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Abstract In this study, we present a bi-objective facility locationmodel that considers
both partial coverage and service to uncovered demands. Due to limited number of
facilities to be opened, some of the demand nodes may not be within full or partial
coverage distance of a facility. However, a demand node that is not within the coverage
distance of a facility should get service from the nearest facility within the shortest
possible time. In this model, it is assumed that demand nodes within the predefined
distance of opened facilities are fully covered, and after that distance the coverage
level decreases linearly. The objectives are defined as the maximization of full and
partial coverage, and the minimization of the maximum distance between uncovered
demand nodes and their nearest facilities. We develop a new multi-objective genetic
algorithm (MOGA) called modified SPEA-II (mSPEA-II). In this method, the fitness
function of SPEA-II is modified and the crowding distance of NSGA-II is used. The
performance ofmSPEA-II is tested on randomly generated problems of different sizes.
The results are compared with the solutions of the most well-knownMOGAs, NSGA-
II and SPEA-II. Computational experiments show that mSPEA-II outperforms both
NSGA-II and SPEA-II.
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1 Introduction

Most facility location problems are multi-objective in nature and several objec-
tives should be considered simultaneously. The maximal covering location problem
(MCLP) is a well-known location problem where a fixed number of facilities are
located to maximize the demand covered. In the classical MCLP, a demand node is
defined as being covered if it is within a critical distance from at least one of the
facilities, and not covered if it is outside the critical distance. Since the introduction
by Church and ReVelle (1974), various extensions of MCLP have been developed in
the literature (see Schilling et al. 1993; Berman et al. 2010 for reviews). The MCLP
has many applications in public and private sectors, especially in locating emergency
facilities (see Goldberg 2004 for a review).

The definition of coverage was extended to model situations where coverage (i.e.,
the level of service provided by the facility) does not change in a crisp way from
“fully covered” to “not covered” at the critical distance. Karasakal and Karasakal
(2004) introduced the partial coverage concept in a maximal covering location model.
They assumed that the demand node was partially covered up to a maximum critical
distance and fully covered within the minimum critical distance. Berman et al. (2003)
modeled a covering location problem using a gradual concept. The coverage provided
by the facility is assumed to decrease gradually after a certain distance.

A number of researchers have developed coverage models with more than one
objective (see Farahani et al. 2010 for a review). Some of them considered backup
coverage besides the first coverage (Hogan and Revelle 1986; Storbeck and Vohra
1988). Church et al. (1991) developed a bi-objectivemaximal covering locationmodel.
In addition to the coverage objective, an objective that minimizes the sum of the
weighted distance between uncovered demand and the nearest facility is formulated.
Badri et al. (1998) proposed a goal programmingmodel for locating fire stations,which
considers objectives related to cost, demand, certain system requirements, technical
and political strategies. Araz et al. (2007) developed a multi-objective coverage-based
model. The maximization of the first coverage of demands, maximization of backup
coverage and minimization of the total travel distance between uncovered demands
and opened facilities are defined as objectives.

In MCLPs, full or partial coverage of all demand nodes may not always be possible
due to limited number of facilities.However, in real life, especially emergency facilities
such as ambulance, police, and fire stations should give service to all demand nodes
including those that are not within the coverage distance of a facility. Another example
may be in the location of Wi-Fi access points at large areas such as airports. People
outside the coverage areas should go to the nearest access points. To take into account
the quality of service to uncovered demand nodes, the maximum distance between
uncovered demands and its nearest facilities (i.e., p-center objective) should also be
minimized.

To the best of our knowledge, there are no studies that use the p-center objective to
handle the uncovered demands in MCLPs. We present a bi-objective facility location
model that considers both partial coverage and service to uncovered demand nodes.
We assume that demand nodes within the predefined distance of opened facilities
are fully covered and after that the distance coverage level decreases linearly. We
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also assume that an uncovered demand can be served by its nearest facility when
it is needed. Therefore, we define the second objective as the minimization of the
maximum distance between any uncovered demand node and its nearest facility.

The MCLP is NP-hard (Megiddo et al. 1983). Thus, bi-objective MCLP addressed
in the paper is also NP-hard. Many heuristic and metaheuristic methods have been
developed to solve large-size MCLPs since it is cumbersome to solve large-size prob-
lems using exact methods (e.g., Karasakal and Karasakal 2004; Fazel Zarandi et al.
2011; ReVelle et al. 2008). In this paper, we develop a new multi-objective genetic
algorithm (MOGA) to solve the bi-objective MCLP.

We develop a new multi-objective genetic algorithm (MOGA) called modified
SPEA-II (mSPEA-II).Wemodify the fitness function of SPEA-II and use the crowding
distance of NSGA-II. The performance of mSPEA-II is tested on randomly generated
problems of different sizes. Results are compared with the solutions of NSGA-II and
SPEA-II, since they are the representatives of the state-of-the-art MOGAs (Coello
Coello et al. 2007, p. 274; Zhou et al. 2011; Durillo et al. 2009; Pohl and Lamonth
2008). Although there aremany variations of these state-of-the-art algorithms, original
versions are used in comparative studies of the newly developed MOGAs (Coello
Coello et al. 2007, p. 98; Konak et al. 2006).

The organization of the paper is as follows. In the next section, we provide a brief
review on the application of MOGAs to multi-objective facility location problems. In
Sect. 3, we present the mathematical model. We develop the approach in Sect. 4. We
report our computational experiments in Sect. 5 and present concluding remarks in
the last section.

2 Literature review

MOGAs are developed to search for nondominated solutions in multi-objective opti-
mization problems (see Ishibuchi et al. 2008 for a review). Deb (2001) categorizes
MOGAs into two groups: non-elitist MOGAs and elitist MOGAs. Non-Dominated
Sorting Genetic Algorithm (NSGA-II) (Deb et al. 2002) and Strength Pareto Evolu-
tionary Algorithm (SPEA-II) (Zitzler et al. 2001) are the best known elitist MOGAs
in literature.

MOGAs are one of the most suitable approaches for multi-optimization problems
(Alberto and Mateo 2011), because they generate population of solutions and find
entire set of Pareto optimal solutions in a single run (Ghosh and Dehuri 2004).

Li et al. (2011) stated that in emergency facility location models, GAs are one
of the most widely used techniques for solving problems. Aytug et al. (2003) listed
the production and operation management problems that used GAs and evaluated
the state of GA applications in these areas. Jaramillo et al. (2002) demonstrated that
performance of GAs are more robust than Lagrangian heuristic in solving location
problems.

There are several studies that useGAs to solve coverage problems.Yigit et al. (2006)
formulated uncapacitated facility location problem and used simulated annealing for
local search and evolutionary approach for global search to obtain the desired solutions.
Mahdavie et al. (2012) proposed a multi-facility location problem. They tried to find
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the optimal locations of new facilities by minimizing the total weighted expected trav-
eled rectilinear distances from the new facilities to those existing. They used genetic
algorithm for large-size problems. Gutjahr et al. (2009) presented a multi-objective
model for the public facilities. The objectives are based on weighted average of mini-
mum and maximum coverage, minimizing the risk of tsunami for alternative locations
andminimizing the cost, respectively. They used NSGA-II to solve the problem. Bhat-
tacharya and Bandyopadhyay (2010) modeled a bi-objective facility location problem
and solved the model by NSGA-II. Li and Yeh (2004) integrated the genetic algorithm
with geographical information systems to solve a location problem whose objectives
are the maximization of population coverage, the minimization of total transportation
costs and the minimization of the proximity to roads. Villegas et al. (2006) modeled
a bi-objective uncapacitated facility location problem whose objectives are the min-
imization of the total cost of assigning facilities to related demand nodes and fixed
facility opening costs, and themaximization of coverage. They appliedmulti-objective
evolutionary algorithms and an algorithm based on mathematical programming. Yang
et al. (2007) proposed a model based on fuzzy multi-objective programming and a
genetic algorithm. The achievement levels for fuzzy objectives were defined. The
fuzzy multi-objective optimization model was converted into a single unified goal and
a genetic algorithm was applied to the problem. Medaglia et al. (2009) formulated a
bi-objective model to design a hospital waste management network. They integrated
NSGA-II into mixed integer for the solution of the bi-objective problem.

3 Formulation of the problem

We formulate a bi-objective model that maximizes total coverage of the facilities and
minimizes the maximum distance between uncovered demand nodes and the nearest
facilities.

In Fig. 1, there are four alternative facilities which are numbered from one to four
and one of them will be opened. Demand nodes are denoted by points and assumed

d2

d1

4

3

2

1

Fig. 1 An example
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to have equal weights. The circles around the facilities show the coverage areas of
the facilities. If the maximum distance between the demand nodes and their nearest
facilities is minimized, facility 3 is selected. The maximum distance to uncovered
demand nodes is d1 and the number of uncovered demand nodes is 6. On the other
hand if full and partial coverage is minimized, facility 4 is opened and the number of
uncovered demand nodes is 3, but the maximum distance is d2 which is greater than
d1. These objectives generally conflict with each other in most of the real-life location
problems.

Notation used in the model is as follows:

I set of demand nodes,
J set of potential facility sites,
ai demand at node i ,
p number of facilities to be sited,
di j shortest travel distance separating node i from node j ,
T maximum partial coverage distance,
S maximum full coverage distance,
α maximum distance between an uncovered demand node and its nearest facility.

Mi = {
j
∣
∣di j ≤ T

}

ci j =
⎧
⎨

⎩

1 if di j ≤ S,

f (di j ) if S ≤ di j ≤ T, (0 < f (di j ) < 1),
0 otherwise,

xi j =
{
1 if uncovered demand node i is assigned to facility j,
0 otherwise,

yi =
{
1 if demand node i is not within T of any facility,
0 otherwise,

f j =
{
1 if a facility is sited at node j,
0 otherwise,

si j =
{
1 if demand at point i is either partially or fully covered by facility j,
0 otherwise.

The formulation of the bi-objective MCLP is as follows:

Min Z1 = α

Max Z2 =
∑

i∈I

∑

j /∈Mi

ci j ai si j

s.t. ∑

j∈Mi

f j + yi ≥ 1 ∀i ∈ I, (1)

∑

j /∈Mi

xi j − yi = 0 ∀i ∈ I, (2)
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f j − xi j ≥ 0 ∀i ∈ I, j /∈ Mi , (3)
∑

j∈J

f j = p, (4)

∑

j /∈Mi

xi j · di j ≤ α ∀i ∈ I, (5)

si j − f j ≤ 0 ∀i ∈ I, j /∈ Mi , (6)
∑

j∈Mi

si j ≤ 1 ∀i ∈ I, (7)

xi j,si j ∈ {0, 1} ∀i ∈ I, j ∈ J,

yi ∈ {0, 1} ∀i ∈ I,

f j ∈ {0, 1} ∀ j ∈ J.

The first objective minimizes the maximum distance between uncovered demand
nodes and the nearest facilities. The second objective maximizes the total coverage
including both partial and full coverage.

Constraint set (1) ensures that if there is not any opened facility within the distance
T for a demand node, then that demand node is an uncovered demand node and the
variable y is forced to be 1. Constraint set (2) is formulated to assign the uncovered
demand to an opened facility, because if the distance between an opened facility and
demand node i is less than T , then that demand node is covered and yi is 0, so all the
xi j values are forced to be 0 for that demand node. However, if a demand node is not
covered, then yi is 1 and constraint set (2) requires the demand node be assigned to
a facility. The constraint set (3) ensures that an uncovered demand node be assigned
to a facility only if a facility is located at node j . Thus, if f j is 0, this means that a
facility is not opened at node j , so all the corresponding xi j values are 0. If f j is 1,
then uncovered demand may be assigned to this facility, so some xi j values may be 1.
Constraint (4) restricts the number of opened facilities. Constraint set (5) calculates
the maximum of the distances between uncovered demand nodes and their nearest
facilities. The constraint sets (6) and (7) are peculiar to the partial coverage concept. If
the j th facility is not opened, then all its si j values are forced to be 0 and the demand
nodes will not be assigned to that facility, but if the j th facility is opened than the
values si j may be 0 or 1 and may get a facility assigned to it or not. This will be
determined together with the constraint set (7), because constraint set (7) allows any
demand point to be covered by at most one of the facilities sited. If there is more than
one facility covering a demand node, then the second objective determines which of
them will provide service.

4 A new multi-objective genetic algorithm (mSPEA-II)

NSGA-II proposed by Deb et al. (2002) incorporates elitism by allowing the best
solutions from the parent and offspring pools of chromosomes to be retained. NSGA-II
uses nondominated sorting instead of a fitness function to classify the entire population,
and calculates crowding distance to maintain a good spread of solutions in the solution
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Fig. 2 A sample population

set. Nondominated sorting gives the same priority to all members in the same front.
This may cause problems in converging the true Pareto front in cases where some
members are dominated bymanymembers of the other front, and others are dominated
by a fewmembers.A simple bi-objective problemwhere objectives are to beminimized
is depicted in Fig. 2. There are two fronts. Solutions 7 and 9 are in the second front.
Solution 7 is dominated only by solution 1. Solution 9 is dominated by three solutions,
3, 4 and 5. Since they are boundary solutions in the second front, their crowding
distances are the same and very large, meaning that they have the same priority for
selection. However, solution 7 should have more priority than solution 9, because
solution 7 should be kept in the population to generate solutions having larger Z2
values and smaller Z1 values than that of solution 1 and converge the true Pareto-
optimal front quickly.

The Strength Pareto Evolutionary Algorithm (SPEA-II) proposed by Zitzler et al.
(2001) uses a regular population and an archive (external) set. New generated off-
springs are stored in a regular set, whereas nondominated solutions are stored in an
archive set. Fitness assignment, based on the domination concept and density estima-
tion, is done for the union of these sets. The fitness of a solution is the sum of raw
fitness and density fitness values. The strength of each member in the archive and
regular populations is calculated. The greater strength means that it dominates more
members in the population. The raw fitness of a solution is calculated by summing
up the strength of all the solutions that dominate the given solution. Also, for each
member in the union set, the distances to all other solutions are calculated and sorted in
increasing order, and density fitness value is calculated to differentiate those solutions
which have the same raw fitness values. Density fitness values are used in a truncation
operation when the actual archive is greater than the fixed archive size. Calculating the
density fitness values and using the truncation operation increase the complexity of
the SPEA-II algorithm. Experiments demonstrate that the computational complexity
of SPEA-II is considerably greater than that of NSGA-II (Eskandari et al. 2007).

To decrease the computational complexity of SPEA-II and keep good solutions to
maintain the diversity and convergence to the true Pareto front, we propose a genetic
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algorithm based on SPEA-II (mSPEA-II). In mSPEA-II, instead of density fitness,
D(i), the objective fitness values, min O(i), are calculated. For each minimization
objective, the solutions are sorted in ascending order.min O(i) is set to the minimum
rank amongall objectives. For instance, the objective functionvalues of the bi-objective
minimization problem depicted in Fig. 2 are given in Table 1.

These solutions are sorted according to both objectives as shown in Table 2.
As seen in Table 2, min O(7) is 2, because it is in the second rank with respect to

the first objective, Z1, and in the ninth rank with respect to the second objective, Z2,
so the minimum is 2.

A fitness value for each solution is determined as follows:

F1(i) = R(i) + minO(i)

no. of solutions + 1
, (8)

where R(i) is the raw fitness value of a solution, calculated as in SPEA-II. Objective
fitness value is divided by “total number of solutions + 1” to obtain a value <1. All
nondominated solutions have fitness values <1. Two solutions that have the same raw
fitness values are differentiated by their objective fitness values. Thus, more impor-
tance is given to boundary solutions. For some objectives, a solution may have worse

Table 1 Objective function
values of solutions

Z1 Z2

1 2 18

2 6 14

3 10 10

4 12 6

5 16 4

6 25 2

7 4 22

8 20 14

9 23 12

Table 2 Solutions sorted
according to each objective

Solution Z1 Solution Z2

1 2 6 2

7 4 5 4

2 6 4 6

3 10 3 10

4 12 9 12

5 16 8 14

8 20 2 14

9 23 1 18

6 25 7 22
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Fig. 3 An illustrative example when all solutions are nondominated

objective values, but if it has a better objective value for at least one objective, then its
objective fitnesswill be small and that solution can be kept. Thismethod also decreases
the run time of the algorithm.

SPEA-II has an archive of fixed size. If the nondominated solutions of the regular
and archive populations are less than this fixed size, then dominated solutions are used
to fill up the archive population. The dominated solutions are selected according to
fitness values that are greater than 1. In this selection, if two solutions have the same
rawfitness values, then the objective fitness values determine the selection. However, if
the nondominated solutions are greater than the fixed archive size, then somemembers
have to be discarded. In SPEA-II, this truncation is done according to density fitness
values. InmSPEA-II, we calculate the objective fitness values instead of density fitness
values to decrease the run time. However, using objective fitness values for truncation
may not be suitable when all the solutions in the archive set are nondominated. An
illustrative example problem is shown in Fig. 3.

In Fig. 3, all eight solutions are nondominated. min O(7) and min O(2) are 2.
However, solution 2 is responsible for a big region tomaintain convergence. Therefore,
discarding solutions according to min O(i) could avoid the convergence to the true
Pareto front. If the algorithm is in a truncation operation, a niching strategy based
on the crowding distances can be used to select solutions from less crowded regions.
Crowding distance that is the average distance between two solutions on two sides
of solution i along each objective is calculated for each solution as in NSGA-II. For
all objectives, crowding distance values of boundary solutions are set to infinity. For
intermediate solutions, the crowding distance values for each objective are calculated
as follows (Deb et al. 2002):

dImi =
(
f
Imi+1
m − f m Imi−1

)

(
f max
m − f min

m

) , (9)
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where Ii denotes the solution index of the i th member in the list that is obtained

by sorting the values of objective m in ascending order, and f
Imi+1
m and f

Imi−1
m are the

neighbors of the i th member according to the mth objective. f max
m and f min

m are the
maximum and minimum values for the mth objective.

The crowding distance value of one member in a front is measured as follows:

C(i) =
∑

m

dImi .

The new fitness value is calculated based on raw fitness and crowding fitness

F2(i) = R(i) + 1

C(i) + 1
, (10)

where C(i) is the crowding distance value of i .
To summarize, when filling up the mating pool, fitness values that are calculated

based on raw and objective fitness are used for binary tournament if the archive size is
less than the predefined fixed archive size. If the archive size is greater than the fixed
archive size, then fitness values that are calculated based on raw and crowding fitness
are used for binary tournament.

The Algorithm

Step 1: Initialization: Generate an initial population P0 and create the empty archive
set Q0 = {}. Set t = 0.

Step 2: Selection: Put all nondominated individuals in Pt and Qt into Qt+1.
Step 3: If the size of Qt+1 exceeds a fixed archive size, N , then calculate F2 fitness

value of each member and reduce Qt+1 using the truncation operator. Other-
wise, calculate F1 fitness value of each solution and fill Qt+1 with dominated
individuals in Pt and Qt .

Step 4: Termination: If t > T or another stopping criterion is satisfied, then set the
nondominated individuals in Qt+1 as the resulting set. Stop.

Step 5: Fill the mating pool by performing binary tournament selection on Qt+1.
Step 6: Variation: Perform crossover andmutation to themating pool and set offspring

population as the new population Pt+1. Set t = t + 1 and go to Step 2.

5 Computational experiments

We first test the performance of mSPEA-II on six problem sets. Each problem set con-
sists of nine problems and each problem consists of ten randomly generated problem
instances. We run each problem instance five times with different seeds. The problem
set properties are given in Table 3. To analyze the effect of the number of facility nodes
and number of facilities to be sited on the performance of the algorithms, we define
three values for both facility nodes and facilities to be sited in each problem set. For
example, for problem set 1, the number of facility nodes is determined as 10, 25 and
50, and number of facilities to be sited is determined as three, five and seven. For each
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Table 3 Problem set characteristics

Problem
set 1

Problem
set 2

Problem
set 3

Problem
set 4

Problem
set 5

Problem
set 6

No. of demand nodes 100 200 250 500 1000 1500

No. of facility nodesa 10, 25, 50 25, 50, 75 50, 75, 100 75, 100, 150 100, 150, 200 150, 200, 250

No. of facilities to be
siteda

3, 5, 7 5, 7, 9 5, 7, 9 5, 7, 9 5, 7, 9 5, 7, 9

No. of iterations 100 200 500 1000 1500 2000

Full cov. dis. 10 10 10 10 20 20

Partial cov. dis. 20 20 20 20 40 40

Region length 200 200 200 200 400 400

a For each combination of these values, problem sets have problems defined as A, B, C, D, E, F, G, H and
I. For example, problem 1A has ten facility nodes and three facilities to be sited

combination of these values, a problem is defined. For ten facility nodes and three,
five and seven facilities to be sited, problems 1A, 1B and 1C are defined, respectively.
Similarly in problems 1D, 1E and 1F, the number of facility nodes is 25 and numbers
of facilities to be sited are three, five and seven, respectively. For 50 facility nodes,
problems 1G, 1H and 1I have three, five and seven facilities to be sited, respectively.

The number of demand nodes changes among problem sets. The region length
shows the side length of the plane where facility and demand nodes are generated. For
instance, x − y coordinates are generated from a uniform distribution between 0 and
200 in the first four problem sets. The demand amounts are generated from a uniform
distribution in interval [0, 500] for all problem sets. Full coverage and partial coverage
distance are taken as 5 and 10% of the region size, respectively.

To analyze the effect of the number of iterations on the performance of the algo-
rithms, we also change the number of iterations for problem set 4 with 100 facility
nodes and five facilities to be sited. We define the number of iterations as 100, 200,
500, 1000 and 2000 while keeping other parameters the same.

We also analyze the effect of computation time on the performance of the algo-
rithms. For problem set 6 with 200 facility nodes and five facilities to be sited, we
define computation times as 30, 40, 50 and 60s. We run the three algorithms and stop
them after the same computation time.

5.1 Parameter settings

In the literature, different encodings have been used for the solutions (see Mladen-
ovic et al. 2007 for a review). In binary encoding, the number of potential facilities
determines the size of the string and each binary gene represents whether the potential
facility is to be sited or not (Hosage andGoodchild 1986). In this encoding, the number
of opened facilities is penalized to avoid infeasibility. Computational results show that
binary encoding does not result in good results even for small-size problems. In real
parameter encoding, the number of facilities to be sited determines the size of the string
and each gene represents the index of the opened facility (Alcaraz et al. 2012).We used

123



A multi-objective genetic algorithm for a bi-objective. . . 217

Fig. 4 Representation of a
solution 5 9 7

real parameter encoding, since it is simpler, efficient and never leads to infeasibility.
Figure 4 shows an example string where string size is 3 and facilities 5, 9 and 7 are to
be opened. The Euclidean distances are considered between the solutions. For SPEA-
II, distances between members in the objective space are calculated for the density
estimation. In NSGA-II and mSPEA-II, crowding distances are also calculated for the
niching mechanism. Since the range of objectives is different, the objective function
values are normalized using the estimatedmaximumpossible values in the Pareto front.

We use uniform crossover with fixed pattern (Villegas et al. 2006; Michalewicz
1996, p.90). In the crossover mechanism, pattern {1, 2, 1, 2, . . .} is used. For example,
pattern {1, 2, 1, 2} shows that the first and third genes of the first member, and the
second and fourth genes of the second member are taken. However, after crossover,
wemay need to repair themechanism. Ifwe have same numbers in the string (solution),
this means that a facility is opened twice which is not allowed, and one of these genes
should be replaced randomly by another number. We choose archive size as 50 for
each problem and MOGA.

As mutation mechanism, single point mutation is used (Mingjun et al. 2004; Iris
and Asan 2012). A gene is randomly selected and it is mutated with a probability.
After each mutation, the member is again checked for repair. After some preliminary
experiments, we determine themutation probability as 0.3 and the number of iterations
as given in Table 3.

5.2 Performance metrics

To compare the performance of the algorithms, three performance metrics are used.
These metrics are the hypervolume ratio (HVR), inverted generational distance (IGD)
and percentage of found solutions. For the fifth and sixth problem sets, one additional
metric, set coverage metric, C(A, B), is also used. Since we do not know the true
Pareto front in these sets, this measure is used to compare the algorithms’ Pareto
optimal sets with each other.

HVR is the extension of the hypervolume metric (Zitzler and Thiele 1998). Hyper-
volume metric calculates the total objective space dominated by a given set of
nondominated solutions with respect to a predefined reference point. This metric eval-
uates both closeness and diversity of the results. The reference point can be determined
as the nadir point or worse.

HV = volume

(
⋃

i∈A

vi

)

, (11)

where A is the nondominated front and vi is the objective space dominated by solution
i with respect to a reference point. HVR measures the ratio of the region enclosed by
the nondominated set and the region enclosed by the true Pareto front.
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The inverted generational distance (Bosman and Thiernes 2003) is the average
Euclidean distance between nondominated solutions and their closest true nondomi-
nated front member. Hence, an algorithm with a small IGD is better. IGD is calculated
as follows:

IGD = 1

|A|
∑

i∈A

(

min
j∈PF

∥
∥
∥Zi − Z j

∥
∥
∥
2

)

, (12)

where A denotes the nondominated set generated by MOGA, PF denotes the true
Pareto front set and ‖Zi − Z j‖2 represents the Euclidean distance between Zi and
Z j .

The third metric is the percentage of solutions generated by a MOGA in the true
Pareto front. Since for the last three problem sets we do not know the true Pareto front,
the estimated Pareto front is generated by combining the nondominated solutions of all
algorithms. Thus, for the last three problem sets, this metric gives us the contribution
of that algorithm when generating the estimated Pareto front.

Set coverage metric C(A, B) (Zitzler and Thiele 1998) calculates the fraction of B
dominated by A.

C(A, B) = |{b ∈ B} |∃a ∈ A : a � b |
|B| , (13)

where A denotes the Pareto front generated by algorithm A and B denotes the Pareto
front generated by algorithm B. C(A, B) = 1 means that all members in B are dom-
inated by A. C(A, B) = 0 represents the situation in which no individual in B is
dominated by A. The domination operator is not a symmetric operator. Thus, C(A, B)

is not necessarily equal to 1 − C(A, B).

5.3 Computational results

Problem sets 1, 2 and 3 are solved by the ε-constraint method (Haimes et al. 1971) with
GAMS 2.25 Cplex solver (Brooke et al. 1992) on a computer Intel Pentium IV with
1.8GHz and 512MB RAM. The true Pareto optimal front is found for these problem
sets. However, problem sets 4, 5 and 6 cannot be solved by the ε-constraint method
within 24h. For these problems, all run results for the three MOGAs are combined
and an estimated Pareto front is generated by combining the nondominated results of
the three MOGAs.

For each problem instance, NSGA-II, SPEA-II and mSPEA-II are run five times
using different seeds. For each run, the HVR, IGD and percentage of found solutions
metrics are calculated. The average metric values and standard deviations of problems
are given in Table 4. The values in the parenthesis in the second column of Table 4
correspond to the number of facility nodes and number of facilities to be sited.

A point a little worse than the nadir point is selected as the reference point for
HVRmeasure. The range of HVR values is approximately between 0.90 and 1. For all
problem sets, the average HVR values of mSPEA-II are greater than those of the other
algorithms. Also, the standard deviations of the HVR values of mSPEA-II are very
small and less than or equal to those of the other algorithms in 47 out of 54 problems.
These results show that mSPEA-II approximates the true Pareto front better than the
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others and the HVR values of mSPEA-II are more consistent than those of the other
algorithms.

The IGD results are normalized values. Objective function values are scaled since
their ranges are different. The IGD average values of mSPEA-II are better than those
of the others. This shows that the generated nondominated solutions of mSPEA-II are
closer to the true Pareto front than those of the other algorithms.

If the algorithms are compared based on the percentage of found solutions,mSPEA-
II generates more nondominated solutions than the other algorithms. For small-size
problems, such as in problem set 1 with ten facility nodes, the values are close to each
other for all algorithms. However, for the other problems, mSPEA-II outperforms the
other algorithms significantly. In problem sets 1–3, mSPEA-II finds 61.67%, SPEA-II
finds 46.95% andNSGA-II finds 44.77%of true Pareto front solutions on average. For
problem sets 4–6, this metric gives the contribution of the algorithm to the estimated
Pareto front, since the true Pareto fronts are unknown for these problem sets. In these
problem sets, mSPEA-II finds 61.48%, SPEA-II finds 36.91% and NSGA-II finds
18.48% of estimated Pareto front solutions on average.

We evaluate the effect of the parameters, namely the number of facility nodes and
number of facilities to be sited on the performance of MOGAs in Table 4.

In each problem set for a given number of facility nodes, as the number of facilities
to be sited increases, the number of efficient solutions increases and as a result the
performance of all three MOGAs decreases. However, decrease in the performance
of mSPEA-II is less compared to other MOGAs and mSPEA-II outperforms the other
algorithms. For instance, in problems 3G and 3I, the number of facility nodes is 100
and the number of facilities to be sited are five and nine. Increasing the number of
facilities to be sited from 5 (problem 3G) to 9 (problem 3I) decreases HVR values
from 0.958 to 0.934 in NSGA-II, 0.966 to 0.944 in SPEA-II and 0.978 to 0.974 in
mSPEA-II. The IGD values increase from 0.006 to 0.014 in NSGA-II, 0.004 to 0.010
in SPEA-II and remain the same (0.004) in mSPEA-II. In terms of percentage of
found solutions, mSPEA-II results are significantly better than NSGA-II and SPEA-II
when we increase the number of facilities to be sited. For the above problems, the
percentage of found solutions decreases from 38.8 to 18.8% in NSGA-II, 41.1 to
22.1% in SPEA-II and 54.2 to 48.8% in mSPEA-II.

When we analyze the effect of the number of facilities to be sited in large-size
problems, we again observe that mSPEA-II performs better than NSGA-II and SPEA-
IIwith respect to all performancemeasures. For example, in problem set 6 for problems
with 150 facility nodes, if the number of facilities to be sited is changed from five
(problem set 6A) to nine (problem set 6C), the percentage of found solutions decreases
from 22.4 to 17.8% in NSGA-II, 53.2 to 39.6% in SPEA-II and 69.8 to 68.2% in
mSPEA-II.

We also analyze the effect of the number of facility nodes on the performance of
MOGAs. I For any problem set with a given number of facilities to be sited, increase in
the number of facility nodes decreases the performance of all MOGAs. For instance,
for problem set 1with three facilities to be sited, increasing the number of facility nodes
from 10 to 50 (problems 1A and 1G) decreases the percentage of found solutions from
94.4 to 44.2% in NSGA-II, 93.3 to 47.6% in SPEA-II and 95.5 to 62.4% in mSPEA-
II. The amount of decrease is less for mSPEA-II compared to those of other MOGAs.
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The performance of mSPEA-II is also better in large-size problems. For instance, in
problem set 6, with five facilities to be sited, increasing the number of facility nodes
from 150 to 250 (problems 6A, 6G) decreases the percentage of found solutions from
22.4 to 11.2% inNSGA-II, 53.2 to 33.2% in SPEA-II and 69.8 to 62.2% inmSPEA-II.

Problem 4D is solved with a different number of iterations. The estimated Pareto
fronts of the problems are obtained by combining the results of all solutions generated
by solving different MOGAs with different number of iterations, since the true Pareto
front of problem set 4 is unknown. The results of the performancemetrics are presented
in Table 5.

In all problems,mSPEA-II outperformsNSGA-II andSPEA-II.With 100 iterations,
NSGA-II outperforms SPEA-II. In the rest of the problem sets, SPEA-II outperforms
NSGA-II with respect to HVR and the percentage of found solutions. The results show
that when the number of iterations is increased from 100 to 2000, the performances
of MOGAs improve on all metrics as expected. However, the amount of improvement
decreases as the number of iterations increases.

To evaluate the performance of mSPEA-II with constant computation time, we run
the three MOGAs for problem 6D at a predetermined time. The computation times
are set as 30, 40, 50 and 60s. Table 6 shows the results of each MOGA with different
computation times. Since the true Pareto front is unknown for problem set 6, we
combine all generated nondominated solutions and estimate the true Pareto front. The
performance metric values are computed with respect to the estimated Pareto fronts.
For each computation time, mSPEA-II outperforms both NSGA-II and SPEA-II with
respect to all performance metrics. For instance, when computation time is set as 30 s,
mSPEA-II finds 25.08% of the estimated Pareto front; however, SPEA-II and NSGA-
II generate 10.80 and 12.05% of it, respectively. The results show that for 30 and 40
s, NSGA-II performs better than SPEA-II; for the rest, SPEA-II performs better than
NSGA-II. As the computation time increases, the performance of MOGAs increases
as expected.

An illustration of nondominated solutions found by the MOGAs and the generated
true Pareto front in problem 3D is given in Fig. 5. The nondominated fronts are the first
run results of MOGAs. Some solutions of the true Pareto front cannot be generated
by any of the MOGAs.

The set coverage values for problem sets 5 and 6 are presented in Table 7. In the
C(A, B) metric, A corresponds to a row of the table and B corresponds to a column
of the table. This metric compares two algorithms.

In problems sets 5 and 6, solutions found by NSGA-II dominates at most 5% of
solutions generated by SPEA-II and mSPEA-II. This shows that most of the solutions
of NSGA-II have worse objective function values than those of SPEA-II and mSPEA-
II. On the other hand, SPEA-II solutions dominate NSGA-II solutions between 15% at
the minimum and 64% at the maximum in problem set 5. The same measure changes
between 23 and 75% in problem set 6. mSPEA-II’s performance is better than that of
SPEA-II, and the set coverage metric values for mSPEA-II against NSGA-II changes
between 31 and 70% in problem set 5 and between 28 and 85% in problem set 6.
When we compare SPEA-II and mSPEA-II, SPEA-II solutions dominate mSPEA-
II solutions, 1% at the minimum and 14% at the maximum for problem sets 5 and
6. However, the set coverage metric values for mSPEA-II against SPEA-II changes
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Table 6 Results of problem 6D
with different computation times

Computation time

30s 40s 50s 60s

HVR

NSGA-II 0.9202 0.9356 0.9443 0.9524

SPEA-II 0.9188 0.9305 0.9462 0.9585

mSPEA-II 0.9388 0.9422 0.9612 0.9658

IGD

NSGA-II 0.012 0.0086 0.0069 0.0058

SPEA-II 0.018 0.0098 0.0061 0.0043

mSPEA-II 0.009 0.0074 0.0039 0.0016

% Of found solution

NSGA-II 0.1205 0.1586 0.1636 0.1752

SPEA-II 0.1080 0.1550 0.1885 0.2035

mSPEA-II 0.2508 0.3025 0.4068 0.5230

True Pareto
SPEA-II

True Pareto
NSGA-II

p-center objective

co
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ra
ge
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Fig. 5 Nondominated fronts generated by NSGA-II, SPEA-II and mSPEA-II in problem set 3D

between 16 and 34% in problem set 5 and between 10 and 35% in problem set 6.
Computational experiments show that mSPEA-II outperforms the other algorithms
and the second best-performing algorithm is SPEA-II.

Also in any problem set with a given number of facility nodes, as the number of
facilities to be sited increases, the average set coverage metric values of mSPAE-
II against SPEA-II improve in all problems, and against NSGA-II improve in all
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Table 7 Average set coverage metric values for problem sets 5 and 6

Problem SPEA-II mSPEA-II Problem SPEA-II mSPEA-II

NSGA-II

5A 0.05 0.04 6A 0.02 0.01

5B 0.04 0 6B 0 0

5C 0.02 0.03 6C 0.03 0.03

5D 0.04 0.02 6D 0.01 0.01

5E 0.04 0 6E 0.01 0.02

5F 0.04 0.01 6F 0.05 0.03

5G 0.02 0.02 6G 0.04 0

5H 0 0 6H 0.02 0.01

5I 0 0 6I 0 0

Problem NSGA-II mSPEA-II Problem NSGA-II mSPEA-II

SPEA-II

5A 0.36 0.01 6A 0.42 0.14

5B 0.39 0.04 6B 0.36 0.12

5C 0.45 0.02 6C 0.40 0.13

5D 0.15 0.03 6D 0.23 0.03

5E 0.64 0.10 6E 0.75 0.11

5F 0.62 0.14 6F 0.52 0.11

5G 0.36 0.09 6G 0.48 0.08

5H 0.40 0.12 6H 0.63 0.04

5I 0.42 0.12 6I 0.70 0.05

Problem NSGA-II SPEA-II Problem NSGA-II SPEA-II

mSPEA-II

5A 0.42 0.22 6A 0.36 0.14

5B 0.58 0.28 6B 0.32 0.19

5C 0.54 0.34 6C 0.35 0.28

5D 0.31 0.16 6D 0.28 0.10

5E 0.70 0.26 6E 0.82 0.30

5F 0.66 0.31 6F 0.64 0.34

5G 0.54 0.20 6G 0.72 0.22

5H 0.58 0.26 6H 0.78 0.33

5I 0.64 0.28 6I 0.85 0.35

problems except problem sets 6B and 6C. This shows that as the string size increases,
the performance of the mSPEA-II improves.

Figure 6 shows the estimated true Pareto front of a problem in problem 4E. There
are 14 nondominated solutions in the estimated true Pareto front. This front is created
by combining all run results of the three MOGAs. mSPEA-II generates all of them,
while SPEA-II generates ten of them and NSGA-II only four.
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NSGA-II, SPEA-II and mSPEA-II
SPEA-II and mSPEA-II
Only mSPEA-II

p-center obj.

coverage obj.

Fig. 6 Estimated Pareto front of a sample problem in problem set 4E

Table 8 Wilcoxon test results of the HVR metric between NSGA-II and mSPEA-II

Problem p value Winner Problem p value Winner Problem p value Winner

1A 0.335 None 3A 0.003 mSPEA-II 5A 0 mSPEA-II

1B 0.329 None 3B 0.002 mSPEA-II 5B 0 mSPEA-II

1C 0.275 None 3C 0 mSPEA-II 5C 0 mSPEA-II

1D 0.236 None 3D 0 mSPEA-II 5D 0 mSPEA-II

1E 0 mSPEA-II 3E 0 mSPEA-II 5E 0 mSPEA-II

1F 0.001 mSPEA-II 3F 0 mSPEA-II 5F 0 mSPEA-II

1G 0 mSPEA-II 3G 0 mSPEA-II 5G 0 mSPEA-II

1H 0 mSPEA-II 3H 0 mSPEA-II 5H 0 mSPEA-II

1I 0 mSPEA-II 3I 0 mSPEA-II 5I 0 mSPEA-II

2A 0.318 None 4A 0 mSPEA-II 6A 0 mSPEA-II

2B 0.252 None 4B 0 mSPEA-II 6B 0 mSPEA-II

2C 0.173 None 4C 0 mSPEA-II 6C 0 mSPEA-II

2D 0 mSPEA-II 4D 0 mSPEA-II 6D 0 mSPEA-II

2E 0.001 mSPEA-II 4E 0 mSPEA-II 6E 0 mSPEA-II

2F 0.001 mSPEA-II 4F 0 mSPEA-II 6F 0 mSPEA-II

2G 0 mSPEA-II 4G 0 mSPEA-II 6G 0 mSPEA-II

2H 0 mSPEA-II 4H 0 mSPEA-II 6H 0 mSPEA-II

2I 0 mSPEA-II 4I 0 mSPEA-II 6I 0 mSPEA-II

To check whether a significant difference exists between mSPEA-II and the other
two algorithms, we test the following hypothesis at 99% significance level. In a sta-
tistical test, only the HVR is used. The Wilcoxon non-parametric statistical test is
performed, and p values are calculated to determine the better-performing algorithm
as given in Tables 8 and 9.

123



228 E. Karasakal, A. Silav

Table 9 Wilcoxon test results of the HVR metric between SPEA-II and mSPEA-II

Problem p value Winner Problem p value Winner Problem p value Winner

1A 0.428 None 3A 0.004 mSPEA-II 5A 0 mSPEA-II

1B 0.442 None 3B 0.004 mSPEA-II 5B 0 mSPEA-II

1C 0.364 None 3C 0.002 mSPEA-II 5C 0 mSPEA-II

1D 0.437 None 3D 0 mSPEA-II 5D 0 mSPEA-II

1E 0 mSPEA-II 3E 0 mSPEA-II 5E 0 mSPEA-II

1F 0.002 mSPEA-II 3F 0 mSPEA-II 5F 0 mSPEA-II

1G 0 mSPEA-II 3G 0.001 mSPEA-II 5G 0 mSPEA-II

1H 0 mSPEA-II 3H 0 mSPEA-II 5H 0 mSPEA-II

1I 0 mSPEA-II 3I 0 mSPEA-II 5I 0 mSPEA-II

2A 0.302 None 4A 0.009 mSPEA-II 6A 0.002 mSPEA-II

2B 0.451 None 4B 0.004 mSPEA-II 6B 0.005 mSPEA-II

2C 0.373 None 4C 0.011 None 6C 0.003 mSPEA-II

2D 0 mSPEA-II 4D 0.002 mSPEA-II 6D 0.004 mSPEA-II

2E 0.002 mSPEA-II 4E 0.003 mSPEA-II 6E 0.002 mSPEA-II

2F 0.003 mSPEA-II 4F 0 mSPEA-II 6F 0 mSPEA-II

2G 0.004 mSPEA-II 4G 0 mSPEA-II 6G 0 mSPEA-II

2H 0 mSPEA-II 4H 0 mSPEA-II 6H 0 mSPEA-II

2I 0 mSPEA-II 4I 0 mSPEA-II 6I 0 mSPEA-II

H0 : μmSPEA−II
hvr = μO

hvr

H1 : μmSPEA−II
hvr 	= μO

hvr,

where μmSPEA−II
hvr is the mean of mSPEA-II and μO

hvr is the mean of NSGA-II or
SPEA-II.

There is not a statistically significant difference in problem sets 1A, 1B, 1C, 1D,
2A, 2B, 2C between NSGA-II and mSPEA-II at 99% significance level. Actually, the
size of these problems is very small and the results of all the algorithms are close
to each other. Except for these seven problems, mSPEA-II performs significantly
better than NSGA-II. Similarly, mSPEA-II outperforms SPEA-II significantly in all
problems except these seven problems and problem 4C. However, for problem 4C,
there is significant difference between SPEA-II and mSPEA-II at 95% significance
level.

Table 10 reports the average number of solutions in the true Pareto front for problem
sets 1, 2 and 3 and run times of the algorithms for all problem sets. For each problem,
mSPEA-II and NSGA-II run times are fairly close to each other. SPEA-II run times
are greater than those of the other two algorithms for all problems.

We choose archive size as 50 for each problem and for each MOGA. In all problem
sets, the generated nondominated solutions are less than 50 for each MOGA. Thus in
SPEA-II, the truncation operation according to density fitness value is not used in these
problems. Thus, the computational complexity of SPEA-II is not significantly higher
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Table 10 Average run times of algorithms (s)

Problem True Pareto front NSGA-II SPEA-II mSPEA-II Problem NSGA-II SPEA-II mSPEA-II

1A 12 1 1 1 4A 10 20 9

1B 14 1 1 1 4B 12 21 12

1C 13 1 1 1 4C 14 24 13

1D 54 1 1 1 4D 18 26 18

1E 49 1 1 1 4E 24 32 24

1F 66 1 2 1 4F 24 34 22

1G 225 2 2 2 4G 38 51 36

1H 254 2 2 2 4H 39 54 34

1I 301 2 3 2 4I 40 61 39

2A 109 2 2 2 5A 28 46 24

2B 156 2 2 2 5B 32 52 32

2C 177 2 3 2 5C 32 47 30

2D 494 2 3 2 5D 44 53 42

2E 670 2 3 2 5E 53 64 51

2F 822 3 3 3 5F 61 72 57

2G 1258 4 6 4 5G 73 88 70

2H 1547 4 6 4 5H 72 87 72

2I 1951 5 6 4 5I 76 91 75

3A 1422 5 7 5 6A 71 98 68

3B 1823 5 6 5 6B 75 107 72

3C 1786 5 6 5 6C 76 103 72

3D 2827 6 10 6 6D 83 100 77

3E 2037 8 13 8 6E 108 124 107

3F 2812 7 12 7 6F 114 141 108

3G 4832 13 18 12 6G 128 167 122

3H 5765 14 22 14 6H 136 171 126

3I 5841 15 23 15 6I 130 166 128

than that of NSGA-II andmSPEA-II as expected. Only the distance calculation of each
solution increases the SPEA-II run times as compared to NSGA-II and mSPEA-II.

6 Conclusion

In this study, we formulate a bi-objective model that maximizes total coverage and
minimizes the maximum distance between uncovered demands and their nearest facil-
ities. The model is especially useful for emergency service location problems where
all demand nodes are not covered by facilities.

We developed a MOGA, called mSPEA-II, to solve our model. In this algorithm,
wemodify the fitness assignment of SPEA-II and use the crowding distance of NSGA-
II to eliminate the drawbacks of NSGA-II and SPEA-II in reaching the true Pareto
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front. We tested the performance of mSPEA-II on randomly generated problems and
compared the results with those of NSGA-II and SPEA-II. Our experimental results
show that themSPEA-II algorithmperforms better than the others. For small problems,
the results of theseMOGAs are close to each other, but on averagemSPEA-II performs
better. As the number of facilities to be sited or the number of facility nodes increases,
the computational complexity of the problems increases. This affects the performance
of all MOGAs. However, decrease in the performance of mSPEA-II is less compared
to those of NSGA-II and SPEA-II. Also, the run time performance of mSPEA-II is
better than that of SPEA-II, and approximately the same as that of NSGA-II.

An area for future research direction may be to develop a preference-based MOGA
to find the best solution for the DM. We may also apply mSPEA-II to other com-
binatorial optimization problems. Another research direction may be to extend the
bi-objective model to handle capacity restrictions on the facilities.
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