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Abstract We propose an extension of the classical real-valued external penalty
method to the multicriteria optimization setting. As its single objective counterpart, it
also requires an external penalty function for the constraint set, as well as an exogenous
divergent sequence of nonnegative real numbers, the so-called penalty parameters, but,
differently from the scalar procedure, the vector-valuedmethod uses an auxiliary func-
tion, which can be chosen among large classes of “monotonic” real-valued mappings.
We analyze the properties of the auxiliary functions in those classes and exhibit some
examples. The convergence results are similar to those of the scalar-valued method,
and depending on the kind of auxiliary function used in the implementation, under
standard assumptions, the generated infeasible sequences converge to weak Pareto or
Pareto optimal points. We also propose an implementable local version of the external
penalization method and study its convergence results.
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1 Introduction

Constrained multicriteria minimization problems appear frequently in many differ-
ent areas, such as statistics (Carrizosa and Frenk 1998), management science (Gravel
et al. 1992; White 1998), environmental analysis (Leschine et al. 1992), space explo-
ration (Tavana 2004), design (Fu and Diwekar 2004) and engineering (Eschenauer
et al. 1990). There are many strategies for solving such problems; one of the most
popular techniques is the weighting method, where one minimizes a linear combina-
tion of the objectives. Its main drawback is the fact that we do not know a priori which
are the suitable weights of this combination, i.e., those that do not lead to unbounded
problems. Some extensions of classical real-valued methods to the vector-valued set-
ting have been recently proposed to overcome that disadvantage. In this work, we
propose an extension of Zangwill’s external penalty method (Zangwill 1967), which
is a well-known technique for constrained scalar optimization problems. It is an itera-
tive real-valued method that consists in adding a certain term to the objective function,
in such a way that its value increases with the violation of the original restrictions,
and then minimizing this penalized function in the whole space. In general, solu-
tions of the penalized problems are infeasible, but, for large values of the so-called
penalty parameters, the iterates are close to the constraint set. In other words, one
substitutes a constrained problem by a sequence of unconstrained ones, for which we
do have efficient solving techniques. Under reasonable assumptions, the sequence
of those unconstrained minimizers converges to an optimal point of the original
problem.

As far aswe know, therewas one attempt to generalize this strategy tomultiobjective
optimization: In 1984, White proposed a method (White 1984) that, at each iteration,
requires the Pareto unconstrained minimization of the penalized objective. In order
to obtain Pareto optimality of the accumulation points of the generated sequences, an
extra condition (not necessary in the scalar case) is required.

Here, we present a vector-valued version of Zangwill’s procedure, which, at each
iteration, requires solving an unconstrained scalar problem. This new extension shares
some features with its real-valued counterpart. For instance, in general, the generated
sequence is also infeasible and, along it, the penalized objective values are nondecreas-
ing. Moreover, as in the real-valued case, all accumulation points, if any, are optima
of the original problem. Finally, the conditions under which the sequence fully con-
verges to an optimal point are generalizations of the hypotheses required in the scalar
case, and no additional assumptions are needed. Besides the (diverging) parameter
sequence of positive real numbers and the penalty function, the proposed method uses
an auxiliary function (whose presence in the scalar case would be irrelevant) and,
depending on which one is chosen, the convergence will be to Pareto or weak Pareto
optimal points.
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The strategy proposed here has similar properties as other classical scalar-valued
methods’ extensions, as the steepest descent (Fliege and Svaiter 2000; Drummond
2005), the projected gradient (Fukuda and Graña Drummond 2011, 2013; Graña
Drummond and Iusem 2004), Newton (Fliege et al. 2009; Graña Drummond et al.
2014) and the proximal point (Bonnel et al. 2005) vector-valued methods. All these
extensions have in common an important feature: The iterates are computed by solving
scalar optimization subproblems; moreover, each iterate could be implicitly obtained
by the application of the corresponding real-valued method to a certain (a priori
unknown) linear combination of the objectives. All of these procedures just seek a sin-
gle Pareto (or weak Pareto) point and the convergence results are natural extensions
of their scalar correlatives. Nevertheless, as shown in Fliege et al. (2009), through
numerical experiments, by initializing them with randomly chosen points, in some
cases, we can expect to obtain good approximations of the optimal set.

The outline of this paper is as follows. In Sect. 2, we introduce the problem, as well
as the notion of vector external penalty function with some examples. In Sect. 3, we
define a couple of auxiliary function classes, state their properties and show examples.
In Sect. 4, we present the external penalty method for multiobjective optimization; we
make some comments, study its behavior and exhibit a very simple example, in which
it works far better than the weighting method. The convergence analysis is in Sect. 5;
basically, it consists of the extension of the classical results for the single objective
case. We also propose an implementable local version of the method, analyzing its
convergence. Additionally, a brief comparison with White’s method is presented. In
Sect. 6,wepresent another family of auxiliary functions and showan example inwhich,
by simply varying a single parameter on the auxiliary function, we can retrieve the
whole optimal set. Finally, in Sect. 7, wemake some final remarks, briefly commenting
on when the whole (weak) Pareto frontier can obtained by using the method.

2 The problem and the penalty-type functions

Let R
m be endowed with the partial order induced by R

m+, the nonnegative orthant of
R
m , given by

u ≤ v if u j ≤ v j for all j = 1, . . . ,m.

We also consider the following stronger relation defined in R
m :

u < v if u j < v j for all j = 1, . . . ,m.

Given a continuous function f : R
n → R

m and a nonempty closed set D ⊆ R
n ,

consider the following constrained vector-valued optimization problem:

minimize f (x)
subject to x ∈ D,

(1)

understood in the Pareto or weak Pareto sense.
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We recall that a point x∗ ∈ D is a weak Pareto optimal solution of (1) if there does
not exist x ∈ D such that f (x) < f (x∗). The point x∗ ∈ D is aPareto optimal solution
of (1) if there does not exist x ∈ D such that f (x) ≤ f (x∗) and f j0(x) < f j0(x

∗)
for at least one j0 ∈ {1, . . . ,m}. Note that a Pareto optimal solution is a weak Pareto
optimum.

We intend to find Pareto or weak Pareto solutions of the above problem bymeans of
an external penalty-type method. For the vector-valued case, we may define a penalty
function for the feasible set as follows.

Definition 1 A vector external penalty function for the set D is a continuous function
P : R

n → R
m+ such that P(x) = 0 if and only if x ∈ D.

Note that, whenm = 1, we retrieve the classical notion of external penalty function
used in scalar-valued optimization (Luenberger 2003). In order to ensure that x̃ ∈ D,
this point must satisfy the following system of nonlinear equations

Pj (x̃) = 0, j = 1, . . . ,m.

But, whenever each Pj is a (scalar-valued) external penalty function for D, then, for
guaranteeing that x̃ ∈ D, it suffices that Pj (x̃) = 0 for just one j (no matter which
one). A particular case of this situation is when Pj = P̂ for all j , where P̂ is a
scalar-valued external penalty function for D.

Differently from the scalar case, a vector external penalty function P : R
n → R

m+
does not necessarily satisfy P(x) > 0 if and only if x /∈ D. Indeed, for m ≥ 2, it
suffices to take, for instance, P1(x) = 0 for all x ∈ R

n and, for j �= 1, Pj such that P
is a vector external penalty for D. But, if we take P such that, for all i , Pi is a (scalar-
valued) external penalty function for D, then we clearly do have that P(x) > 0 if and
only if x /∈ D; in particular, this happens to those vector external penalty functions
that have all components equal to a certain real-valued external penalty function for
D.

2.1 Examples of external penalty functions

We now give some examples of external penalty-type functions.

Example 1 Consider the following classical case of a constraint set for both scalar
and vector-valued optimization:

D := {
x ∈ R

n : g(x) ≤ 0, h(x) = 0
}
, (2)

where g : R
n → R

q and h : R
n → R

r are continuous functions. For simplicity, let us
suppose that r + q ≤ m. Take

p(x)	 :=
(
max{0, g1(x)}, . . . ,max{0, gq(x)}, h1(x), . . . , hr (x)

)
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for all x ∈ R
n , with 	denoting the transpose. Define P : R

n → R
m+ as follows:

Pi (x) = |pi (x)|β, i = 1, . . . , r + q,

Pi (x) = 0, i = r + q + 1, . . . ,m

for all x ∈ R
n , where β ≥ 1. Since P is continuous and P(x) = 0 if and only if

x ∈ D, P is an external penalty function for D. As we know, if f, g, h are smooth,
P is also differentiable for β > 1. If r + q > m, we can simply take P(x)	 =
(
∑r+q

i=1 |pi (x)|β, 0, . . . , 0) or P(x) = ∑r+q
i=1 |pi (x)|βe, where e = (1, . . . , 1)	 ∈ R

m .

In the next example, we show that, as in some scalar problems, the distance from
a point to a constraint set D can be taken as an external penalty function. First, let
us mention that, from now on, ‖ · ‖ will always stand for the Euclidean norm, i.e.,
‖x‖2 := 〈x, x〉, where 〈x, y〉 := ∑n

i=1 xi yi for all x, y ∈ R
n .

Example 2 Let us consider the case in which D is defined by finitely many homoge-
neous linear equations. Assume that D := ⋂r

i=1 Di , where Di ⊂ R
n is a hyperplane,

say the orthogonal of a norm one vector wi ∈ R
n for all i = 1, . . . , r , with r ≤ m. We

can take Pi (x) = 0 for i = r + 1, . . . ,m and Pi (x) as the distance between x and the
(n−1)-dimensional subspace Di , i.e., Pi (x) = ‖x−�Di (x)‖ for i = 1, . . . , r , where
�Di : R

n → R
n is the orthogonal projector onto Di , i.e., �Di (x) := x − 〈wi , x〉wi ,

so

Pi (x) = |〈wi , x〉|, i = 1, . . . , r,
Pi (x) = 0, i = r + 1, . . . ,m.

In particular, if we have just one hyperplane, say the orthogonal of a norm one vector
w ∈ R

n , we can take P(x) = |〈w, x〉|e, with e = (1, . . . , 1)	.
In general, if Di is a closed convex nonempty set of R

n for i = 1, . . . , r , with
r ≤ m, we can take the following external penalty function for D:

Pi (x) = dist(x, Di ), i = 1, . . . , r,
Pi (x) = 0, i = r + 1, . . . ,m,

where, as usual, dist(x, Di ) := miny∈Di ‖x − y‖.
In the case that r > m, we can take P(x)	 := ( ∑m

i=1dist(x, Di ), 0, . . . , 0
)
or,

simply, P(x) := ∑m
i=1dist(x, Di )e, where, once again, e stands for the m-vector of

ones.

3 Auxiliary functions

In this section, we introduce some auxiliary functions necessary for the vector-valued
external penalty method. First, we consider a generalization of the notion of increasing
function for the vector-valued case, and then, we present some examples.
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3.1 Assumptions on auxiliary functions

We now present different notions of monotonic vector-valued functions. We point
out that these concepts are not new. For a more general setting, we can find them
in Jahn (2003, Chapter 5, Definition 5.1 (b), (c)) as well as in Luc (1989, Chapter 1,
Definition 4.1), where even more general cases are considered.

Definition 2 A function � : R
m → R is called strictly (monotonically) increasing or

weakly increasing (w-increasing) if, for all u, v ∈ R
m ,

u < v ⇒ �(u) < �(v),

and� is called strongly (monotonically) increasing (s-increasing) if for all u, v ∈ R
m ,

u ≤ v and u j0 < v j0 for at least one j0 ⇒ �(u) < �(v).

Clearly, an s-increasing function is also w-increasing. A simple example of a w-
increasing function � : R

m → R, which is not s-increasing, is given by �(u) :=
maxi=1,...,m{ui }. A general example ofw-increasing functionwhich is not s-increasing
is the following: �(u) := ∑m

i=1 φi (ui ), where φi : R → R is nondecreasing for
i = 1, . . . ,m and there exists at least one index i0 such that φi0 is increasing
and not all φi ’s are increasing functions. Moreover, an example of an s-increasing
(bounded) function is � : R

m → R, given by �(u) := ∑m
i=1 arctan(ui ). More gen-

erally, �(u) := ∑m
i=1 φi (ui ), where φi : R → R is increasing for i = 1, . . . ,m, is an

s-increasing function (not necessarily bounded).
It is easy to see that if the function � is w-increasing and continuous, then we have

u ≤ v ⇒ �(u) ≤ �(v) for any u, v ∈ R
m . (3)

For the sake of completeness,we state a simple result formonotonic functionswhich
relates optimality for the scalar-valued problem minx∈D �( f (x)) to weak Pareto and
Pareto optimality for the vector-valued Problem (1).

Lemma 1 1. If� is aw-increasing function and x∗ ∈ argminx∈D �
(
f (x)

)
, then x∗

is a weak Pareto optimal solution for Problem (1).
2. If� is an s-increasing function and x∗ ∈ argminx∈D �

(
f (x)

)
, then x∗ is a Pareto

optimal solution for Problem (1).

Proof The results follow from Jahn (2003, Chapter 5, Lemmas 5.14 and 5.24). ��
For the definition of the method, we need to introduce two classes of auxiliary

functions. We begin with those which are continuous, monotonic and overestimate the
canonical projections.

Definition 3 A continuous w-increasing function � : R
m → R is of weak type (or

w-type) if it satisfies the following property:

u j ≤ �(u) for any u ∈ R
m and all j = 1, . . . ,m. (P)
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Similarly, a continuous s-increasing function� : R
m → R is of strong type (or s-type)

if it satisfies (P).

Clearly, an s-type function is necessarily ofw-type, because s-increasing functions
are w-increasing. Let us now introduce the other class of auxiliary functions which
will also be used in the method we are about to present.

Definition 4 A function� : R
m → R continuous,w-increasing and subadditive (i.e.,

�(u+v) ≤ �(u)+�(v) for all u, v ∈ R
m) isweakly subadditive (orw-subadditive),

if given a sequence {uk} ⊂ R
m+ and M > 0 there exists T > 0 such that

�(uk) ≤ M for all k �⇒ ‖uk‖ ≤ T for all k. (Q)

If � : R
m → R is continuous, s-increasing, subadditive, and satisfies property (Q), it

is a strongly subadditive (or s-subadditive) function.

Property (Q) tells us that there is no unbounded set in R
m+ with bounded image

via �. Note also that, even though we now ask a stronger property on the auxiliary
function �, namely, its subadditivity, we relax property (P). Indeed, property (Q) is
weaker than (P), since any function � that satisfies property (P) also verifies (Q)

with T = √
mM .

3.2 Examples of auxiliary functions

First, let us exhibit some general examples of w-type and s-type functions.

Example 3 Let � : R
m → R be defined by

�(u) := max
i=1,...,m

{ui + ai } + b,

with ai + b ≥ 0 for all i = 1, . . . ,m. Then, � is a w-type function but not an s-type
one. In particular,�(u) := maxi=1,...,m{ui } is also aw-type function but not an s-type
one.

Example 4 Let � : R
m → R be given by

�(u) := max
i=1,...,m

{
φi (u) + ξi (u)

} + ζ(u),

where φi , ξi , ζ : R
m → R are continuous functions, with ξi (u) + ζ(u) ≥ 0, such that

φi satisfies (P) for all i and�(u) isw-increasing (e.g., if φi , ξi and ζ arew-increasing
for all i). Then � is a w-type function, but not necessarily an s-type function. Note
that, if one of these three functions is s-increasing for all i = 1, . . . ,m and the other
two are w-increasing, then � is an s-type function.

Example 5 Let � : R
m → R be a function defined by

�(u) := ψ1(u1) + · · · + ψm(um),
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where ψi : R → R+ is a continuous increasing function satisfying property (P) for
all i = 1, . . . ,m, i.e., t ≤ ψi (t) for all t ∈ R and all i (e.g., ψi (ui ) := ai exp(ui ),
with ai ≥ 1). Then, � is an s-type function.

Example 6 If �1, . . . , �r : R
m → R are w-type (s-type) functions and α1, . . . , αr

are nonnegative scalars adding up 1, then

� :=
r∑

i=1

αi�i

is also of weak type (strong type). Clearly, linear combinations of nonnegative w-type
(s-type) functions with all scalars greater than or equal to 1 are also of the same type.

Example 7 Assume that � : R
m → R is a w-type function. Let ω ∈ R

m and define
ω̂ := maxi=1,...,m |ωi | or ω̂ := a exp(|ω1| + · · · + |ωm |), where a ≥ 1. Then, the
function �ω : R

m → R, defined by

�ω(u) := �(u + ω) + ω̂

is of w-type. Moreover, if � is an s-type function, then �ω is of s-type.

Example 8 Let� : R
m → Rbe an s-type function,�,ϒ : R

m → Rw-type functions,
and e := (1, . . . , 1)	 ∈ R

m . Then,

u �→ �
(
ϒ(u)e

)
and u �→ �

(
�(u)e

)

arew-type and s-type functions, respectively. Ifψ : R → R is a continuous increasing
function satisfying property (P), then the compositions of functions

ψ ◦ � and ψ ◦ �

are s-type and w-type functions, respectively.

Besides the max-type ones, the previous examples of w-type auxiliary functions
are basically compositions of inner products with continuous increasing scalar-valued
functions. Next example shows that these are not all the possibilities.

Example 9 Let � : R
m → R be defined by

�(u) = �(u)ϒ(u),

where � is as in Example 5 and ϒ : R
m → R is a continuous w-increasing function

such that ϒ(u) ≥ 1 for all u (e.g., ϒ(u) = ∑m
i=1 γi (ui ), with γi (t) = arctan(t) + π

for all i). Then, � is an s-type function.

Now, we exhibit some examples of weakly and strongly subadditive auxiliary func-
tions.
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Example 10 Consider � : R
m → R, defined by �(u) = maxi=1,...,m{ui }. Clearly, �

is subadditive and, as we saw in Example 3, it is of w-type, so � is a w-subadditive
function. And, since � is not s-increasing, it is not an s-subadditive function.

Example 11 Take a ∈ R
m such that a > 0 and let the linear function � : R

m → R be
defined by

�(u) =
m∑

i=1

aiui .

For any u ∈ R
m such that u ≥ 0, we have that �(u) ≥ κ

∑m
i=1 ui = κ

∑m
i=1 |ui | =:

κ‖u‖1, where κ := mini=1,...,m ai > 0. So, since ‖u‖ ≤ ‖u‖1, property (Q) holds
with T = M/κ . As � is s-increasing and satisfies (Q), it is an s-subadditive function.
Observe that � is not an s-type function, since �( 1

a1
, −1
a2

, 0, . . . , 0) = 0 �
1
a1
, and so

property (P) does not hold.

Example 12 Let �,� : R
m → R be w-subadditive (s-subadditive) functions such

that �(x) ≥ 0 for all x ∈ R
m . Then the composition x �→ �(�(x)e), where e is the

m-vector of ones, is also w-subadditive (s-subadditive).

As we will see in the next section, any of these w-type (s-type), w-subadditive
(s-subadditive) functions can be employed in the algorithm. Properties (P) and (Q)

will be used in the convergence proofs. Nevertheless, in practical terms, we do not
always need them. Indeed, let us recall Example 7, and note that the minimizers of
x �→ �ω

(
f (x) + ρk P(x)

) = �
(
f (x) + ρk P(x) + ω

) + ω̂ are the same as those
of x �→ �ω

(
f (x) + ρk P(x)

)
, where �ω := �ω − ω̂ is a continuous w-increasing

function which does not satisfy property (P) and it is not subadditive, so it is neither
of w-type nor w-subadditive. But �ω can be used to generate the same sequence of
iterates (and, therefore, with the same convergence properties) as the one produced by
the auxiliary function �ω.

4 An external penalty-type method for multiobjective optimization

In this section,wedefine themulticriteria external penaltymethod (MEPM) for solving
Problem (1). First, let us consider the weak version of the method. Let R++ be the
set of positive real numbers. Take P : R

n → R
m+ a vector external penalty for D ⊆

R
n , � : R

m → R a w-type or w-subadditive function and {ρk} ⊂ R++ a divergent
sequence, such that ρk+1 > ρk for all k. The method is iterative and generates a
sequence {xk} ⊂ R

n by

xk ∈ argmin
x∈Rn

�
(
f (x) + ρk P(x)

)
, k = 1, 2, . . . . (4)

The strong version of the method is formally identical to the weak one, but with � as
an s-type or s-subadditive function.

Let us make some comments and observations concerning both versions of the
method.
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1. Note that, as in the classical real-valued external penalty method, some hypotheses
are needed in order to guarantee the existence of xk for all k. For instance, we can
apply themethod for any functions f ,� and P such that x �→ �

(
f (x)+ρk P(x)

)
is

coercive in R
n for all k. In this case, by continuity, we have argminx∈Rn �

(
f (x)+

ρk P(x)
) �= ∅.

2. In both versions of MEPM, a necessary condition for the well-definedness of the
whole sequence {xk} is the following:

− ∞ < inf
x∈D �

(
f (x)

)
. (5)

Indeed, for any x̃ ∈ D, from the fact that P is a penalty function for D, we get

−∞ < �
(
f (xk) + ρk P(xk)

) = min
x∈Rn

�
(
f (x) + ρk P(x)

)

≤ �
(
f (x̃) + ρk P(x̃)

) = �
(
f (x̃)

)
.

Since x̃ is an arbitrary element of D, condition (5) follows.
3. This method inherits some features and drawbacks of its real-valued counterpart.

Firstly, we mention that it does not have any kind of “memory”, i.e., the former
iterate is not used to compute the current one; nevertheless, in order to obtain xk ,
it seems reasonable to initialize the subroutine used to (approximately) solve sub-
problem (4) with the former iterate xk−1. Secondly, the benefit of applyingMEPM
is to change a constrained (vector-valued) problem by a sequence of unconstrained
(scalar-valued) ones with continuous objective functions.

4. When m = 1, taking �(u) = maxi=1,...,m{ui }, we retrieve the classical (scalar-
valued) external penaltymethod.Actually, in the scalar case, any auxiliary function
� : R → R is increasing, so iteration (4) generates the same sequence as Zang-
will’s method.
One may ask why it is worth to use this method instead of others. We observe that
Problem (1) may have a very poor structure: f is just required to be continuous.
Whenever �(u) = maxi=1,...,m{ui } and Pj = P̂ , where P̂ : R

n → R for all j ,
MEPM is just the scalar-valued external penalty method applied to the minimiza-
tion of the continuous function x �→ maxi=1,...,m{ fi (x)} in D, with P̂ as a penalty
function.

5. One may ask why we should use this method instead of applying the classical
scalar external penalty method to problem minx∈D �

(
f (x)

)
. An answer to this

question is that, MEPM has more degrees of freedom: We do not always need to
choose a max-type auxiliary function � nor do we have to use a penalty of the
type P = (P̂, . . . , P̂), where P̂ is a scalar-valued penalty for D.

6. As mentioned in the introduction, MEPM shares the following feature with other
extensions of classical scalar methods to the vectorial setting: Under certain reg-
ularity conditions, all iterates are implicitly obtained by the application of the
corresponding real-valued algorithm to a certain weighted scalarization. In order
to see this assertion, assume that f and P = (P̂, . . . , P̂)	 are R

m+-convex (i.e., f j
and P̂ are convex for all j) differentiable functions, with P̂ a scalar-valued penalty
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for D. Let � be defined by �(u) = maxi=1,...,m{ui } for all u ∈ R
m . Next, refor-

mulate minx∈Rn maxi=1,...,m{ fi (x)+ρk Pi (x)} as the minimization of t subject to
f j (x)+ρk Pj (x) ≤ t, j = 1, . . . ,m, a smooth problem in (x, t) ∈ R

n ×R. Now,
from the first-order optimality condition of the above reformulation, we see that

xk ∈ argmin
x∈Rn

〈λk, f (x)〉 + ρk P̂(x),

which means that {xk} can be obtained via the application of the classical (scalar)
external penalty method to the real-valued function x �→ 〈λk, f (x)〉, a weighted
scalarization of the vector-valued objective f , with weighting vector given by
λk ∈ R

m+, using the scalar-valued penalty P̂(x) for D and {ρk} as the parameter
sequence. Of course we do not know, a priori, the nonnegative weights λk1, . . . , λ

k
m ,

which add up one.

The next proposition establishes a simple condition under which both versions of
MEPM converge to optimal points in its very first iteration.

Proposition 1 Consider MEPM implemented with an external penalty function
P : R

n → R
m+, a sequence of parameters {ρk} ⊂ R++ and aw-type orw-subadditive

function � : R
m → R. If we have

argmin
x∈D

�
(
f (x)

) = argmin
x∈Rn

�
(
f (x)

)
,

then the method converges in one iteration to a weak Pareto solution of Problem (1).
If � is an s-type or s-subadditive function, MEPM converges in a single iteration to
a Pareto optimum of (1).

Proof If x∗ ∈ argminx∈D �
(
f (x)

)
, then P(x∗) = 0 and so, combining the optimality

of x∗ in R
n , the facts that P(x) ≥ 0 for all x ∈ R

n and ρ1 > 0 with (3), we get

�
(
f (x∗) + ρ1P(x∗)

) = �
(
f (x∗)

) ≤ �
(
f (x)

) ≤ �
(
f (x) + ρ1P(x)

)
for all x ∈ R

n .

Therefore, x∗ ∈ argminx∈Rn �
(
f (x) + ρ1P(x)

)
, and so �

(
f (x1) + ρ1P(x1)

) =
�

(
f (x∗) + ρ1P(x∗)

) = �
(
f (x∗)

)
. Hence, once again by (3), we obtain

�
(
f (x1)

) ≤ �
(
f (x1) + ρ1P(x1)

) = �
(
f (x∗)

) ≤ �
(
f (x)

)
for all x ∈ R

n .

Whence, x1 ∈ argminx∈Rn �
(
f (x)

) = argminx∈D �
(
f (x)

)
. The result then follows

from Lemma 1. The strong result is also a consequence of Lemma 1. ��
Let us show a very simple application of the above proposition.

Example 13 Consider n = 1, m = 2, D = [−1,+∞) and f : R → R
2, given by

f (t) = (t,−�t)	, where � = 1, 2, . . . In order to apply MEPM to this problem, we
take�(u) = maxi=1,...,m{ui }, a penalty function P , and {ρk} an increasingly divergent
sequence of positive real numbers. It is easy to see that the condition required in
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Proposition 1 holds, and so MEPM converges in its first iteration to a Pareto point. We
point out that the weighting method with scalarization parameter α ∈ [0, 1] applied
to this problem fails when α ∈ [0, �/(1 + �)], which means that for large �, it fails in
a large set of weights.

We now show some elementary properties of sequences generated byMEPMwhich
will be needed in the sequel. Since s-increasing functions are w-increasing, we just
prove them for the weak version of the method.

Lemma 2 Let x̃ ∈ D ⊆ R
n and {xk} ⊂ R

n be a sequence generated by the weak
version of MEPM implemented with a penalty function P : R

n → R
m+, a parameters

sequence {ρk} ⊂ R++ and a w-type or w-subadditive function � : R
m → R. Then,

for all k = 1, 2, . . . , the following statements hold.

1. For any auxiliary function �, we have

�
(
f (xk) + ρk P(xk)

) ≤ �
(
f (xk+1) + ρk+1P(xk+1)

)

≤ �
(
f (x̃)

)
for all j = 1, . . . ,m.

If � is of w-type, then we also have

f j (x
k) + ρk Pj (x

k) ≤ �
(
f (xk) + ρk P(xk)

)
for all j = 1, . . . ,m. (6)

2. For any auxiliary function �, we have �
(
f (xk)

) ≤ �
(
f (x̃)

)
. If � is of w-type,

then we also have that f j (xk) ≤ �
(
f (x̃)

)
for all j = 1, . . . ,m.

3. For any auxiliary function �, there exists η ∈ R such that

lim
k→∞ �

(
f (xk) + ρk P(xk)

) = η.

Proof 1. Using the properties of � and the definitions of xk and xk+1, we obtain

�
(
f (xk) + ρk P(xk)

) = min
x∈Rn

�
(
f (x) + ρk P(x)

)

≤ �
(
f (xk+1) + ρk P(xk+1)

)

≤ �
(
f (xk+1) + ρk+1P(xk+1)

)

= min
x∈Rn

�
(
f (x) + ρk+1P(x)

)

≤ �
(
f (x̃) + ρk+1P(x̃)

)

= �
(
f (x̃)

)
,

where the first equality follows from (4), the second inequality is a consequence
of the weak monotonic behavior of� combined with the facts that 0 < ρk < ρk+1
for all k and P(x) ≥ 0 for all x ∈ R

n , and the last equality follows from the facts
that P is a vector external penalty function for D and x̃ ∈ D. If � is of w-type,
then (6) follows immediately from property (P).
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2. From the proof of item 1, we have that�
(
f (xk)+ρk P(xk)

) ≤ �
(
f (x̃)

)
, so, from

the facts that P ≥ 0, ρk > 0 and � is a w-increasing function, it follows that

�
(
f (xk)

) ≤ �
(
f (x̃)

)
.

So, if� is ofw-type, from property (P), f j (xk) ≤ �( f (x̃)) for all j = 1, . . . ,m.
3. By item 1,

{
�

(
f (xk) + ρk P(xk)

)}
is a nondecreasing bounded real numbers

sequence, so, as k → ∞, it converges to some η ∈ R.
��

As in the classical real-valued method, from item 1 of the above lemma, we observe
that in the vector-valued case we have

�
(
f (xk) + ρk P(xk)

) ≤ �
(
f (xk+1) + ρk+1P(xk+1)

)
k = 1, 2, . . .

for any sequence generated by MEPM implemented with a w or s-type, w or s-
subadditive auxiliary function �. We also know that in the scalar case, we have the
following facts: The real sequences {P(xk)} and { f (xk)} are nonincreasing and non-
decreasing, respectively. However, in the general case (m ≥ 2), we may not have such
properties. When we choose an arbitrary auxiliary function �, even though we can
not ensure that the functional values sequence is nondecreasing, we can, at least, say
that they converge from below to the optimal values. Indeed, from item 2 of the last
lemma, we have

sup
k=1,2,...

�
(
f (xk)

) ≤ inf
x∈D �( f (x)) and sup

k=1,2,...
f j (x

k)

≤ inf
x∈D �( f (x)) for all j = 1, . . . ,m.

5 Convergence analysis

Let us now study the convergence properties of sequences produced by both versions of
MEPM. We begin with an extension of a classical result for real-valued optimization
which establishes that accumulation points, if any, of a sequence generated by the
external penalty method are optima of the original constrained minimization problem.
We also show that, as in the real-valued method, whenever the sequence {xk} has
infinitely many iterates, all of them are infeasible points.

Theorem 1 Let {xk} ⊂ R
n be a sequence generated by MEPM implemented with a

penalty function P : R
n → R

m+, a parameters sequence {ρk} ⊂ R++ and a w-type or
w-subadditive function � : R

m → R.

1. The point xk0 belongs to D for some k0 if and only if xk0 is a weak Pareto solution
for Problem (1).

2. If x̄ is an accumulation point of {xk}, then x̄ is a weak Pareto optimum for the
Problem (1).
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If MEPM is implemented with an s-type or an s-subadditive function �, then items 1
and 2 hold with Pareto optimal solutions instead of weak Pareto optima.

Proof 1. If xk0 is a weak Pareto solution of (1), in particular, xk0 belongs to D.
Conversely, let us now assume that xk0 ∈ D. By item 2 of Lemma 2, we have

�
(
f (xk0)

) ≤ inf
x∈D �

(
f (x)

)
,

and so xk0 is a minimizer of �
(
f (x)

)
in D. Then, from Lemma 1, xk0 is a weak

Pareto solution for Problem (1).
2. Assume now that MEPM is implemented with a w-type function �. Let K be an

infinite subset of {1, 2, . . . } such that limK�k→∞ xk = x̄ . Since f is a continuous
function, we have that

lim
K�k→∞ f j (x

k) = f j (x̄) for all j = 1, . . . ,m. (7)

Therefore,

| f j (xk)| ≤ M, for some M > 0 for all j = 1, 2, . . . ,m and all k ∈ K . (8)

On the other hand, by item 1 of Lemma 2,

f j (x
k) + ρk Pj (x

k) ≤ �
(
f (x̃)

) =: f̃ for all j = 1, 2, . . .m and any x̃ ∈ D.

So, from (8) and the above inequality, for all j = 1, 2, . . . ,m and all k ∈ K , we
get

0 ≤ ρk Pj (x
k) = [ f j (xk) + ρk Pj (x

k)] − f j (x
k) ≤ f̃ + M. (9)

Therefore, since ρk → +∞ and Pj (xk) ≥ 0 for all j and k ∈ K , necessarily,

lim
K�k→∞ Pj (x

k) = 0 for all j = 1, . . . ,m

and, since all Pj are continuous,

Pj (x̄) = 0 for all j = 1, . . . ,m.

Hence, we have

P(x̄) = 0,

and so x̄ ∈ D.

Let us call v̂ := infx∈D �
(
f (x)

)
, which is a real number, in view of (5). Applying

item 2 of Lemma 2, we get

�
(
f (xk)

) ≤ v̂ for all k = 1, 2, . . .
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Letting K � k → ∞ in the above inequality, we obtain

�
(
f (x̄)

) ≤ v̂.

Using the fact that x̄ ∈ D, we conclude that x̄ ∈ argminx∈D �
(
f (x)

)
, and the

result follows from item 1 of Lemma 1.

Now let us suppose that MEPM is implemented with a w-subadditive function �.
Let K be an infinite subset of {1, 2, . . . } such that limK�k→∞ xk = x̄ . From item
1 of Lemma 2, �

(
f (xk) + ρk P(xk)

) ≤ inf x∈D �( f (x)
)
) =: v̂ for all k and so,

due to the facts that ρ1 ≤ ρk for all k, P is nonnegative and � is w-increasing, we
have

�
(
f (xk) + ρ1P(xk)

) ≤ v̂ for all k ∈ K . (10)

Whence, since � is subadditive and continuous, f is also continuous and
limK�k→∞
xk = x̄ , we get

lim sup
K�k→∞

�
(
ρk P(xk)

) ≤ lim sup
K�k→∞

[
�

(
f (xk) + ρk P(xk)

) + �
( − f (xk)

)]

≤ v̂ + �
( − f (x̄)

)
. (11)

So, from the properties of lim sup, there exists K1 ⊂ K and k0 ∈ K1 such that

�
(
ρk P(xk)

)
< |v̂ + �

( − f (x̄)
)| + 1 for all K1 � k ≥ k0.

Sinceρk P(xk) ≥ 0 for all k and� satisfies condition (Q), from the above inequality
we see that ‖ρk P(xk)‖ ≤ T for some T > 0 and all K1 � k ≥ k0. Using the fact
that {ρk} is a divergent sequence of positive real numbers, it follows that

lim sup
K1�k→∞

P(xk) = 0.

Whence, the continuity of P yields

P(x̄) = 0,

which means that x̄ ∈ D. Therefore, since � is w-increasing and ρk P(xk) ≥ 0 for
all k, letting K � k → ∞ in (10), we obtain

�
(
f (x̄)

) ≤ v̂.

Since v̂ = infx∈D �
(
f (x)

)
and x̄ ∈ D, we conclude that x̄ ∈ argminx∈D �

(
f (x)

)

and, once again, the result follows from item 1 of Lemma 1.
The proof for the strong version of MEPM is formally identical to the one we just

saw, but using item 2 instead of item 1 of Lemma 1. ��
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The following result establishes that both versions of MEPM are convergent when-
ever�◦ f has a strict minimizer in D, which happens, for instance, if this composition
is strictly convex and coercive.

Corollary 1 Assume that {xk} ⊂ R
n, as in the first part of Theorem 1, has an accumu-

lation point and that the auxiliary function � : R
m → R is such that x �→ �

(
f (x)

)

has a strict minimizer x̄ in D. Then xk → x̄ and x̄ is a weak Pareto solution for
Problem (1). If � is an s-type or an s-subadditive function, the generated sequence
converges to x̄ , a Pareto optimal solution of (1).

Proof From Theorem 1 and the strict optimality of x̄ ∈ D, any subsequential limit of
{xk} is equal to x̄ and so xk → x̄ , a weak Pareto optimal solution for (1). The strong
convergence result also follows from Theorem 1. ��

5.1 Local implementation of MEPM and its convergence

We now sketch a practical implementation of both, strong and weak, versions of
MEPM. Take P , an external penalty function for D, a w-type or w-subadditive aux-
iliary function �, an increasingly divergent sequence of positive penalty parameters
{ρk} and V ⊂ R

n , a compact set with nonempty interior (e.g., a closed ball). Let

xk ∈ argmin
x∈V

�
(
f (x) + ρk P(x)

)
, k = 1, 2, . . . (12)

The strong version of this local implementation of the method is formally identical to
the weak one, but with a strong type or strongly subadditive auxiliary function �.

Note that, by Weierstrass theorem, argminx∈V �
(
f (x) + ρk P(x)

) �= ∅, and so xk

always exists for any k. Therefore, differently from the global MEPM, its local variant
does not require any additional assumption on the penalized objective functions and/or
on the constraint set in order to be well-defined.

Assuming the existence of an isolated local minimizer of � ◦ f within D, we
will prove that both the weak and the strong versions of the local method are fully
convergent to weak Pareto and Pareto optimal solutions, respectively.

Theorem 2 Suppose that � : R
m → R is a w-type or a w-subadditive auxiliary

function and that x̄ ∈ D ⊆ R
n is a strict local minimizer of � ◦ f in D, say x̄ =

argminx∈U∩D �
(
f (x)

)
, for some vicinity U ⊂ R

n of x̄ . Let {xk} ⊂ R
n be a sequence

generated by local MEPM implemented with a penalty function P : R
n → R

m+, a
parameters sequence {ρk} ⊂ R++, the auxiliary function � and V ⊂ U, a compact
vicinity of x̄ . Then xk → x̄ and x̄ is a weak Pareto optimal solution for Problem (1). If
� is an s-type or an s-subadditive auxiliary function, then xk → x̄ and x̄ is a Pareto
optimal solution for Problem (1).

Proof The sequence {xk} ⊂ V has an accumulation point x̃ ∈ V because V is
compact. As in item 2 of Theorem 1, we see that x̃ ∈ argminx∈D∩V �( f (x)). Since x̄
is the unique minimizer of � ◦ f within D ∩U and V ⊂ U , we conclude that x̃ = x̄ ;
so the unique accumulation point of {xk} is x̄ and the proof is complete. ��
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5.2 Comparison with White’s method

The method proposed by White (1984) for solving Problem (1) applies only to the
case in which the constraint set D is compact. Moreover, at each iteration, it requires
the computation of a Pareto solution of the penalized subproblem. For D compact,
P = (P̂, . . . , P̂) ∈ R

m , with P̂ a scalar-valued external penalty function for D, by
item 2 of Lemma 1, the strong version ofMEPM falls in the scheme proposed byWhite
(1984). From a computational point of view, penalty functions as those proposed by
White, i.e., P̂e, with e	 = (1, . . . , 1), seem to be a natural choice. However, in the
case that some components fi of the objective function are in quite different scales,
we may compensate this drawback by using appropriate choices for Pi . For general
problems, our proposal is another possibility of a penalty approach.

So, MEPM extends White’s procedure, since it admits larger classes of constraint
sets and of penalty functions. Moreover, in practical terms, iteration (4) has the
advantage to give a precise definition of the whole sequence. In order to guaran-
tee convergence to a Pareto optimal solution, White’s procedure requires convexity
of the constraint set, as well as of the objective and the penalty functions. While the
convergence results for MEPM are based on the existence of accumulation points of
the generated sequence, as well as on the existence of (local) strict minimizers of
the auxiliary function, both conditions required in Zangwill’s procedure for scalar
optimization.

6 Other families of auxiliary functions

Up to now,we studiedweak and strong versions of global and localMEPM, i.e., imple-
mentedwith aw-type or aw-subadditive, s-type or s-subadditive auxiliary function�.
Let us now analyze why we need these kind of functions. The reason is quite simple:
As we know, by Lemma 1, the monotonic behavior of the auxiliary function guaran-
tees that the minimizers of � ◦ f within D are weak Pareto or Pareto optimal points
for Problem (1), while (P) jointly with the continuity of � or (Q) together with the
subadditivity and continuity of � allow us to prove that {ρk P(xk)}k∈K has a bounded
subsequence [see (9) and (11)]. So, proceeding as in the proofs of Theorems 1 and
2, we can see that the accumulation points of {xk} are feasible and then establish that
these limits are in argminx∈D �

(
f (x)

)
, which means that they are (weak or strong)

optima for Problem (1).
We just used those four kinds of auxiliary functions (of weak or strong type, weakly

or strongly subadditive) due to the fact that they seemvery natural and,mainly, because
they allowed us to exhibit lots of very simple examples that can be used in practical
implementations of the method. Moreover, we did not want to complicate the con-
vergence result statements (and, perhaps their proofs too) by using larger classes of
auxiliary functions.

In order to give an example of application of the method, let us now show other
(parameterized) auxiliary function classes that can be used in the method and such
that, with them, our convergence results also hold. First, let us study a class of w-
increasing auxiliary functions that are neither of w-type nor of w-subadditive. Take
ω ∈ R

m , α ∈ R++, a w-type function � : R
m → R, and define
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�α,ω : R
m → R, �α,ω(u) := �(αu + ω).

Clearly, for any (α, ω)	 ∈ R++ × R
m+, the function �α,ω is continuous, w-increasing

and satisfies property (Q). But, in view of the presence of α, it does not necessarily
satisfy property (P). So, in general, these functions are not of w-type and, in princi-
ple, they are not subadditive. Nevertheless, even for ω ∈ R

m \ R
m+, the function �α,ω

can be used in the method and the produced sequence will have the same conver-
gence properties as those generated withw-type orw-subadditive auxiliary functions.
Indeed, all we need to show is that ρk P(xk) ≤ M for all k ∈ K , an infinite subset of
{1, 2, . . . }, and some M > 0, where xk ∈ argminx∈Rn �α,ω( f (x) + ρk P(x)) for all
k = 1, 2, . . . As in item 2 of Theorem 1, assume that limK�k→∞ xk = x̄ . Since �

satisfies property (P), for any x̃ ∈ D, all j = 1, . . . ,m and all k ∈ K , we have

α
(
f j (x

k) + ρk Pj (x
k)

) + ω j ≤ �
(
α[ f (xk) + ρk P(xk)] + ω

)

= �α,ω

(
f (xk) + ρk P(xk)

)

≤ �α,ω( f (x̃)).

Hence,

0 ≤ lim sup
k∈K

ρk Pj (x
k) ≤ 1

α

[
�α,ω

(
f (x̃)

) − ω j
] − f j (x̄)

for all j = 1, . . . ,m and any x̃ ∈ D. Whence, {ρk P(xk)}k∈K has a bounded subse-
quence. The convergence and the optimality of the subsequential limit point follow as
in the proof of Theorem 1, item 2.

Nowwe analyze a particular case of those new auxiliary function families. Observe
that for �(u) := maxi=1,...,m{ui }, which is of w-type and w-subadditive, the function
given by �α,ω(u) := maxi=1,...,m{αui +ωi } is continuous, w-increasing and satisfies
property (Q), for any α ∈ R++ and ω ∈ R

m , but, due to the presence of ω ∈ R
m , it is

not subadditive and, for ω ∈ R
m \R

m+, in principle it is not of w-type. However, as we
will now show, this kind of functions can be used in the local version of MEPM and
the results of Theorem 2 are still valid. Let xk ∈ argminx∈V �α,ω( f (x) + ρk P(x)),
where V ⊂ R

n is a compact vicinity of a point x̄ ∈ R
n . Assume that a subsequence

{xk}k∈K is such that xk → x̄ as K � k → ∞. As we know, all we need to show is
that {ρk P(xk)}k∈K has a bounded subsequence. For any x̃ ∈ D ∩ V , we have

lim sup
K�k→∞

�α,ω

(
ρk P(xk)

) ≤ lim sup
K�k→∞

[
�α,ω

(
f (xk) + ρk P(xk)

) + �
( − α f (xk)

)]

≤ �α,ω

(
f (x̃)

) + �
( − α f (x̄)

)
, (13)

where we used the subadditivity of �. We conclude that all results of Theorem 2 hold
for {xk} generated with �α,ω as auxiliary function.

Note that, in the very same way, we can see that any auxiliary function of the form
u �→ �α,ω(u) := �(αu + ω), where � is a w-increasing continuous function such
that it satisfies �α,ω(u + v) ≤ �α,ω(u) + �(v), for some continuous � : R

m → R,
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will also allow us to prove that {�α,ω(ρk P(xk))}k∈K has a bounded subsequence,
where, of course, xk ∈ argminx∈V �α,ω( f (x) + ρk P(x)). Actually, for �(u) =
maxi=1,...,m{ui }, we have � = � [see (13)].

So, w-increasing continuous auxiliary functions, different from those used in (4)
and in (12), can also be used, by means of iterations like (4) or (12), in order to
produce sequences {xk} which enjoy good convergence properties. (And, clearly, we
could have shown similar examples with strong type or strongly subadditive auxiliary
functions.) We just need them to be monotonic and such that, in the global case, the
iterates exist and, in both global and local cases, they allow us to prove that {ρk P(xk)}
has a bounded subsequence.

Let us finish this section with an application of the method for sequences produced
with auxiliary functions as those we have just examined. Actually, we will exhibit
a very simple instance of Problem (1), for which there exists a family of auxiliary
functions {�ω}ω∈�, � ⊂ R

m , such that, using local MEPM implemented with these
functions, any penalty function and any parameter sequence, by varying ω ∈ �, we
can retrieve the whole optimal set.

Example 14 Consider n = 1, m = 2, D = [−2,+∞) and f : R → R
2 defined by

f1(x) := x2 + 1, f2(x) := x2 − 2x + 1. In Fig. 1a, we see that, in the interval [0, 1],
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Fig. 1 Objective and auxiliary functions from Example 14 a Functions f1 and f2. b Function �(0,0). c
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whenever f2 decreases, f1 increases and this happens only in this interval, that is to
say, [0, 1] is the weak Pareto optimal set.

We will apply MEPM with �ω(u) := �1,ω(u) = maxi=1,2{ui + ωi }, ω ∈ R
2.

First of all, note that, in Fig. 1a, we can also verify that f1(x) ≤ f2(x) if and only
if x ≤ 0, so x �→ �0( f (x)) has a strict minimizer at x = 0. Let us investigate
argminx∈D �ω( f (x)) not just for ω = 0. It is easy to see that x �→ �ω( f (x)) has a
unique minimizer in [0, 1] at the sole point x̄ ∈ [0, 1]where f1(x̄)+ω1 = f2(x̄)+ω2,
that is to sayω1 = ω2−2x̄ . Takingω	 := (−2x̄, 0), we have argminx∈D �ω( f (x)) =
{x̄}, since, f1(x)+ω1 ≤ f2(x)+ω2 if andonly if x ≤ x̄ (seeFig. 1b–d for x̄ = 0, 0.5, 1,
respectively).

Following the proof of Theorem 2, for the auxiliary function �ω, with ω	 :=
(−2x̄, 0), where x̄ ∈ [0, 1], any vector external penalty function P for D, as well as
any V ⊂ R compact vicinity of x̄ and any parameter sequence {ρk}, the generated
sequence {xk} converges to x̄ , a weak Pareto optimal point for f in D. This means
that, by varying the parameter ω ∈ � := [−2, 0] × {0}, the family of auxiliary
functions {�ω}ω∈� allows us to retrieve the whole weak Pareto optimal set of the
original problem.

Of course, this is an ad hoc example, but it may be useful in order to investigate
when do we have auxiliary functions families such that by varying the parameters, we
can obtain the whole optimal frontier by means of the corresponding sequences.

7 Final remarks

For the multicriteria optimization setting, we developed an extension of Zangwill’s
scalar-valued method. As expected, the multiobjective convergence results are not
stronger than those for the classical method. Actually, when restricted to single objec-
tive optimization, they are both the same.

An important subject to be examined, which will be left for a future research, is
when we can obtain the whole Pareto (weak Pareto) frontier by using MEPM. Even
though we do not intend to deepen in this matter here, let us make some comments on
it. Example 14 suggests that Theorem 2 can shed some light on the subject: The fact
that MEPM only converges to minimizers of the scalar representations induced by the
auxiliary functions—which could be considered a drawback of the method—can be
very useful in order to study necessary and/or sufficient conditions for the existence
of auxiliary functions families {�ω}ω∈� with such property.

Another matter worth to be studied is the following. Recall that the main hypoth-
esis in Theorem 2 is that � ◦ f has a strict local minimizer within D. This
convergence result may also be true under a weaker condition, namely whenever
S := argminx∈U∩D �( f (x)) is an isolated set of V ∗ := {x ∈ R

n : �( f (x)) = v∗},
where v∗ = infx∈D �( f (x)), which means that there exists a closed set G ⊂ R

n such
that ∅ �= S ⊂ int(G) and G \ S ⊂ R

n \ V ∗, where int(G) stands for the interior of G.
Finally, it would be also interesting to study the generalization of MEPM to the vector
optimization case.
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