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Abstract We propose an extension of the classical real-valued external penalty
method to the multicriteria optimization setting. As its single objective counterpart, it
also requires an external penalty function for the constraint set, as well as an exogenous
divergent sequence of nonnegative real numbers, the so-called penalty parameters, but,
differently from the scalar procedure, the vector-valued method uses an auxiliary func-
tion, which can be chosen among large classes of “monotonic” real-valued mappings.
We analyze the properties of the auxiliary functions in those classes and exhibit some
examples. The convergence results are similar to those of the scalar-valued method,
and depending on the kind of auxiliary function used in the implementation, under
standard assumptions, the generated infeasible sequences converge to weak Pareto or
Pareto optimal points. We also propose an implementable local version of the external
penalization method and study its convergence results.
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1 Introduction

Constrained multicriteria minimization problems appear frequently in many differ-
ent areas, such as statistics (Carrizosa and Frenk 1998), management science (Gravel
et al. 1992; White 1998), environmental analysis (Leschine et al. 1992), space explo-
ration (Tavana 2004), design (Fu and Diwekar 2004) and engineering (Eschenauer
et al. 1990). There are many strategies for solving such problems; one of the most
popular techniques is the weighting method, where one minimizes a linear combina-
tion of the objectives. Its main drawback is the fact that we do not know a priori which
are the suitable weights of this combination, i.e., those that do not lead to unbounded
problems. Some extensions of classical real-valued methods to the vector-valued set-
ting have been recently proposed to overcome that disadvantage. In this work, we
propose an extension of Zangwill’s external penalty method (Zangwill 1967), which
is a well-known technique for constrained scalar optimization problems. It is an itera-
tive real-valued method that consists in adding a certain term to the objective function,
in such a way that its value increases with the violation of the original restrictions,
and then minimizing this penalized function in the whole space. In general, solu-
tions of the penalized problems are infeasible, but, for large values of the so-called
penalty parameters, the iterates are close to the constraint set. In other words, one
substitutes a constrained problem by a sequence of unconstrained ones, for which we
do have efficient solving techniques. Under reasonable assumptions, the sequence
of those unconstrained minimizers converges to an optimal point of the original
problem.

As far as we know, there was one attempt to generalize this strategy to multiobjective
optimization: In 1984, White proposed a method (White 1984) that, at each iteration,
requires the Pareto unconstrained minimization of the penalized objective. In order
to obtain Pareto optimality of the accumulation points of the generated sequences, an
extra condition (not necessary in the scalar case) is required.

Here, we present a vector-valued version of Zangwill’s procedure, which, at each
iteration, requires solving an unconstrained scalar problem. This new extension shares
some features with its real-valued counterpart. For instance, in general, the generated
sequence is also infeasible and, along it, the penalized objective values are nondecreas-
ing. Moreover, as in the real-valued case, all accumulation points, if any, are optima
of the original problem. Finally, the conditions under which the sequence fully con-
verges to an optimal point are generalizations of the hypotheses required in the scalar
case, and no additional assumptions are needed. Besides the (diverging) parameter
sequence of positive real numbers and the penalty function, the proposed method uses
an auxiliary function (whose presence in the scalar case would be irrelevant) and,
depending on which one is chosen, the convergence will be to Pareto or weak Pareto
optimal points.
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An external penalty-type method for multicriteria 495

The strategy proposed here has similar properties as other classical scalar-valued
methods’ extensions, as the steepest descent (Fliege and Svaiter 2000; Drummond
2005), the projected gradient (Fukuda and Grafia Drummond 2011, 2013; Grafa
Drummond and Tusem 2004), Newton (Fliege et al. 2009; Grafla Drummond et al.
2014) and the proximal point (Bonnel et al. 2005) vector-valued methods. All these
extensions have in common an important feature: The iterates are computed by solving
scalar optimization subproblems; moreover, each iterate could be implicitly obtained
by the application of the corresponding real-valued method to a certain (a priori
unknown) linear combination of the objectives. All of these procedures just seek a sin-
gle Pareto (or weak Pareto) point and the convergence results are natural extensions
of their scalar correlatives. Nevertheless, as shown in Fliege et al. (2009), through
numerical experiments, by initializing them with randomly chosen points, in some
cases, we can expect to obtain good approximations of the optimal set.

The outline of this paper is as follows. In Sect. 2, we introduce the problem, as well
as the notion of vector external penalty function with some examples. In Sect. 3, we
define a couple of auxiliary function classes, state their properties and show examples.
In Sect. 4, we present the external penalty method for multiobjective optimization; we
make some comments, study its behavior and exhibit a very simple example, in which
it works far better than the weighting method. The convergence analysis is in Sect. 5;
basically, it consists of the extension of the classical results for the single objective
case. We also propose an implementable local version of the method, analyzing its
convergence. Additionally, a brief comparison with White’s method is presented. In
Sect. 6, we present another family of auxiliary functions and show an example in which,
by simply varying a single parameter on the auxiliary function, we can retrieve the
whole optimal set. Finally, in Sect. 7, we make some final remarks, briefly commenting
on when the whole (weak) Pareto frontier can obtained by using the method.

2 The problem and the penalty-type functions

Let R™ be endowed with the partial order induced by R}, the nonnegative orthant of
R™, given by

u<v if u; <v; forall j=1,...,m.
We also consider the following stronger relation defined in R":
u<v if uj <v; forall j=1,...,m.

Given a continuous function f: R” — R™ and a nonempty closed set D € R”,
consider the following constrained vector-valued optimization problem:

minimize f(x)
subject to x € D,

(D
understood in the Pareto or weak Pareto sense.
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We recall that a point x* € D is a weak Pareto optimal solution of (1) if there does
notexistx € Dsuchthat f(x) < f(x*).Thepointx* € D is a Pareto optimal solution
of (1) if there does not exist x € D such that f(x) < f(x*) and fj,(x) < fj,(x™)
for at least one jp € {1, ..., m}. Note that a Pareto optimal solution is a weak Pareto
optimum.

We intend to find Pareto or weak Pareto solutions of the above problem by means of
an external penalty-type method. For the vector-valued case, we may define a penalty
function for the feasible set as follows.

Definition 1 A vector external penalty function for the set D is a continuous function
P:R" — R} such that P(x) = Oif and only if x € D.

Note that, when m = 1, we retrieve the classical notion of external penalty function
used in scalar-valued optimization (Luenberger 2003). In order to ensure that X € D,
this point must satisfy the following system of nonlinear equations

Pi(X) =0, j=1,....m.

But, whenever each P; is a (scalar-valued) external penalty function for D, then, for
guaranteeing that X € D, it suffices that P;(X) = O for just one j (no matter which
one). A particular case of this situation is when P; = P for all J, where Pisa
scalar-valued external penalty function for D.

Differently from the scalar case, a vector external penalty function P: R" — R’/
does not necessarily satisfy P(x) > 0 if and only if x ¢ D. Indeed, for m > 2, it
suffices to take, for instance, Pj(x) = 0 for all x € R" and, for j # 1, P; such that P
is a vector external penalty for D. But, if we take P such that, for all i, P; is a (scalar-
valued) external penalty function for D, then we clearly do have that P(x) > 0 if and
only if x ¢ D; in particular, this happens to those vector external penalty functions
that have all components equal to a certain real-valued external penalty function for
D.

2.1 Examples of external penalty functions
We now give some examples of external penalty-type functions.

Example 1 Consider the following classical case of a constraint set for both scalar
and vector-valued optimization:

D:={x eR": g(x) <0, h(x) =0}, )

where g: R” — R? and h: R" — R" are continuous functions. For simplicity, let us
suppose that r + g < m. Take

p()c)—r = (max{O, g1(x)}, ..., max{0, g, (x)}, h1(x), ..., hr(x))
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for all x € R", with T denoting the transpose. Define P: R" — R’/ as follows:

Pi(x)=IpiIf, i=1,....r+q,
Pi(x) =0, i=r+qg+1,....m

for all x € R”, where B > 1. Since P is continuous and P(x) = O if and only if
x € D, P is an external penalty function for D. As we know, if f, g, h are smooth,
P is also differentiable for 8 > 1. If » + g > m, we can simply take P(x)| =
T pi01P,0, ..., 0)0r P(x) = 327 [ pi(x)|Pe,wheree = (1,...,1)T € R™.
In the next example, we show that, as in some scalar problems, the distance from
a point to a constraint set D can be taken as an external penalty function. First, let
us mention that, from now on, | - || will always stand for the Euclidean norm, i.e.,
llx)I? := (x, x), where (x, y) := Z?:] x;y; forall x, y € R".

Example 2 Let us consider the case in which D is defined by finitely many homoge-
neous linear equations. Assume that D := ();_; D;, where D; C R" is a hyperplane,
say the orthogonal of a norm one vector w! e R"foralli = 1,...,r,withr < m.We
cantake P;(x) =0fori =r+1,...,m and P;(x) as the distance between x and the
(n —1)-dimensional subspace D;, i.e., P;(x) = |[x —IIp,(x)|| fori =1, ..., r, where
IIp, : R" — R" is the orthogonal projector onto D, i.e., [1p, (x) := x — (wi, x)wi,
SO

Pi(x)=|(w,x), i=1,...,r
Pj()C):O, i=”+1,...,m.

In particular, if we have just one hyperplane, say the orthogonal of a norm one vector
w € R”, we can take P(x) = |(w, x)|e, withe = (1, ..., 1)T.

In general, if D; is a closed convex nonempty set of R” fori = 1,...,r, with
r < m, we can take the following external penalty function for D:

P;(x) =dist(x, D;), i=1,...,r,
Pi(x) =0, i=r—+1,...,m,

where, as usual, dist(x, D;) := miny¢p, [[x — y||.

In the case that r > m, we can take P(x)" := ( >/ dist(x, D;), 0, ...,0) or,
simply, P(x) := Z?’:ldist(x, D;)e, where, once again, e stands for the m-vector of
ones.

3 Auxiliary functions
In this section, we introduce some auxiliary functions necessary for the vector-valued

external penalty method. First, we consider a generalization of the notion of increasing
function for the vector-valued case, and then, we present some examples.
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3.1 Assumptions on auxiliary functions

We now present different notions of monotonic vector-valued functions. We point
out that these concepts are not new. For a more general setting, we can find them
in Jahn (2003, Chapter 5, Definition 5.1 (b), (c)) as well as in Luc (1989, Chapter 1,
Definition 4.1), where even more general cases are considered.

Definition 2 A function ®: R™ — R is called strictly (monotonically) increasing or
weakly increasing (w-increasing) if, for all u, v € R™,

u<v = o <o),
and @ is called strongly (monotonically) increasing (s-increasing) if forallu, v € R™,
u<v and uj, <vj foratleastone jo = D) < P(v).

Clearly, an s-increasing function is also w-increasing. A simple example of a w-
increasing function ®: R™ — R, which is not s-increasing, is given by ®(u) :=
max;—1,. . m{u;}. A general example of w-increasing function which is not s-increasing
is the following: ®(u) := >/" | ¢i(u;), where ¢;: R — R is nondecreasing for
i = 1,...,m and there exists at least one index iy such that ¢;, is increasing
and not all ¢;’s are increasing functions. Moreover, an example of an s-increasing
(bounded) function is ®: R" — R, given by ®(u) := > /", arctan(u;). More gen-
erally, ®(u) := XL, ¢i(u;), where ¢; : R — R is increasing fori = 1, ..., m,is an
s-increasing function (not necessarily bounded).

It is easy to see that if the function ® is w-increasing and continuous, then we have

u<v= ®@u) < d(v) foranyu,veR". 3)

For the sake of completeness, we state a simple result for monotonic functions which
relates optimality for the scalar-valued problem min,cp @ (f (x)) to weak Pareto and
Pareto optimality for the vector-valued Problem (1).

Lemma 1l I. If® isa w-increasing function and x* € argmin, ., ® (f(x)), then x*
is a weak Pareto optimal solution for Problem (1).

2. If ® is an s-increasing function and x* € argmin ., ® (f(x)), then x* is a Pareto
optimal solution for Problem (1).

Proof The results follow from Jahn (2003, Chapter 5, Lemmas 5.14 and 5.24). O

For the definition of the method, we need to introduce two classes of auxiliary
functions. We begin with those which are continuous, monotonic and overestimate the
canonical projections.

Definition 3 A continuous w-increasing function ®: R” — R is of weak type (or
w-type) if it satisfies the following property:

uj <®wm) foranyu e R"andallj=1,....,m. (P)
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Similarly, a continuous s-increasing function ®: R” — R is of strong type (or s-type)
if it satisfies (P).

Clearly, an s-type function is necessarily of w-type, because s-increasing functions
are w-increasing. Let us now introduce the other class of auxiliary functions which
will also be used in the method we are about to present.

Definition 4 A function ®: R”™ — R continuous, w-increasing and subadditive (i.e.,
Du+v) < Ow)+ () forallu, v € R™)is weakly subadditive (or w-subadditive),
if given a sequence {u*} C R% and M > O there exists T > 0 such that

oWk <M forallk = |u*|| < T forallk. (Q)
If ®: R™ — R is continuous, s-increasing, subadditive, and satisfies property (Q), it
is a strongly subadditive (or s-subadditive) function.

Property (Q) tells us that there is no unbounded set in R’} with bounded image
via ®. Note also that, even though we now ask a stronger property on the auxiliary
function ®, namely, its subadditivity, we relax property (P). Indeed, property (Q) is
weaker than (P), since any function ® that satisfies property (P) also verifies (Q)
with T = /mM.

3.2 Examples of auxiliary functions

First, let us exhibit some general examples of w-type and s-type functions.

Example 3 Let ®: R™ — R be defined by

®(u) := max {u; +a;}+b,
i=1,....m

witha; +b > Oforalli =1, ..., m. Then, ® is a w-type function but not an s-type
one. In particular, ® (¢) := max;=1,_m{u;}is also a w-type function but not an s-type
one.

Example 4 Let ®: R™ — R be given by

P (u) = max {#i) + &} + ¢,

i=l,...,

where ¢;, &, £ : R™ — R are continuous functions, with &; (u) + ¢(u) > 0, such that
¢; satisfies (P) for all i and ® (u) is w-increasing (e.g., if ¢;, & and ¢ are w-increasing
for all i). Then @ is a w-type function, but not necessarily an s-type function. Note
that, if one of these three functions is s-increasing for alli = 1, ..., m and the other
two are w-increasing, then @ is an s-type function.

Example 5 Let ®: R™ — R be a function defined by

D(u) :=Y1(ur) + - + Vi (Um),
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where ¥;: R — Ry is a continuous increasing function satisfying property (P) for
alli =1,...,m,ie,t < ;@) forallt € Randall i (e.g., ¥;(u;) := a; exp(u;),
with a; > 1). Then, ® is an s-type function.

Example 6 1If @1, ..., ®,: R™ — R are w-type (s-type) functions and «y, ..., o5
are nonnegative scalars adding up 1, then

-
o = Zal‘(bi
i=1
is also of weak type (strong type). Clearly, linear combinations of nonnegative w-type

(s-type) functions with all scalars greater than or equal to 1 are also of the same type.

Example 7 Assume that ®: R” — R is a w-type function. Let @ € R™ and define
@ = max;=i, _m|wi| or ® := aexp(lwi| + -+ + |onl|), where a > 1. Then, the
function &, : R" — R, defined by

®P,(u) :=Pu+w)+ao

is of w-type. Moreover, if ® is an s-type function, then ®,, is of s-type.

Example 8 LetW: R"™ — Rbean s-type function, ®, T : R” — R w-type functions,
ande :=(1,..., 1)T € R™. Then,

ur> ®(Twe) and ur—> d(¥(ue)

are w-type and s-type functions, respectively. If ¢/ : R — R is a continuous increasing
function satisfying property (), then the compositions of functions

YoW and Yod

are s-type and w-type functions, respectively.

Besides the max-type ones, the previous examples of w-type auxiliary functions
are basically compositions of inner products with continuous increasing scalar-valued
functions. Next example shows that these are not all the possibilities.

Example 9 Let V: R™ — R be defined by
V() = @)Y (),
where @ is as in Example 5 and YT: R” — R is a continuous w-increasing function

such that Y (u) > 1 forall u (e.g., Y(u) = DL, yi(u;), with y; (1) = arctan(t) + 7
for all i). Then, W is an s-type function.

Now, we exhibit some examples of weakly and strongly subadditive auxiliary func-
tions.
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,,,,, m{ui}. Clearly, ®
is subadditive and, as we saw in Example 3, it is of w-type, so @ is a w-subadditive
function. And, since @ is not s-increasing, it is not an s-subadditive function.

Example 11 Take a € R™ such thata > 0 and let the linear function ®: R” — R be
defined by

m
D(u) = Zaiui.
i=1

For any u € R” such that u > 0, we have that ®(u) > k D /L u; =k p iy |ui| =:
Kkllull1, where k := min;j=1,__ma; > 0. So, since |lu|| < |lu|li, property (Q) holds
with T = M /k. As @ is s-increasing and satisfies (Q), it is an s-subadditive function.
Observe that @ is not an s-type function, since @(%, ;—21, 0,...,00=0 ;7_4 %, and so
property (P) does not hold.

Example 12 Let W, ®: R™ — R be w-subadditive (s-subadditive) functions such
that ®(x) > O for all x € R™. Then the composition x — W(®d(x)e), where e is the
m-vector of ones, is also w-subadditive (s-subadditive).

As we will see in the next section, any of these w-type (s-type), w-subadditive
(s-subadditive) functions can be employed in the algorithm. Properties (P) and (Q)
will be used in the convergence proofs. Nevertheless, in practical terms, we do not
always need them. Indeed, let us recall Example 7, and note that the minimizers of
X @w(f(x) + ,okP(x)) = @(f(x) + ok P(x) + a)) + @ are the same as those
of x —> Y, (f(x) + ,okP(x)), where W, := ®, — @ is a continuous w-increasing
function which does not satisfy property () and it is not subadditive, so it is neither
of w-type nor w-subadditive. But W,, can be used to generate the same sequence of
iterates (and, therefore, with the same convergence properties) as the one produced by
the auxiliary function ®,,.

4 An external penalty-type method for multiobjective optimization

In this section, we define the multicriteria external penalty method (MEPM) for solving
Problem (1). First, let us consider the weak version of the method. Let R4 be the
set of positive real numbers. Take P: R" — R’/ a vector external penalty for D C
R", &: R" — R a w-type or w-subadditive function and {p;} C R4y a divergent
sequence, such that pxy; > pi for all k. The method is iterative and generates a
sequence {x} c R” by

o eargminCID(f(x)—i—ka(x)), k=1,2,.... o

xeR?

The strong version of the method is formally identical to the weak one, but with ® as
an s-type or s-subadditive function.

Let us make some comments and observations concerning both versions of the
method.
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1. Note that, as in the classical real-valued external penalty method, some hypotheses
are needed in order to guarantee the existence of x* for all k. For instance, we can
apply the method for any functions f, ® and P suchthatx +— & ( fx)+pox P (x)) is
coercive in R” for all k. In this case, by continuity, we have argmin , .g» P ( fx)+
PP (X)) # 0.

2. In both versions of MEPM, a necessary condition for the well-definedness of the
whole sequence {x*} is the following:

— inf & . 5
oo < inf (f(x0) ®)
Indeed, for any x € D, from the fact that P is a penalty function for D, we get

—00 < O(f() + peP() = min ®(f(x) + peP(x)

O(f (D) + P (D) = D(f ().

IA

Since X is an arbitrary element of D, condition (5) follows.

3. This method inherits some features and drawbacks of its real-valued counterpart.
Firstly, we mention that it does not have any kind of “memory”, i.e., the former
iterate is not used to compute the current one; nevertheless, in order to obtain xk,
it seems reasonable to initialize the subroutine used to (approximately) solve sub-
problem (4) with the former iterate x*~!. Secondly, the benefit of applying MEPM
is to change a constrained (vector-valued) problem by a sequence of unconstrained
(scalar-valued) ones with continuous objective functions.

4. When m = 1, taking ®(u) = max;—1, . m{u;}, we retrieve the classical (scalar-

valued) external penalty method. Actually, in the scalar case, any auxiliary function
®: R — R is increasing, so iteration (4) generates the same sequence as Zang-
will’s method.
One may ask why it is worth to use this method instead of others. We observe that
Problem (1) may have a very poor structure: f is just required to be continuous.
Whenever ® (1) = max;—,. n{u;} and Pj = P, where P: R" — R for all Js
MEPM is just the scalar-valued external penalty method applied to the minimiza-
tion of the continuous function x — max;—1 ., {fi(x)}in D, with Pasa penalty
function.

5. One may ask why we should use this method instead of applying the classical
scalar external penalty method to problem min,cp CD( f (x)). An answer to this
question is that, MEPM has more degrees of freedom: We do not always need to
choose a max-type auxiliary function ® nor do we have to use a penalty of the
type P = (P, ..., P), where P is a scalar-valued penalty for D.

6. As mentioned in the introduction, MEPM shares the following feature with other
extensions of classical scalar methods to the vectorial setting: Under certain reg-
ularity conditions, all iterates are implicitly obtained by the application of the
corresponding real-valued algorithm to a certain weighted scalarization. In order
to see this assertion, assume that f and P = (13, R f’)T are R’jﬁ-convex (e, fj

,,,,,

and P are convex for all j) differentiable functions, with P a scalar-valued penalty
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,,,,,

mulate miny cgr max;—j ..
fi)+pPj(x) <t, j=1,...,m,asmooth problemin (x, t) € R" x R. Now,
from the first-order optimality condition of the above reformulation, we see that

e argmin(kk, fx)) + ok P(x),
xeR”

which means that {x¥} can be obtained via the application of the classical (scalar)
external penalty method to the real-valued function x — (AX, f(x)), a weighted
scalarization of the vector-valued objective f, with weighting vector given by
Ak e R, using the scalar-valued penalty lS(x) for D and {p;} as the parameter
sequence. Of course we do not know, a priori, the nonnegative weights Ak Akm,
which add up one.

The next proposition establishes a simple condition under which both versions of
MEPM converge to optimal points in its very first iteration.

Proposition 1 Consider MEPM implemented with an external penalty function
P: R" — R%, a sequence of parameters {pr} C Ry and a w-type or w-subadditive
function ®: R™ — R. If we have

argmin ®(f (x)) = argmin ®(f (x)),

xeD xeR?

then the method converges in one iteration to a weak Pareto solution of Problem (1).
If ® is an s-type or s-subadditive function, MEPM converges in a single iteration to
a Pareto optimum of (1).

Proof If x* € argmin, ., ®(f(x)), then P(x*) = 0 and so, combining the optimality
of x* in R", the facts that P(x) > O for all x € R" and p; > 0 with (3), we get

O(f(x™) + p1 P(x¥)) = D(f(x™) < P(f(x)) < P(f(x) + p1P(x)) forallx € R".

Therefore, x* € argmin, g» Cb(f(x) + plP(x)), and so <I>(f(x1) + plP(xl)) =
O (f(x*) + p1 P(x*)) = @(f(x*)). Hence, once again by (3), we obtain
o(fexh) = o(fxH +pP(h) = (f(x") < d(f(x)) forallx e R".

Whence, x! € argmin, pn q;( f (x)) = argmin,. . CD( f (x)). The result then follows
from Lemma 1. The strong result is also a consequence of Lemma 1. O

Let us show a very simple application of the above proposition.

Example 13 Considern = 1, m = 2, D = [—1,+00) and f: R — RZ, given by
f@) = (t, —Et)T, where ¢ = 1,2, ... In order to apply MEPM to this problem, we
take ® («) = max;—1, . m{u;}, apenalty function P, and {ox} an increasingly divergent
sequence of positive real numbers. It is easy to see that the condition required in
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Proposition 1 holds, and so MEPM converges in its first iteration to a Pareto point. We
point out that the weighting method with scalarization parameter o € [0, 1] applied
to this problem fails when « € [0, £/(1 + £)], which means that for large ¢, it fails in
a large set of weights.

We now show some elementary properties of sequences generated by MEPM which
will be needed in the sequel. Since s-increasing functions are w-increasing, we just
prove them for the weak version of the method.

Lemma2 Let ¥ € D C R" and {x*} C R" be a sequence generated by the weak
version of MEPM implemented with a penalty function P: R" — R}, a parameters
sequence {pr} C Ry and a w-type or w-subadditive function ®: R"™ — R. Then,
forallk = 1,2, ..., the following statements hold.

1. For any auxiliary function ®, we have

(") + o () < @(FEHH) + pryr PGHET)
SCD(f()Z)) forall j=1,...,m.

If @ is of w-type, then we also have
Fi 5 + e Py (5 < @ (£ + ok P(Y)) forall j=1,....m. (6)

2. For any auxiliary function ®, we have <I>(f(xk)) < @(f()?)). If @ is of w-type,
then we also have that f; k) < CID(f()?)) forallj=1,...,m.
3. For any auxiliary function ®, there exists n € R such that

lim ®(f ") + o P(5)) = .
k— 00
Proof 1. Using the properties of ® and the definitions of x* and x**!, we obtain

O(f )+ pP ) = min (f(x) + peP(x)
®(f(xk+l) + ka(xk+l))
(f & + pryr PETD)
min @(f(x) + pes1 Px)
®(f(X) + prr1 P(X))
=o(f(®),

IANIA

IA

where the first equality follows from (4), the second inequality is a consequence
of the weak monotonic behavior of ® combined with the facts that 0 < pr < pr+1
for all k and P(x) > O for all x € R", and the last equality follows from the facts
that P is a vector external penalty function for D and X € D. If & is of w-type,
then (6) follows immediately from property (P).
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2. From the proof of item 1, we have that @ (f (x*) + o P (x*)) < ®(f (%)), so, from
the facts that P > 0, px > 0 and @ is a w-increasing function, it follows that

O(f(xh) < o(f(®).

So, if ® is of w-type, from property (P), f; "y < o(f@E) forall j =1,...,m.

3. By item 1, {®(f(x*) + o P(x*))} is a nondecreasing bounded real numbers
sequence, S0, as k — 00, it converges to some 1 € R.

O

As in the classical real-valued method, from item 1 of the above lemma, we observe
that in the vector-valued case we have

O(f(M) + mP () = @(f& D + o PGETD) k=1,2,...

for any sequence generated by MEPM implemented with a w or s-type, w or s-
subadditive auxiliary function ®. We also know that in the scalar case, we have the
following facts: The real sequences { P (x*)} and { f (x*)} are nonincreasing and non-
decreasing, respectively. However, in the general case (m > 2), we may not have such
properties. When we choose an arbitrary auxiliary function ®, even though we can
not ensure that the functional values sequence is nondecreasing, we can, at least, say
that they converge from below to the optimal values. Indeed, from item 2 of the last
lemma, we have

sup ®(f(x")) < inf ®(f(x)) and  sup f;(xb)
k=1,2,... xeD k=1,2,...

< inf ®(f(x)) forall j=1,...,m.
xeD

5 Convergence analysis

Let us now study the convergence properties of sequences produced by both versions of
MEPM. We begin with an extension of a classical result for real-valued optimization
which establishes that accumulation points, if any, of a sequence generated by the
external penalty method are optima of the original constrained minimization problem.
We also show that, as in the real-valued method, whenever the sequence {x*} has
infinitely many iterates, all of them are infeasible points.

Theorem 1 Let {x¥} C R” be a sequence generated by MEPM implemented with a
penalty function P: R" — R}, a parameters sequence {pi} C Ry 1 and a w-type or
w-subadditive function ®: R™ — R.

1. The point x* belongs to D for some ko if and only if x*0 is a weak Pareto solution
for Problem (1).

2. If X is an accumulation point of {x*}, then X is a weak Pareto optimum for the
Problem (1).
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If MEPM is implemented with an s-type or an s-subadditive function ®, then items 1
and 2 hold with Pareto optimal solutions instead of weak Pareto optima.

Proof 1. If x*0 is a weak Pareto solution of (1), in particular, xko belongs to D.
Conversely, let us now assume that x¥0 € D. By item 2 of Lemma 2, we have

®(f (') < inf &(f (),

and so xX0 is a minimizer of dD(f(x)) in D. Then, from Lemma 1, x*0 is a weak
Pareto solution for Problem (1).

2. Assume now that MEPM is implemented with a w-type function ®. Let K be an
infinite subset of {1, 2, ...} such that limgsz— oo x¥ = %. Since f is a continuous
function, we have that

; (K — £ .
Kal}l{goof](x )= fj(x) forallj=1,...,m. @)

Therefore,
|f;(xX)| < M, forsome M > Oforall j =1,2,...,mandallk € K. (8)
On the other hand, by item 1 of Lemma 2,
Fi5) + e Py (x%) < @(f (X)) =: f forall j =1,2,...mand any ¥ € D.
So, from (8) and the above inequality, forall j = 1,2,...,m and all k € K, we
et
: 0< pePi(") = [f; () + o Py (9] = £;65) < [+ M. ©)

Therefore, since pp — +o00 and P; (xk ) > 0 forall j and k € K, necessarily,

lim Pj(x*)=0 forallj=1,....m

K>k—o00

and, since all P; are continuous,
Pij(x)=0 forall j=1,...,m.
Hence, we have
P(x) =0,
andsox € D.

Let us call § := inf,ep ®(f (x)), which is a real number, in view of (5). Applying
item 2 of Lemma 2, we get

O(f() <d forallk =1,2,...
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Letting K > k — oo in the above inequality, we obtain
O(f(®) < .

Using the fact that x € D, we conclude that X € argmin, ., <I>( f (x)), and the
result follows from item 1 of Lemma 1.

Now let us suppose that MEPM is implemented with a w-subadditive function .
Let K be an infinite subset of {1, 2, ...} such that limgs;— x¥ = %. From item
1 of Lemma 2, ®(f(x*) + px P(x*)) < infyep ®(f(x))) =: d for all k and so,
due to the facts that p; < py for all k, P is nonnegative and @ is w-increasing, we
have

O(f&") +pP(xM)) <0 forall k € K. (10

Whence, since & is subadditive and continuous, f is also continuous and

limg sk—o0
xk = X, we get

lim sup @ (i P (x*)) < lim sup [d>(f(xk) + e P(X9) + (- f(xk))]
K>k—o00 K>k—o00
<04+ d(= f(X). (amn

So, from the properties of lim sup, there exists K1 C K and ko € K such that
(o P(xF)) <10+ @(— f(©)|+ 1 forall Ky 3k > ko.

Since pi P (x¥) > 0forall k and ® satisfies condition (Q), from the above inequality
we see that || px P(x¥)|| < T for some T > 0 and all K| > k > k. Using the fact
that {p} is a divergent sequence of positive real numbers, it follows that

lim sup P(xk) =0.

K13k—o00
Whence, the continuity of P yields
P(x)=0,

which means that x € D. Therefore