
processing time on any one of the machines that belongs to the given subset. Thus,
injection molding machines are identical machines that operate in parallel. To produce
a product in an injection molding machine, the relative mold has to be fixed to it. All
molds may not be fixed to all of the machines due to technical conditions. For instance,
for a mold to be fixed to the injection molding machine, its width and length must be
shorter than the column space, and the mold depth must be suitable for the closing
space of the machine. Therefore, machine eligibility restrictions should be considered.
(2) Products with the same form in different colors are considered different products.
Therefore, it is possible to have different products using the same mold. Molds are
shared resources of jobs. Jobs using the same mold cannot be scheduled simultane-
ously. However, if there are multiple copies of the mold, jobs can be simultaneously
scheduled up to the number of copies. (3) Switching from the production of a certain
product to another requires setup times. Setup times cover the changing of molds or
the preparation of raw materials and paint mixtures, if necessary. Therefore, setup
times are short for similar jobs. If similar jobs are not assigned to the same machines,
the total setup time needed for production may increase significantly. For example, if
the previous job used a light color, the setup time is short, but if the previous job has
a dark color, the setup time can be much longer. Therefore, setup times are dependent
on the job sequence.

@ Springer

MIP models and a matheuristic algorithm for an identical... 99

After all, an identical parallel machine scheduling problem have three significant
characteristics of injection machines: sequence-dependent setup times, machine eli-
gibility restrictions and multiple copies of shared resources are considered. Two MIP
models are proposed for the considered problem. The objective of the models is to
minimize the total weighted completion time.

The presented MIP models are based on the following assumptions:

(1) All parts are available for processing at time zero.

(2) A machine can process one job at a time at most.

(3) Machines are available for the scheduling horizon.

(4) Preemption of the jobs is not allowed.

(5) All processing and setup times of the jobs are deterministic.

(6) Each job needs a resource to produce. Some jobs use the same resources, but a
resource can be used by one job at a time at most.

(7) There are different types of resources, and each type of resource may have copies.

The IPMS-SMS problem takes the following sets:
N={1,2, ..., n} jobs set and
n refers number of jobs to be processed;

L={1,2, ..., m} machines set and
m denotes number of machines;
R={1,2, ..., g} resources set and

g refers number of resource types which required processing of jobs at machines.
We will also use the following indices, parameters and decision variables.
Indices:
i,jand g € N are indices to denote a job.
| € L is the index to denote a machine.
k € N is the index to denote the position of a job in the sequence of its machine.
r € R is the index to denote a resource.
Parameters:
n: number of jobs
m: number of machines
g: number of resource types
pj: processing time of job j
M: alarge positive number
h;: setup time of job j is first in the sequence
s;j: sequence-dependent setup time between job i and job j
fr: number of available resources of type r
wj: weight of job j
1, if resource rrequired by job j

TC8jr- { 0, otherwise

1, ifjob jcan be processed on machine /
bir: { 0, otherwise
Decision variables:
C;: completion time of job j
aj: starting time of job j

@ Springer

100 E. Akyol Ozer, T. Sarac

~ .} 1, ifjob jis scheduled in kth order in machinel
Ykl 0, otherwise

1, if at least one other job that uses the same resource is scheduled in machinel
Ajl - while job jis processing,
0, otherwise

eljy, €24, €3j4, e4j4: 0-1 integer decision variables for ensuring particular con-
straints
Objective function:

n
minz = Y " w;C; (1)
j=1

Objective (1) represents the minimization of the total weighted completion time. It
is equal to the sum of the values that are obtained by multiplying completion time and
weight for each job.

The constraints of the presented MIP model are explained in detail in the following
parts:

Cj+M*(1_xjkl)2pj+hj Vi, k,l k=1 2)

Ci+M = (Z_Xjkl —xikfll) >Ci+sij+p; Vi, j kil i#£jk>1 (3)
Constraint (2) indicates that the completion time of the first job assigned to any
machine should be equal to the sum of the processing time, setup time for the first job

and waiting time of job j. Constraint (3) calculates the completion time of jobs apart
from the first sequence.

ijkl <1 Vk,I 4)
j

D> xu=1Vj)
k 1

Constraints (4) and (5), respectively, ensure that at most one job can be assigned
to any sequence in a machine, and each job must be assigned to any sequence in a
machine.

bji = xju Vj, k1 (6)

Constraint (6) was formed to ensure that jobs are only assigned to a machine that
is available considering technical conditions.

ijkl—zxz'k—lzfo Vi, I, k>1 (7)
j i

@ Springer

MIP models and a matheuristic algorithm for an identical... 101

job g Jjob g Jjob g job g
Jobj Jjobj Jobj jobj
a, a C, C; a a, C C, a, C, a G a; C a, C,
(a) situation 1 (b) situation 2 (¢) situation 3 (d) situation 4

Fig. 1 Four situations for job j and job g that use shared resources

Constraint (7) ensures that the jobs are scheduled without skipping any order.
aj <Cj—pj—sij+Mx*(2—xju—xik—u) Vi.j k1 i#jk>1 (8)
aj <Cj—pj—hj+Mx(1—xj) Vj kIl k=1)

Constraints (8) and (9) determine the starting times of jobs.

There are at most four situations for job j and g that use shared resources in any
schedule. These situations are shown in Fig. 1.

(a) If job g starts earlier than job j and these jobs overlap, a; < a; and a; < Cy.
Constraints (10) and (11) are for situation 1. If situation 1 occurs, the binary decision
variable e/}, is equal to one.

ag <aj+Mx(1—elj,) Vj,q,r j<gq, resj=1andres;, =1,9g <n
(10)

aj <Cy+Mx(1—elj,) Vj,q,r j<gq, resj=1andres;, =1, <n
(11)

(b) If job j starts earlier than job g and these jobs overlap, a; < a, and a; < C;.
Constraints (12) and (13) are for situation 2. If situation 2 occurs, the binary decision
variable e2j, is equal to one.

aj <ag+Mx(1—-e2j,) Vj,q,rj<gq,resj,=1andres;, =1,9 <n (12)
ag <Cj+Mx(1—e2j,) Vj,qr j<gq, resj=1andresy, =1,9g <n
(13)

(c) If job g is completed before job j starts, C, < a;. Therefore, these jobs do not
overlap. Constraint (14) is for situation 3. If this situation occurs, the binary decision
variable e3;, is equal to one.

Cy<aj+Mx(1—e3;;) Vj,q,r j<gq, resj, =1andresy, =1,q <n (14)

(d) If job j is completed before job g starts,C; < a,. Therefore, these jobs do not
overlap. Constraint (15) is for situation 4. If this situation occurs, the binary decision
variable e4;, is equal to one.

Ci<a;+Mx*(1—edj;) Vj,q,r j<gq, resj, =1andres,, =1,g <n
(15)

@ Springer

102 E. Akyol Ozer, T. Sarac

Constraint (16) ensures that only one situation (1, 2, 3 or 4) can occur for each job
couple sharing the same resource.

elj,+e2j,+e3j,+edjy =1 Vj,q,r j<gq, resj=1andres,, =1, <n
(16)

If some resources have copies, it is possible to schedule two jobs requiring the same
resource in different machines at the same time. For example, if one resource has one
copy, the jobs share this resource and can overlap once. Constraint (17) allows job
couples using the same resource to be used at most (f,) times in different machines.
The number of overlapping jobs using the same resource is limited to the number of
available related resources.

Y hji < fr Vjor resj =1 (17)
=1

To determine overlapping jobs, the model should count how many times job j
can overlap with job g that uses resource r in different machines and is provided by
Constraints (18)—(21) with the help of decision variable A j;.

L+ = eljg+ Y xju Viq.l j#q (18)
k=1

L hj = eljg+ > xgu Viq.l j#q (19)
k=1

L+dji = e2iq+> xju Vi.g.l j#q (20)
k=1

L+ hji = €25q+ > xqu Vi q.1 j#q 1)
k=1

Finally, constraints (22)—(26) are the sign constraints of the decision variables:

Xju € 10,1} V) k1 (22)

L ef0,1} Vj,i (23)
eljg.e2jq,€3jq,e4jg €{0,1} Vj,qeN (24)
C;>0 VjeN (25)

aj>0 VjeN (26)

We called the mathematical model M1. Alternatively, another mixed-integer pro-
gramming model proposed by Avalos-Rosales et al. (2015) is modified based on
overlapping constraints, referred to as M2. The job set N plus a dummy job 0 is denoted
by No in M2. The processing times and setup times associated with the dummy job
are equal to zero. M2 has a new variable y;j, instead of xji;, in addition to the above
defined variables that can be denoted as follows:

@ Springer

MIP models and a matheuristic algorithm for an identical... 103

) if jobi is scheduled before job j on machine /,
Yijl = 0, otherwise.

The constraints of M2 with the objective function (1) can be stated as follows:

> > yiu=1VjeN (27)

leL ieNy,i#j

> > wp=1VieN (28)

leL jeNy,j#i

Constraints (27) and (28), respectively, ensure that each job has exactly one prede-
cessor and one successor.

Z Yijl — Z yeir=1 VieN, VielL (29)
jeNg,i#j qE€No,qF#i

Constraint (29) establishes that each job in a machine should have a predecessor
and a successor in the same machine.

D <1 Viel (30)
JeN

Constraint (30) guarantees that at most one job can be assigned to the first sequence
in a machine.

Cj—Ci+M*(1—yij1)Zsij+pj+wtj ViGN(),VjGN,i;ﬁj 31D

The completion time of jobs calculated by Constraints (31) and (32) are formulated
for machine eligibility restrictions.

bji=) viji Vj€NoVlel (32)
ieNy

Constraints (33) and (34) provide the calculation of starting times:

aj > Ci+wtj—Mx(1—yj) Vi,jeNo,leL i#j,j>n (33)
aj <Ci+wtj+Mx(1—yj;) Vi,jeNo,leL i#j,j>n (34

The completion time of a dummy job is equal to zero and is explained by Constraint
(39).

Co=0 (35)

@ Springer

104 E. Akyol Ozer, T. Sarac

Table 1 Sequence-dependent

setup times between job i and i ! 2 3 4 >
jobj (sij) 1 0 90 10 240 240
2 30 0 180 20 180
3 150 200 0 120 30
4 150 20 120 0 120
5 150 200 10 120 0
T T eoue | z
1 1 0
2 1 0
3 0 1
4 0 1
5 1 0
Table 3 The amount of resource f
r(fr)
1 1
2 2

The equation numbers of overlapping constraints for M2 are (10)—(21). Constraints
(23)—(26) and (36) are for sign constraints.

yijt € {0, 1} Vi, j,1 (36)

M1 and M2 were tested using a small example:

Example There are five jobs, two machines and two resources. The processing times
and setup times of job j are first in the following sequence: p; = {20, 30, 10, 20, 15},
h; = {10,20,15,10,5}, where j = 1,...,5. Sequence-dependent setup times
between the two jobs are shown in Table 1.

Machine eligibility restrictions are given as follows: job 1 and job 3 can only be
processed on machine 1. Job 2, job 4 and job 5 can only be processed on machine
2. res; denotes the type of resource required by job j, and this parameter is given in
Table 2, and the amount of resource r (f,) is also given in Table 3. The weights of job
J (wj) are given as follows: w; = {9, 2,6,5,7}

The example was solved using M1 and M2 with the GAMS/Cplex solver. An
optimal solution was found in 28 and 12 s with M1 and M2, respectively. The objective
value of the optimum schedule was 2230. The Gantt Scheme of the obtained results
is shown in Fig. 2.

In Fig. 2, the jobs using the same resources are shown in the same color. As seen
in the figure, jobs 1 and 5 could not be produced at the same time because resource 1

@ Springer

MIP models and a matheuristic algorithm for an identical... 105

Ml wt; ‘ hi+pi | h3+ps ‘

M2 | hs+ps ‘ hatps h2+p2

20 50 70 160 210

Fig. 2 Gantt scheme of example

had no copies. However, two of jobs 2, 3 and 4 could be scheduled at the same time
since resource 2 had two copies.

3 Proposed matheuristics

Matheuristics are model-based (meta)heuristics. These methods combine the advan-
tages of both exact methods and (meta)heuristics. Therefore, researchers have recently
shown an increased interest in matheuristics. A number of studies have used matheuris-
tics in scheduling problems. For example, Billaut et al. (2015) handled a scheduling
problem in which jobs consumed a perishable resource stored in vials. The prob-
lem was modeled as a single machine scheduling problem with additional duration
and consumption constraints. They proposed a two-step approach that consisted of
a recovering beam search algorithm and a matheuristic algorithm. Guimaraes et al.
(2013) considered a single machine capacitated lot sizing and scheduling problem
with sequence-dependent setup times and costs. They presented a MIP-based heuris-
tic (matheuristic) model for solving this problem. Finally, Singha et al. (2012) focused
sensor coverage scheduling in wireless sensor networks subject to Q-coverage con-
straints. The objective of the problem was to maximize the network lifetime. A
matheuristic algorithm that included a GA and a linear programming model was devel-
oped.

The IPMS-SMS instances, especially if they are large-scale problems, cannot be
solved easily due to their NP-hard nature. An efficient heuristic search would be
useful to address such a problem. In this study, we developed a special version of
a model-based GA to solve the IPMS—SMS. The proposed matheuristic algorithms
have a different structure from a classic GA. In a classic GA, solutions are coded as
chromosomes, and this representation contains all the values of the decision variables
of the considered problem, so fitness values of the chromosomes can be calculated
using these values. However, solutions may be very far from the optimum solution. In
the proposed GA, a chromosome contains only the values of the decision variable xj;.
After determining the value of the decision variables xji; using the GA, determining
the values of the remaining decision variables is still a decision problem. In this study,
a subproblem is solved by GAMS/Cplex to calculate the fitness value. The subproblem
(M3) is very similar to M1, but a new decision variable (wt;) is defined for calculating
the waiting time of job j in M3. In addition, xj; are parameters and not decision
variables, and M1 is tightened using the x;; values. Therefore, we can find optimal
solutions of the fitness value when subproblem M3 is solved. Since the fitness value is
directly affected, better solutions can be obtained than with a classical GA with fewer
population and generation sizes. The subproblem (M3) is given below:

@ Springer

106 E. Akyol Ozer, T. Sarac

Genetic Algorithm
Fitness _
Function Vx{k/
Value ajues
SubProblem-M3
Fig. 3 The relationship between the GA and subproblem-M3
Cj:hj+pj+wtj Vi, k,l k=1 andxj/d:l (37)
Ci=Ci+pj+sij+wt; Vi, j,k,li#j, k>1, xjy=1and xj_1; =1
(38)
aj=Ci+wt; Vi,j,k,l i#j, k>1xjy=1and xj,_1; =1 39)
aj=wt; Vj,k,l k=1and xjy =1 40)
(10)-(21)
(23)-(26)

xj; values contain information about jobs and their sequence in machines by means
of chromosome values. To determine the starting time, completion time and waiting
time of jobs, M3 is solved. Constraints (37) and (38) calculate the completion time of
jobs. Constraints (39) and (40) determine the starting times of jobs.

In the proposed algorithm (MA), the GA and the subproblem (M3) work cooper-
atively. The xji; values obtained by the GA transform the parameters of M3, and the
objective function value of M3 transforms to the GA as the fitness value of the related
chromosome. This relationship between the GA and M3 is shown in Fig. 3.

3.1 Representation

The chromosome representation of the proposed algorithm is a 2xn-bit integer matrix.
All the genes in the first row of the chromosome have values between 1 and m, and
the genes in the second row of the chromosome have values between 0 and 1. The
sequence of the genes shows the job index for both rows. The first row of the matrix
represents the machines to which the jobs are assigned. The second row of the matrix
represents the job sequences. For example, a sample solution for the 6-job, 3-machine
problem is given as the following bit matrix:

3 1 2 1 2 3

0.2 0.5 0.6 0.3 0.1 0.5

@ Springer

MIP models and a matheuristic algorithm for an identical... 107

This means that jobs 2 and 4 are selected for machine one, jobs 3 and 5 are selected
for machine two and jobs 1 and 6 are selected for machine three. The sequence of
the jobs is identified according to the second row of the chromosome. Determining
the initial job sequences, organizing the job sequences and assigning the xjx;) value
procedures are given in Sect. 3.2.

GA starts with the encoding of a chromosome and it is followed by generating an
initial population. In the proposed algorithm, the initial population is constructed in
three ways: (1) M1 assignment model (M1-A), (2) M2 assignment model (M2-A), (3)
Random assignment.

(1) M1 assignment model (M1-A) is a reduced version of M1 that considers Con-
straints (2)—(7) and sign constraints (22) and (25) to minimize total weighted
completion time. M1-A performs in 1500 s in GAMS/Cplex, and the first chro-
mosome of the initial population is obtained.

(2) The M2 assignment model (M2-A) is a reduced version of M2 that considers
Constraints (27)—(32) and (35) and sign constraints (25) and (36) to minimize the
total weighted completion time. M2-A also performs in 1500 s in GAMS/Cplex,
and the second chromosome of the initial population is obtained.

(3) The rest of the initial population is determined by a purely random assignment
of jobs considering machine eligibility restrictions. The other chromosomes are
constructed by generating random numbers in the range [1, m] for each of the
genes in the first row and in the range [0, 1] for each of the genes in the second row
of chromosomes. Machine eligibility restrictions are considered when generating
the first row. Therefore, the chromosomes of the initial population represent fea-
sible solutions. The pseudo-code of the initial population generation procedure
for random assignment is given below:

Begin /nitial Population Algorithm for Random Assignment
For every chromosome, k=3 to nf do
For every job j=1 to n do
Ok=0;
Generate a random number rnumber in the range [1, m]
If b(j, rnumber)=0 then
Repeat rnumber=mod (rnumber, m) +1;
If b(j, rnumber)=1, then
Ok=1;
End if
Until Ok=1;
Else gen(kr,jy=rnumber;
End if
Generate a random number rseq(kr,j) in the range (0, 1)
End For
End For
End Initial Population Algorithm for Random Assignment

where kr: chromosome, j: job, I: machine, rnumber: a random number, gen(kr.j):
Jjth gene value of chromosome kr, rseq(kr.j): a random number for sequence of job j
in chromosome kr

@ Springer

108 E. Akyol Ozer, T. Sarac

3.2 Fitness function

The fitness value of the chromosome is equal to the total weighted completion time.
The genetic algorithm determines the value of the decision variable “xjy”, which
gives information about a particular job’s assignment, its machines and its order. After
determining the value of the decision variables xj; using the GA, determining the
values of the remaining decision variables is still difficult and remains a decision
problem. In this study, we solve a subproblem (M3) to calculate the fitness value.
Based on the GA’s assignment, the M3 model determines the starting time, waiting
time and completion time of jobs under all constraints. The pseudo-code used for
calculating the fitness value consists of three parts. First, one determines the jobs that
are assigned to the same machines. After that, jobs are sorted in increasing order of
random numbers in the second part. The last part is for assignment for the value of
parameter x and calculating the fitness value. The entire pseudo-code is given below:
* Determining the initial job sequences

For every chromosome, kr=1 to nf do
For every machine /=] to m do
Numl=1;
Part 1 For every job j=1 to n do
If gen(kr, j)=I then
Seq(kr,j)=numl ;
Numl=numl+1;
End If
End For
End For
End For

* Organizing the job sequences

For every chromosome, kr=1 to nf'do
For every machine /=1 to m do
For every job j=1 to n in condition thatj < n-/ do
For every job i=/ to n in condition that;j <i do
If gen(kr, j)=I and gen(kr, i)=[, then
Part 2 If rseq(kr, j)>rseq(kr,i) then
gec=seq(kr,i);
seq(kr,i)= seq(krj);
seq(kr.j)=gec;
End If
End If
End For
End For
End For
End For

* Assigning the x(j,k,l) value and calculating the fitness value

@ Springer

MIP models and a matheuristic algorithm for an identical... 109

[For every chromosome, kr=1 to nf do
x(.k1)=0;
For every job j=1 to n do
For every sequence k=1 to n do
For every machine /=1 to m do
Part 3 If gen(kr,j)=I and seq(kr,j)=k then
x(,k1)=1I;
End If
End For
End For
End For
Solve submodel (M3)
Fit(kr)=z;
End For

where seq(kr.j): sequence of job j in chromosome kr, Fit(kr): fitness function value
of chromosome kr,

3.3 Genetic operators

A classic GA is composed of three operators: reproduction, crossover and mutation.
The reproduction operator allows individual chromosomes to be copied for possible
inclusion in the next generation. The chance that a chromosome will be copied is
based on the chromosome’s fitness value, calculated from a fitness function. We used
a 2-tournament selection method as a reproduction operator. In 2-tournament selec-
tion, two chromosomes are randomly selected. The fitness values of the chromosomes
are compared. The chromosome with a better fitness value is selected for the next
generation. This continues until the number of selected chromosomes is equal to the
population size. Crossover enables the algorithm to extract the best genes from differ-
ent individuals and recombine them into potentially superior children. The proposed
GA has a two-point crossover operator. A sample crossover is given in Fig. 4. In
the example, a chromosome of Parent 1 and a chromosome of Parent 2 are aligned.
Crossing points are selected randomly. It shows the borders of the genes that are given
in black boxes. Child 1 gets the genes of Parent 1 except for the crossing point. The
remaining genes of Child 1 are copied from the chromosome of Parent 2. The genes
in the crossing point of Parent 1 are copied to Child 2. Other genes in Child 2 are
the same as in Parent 2. As shown in Fig. 4, only genes in the crossing point of each
chromosome are changed, so eligibility constraints are still satisfied.

Reproduction and crossover alone can obviously generate a staggering number of
differing chromosomes. However, depending on the initial population chosen, there
may not be a sufficient variety of chromosomes to ensure the GA searches the entire
problem space, or the GA may find itself converging on chromosomes that are not
quite close enough to the optimum it seeks due to a bad initial population. Introducing
a mutation operator into the GA may prevent some of these problems. In the proposed
algorithm, a random number is generated for all the genes. If the random number is
smaller than the mutation rate, the value of the gene is generated according to the initial

@ Springer

110 E. Akyol Ozer, T. Sarac

parent 1 02 | 05 | 06 | 03 | o1 | 05

parent 2 1 2 3 l 2 3

0.7 0.5 0.6 0.8 0.1 0.9

child 1 2 ! 3 ! 2 3
02 | 05 | 06 | 08 | o1 | 05
child 2 ! 2 2 ! 2 3

0.7 0.5 0.6 0.3 0.1 0.9

Fig. 4 Crossover

Chromosome 1 02 05 0.6 0.3 0.1 0.5

Chromosome 2

0.2 0.5 0.6 0.3 0.1 0.5

Fig. 5 Mutation

population generation procedure so that machine eligibility restrictions are considered.
The value of the gene is protected if the random number is greater than the mutation
rate. A sample mutation is given in Fig. 5. In this example, the mutation rate is equal to
0.25. Random numbers of the first and fourth genes are smaller than the mutation rate.
Therefore, these genes are regenerated according to the initial population procedure,
and Chromosome 2 is obtained.

Since elitism selection improves the efficiency of a GA considerably, as it prevents
a loss of the best results, it is used in the developed GA. In this study, two types
of termination conditions are used together. The first condition checks whether the
algorithm has run a fixed number (ny) of generations. The other stops the algorithm if
the total solution time reaches ‘n;’.

4 Computational results

To test the performance of the proposed MIP models, randomly generated instances
were used. Since the identical parallel machine scheduling problem with sequence-
dependent setup times, machine eligibility restrictions and multiple copies of shared
resources has been defined firstly in this paper, we could not find test instances from
the scheduling literature. Therefore, instances were generated randomly. The proposed
MIP formulations and the matheuristic algorithm were coded in GAMS 24.0.2 and
were run using the Cplex solver embedded in GAMS on a 2.8-GHz Intel Core i7
with 4 GB RAM. The characteristics of the test problems and the obtained results

@ Springer

MIP models and a matheuristic algorithm for an identical... 1M

of the GAMS/Cplex solver and the matheuristic algorithm are given in the following
subsections.

4.1 Test problems

In the identical parallel machine scheduling literature, generally the number of jobs
(n) is approximately eight for small-sized test problems (Gacias et al. 2010; Chen
and Chen 2009), approximately forty for medium-sized test problems (Edis and Oguz
2012; Gacias et al. 2010; Nessah et al. 2007) and one hundred for large-sized test
problems (Montoya-Torres et al. 2009; Gacias et al. 2010; Tahar et al. 2006). In this
study, we generated instances with n = 8, n = 40 and n = 100. Other parameters by
generating instances and their levels are given separately for problems n = 8, n = 40
and n = 100 in Table 4.

As shown in Table 4, the number of machines () is two or three for instances with
n = 8§, two or six for instances with n = 40 and two and eight for instances with n
= 100. In the literature, similar m values are used (Montoya-Torres et al. 2009; Lin
et al. 2011; Tahar et al. 2006). The number of resource types (g) is two or five for
instances with n = 8, four or twenty for instances with n = 40 and eight or fifty for
instances with n = 100. The processing times (p;) and the setup times for first jobs
(hj) are drawn from a uniform distribution on [1,100] rounded to the nearest integer.
Sequence-dependent setup times (s;;) are drawn from a uniform distribution on [1,10],
if job i and job j use the same resource, and on [1,100] if they use different resources.
If job j can be processed on machine /, bj; is equal to 1. rb is the rate of bj; parameters
other than zero, and we fixed this rate at 0, 25 and 1. If the type of resource r required
by job j, res;, is equal to 1, gres is an indicator used to show generation type. If itis (1),
res;, is generated randomly. If it is (2), res;, is generated as one resource dense. The
amount of resource r (f,) is generated with a uniform distribution in the range [1,2].
By using these levels of parameters, 16 problem types occur, and we generated three
instances for each type using Excel VBA.

All instances of IPMS with SMS are available on the web site (http://endustri.
ogu.edu.tr/Personel/Akademik_personel/Tugba_Sarac_Test_Instances/IPMS_with_
SMS_instances.rar)http://endustri.ogu.edu.tr/Personel/Akademik_personel/Tugba_
Sarac_Test_Instances/TOP_AKYOLOZER_SARAC_Instances.rar).

4.2 Test results of the GAMS/Cplex

Each of the generated test problems with n = 8, n = 40 and n = 100 was solved by
means of the proposed models (M1 and M2). The running time of the Cplex solver of
GAMS was limited to 7200 s for all the tests. To evaluate the relative performance of
the model and matheuristic algorithm, we utilized two types of performance measures,
namely relative percentage deviation (RPD1, RPD2) and GAMS relative gap (GAP).

e RPDI is equal to the difference between solutions of M1 and M2. RPD2 is defined
as the difference between the best solution of the models and the solution of the
matheuristic algorithm for each instance. RPD1 and RPD2 are calculated by Con-
straints (41) and (42), as follows:

@ Springer

http://endustri.ogu.edu.tr/Personel/Akademik_personel/Tugba_Sarac_Test_Instances/IPMS_with_SMS_instances.rar)endustri.ogu.edu.tr/Personel/Akademik_personel/Tugba_Sarac_Test_Instances/TOP_AKYOLOZER_SARAC_Instances.rar

E. Akyol Ozer, T. Sarac

112

[c1] [c1] [c1] o
astmIoyo ‘(0T 1] *1= Msas pue [= sas yre[or°r] esmmIoyo [01°T] 1= 524 pue [= Hsas Jre[o1r] osmroyo [o01°1] 1= 524 pue 1= Msas j1[01°1] fig
loor1] loor1] loor1] Yy
loor1] loor1] loor1] la

(7) 9Suap 22IN0SI (1) wopuex (7) 9Suap 22IN0SAU (1) wopuex (7) 9SUap 20IN0SAI (1) wopuex
ouo st uoneiouad “sas st uonetouad “/sa1 auo st uonerouad sas st uoneiouad “/sa1 auo st uonerouas sas st uonetouad “sa 25}

4} Sali) §co

[SI 0197 URY) 1910 SI 0197 URY) 1910 [SI 0197 URY) 1910 SI 0197 URY) 1910 I SI 0197 URY) 1910 SI 0197 URY) 1910
sioourered g jooyey sioowered g joayey sioowered g joorey smoowrered Mg jooyey sioowered g jo ey siojowered g jo orey Qy
0S 8 0c 14 S C D
8 [9 [€ [nW

+ - + - + -

001 = u yim swa[qoid 10§ S[PA] 0F = u i swa[qoid I0§ S[PA] g = u yim swo[qoid 10f SPAST] SIjWRIRd

S[oAQ] J1aY) M s1ajowrered wa[qoid § d|qel

pringer

As

MIP models and a matheuristic algorithm for an identical... 113

v — 2
RPDI (%) = ML~ ~M2 (41)
VAY¥)
ZMA—Min — Min(Zm1, Z
RPD2(%) = MA—Min in(Zm MZ)’ 2)
ZMA—Min

where Zya-min denotes the minimum objection function value of the matheuristic
algorithm, and Zy; and Zyp denote the objection function values for M1 and M2,
respectively.

e GAP is obtained by GAMS/Cplex after solving mathematical models M1 and M2.

The results of small-sized (n = 8) problems are presented in Table 5. In this table,
the first four columns summarize the properties of instances such as instance number
(no), number of resources (g), rate of bj; parameters other than zero (rb) and generation
type of res;r (gres). The fifth and sixth columns show the obtained objective value and
solution time in seconds using the GAMS/Cplex solver with M 1. The last two columns
represent the results of the M2 model for small size instances.

As we can see from Table 5, M1 and M2 are capable of solving to optimality almost
all small instances in reasonable time. For only one instance (9-2), the running time
limit is exceeded in M2 before reporting the obtained best integer solution is optimal.
It can be clearly observed that M2 is remarkably more efficient than M1 with regard
to running time. Differences between the running times of M1 and M2 are distinctly
decreased with increases in the number of machines.

Test results for medium size instances (n = 40) obtained using M1 and M2 are
summarized in Table 6. M1 could obtain feasible solutions for 80% of the medium-
size instances in 7200 s, and the GAP value of all these solutions is 0.99. However,
M2 could solve feasible solutions for only 30 percent of the instances, and the average
GAP value is 0.72. This implies that M1 indicated a significantly poor performance
compared to M2, although M1 has more feasible solutions.

Finally, feasible solutions could not be found in 7200 s using M1 and M2 for all
large instances except for one instance (8-1) with M1.

4.3 Test results of the proposed matheuristic algorithm

First, a small-size (n = 8) instance (no: 6-2) was solved using the matheuristic algo-
rithm with the following parameters: population size is 30, crossover rate is 0.7,
mutation rate is 0.2 and the values of the termination parameters are ny = 500
and n; = 7200. The obtained convergence graph of the matheuristic algorithm is
shown in Fig. 6. As shown in Fig. 6, the matheuristic algorithm can reach the optimal
objective value (6785) of the instance.

The parameter values of any meta-heuristic algorithm directly affect their perfor-
mance. A full factorial experimental design was used to determine the proper parameter
values of the matheuristic algorithm for each problem size. Factors and their levels
are given in Table 7.

Population size, crossover rate and mutation rate are critical factors according to
analysis of variance for small instances. Related main effect plots are given in Fig. 7.

@ Springer

E. Akyol Ozer, T. Sarac

114

8 LSOS 86¥ LSOS T ST0 S €l LT 8%19 €81 8¥I9 (4 ST0 S €9
61 9zIS 6Ly 9zIS 4 ST0 S Th ST $8L9 6L1 S8L9 z §T0 S 79
8¢ €€L9 €Sy €€L9 (¢ ST0 S Il el Ler - Teel z §T0 S 19
6 9.9 186 996 I §T0 S €€l € 99zt 8 99zt I ST0 s ¢€¢
S 91 8t 91t I §T0 S el 6 6688 8¥l 6688 I ST S TS
8 LYOY 86 LYOY I ST0 S I€l S 9579 8¢l 9579 I ST S I
826 ¥019 1611 019 T I T gt 6 TSI LLT TSI z ! T eF
66 orIL 661 or1L 4 I T Tu S €689 voL €689 z ! T Ty
S 911¢ €6¢€ 911¢ T I (AN | €8 1I8S S1e 1I8S z ! T Iy
€ 6YLE 209 6YLE I I (AN A 1T €v88 87C €488 ! ! (A
€1l 0€89 988 0€89 I I (A A € 896¢ 60T 895¢ I I T Tt
6 8L9L 106 8L9L I I (A € L8378 €vl L8P I I T 1€
€T 9168 TSL 9168 z §T0 T ol 65 €SSL 00€ €SSL z ST0 T €T
SI €08% €cs €08% z §T0 T ol I 1119 91 1119 z ST T TtC
1+€ 192§ el 19¢$ T §T0 T 10l 9 1099 9zl 1099 z ST T IC
6 8€0€ vLy 8€0€ I ST0 z €6 11 6828 €11 6828 1 ST0 T €l
00TL +TTTTL §sse Tl I ST0 z 6 €1 ¥esS S0z 1e8S ! ST0 T Tl
€ w10l vLIT TPI0L I ST0 z 1-6 91 L¥98 Pl 98 ! ST0 T Il
(s) U Nz ()l Nz so1g QI 3 ON (U Nz ()l Nz sa1g QI 3 ON
N TN g=u N N r=w

Q=1 YJIM SIOURISUI [[BWS J0J sI[nsa1 xo[d)/SINVD § 3|qel

pringer

as

115

MIP models and a matheuristic algorithm for an identical...

POP299X ST W] dwWn Furuuny,

@OAW ENUEH hﬁw CQOEN Wh~ GNDEN wh~ SQOEN
9¢ 1159 €9 1159 z I S €91 1z L606 661 L606 z I S €8
14 910L S8y 910L z I S 79l 6T P8ITI € P8II1 z I S T8
1 676€ 81Y 676€ z I S 1-91 |14 8SL9 €91 8SL9 C I S 1-8
S 659¢ S6¢ 659¢ I I S €dl S1 8243 00T 1vTL I I S €L
€T 6L16 128 6L16 I I s gl S 8S€S 091 8S€S I I S 7L
e Y0TE 90$ 143 I I S 1-S1 11 990% 1€1 990t I I S I-L
(s) U Nz (s) 1 Nz sa1g Q1 3 ON () U Nz (s) 1 Nz so1g q1 3 ON
[IN e=u TN IN =

panunuod g 3jqe]

pringer

As

v
s
S
=
8
o
<]

NW, 19°0 650 OTT°LS 650°C6 [4 ST0 S el LO0 780 0L60TT TSPSII 4 ST0 ¢ €9

ud ¥1°0 650 LO89F OLEES [4 Sl S Tl - 080 L89°601 - 4 ST0 ¢ 79

1S40 50 0L0'6 98T°T1L 4 ST0 S I¥l 600 180 08¥'0FI 010°¢ST C ST0 s 19

LEO 0s°0 019°8¢€ 006°CS I ST0 g g€l 200 660 60L°9TT TO9°6TI 1 §Co ¢ €<

LT0 860 9SSy STr'es I ST0 g T¢l 8¢€'0 86'0 tET60I 6£8°0ST I §co ¢ TS

SLO 650 086°CS ¥96°C6 I ST0 S I-€l cro 86'0 €¥0901 89S'SII I ST0 S Y

- - - 06v°061 C 1 ¢ ¢l - - - - 4 I T ¥

- - — 988°GLT [4 1 ¢ ctal - - - - 4 1 [4

- - - hr'oTe C 1 ¢ Il - - - - 4 1 ¢ I¥

- - - 69€991 1 1 ¢ ¢I1 - - - - 1 1 ¢ ¢¢

- - - 809'6vI1 1 1 ¢ TlIl - - - - 1 1 ¢ Tt

- - - 6I¥'SST 1 1 ¢ I-11 - - - - 1 1 Cc 1€

- - - SL8ILI 4 ST0 T €01 - - - 9TETIE [4l [

- - - LL6'OVI C ST0 ¢ 01 - - - - 4 ST0 [

- - - 6VL'LLI C ST0 ¢ 101 - - - €CIL9YT 4 ST0 ¢ 1T

- - - €86°L9 I Sl C €6 - - - 19L'0Tt 1 ST0 T ¢l

- - - 0£8°S8 1 Sl [6 - - - - ! ST0 ¢ Tl

- L0 L66°L0T - 1 ST0 [1-6 - - - PIL9SS 1 ST0 ¢ I1

(%) (%)
dvo Ny Ny so1y Q1 8 ON dvD Ny Ny Sy q1 3 ON
(%) (%)
1adyd N TN 9=u 1dadyd <IN TN c=u
,m O = U YIIM SOOUBISUT WNIPSW JOF S)NsaI X3[dD)/SINVO 9 a|qel

pringer

as

17

MIP models and a matheuristic algorithm for an identical...

- - - LTS8l [4 I ¢ €91 - - - $60°10¢€ 4 I ¢ €8

- - - 610°€6 [4 I S 09l - - - 80vsel C ! ¢ T8

- - - 0L6'8C1 [4 I S 191 - - - 9LISET C I s I8

- - - L9EI8 I I Y - - - LEL'ILY I I S €L

- - - 69L°68 I I s TSl - - - PPl I I S TL

- - - 6T8YL I I s IGI - - - S89°¢wl I 1 S IL

(%) (%)
dvo Ny Ny saI1g q1 3 ON avo Nz Ny saI1g ql 3 ON
(%) (%)

1add N TN =u 1add N 84\ c=u

panunuod 9 3jqe]

pringer

As

118 E. Akyol Ozer, T. Sarac

7600
7400
7200
7000
6800
6600
6400

1 6 111621 2631 36 41 46 51 56 61 66 71 76 81 86 91 96

Generation Number

Objective Function
Value

Fig. 6 Convergence graph of the matheuristic algorithm

Table 7 Factors and their levels

Factors Factor levels
1 2 3
pop.size 10 20 30
cross.rate 0.5 0.6 0.7
mut.rate 0.1 0.2 0.3
Main Effects Plot for z Main Effects Plot for z Main Effects Plot for z
Data Means Data Means Data Means

9000

8920 8930
8975 8920
8950 8910

c 8910

M@ 8925 £ 8900 E

g 8900 3 § 8900
a7s = 86%0 8890
8850 8880 8880

8870 8870

1 2 3 1 2 3 1 2
pop.size cross.rate mut.rate

3

Fig. 7 Main effect plots for small problems

The parameters of the small instances were as follows: the population size was 30, the
crossover rate was 0.7 and the mutation rate was 0.2.

Interaction between the population size and mutation rate is critical according to
analysis of variance for medium instances, and the mutation rate is a critical factor
according to analysis of variance for large instances. Related interaction and main
effect plots are given in Figs. 8 and 9, respectively. The parameters of the medium and
large instances were as follows: the population size was 10, the crossover rate was 0.6,
and the mutation rate was 0.1.

The values of the termination parameters were ny = 100, the solution time limit
(ny) was 7200 s for all instances, and they were carried out in three runs.

The matheuristic algorithm results of the small instances for different values of
m (2, 3) are presented in Table 8. In this table, the first column shows the instance
number (no). The second column shows the average solution time in seconds of three
runs for each problem type. The last column describes the RPD2 value to demonstrate
the success of the matheuristic algorithm.

In Table 5, the GAMS/Cplex solver provides the optimal solutions of all small
instances. The matheuristic algorithm obtained the optimal solution for approximately
60 percent of the small instances. As shown in Table 8, RPD2 values completely depend

@ Springer

MIP models and a matheuristic algorithm for an identical... 119

Interaction Plot for z
Data Means

260000 pop-size
—— 1

- 2
3

255000

250000

Mean

245000

240000

mut.rate

Fig. 8 Interaction plot for medium problems

Fig. 9 Main effect plots for large Main Effects Plot for mut.rate
problems Data Means
3,0
2,51
c
S 20
=
1,54
1,0 4
1 2 3
mut.rate

on the number of machines and the number of resources. With the large number
of machines (m = 3) and small number of resources (g = 2) for small instances
(which represent problems between 9-1 and 12-3), RPD2 has peak percentage values
(approximately 0.13). As expected, the RPD2 values of small instances with g = 5
(which represent problems between (5-1 and 8-3) and (13-1 and 16-3)) are extremely
small and approximately zero.

In Table 9, the results of the matheuristic algorithm for medium instances are
presented. This table is structured in a similar way as Table 8. As Table 9 shows,
RPD2 values of eight medium instances with m = 2 (1-2, 2-2, (3-1)-(4-3)) could not
be calculated since a feasible solution could not be provided by M1 or M2. RPD2 has
a positive value for four instances (%10) since the mathematical models exhibit good
performance. However, the proposed matheuristic algorithm has better results with
significantly high RPD2 values for the remaining instances. The average RPD2 value
is 0.7, and the widest RPD2 value that is larger than 1 is recorded for instance (1-1).

In Table 10, the results of the matheuristic algorithm for large instances are given. In
this table, the first column shows the number of machines (m). The second column gives
the number of large instances for each machine number. The following two columns

@ Springer

120 E. Akyol Ozer, T. Sarac

Table 8 Matheuristic algorithm results for small instances with n = 8

m=2 m=3

MA MA

No Mean RPD2 (%) No Mean RPD2 (%)
1-1 240 0.00 9-1 908 0.00
1-2 157 0.01 9-2 820 0.05
1-3 208 0.00 9-3 387 0.04
2-1 206 0.00 10-1 399 0.13
2-2 180 0.06 10-2 571 0.02
2-3 219 0.04 10-3 741 0.03
3-1 164 0.00 11-1 788 0.05
32 142 0.00 11-2 505 0.04
3-3 246 0.00 11-3 579 0.00
4-1 227 0.03 12-1 540 0.05
4-2 143 0.00 12-2 579 0.13
4-3 212 0.05 12-3 388 0.01
5-1 149 0.00 13-1 431 0.00
5-2 184 0.01 13-2 629 0.00
5-3 174 0.00 13-3 476 0.00
6-1 220 0.02 14-1 868 0.00
6-2 189 0.00 14-2 838 0.00
6-3 185 0.00 14-3 648 0.00
7-1 132 0.00 15-1 496 0.00
7-2 179 0.00 15-2 783 0.01
7-3 272 0.01 15-3 611 0.00
8-1 157 0.00 16-1 389 0.00
8-2 320 0.00 16-2 769 0.00
8-3 240 0.00 16-3 455 0.01

show the number of instances that are solved in 7200 s by mathematical models and
matheuristic algorithms, respectively. The last two columns describe the averages of
the minimum objective values of the three runs and solution times obtained by the
proposed matheuristic algorithm. The GAMS/Cplex solver could obtain a feasible
solution in 7200 s only for instance (8-1). The RPD2 value of regarding instance is
0.32. The proposed matheuristic algorithm provides feasible solutions for all large
instances in a reasonable time. However, instances with m = 8 reach running time
limits before the number of generations could not be complete, and the average of
solution times is equal to the time limit (7200 s).

@ Springer

MIP models and a matheuristic algorithm for an identical... 121

Table 9 Matheuristic Algorithm results for medium instances with n=40

m=2 m=~6

MA MA

No Mean RPD2 (%) No Mean RPD2 (%)
1-1 3452 —2.38 9-1 5910 —0.10
1-2 3891 - 9-2 4116 —0.44
1-3 3393 —0.89 9-3 3433 —0.26
2-1 3210 —0.74 10-1 7200 —0.77
2-2 3477 - 10-2 7200 —0.10
2-3 3223 —2.06 10-3 7200 —0.25
3-1 3563 - 11-1 2744 —0.65
3-2 3754 - 11-2 3914 —0.51
3-3 3820 - 11-3 3107 — 041
4-1 3856 - 12-1 4003 —2.53
4-2 3559 - 12-2 4113 —1.98
4-3 6003 - 12-3 4001 —2.02
5-1 3110 —-0.13 13-1 3168 —0.02
5-2 3115 0.07 13-2 3162 0.05
5-3 3108 —0.10 13-3 3165 0.14
6-1 3107 —0.08 14-1 3176 0.06
6-2 3184 —0.10 14-2 6309 —0.14
6-3 3103 —0.09 14-3 3337 —0.02
7-1 3105 —-0.32 15-1 3015 — 045
7-2 3112 —0.26 15-2 3124 —0.55
7-3 3105 —-0.25 15-3 3148 —0.44
8-1 3152 —1.25 16-1 3656 —0.76
8-2 3105 —0.60 16-2 3696 — 1.06
8-3 3094 — 1.67 16-3 6038 —1.26

Table 10 Matheuristic algorithm

results for large instances with n " Count MIM2 MA Zma MA
=100 n =100
2 24 1 24 914713 3623
8 24 - 24 917083 7200

5 Conclusion
In this study, an identical parallel machine scheduling problem with sequence-

dependent setup times, machine eligibility restrictions and multiple copies of shared
resources was analyzed. To the best of our knowledge, this problem has not been

@ Springer

122 E. Akyol Ozer, T. Sarac

studied before. A MIP model is proposed. However, to compare the performance of
mathematical model M1, a modification of the makespan model that is presented in
Avalos-Rosales etal. (2015) is presented and is called M2. To overcome large instances,
a matheuristic algorithm is developed. Initial solutions of the proposed algorithm are
generated by reduced versions of M1 and M2. We executed computational experi-
ments based on randomly generated instances with small, medium and large sizes.
Optimal schedules were obtained for almost all small problems within a reasonable
time for M1 and M2. However, M2 exhibits significantly improved performance in
the manner of solution time for small problems. In medium instances, although M2
gives a rather high-quality solution, M1 offers more feasible solutions. Furthermore,
the RPD2 values are quite wide, which indicates that MA shows clearly good perfor-
mance. Finally, feasible solutions are obtained for all large instances in a reasonable
time with the proposed matheuristic algorithm.

For future research, this problem can be considered multiobjective. For example,
total tardiness is a significant objective for this kind of problem. Furthermore, the
performance of other meta-heuristic algorithms, such as tabu search and simulated
annealing, could be investigated to solve this problem.

Acknowledgements This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.

References

Afzalirad, Rezaeian, & (2016) Resource-constrained unrelated parallel machine scheduling problem with
sequence dependent setup times, precedence constraints and machine eligibility restrictions. Comput
Ind Eng 98:40-52

Alagoz O, Azizoglu M (2003) Rescheduling of identical parallel machines under machine eligibility con-
straints. Eur J Oper Res 149(3):523-532

Arnaout JP (2010) Heuristics for the maximization of operating rooms utilization using simulation. Simu-
lation 86(8-9):573-583

Avalos-Rosales O, Angel-Bello F, Alvarez A (2015) Efficient metaheuristic algorithm and re-formulations
for the unrelated parallel machine scheduling problem with sequence and machine-dependent setup
times. Int J Adv Manuf Technol 76:1705-1718

Billaut JC, Croce Federico D, Grosso A (2015) A single machine scheduling problem with two-dimensional
vector packing constraints. Eur J Oper Res 243:399-411

Chan TS, Choy KL, Bibhushan (2011) A genetic algorithm-based scheduler for multiproduct parallel
machine sheet metal job shop. Expert Syst Appl 38(7):8703-8715

Chaudhry IA, Drake PR (2009) Minimizing total tardiness for the machine scheduling and worker assign-
ment problems in identical parallel machines using genetic algorithms. Int J Adv Manuf Technol
42(5-6):581-594

Chen CL, Chen CL (2009) Hybrid meta-heuristics for unrelated parallel machine scheduling with sequence-
dependent setup times. Int J] Adv Manuf Technol 43(1-2):161-169

Chung SH, Tai YT, Pearn WL (2009) An effective scheduling approach for maximizing polyimide printing
weighted throughput in cell assembly factories. IEEE Trans Electron Packag Manuf 32(3):185-197

Driessel R, Moench L (2009) Scheduling jobs on parallel machines with sequence-dependent setup times,
precedence constraints and ready times using variable neighborhood search. In: International Confer-
ence on Computers and Industrial Engineering, Troyes, France, July 06-09

Driessel R, Moench L (2011) Variable neighborhood search approaches for scheduling jobs on parallel
machines with sequence-dependent setup times, precedence constraints, and ready times. Comput Ind
Eng 61(2):336-345

@ Springer

MIP models and a matheuristic algorithm for an identical... 123

Edis EB, Oguz C (2012) Parallel machine scheduling with flexible resources. Comput Ind Eng
63(2):433-447

Edis EB, Ozkarahan I (2011) A combined integer/constraint programming approach to a resource con-
strained parallel machine scheduling problem with machine eligibility restrictions. Eng Optim
43(2):135-157

Edis EB, Ozkarahan I (2012) Solution approaches for a real-life resource-constrained parallel machine
scheduling problem. Int J Adv Manuf Technol 58(9-12):1141-1153

Edis EB, Oguz C, Ozkarahan I (2012) Solution approaches for simultaneous scheduling of jobs and operators
on parallel machines. J Fac Eng Arch Gazi Univ 27(3):527-535

Eliiyi D, Azizoglu M (2009) A fixed job scheduling problem with machine-dependent job weights. Int J
Prod Res 47(9):2231-2256

Fanjul-Peyro L, Perea F, Ruiz R (2017) Models and matheuristics for the unrelated parallel machine schedul-
ing problem with additional resources. Eur J Oper Res 260(2):482-493

Gacias B, Artigues C, Lopez P (2010) Parallel machine scheduling with precedence constraints and setup
times. Comput Oper Res 37(12):2141-2151

Gedik R, Rainwater C, Nachtmann H, Pohl E (2016) Analysis of a parallel machine scheduling problem
with sequence dependent setup times and job availability intervals. Eur J Oper Res 251(2):640-650

Gokhale R, Mathirajan M (2012) Scheduling identical parallel machines with machine eligibility restrictions
to minimize total weighted flow time in automobile gear manufacturing. Int J Adv Manuf Technol
60(9-12):1099-1110

Guimaraes L, Klabjan D, Almada-Lobo B (2013) Pricing, relaxing and fixing under lot sizing and scheduling.
Eur J Oper Res 230:75-81

Joo CM, Kim BY (2012) Parallel machine scheduling problem with ready times, due times and sequence-
dependent setup times using meta-heuristic algorithms. Eng Optim 44(9):1021-1034

Keskinturk T, Yildirim MB, Barut M (2012) An ant colony optimization algorithm for load balancing in
parallel machines with sequence-dependent setup times. Comput Oper Res 39(6):1225-1235

Kim BK, Kim YD (2011) Heuristic algorithms for assigning and scheduling flight missions in a military
aviation unit. Comput Ind Eng 61(4):1309-1317

Lee K, Leung JYT, Pinedo ML (2013) Makespan minimization in online scheduling with machine eligibility.
Ann Oper Res 204(1):189-222

Li X, Yalaoui F, Amodeo L (2010) A multi objective meta-heuristic with a fuzzy logic controller for solving
a scheduling problem. In: Computational intelligence: foundations and applications: proceedings of
the 9th international FLINS conference, Emei, CHINA, August 02-04

Li K, Shia Y, Yanga S, Cheng B (2011) Parallel machine scheduling problem to minimize the makespan
with resource dependent processing times. Appl Soft Comput 11(8):5551-5557

Li X, Chehade H, Yalaoui F, Amodeo L (2012) Fuzzy logic controller based multi-objective meta-heuristics
to solve a parallel machines scheduling problem. J Mult Val Logic Soft Comput 18(5-6):617-636

Lin SW, Lee ZJ, Ying KC, Lu CC (2011) Minimization of maximum lateness on parallel machines with
sequence-dependent setup times and job release dates. Comput Oper Res 38(5):809-815

Liu M, Wu C (2003) Scheduling algorithm based on evolutionary computing in identical parallel machine
production line. Robot Comput Integr Manuf 19(2003):401-407

Montoya-Torres JR, Soto-Ferrari M, Gonzalez-Solano F, Alfonso-Lizarazo EH (2009) Machine scheduling
with sequence-dependent setup times using a randomized search heuristic. In: International conference
on computers and industrial engineering troyes, France, July 06-09

Montoya-Torres JR, Soto-Ferrari M, Gonzalez-Solano F (2010) Production scheduling with sequence-
dependent setups and job release times. Dyn Colomb 77(163):260-269

Nessah R, Chengbin C, Yalaoui F (2007) An exact method for Py /sds/ Z?:l c¢; problem. Comput Oper Res
34(9):2840-2848

Park T, Lee T, Kim CO (2012) Due-date scheduling on parallel machines with job splitting and sequence-
dependent major/minor setup times. Int J Adv Manuf Technol 59(1-4):325-333

Pinedo ML (2009) Planning and scheduling in manufacturing and services. Springer, New York

Pinedo ML (2011) Scheduling theory, algorithms, and systems. Springer, New York

Ruiz R, Andrés-Romano C (2011) Scheduling unrelated parallel machines with resource-assignable
sequence-dependent setup times. Int J Adv Manuf Technol 57(5-8):777-794

Singha A, Rossi A, Sevaux M (2012) Matheuristic approaches for Q-coverage problem versions in wireless
sensor networks. Eng Optim 45(5):609-626

@ Springer

124 E. Akyol Ozer, T. Sarac

Su LH, Chang WY, Chou FD (2011) Minimizing maximum lateness on identical parallel machines with
flexible resources and machine eligibility constraints. Int J Adv Manuf Technol 56(9-12):1195-1204

Tahar DN, Yalaoui F, Chu C, Amodeo L (2006) A linear programming approach for identical parallel
machine scheduling with job splitting and sequence-dependent setup times International. J Prod Econ
99:1-2

Turker AK, Sel C (2011) A hybrid approach on single server parallel machines scheduling problem
with sequence-dependent setup times. J Fac. Eng Arch Gazi Univ 26(4):731-740

@ Springer

	MIP models and a matheuristic algorithm for an identical parallel machine scheduling problem under multiple copies of shared resources constraints
	Abstract
	1 Introduction
	2 Problem definition and mathematical models of the problem
	3 Proposed matheuristics
	3.1 Representation
	3.2 Fitness function
	3.3 Genetic operators

	4 Computational results
	4.1 Test problems
	4.2 Test results of the GAMS/Cplex
	4.3 Test results of the proposed matheuristic algorithm

	5 Conclusion
	Acknowledgements
	References

