
TOP (2015) 23:313–349
DOI 10.1007/s11750-015-0366-z

INVITED PAPER

An overview of curriculum-based course timetabling

Andrea Bettinelli · Valentina Cacchiani ·
Roberto Roberti · Paolo Toth

Published online: 19 March 2015
© Sociedad de Estadística e Investigación Operativa 2015

Abstract In 2007, the Second International Timetabling Competition (ITC-2007) has
been organized and a formal definition of the Curriculum-Based Course Timetabling
(CB-CTT) problem has been given, by taking into account several real-world con-
straints and objectives while keeping the problem general. CB-CTT consists of finding
the best weekly assignment of university course lectures to rooms and time periods. A
feasible schedule must satisfy a set of hard constraints and must also take into account
a set of soft constraints, whose violation produces penalty terms to be minimized in
the objective function. From ITC-2007, many researchers have developed advanced
models and methods to solve CB-CTT. This survey is devoted to review the main
works on the topic, with focus on mathematical models, lower bounds, and exact and
heuristic algorithms. Besides giving an overview of these approaches, we highlight
interesting extensions that could make the study of CB-CTT even more challenging
and closer to reality.

This invited paper is discussed in the comments available at doi:10.1007/s11750-015-0362-3,
doi:10.1007/s11750-015-0363-2, doi:10.1007/s11750-015-0364-1, doi:10.1007/s11750-015-0365-0.

A. Bettinelli · V. Cacchiani · P. Toth (B)
DEI, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
e-mail: paolo.toth@unibo.it

A. Bettinelli
e-mail: andrea.bettinelli@unibo.it

V. Cacchiani
e-mail: valentina.cacchiani@unibo.it

R. Roberti
Department of Transport, Technical University of Denmark,
2800 Kgs Lyngby, Denmark
e-mail: rorob@transport.dtu.dk

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-015-0366-z&domain=pdf
http://dx.doi.org/10.1007/s11750-015-0362-3
http://dx.doi.org/10.1007/s11750-015-0363-2
http://dx.doi.org/10.1007/s11750-015-0364-1
http://dx.doi.org/10.1007/s11750-015-0365-0

314 A. Bettinelli et al.

Keywords University timetabling · Curriculum-based course timetabling · Survey ·
Models · Exact algorithms · Heuristic algorithms

Mathematics Subject Classification 90-02 · 90C10 · 90C57 · 90C59

1 Introduction

Timetabling is an important and active area of research with applications in several
fields such as university, transportation, high school, hospital, sport, employees, etc.
It describes a variety of usually NP-hard optimization problems with a considerable
practical impact. Many advanced techniques and real-world applications have been
published in the proceedings of the biannual International Conference on the Practice
and Theory of Automated Timetabling (PATAT http://www.patatconference.org/).

Roughly speaking “timetabling” can be defined as the problem of assigning a set
of activities to resources (Wren 1996; Schaerf 1999; Carter 2013), such as time slots,
personnel and locations, under a complex set of constraints, usually called hard con-
straints, which vary according to the specific problem. The goal is to find a feasible
assignment of all the activities to the resources, while minimizing the weighted sum,
according to given weights, of the penalties corresponding to the violations of the soft
constraints.

In the recent years, there has been an increasing interest in Automated University
Timetabling, with many surveys published on the topic: Burke et al. (1997), Schaerf
(1999), Burke and Petrovic (2002), Petrovic and Burke (2004), McCollum and Ireland
(2006), McCollum (2007), Lewis (2008), Kingston (2013), MirHassani and Habibi
(2013), Kristiansen and Stidsen (2013), Babaei et al. (2014), Pillay (2014).

The interest in this research area is also due to the International Timetabling Com-
petitions organized on this topic. The first International Timetabling Competition
(ITC-2002) was organized in 2002 by Paechter and Gambardella of the European
Metaheuristics Network and was sponsored by PATAT. The aim of this competition
was to attract researchers and to establish a precise problem definition and a set of
randomly generated benchmark instances for the university course timetabling prob-
lem, to allow the comparison of the performances of the various proposed methods.
The success of this first competition is evident from the number of published papers
on the topic (see e.g. Abdullah et al. 2007; Chiarandini et al. 2006; Di Gaspero and
Schaerf 2006; Kostuch 2005; Landa-Silva and Obit 2008; Lewis et al. 2007).

Following the success of ITC-2002, the second ITC (ITC-2007) was organized in
2007 (Di Gaspero et al. 2007; Bonutti et al. 2012;McCollum et al. 2010). As explained
inDiGaspero et al. (2007), amain innovationof ITC-2007was to distinguish university
timetabling into three categories, and define for each of them one track for the com-
petition. These tracks correspond to Examination Timetabling, Post-Enrolment-based
Course Timetabling (PE-CTT) andCurriculum-BasedCourse Timetabling (CB-CTT).
The first problem deals with the definition of examination timetables, i.e., it requires
to assign exams to time slots within a given examination session while satisfying a set
of hard constraints (e.g. students cannot give more than one exam at the same time,
the number of students giving the exam cannot exceed the capacity of the room, etc.).

123

http://www.patatconference.org/

An overview of curriculum-based course timetabling 315

The other two problems fall in the category of Course Timetabling: in PE-CTT stu-
dents enroll for courses before the determination of the timetable, while in CB-CTT
a curriculum predefines the sets of lectures that students are supposed to follow. This
is not the only difference between the two problems: an important one is that in PE-
CTT each course is a single event, while in CB-CTT a course consists of a series of
lectures. As a consequence, constraints and objectives are also different. In addition,
CB-CTT does not involve student sectioning, i.e., assigning students to individual
sections of a course (see e.g. Müller and Murray 2010). This is an important step in
course timetabling that has been neglected in CB-CTT to keep the problem not too
complex. Both variants are important in real-life applications, and one or the other is
used depending on the organization of the considered university. We refer the reader
to McCollum et al. (2010) and Di Gaspero et al. (2007) for further details on these
tracks and on the ITC-2007 rules.

Due to the very large amount of research on the three tracks and on university
timetabling for specific real-life case studies, we focus, in this survey, on CB-CTT as
defined in McCollum et al. (2010) for the third track of ITC-2007, and highlight the
most successful models and approaches proposed to solve it. With respect to previous
surveys on Automated University Timetabling, the main difference is that we focus on
the well-defined CB-CTT according to the definition given in Sect. 2. This definition
has been proposed in ITC-2007 and since then many works on successful methods to
solve CB-CTT have been published, which make CB-CTT a well-established topic of
research.

The paper is organized as follows. In Sect. 2, we report the definition of CB-CTT. In
Sect. 3, we present mathematical models, lower bounds and exact algorithms, while
Sect. 4 is devoted to the description of heuristic algorithms. Finally, we describe
extensions of the problem in Sect. 5 and conclude with perspective on possible future
research directions in Sect. 6.

2 Problem description

This section is devoted to the description of CB-CTT, as formalized for ITC-2007.
We first present the hard constraints and the soft constraints. Then, we describe the
benchmark instances introduced in Bonutti et al. (2012) (see Sect. 2.1) and conclude
this section (see Sect. 2.2) with the notation used in the remainder of this paper.

In CB-CTT we are given sets of:

– time periods: the time horizon (typically 5 or 6 teaching days) is divided in days
and each day is divided in a fixed number of time slots; a time period is a pair (day,
time slot);

– courses and teachers: each course consists of a given number of lectures, is taught
by a teacher and is attended by a given number of students. It can belong to some
university curricula and its lectures should be spread across a minimum number
of days. In addition, for each course, a set of unavailable time periods, i.e., time
periods in which the teacher of the course is not available, is given;

– curricula: a curriculum corresponds to a set of courses that must be taken by some
students;

123

316 A. Bettinelli et al.

– rooms: each room is characterized by a capacity, which represents the number of
seats in the room.

CB-CTT consists of finding the best assignment of course lectures to rooms and
time periods, while satisfying the following hard constraints:

– lectures: all the lectures of a course must be scheduled and they must be assigned
to distinct time periods;

– room occupancy: each room can host at most one lecture per time period;
– conflicts: lectures of courses belonging to the same curriculum or taught by the
same teacher cannot be scheduled in the same time period;

– availabilities: unavailable time periods for the teacher of the course cannot be used
for scheduling a lecture of that course.

The goal is the minimization of the weighted sum (according to given weights) of
multiple objective functions, representing the costs for the violation of the following
soft constraints:

– minimum number of working days: for each course, a penalty is given for each day
below the minimum number of working days;

– curriculum compactness: it is preferable that the lectures of a curriculum are con-
secutive, without any empty time period in between; thus, a penalty is given for
each isolated lecture, i.e., a lecture not adjacent to any other lecture of the same
curriculum in the same day;

– room capacity: a penalty is given for each student that cannot have a seat in the
room assigned to the course lecture;

– room stability: it is preferable that a course is always taught in the same room, thus,
a penalty is given for each additional room used for a course.

CB-CTT as defined above corresponds to the university course timetabling problem
arising in many Italian universities and also in international ones. Even if additional
constraints can appear in some cases, it has been simplified as described above for
ITC-2007 in order tomaintain a certain level of generality (see Di Gaspero et al. 2007).
In Bonutti et al. (2012), a set of variants, called UD1, UD2, UD3, UD4, and UD5, of
CB-CTT have been proposed. The problem defined above corresponds to UD2, which
is the most studied variant. We mention that UD1 corresponds to UD2 without the
soft constraint of room stability and with a different weight for the penalization of the
curriculum compactness. The other three variants have been introduced with the aim
of including many real-world soft constraints. These and other possible extensions of
CB-CTT are discussed in Sect. 5. In this survey we focus on UD2.

The CB-CTT problem is NP-hard since it has as a core problem a graph coloring
problem (see Burke et al. 2010b), which is a well-known NP-hard problem. Let us
consider a graph having one vertex for each lecture and one edge for each pair of
lectures that cannot be scheduled simultaneously (i.e., either they belong to the same
course or to courses of the same curriculumor theymust be taught by the same teacher).
Let us consider one color for each time period. The core problem of CB-CTT is to
assign one color to each vertex, so that adjacent vertices are assigned different colors.
In addition, a constraint is imposed on the maximum number of times each color can
be used, which is set equal to the number of available rooms. This leads to the so-called
bounded coloring problem (see Hansen et al. 1993).

123

An overview of curriculum-based course timetabling 317

2.1 Benchmark instances

A fundamental outcome of ITC-2007 was the definition of a wide set of real-world
instances to allow the comparison of different solution methods. These instances are
publicly available on thewebsite http://satt.diegm.uniud.it/ctt, maintained by the orga-
nizers of ITC-2007. A first set of instances, defined in Di Gaspero and Schaerf (2003),
consists of four instances denoted by test*. The main set of instances, defined in
Di Gaspero et al. (2007) for ITC-2007, consists of 21 instances denoted by comp*.
A third set of instances was defined in Bonutti et al. (2012) and consists of seven
instances denoted by DDS*. Very recently, additional instances have been proposed,
which are identified by erlangen*,1 Udine* and EA*.2

On the same website, the best-known heuristic solution values and lower bound
values are also reported and continuously updated. In addition, the website provides an
online solutionvalidator, allows the visualizationof the solutions andgives information
on the instance statistics (see also Bonutti et al. 2012 for a detailed analysis of the
instance characteristics). To produce comparable results, a benchmarking program is
provided on the website, which can be used to set the time limit of the algorithm
execution. In particular, this program was used to allocate a time limit to each of the
competitor algorithms of the ITC-2007 competition: each competitor had to run the
program on his machine and, when the program halted, the corresponding execution
time is used to define the time limit, calledCPU time unit, for the considered machine.
In addition, the results for the competition were obtained by performing a random
sample of 10 runs of each algorithm on all the available instances.

Wewish to stress that although the availability of the benchmark instances and of the
benchmarking program has certainly provided a way to come very close to fair com-
putational comparisons of different methods, the settings, machines and computing
time limits vary significantly between different works. For this reason, when report-
ing tables that include computational results taken from different papers, we always
show the corresponding computing time and used computer, as well as the number of
runs and (when used) the general-purposeMixed Integer Linear Programming (MILP)
solver (see Sects. 3.8 and 4.3).

Two instance generators have also been developed: the first one is by Burke et al.
(2010b), based on the benchmark instances proposed in Di Gaspero and Schaerf
(2003), while the second one is an improvement by Lopes and Smith-Miles (2010,
2013), who base their work on a deeper insight on the features of the instances. In
the latter paper, the authors propose a methodology for tuning instance generators of
problems that contain knapsack or graph coloring problems as a core problem. Their
goal is to produce instances that are similar to the real-life ones and also able of high-
lighting different behaviors of the solvers. The proposed methodology is applied to
CB-CTT. The generated instances can be used to tune an algorithm, to avoid over-
tuning phenomena on the set of benchmark instances. In Bellio et al. (2014), for
example, a simulated annealing algorithm is tuned on the generated instances and

1 Contributed by Moritz Mühlenthaler.
2 http://www.easystaff.it.

123

http://satt.diegm.uniud.it/ctt
http://www.easystaff.it

318 A. Bettinelli et al.

turns out to obtain comparable or even better results than algorithms tuned on the
ITC-2007 instances.

2.2 Notation

In this section, we report the notation used in the remainder of the paper.

– CB-CTT: problem
– B: binary range
– Z: integer range
– C : set of courses
– Q: set of curricula
– D : set of days
– H : set of time periods
– R: set of rooms
– T : set of teachers
– Cq : set of courses belonging to curriculum q ∈ Q
– Ct : set of courses hold by teacher t ∈ T
– Hd : set of time periods of day d ∈ D
– Qc: set of curricula involving course c ∈ C
– dh : day of time period h ∈ H
– lctc: number of lectures of course c ∈ C
– mwdc: minimum working days of course c ∈ C
– stc: number of students attending course c ∈ C
– capr : capacity of room r ∈ R
– WCC : penalty for curriculum compactness
– WRC : penalty for room capacity
– WRS : penalty for room stability
– WWD: penalty for minimum working days

3 Mathematical models, lower bounds and exact algorithms

The aimof this section is to illustrate themainmathematicalmodels and algorithms that
can be found in the literature to solve CB-CTT to optimality and to compute lower
bounds. Most of the mathematical models presented in this section are used either
to derive lower bounds to CB-CTT or to compute upper bounds within a heuristic
framework or to both aims. Only a few exact algorithms have been proposed in the
literature. Sincemost of theworks that contribute onmathematicalmodels also provide
methods for computing lower bounds and rarely give a framework for an exact solution
of CB-CTT, we describe them all together in this section, specifying whether the
method is exact or employed for lower/upper bound computation. Section 3.1 describes
the compact formulation of Burke et al. (2010a) and some ideas to derive various lower
bounds. In Sect. 3.2, we sketch the main ideas that characterize the branch-and-cut
algorithm of Burke et al. (2012). The two-stage approach of Lach and Lübbecke
(2012) is illustrated in Sect. 3.3. Section 3.4 describes the divide-and-conquermethod

123

An overview of curriculum-based course timetabling 319

of Hao and Benlic (2011). A column generation algorithm developed by Cacchiani
et al. (2013) is illustrated in Sect. 3.5. A different approach based on Satisfiability
(SAT) solvers was proposed by Asín Achá and Nieuwenhuis (2014) and is presented
in Sect. 3.6. In this section, we focus on the CB-CTT as defined in Sect. 2. In the
literature, other university timetablingproblems canbe found; recently published lower
bounds and exact methods for such problems are described in Carter (2001), Daskalaki
et al. (2004), Avella and Vasil’ev (2005), Daskalaki and Birbas (2005), Qualizza and
Serafini (2005), MirHassani (2006), Al-Yakoob and Sherali (2007), Schimmelpfeng
and Helber (2007), Lach and Lübbecke (2008), Van Den Broek et al. (2009), Miranda
(2010) and Phillips et al. (2015).

3.1 The compact formulation of Burke et al. (2010a) and various possible lower
bounds

Burke et al. (2008, 2010a) introduced a compact Integer Linear Programming (ILP)
formulation, hereafter calledMonolithic, that can be solved with a generic ILP solver
and provides an optimal solution of the CB-CTT, assuming that enough time is given
to the ILP solver for its resolution. Five sets of variables are used:

– xchr ∈ B equals 1 if course c ∈ C is assigned to room r ∈ R at period h ∈ H
(we assume xchr = 0 whenever course c cannot take place at time period h and/or
cannot take place in room r);

– vcd ∈ B equals 1 if at least a lecture of course c ∈ C is scheduled on day d ∈ D ;
– uc ∈ Z represents the number of days course c ∈ C is short of mwdc;
– zhq ∈ B equals 1 if there is an isolated lecture of curriculum q ∈ Q at time period
h ∈ H ;

– ycr ∈ B equals 1 if at least a lecture of course c ∈ C takes place in room r ∈ R.

The Monolithic formulation reads as follows:

min WRC
∑

r∈R

∑

c∈C :
stc>capr

∑

h∈H
(stc − capr)xchr + WWD

∑

c∈C
uc

+ WCC
∑

h∈H

∑

q∈Q
zhq + WRS

∑

c∈C

(∑

r∈R
ycr − 1

)
(1)

s.t.
∑

h∈H

∑

r∈R
xchr = lctc c ∈ C (2)

∑

c∈C
xchr ≤ 1 h ∈ H , r ∈ R (3)

∑

r∈R
xchr ≤ 1 c ∈ C , h ∈ H (4)

∑

r∈R

∑

c∈Ct

xchr ≤ 1 h ∈ H , t ∈ T (5)

∑

r∈R

∑

c∈Cq

xchr ≤ 1 h ∈ H , q ∈ Q (6)

123

320 A. Bettinelli et al.

∑

r∈R
xchr ≤ vcdh c ∈ C , h ∈ H (7)

∑

r∈R

∑

h∈Hd

xchr ≥ vcd c ∈ C , d ∈ D (8)

∑

d∈D
vcd ≥ mwdc − uc c ∈ C (9)

∑

c∈Cq

∑

r∈R
(xchr − xc,h−1,r − xc,h+1,r) ≤ zhq q ∈ Q, h ∈ H (10)

xchr ≤ ycr c ∈ C , h ∈ H , r ∈ R (11)
∑

h∈H
xchr ≥ ycr c ∈ C , r ∈ R (12)

xchr ∈ B c ∈ C , h ∈ H , r ∈ R (13)

vcd ∈ B c ∈ C , d ∈ D (14)

uc ∈ Z c ∈ C (15)

zhq ∈ B h ∈ H , q ∈ Q (16)

ycr ∈ B c ∈ C , r ∈ R. (17)

The objective function (1) asks for minimizing the violation of soft constraints.
Constraints (2)–(6) model hard constraints by stating that each lecture of course c
must be scheduled, no more than a course can take place in the same room at the same
time period, a course cannot be assigned to more than a room at a given time period,
and courses of a teacher or belonging to the same curriculum cannot be scheduled
simultaneously. Constraints (7)–(8) impose on variable vcd to be equal to 1 if and only
if there is at least a lecture of course c ∈ C held on day d ∈ D . Constraints (9) link vari-
ables v and u. Constraints (10) model curriculum compactness constraints; notice that,
whenever h corresponds the first (last, resp.) time period of day d, variables xc,h−1,r
(xc,h+1,r , resp.) do not exist and are assumed to be 0.Roomstability ismodeled through
constraints (11)–(12). Integrality on the variables is imposed by constraints (13)–(17).

As illustrated by Burke et al. (2010b), the Monolithic formulation (1)–(17) can
be interpreted as a supernodal formulation derived from the standard formulation of
graph coloring problems, where there is a binary variable xehr for each lecture (an
event) instead of each course c. The resulting formulation has many more variables
and much worse computational performance than the Monolithic formulation (the
reader is referred to Burke et al. 2010b for detailed computational results).

The Monolithic formulation can be solved with any generic ILP solver to obtain
an optimal solution. Nonetheless, non-trivial instances cannot be solved, not even
allowing the ILP solver to run for days of computing times. Therefore, Burke et al.
(2010a) proposed various lower bounds, derived from the Monolithic formulation,
that can be computed in reasonable amounts of computing times. These lower bounds,
described in Sects. 3.1.1 and 3.1.2, are used within a heuristic algorithm, proposed
in Burke et al. (2010a), which is described in Sect. 4.1. The results obtained with the

123

An overview of curriculum-based course timetabling 321

Monolithic formulation (1)–(17) and the heuristic algorithm based on the alternative
formulations will be presented in Sects. 3.8 and 4, respectively.

3.1.1 First lower bound derived from the monolithic formulation: Surface1

The first idea suggested by Burke et al. (2010a) to solve hard CB-CTT instances to
optimality or, at least, to compute good lower bounds starting from the Monolithic
formulation is to ignore the penalties for violating room capacity and room stability
(that is, by setting WRC = 0 and WRS = 0) and to add extra-constraints to bound
the number of rooms used at any single time period. This translates into an ILP
model, hereafter called Surface1, with much fewer variables and constraints than the
Monolithic formulation: y variables can be ignored and the index r in the x variables
is no longer necessary. The computational results that will be reported in Sect. 3.8
indicate that the resulting model solved by a general-purpose ILP solver provides, in
much shorter computing times, lower bounds comparable or even better than the ones
achieved by the Monolithic formulation.

3.1.2 Second lower bound derived from the monolithic formulation: Surface2

The Surface1 formulation can be thought of an extreme aggregation of the |R| rooms
into a single multi-room of multiplicity |R| and capacity equal to the size of the
largest room. An intermediate aggregation is to divide the rooms into two sets of
multi-rooms, having capacity smaller or greater than a given threshold, to limit the
number of variables and constraints in the resulting formulation but still considering all
four penalties of soft constraints in the objective function. The resulting formulation,
hereafter called Surface2 (see Burke et al. 2010a for its complete description) provides
lower bounds that are, on average, better than the ones achieved by Surface1 (see
Sect. 3.8 for a detailed analysis).

3.2 The exact branch-and-cut algorithm of Burke et al. (2012)

Burke et al. (2012) described an exact branch-and-cut algorithm to solve CB-CTT to
optimality. The proposed algorithm solves two instances (comp01 and comp11) to
proven optimality. For the remaining instances, the obtained lower bounds are shown
in Table 1 (see Sect. 3.8). This branch-and-cut algorithm starts from an ILP model
whose optimal solution cost is a valid lower bound to CB-CTT and that uses the
same x, v, u and y variables and most of the constraints defined for the Monolithic
formulation. Such model differs from the Monolithic one for the definition of the z
variables and the constraints used to model curriculum compactness; indeed, binary
variables zhq for a given curriculum q ∈ Q and a time period h ∈ H are replaced by
an integer variable zdq ∈ Z that equals the number of isolated lectures of curriculum
q ∈ Q on day d ∈ D , and constraints (10) are replaced with the following constraints

∑

c∈Cq

∑

r∈R
(xchr − xc,h−1,r − xc,h+1,r) ≤ zdhq q ∈ Q, h ∈ H . (18)

123

322 A. Bettinelli et al.

In the following, we refer to the ILP model (1)–(9), (11)–(17), (18), as Relaxed
Monolithic model.

Burke et al. (2012) observed that, by simply introducing constraints (18), the penalty
paid for having isolated lectures for a given curriculum is at most 1 while the number
of these lectures can be arbitrarily high. To achieve a valid formulation, Burke et al.
(2012) proposed to add, to the Relaxed Monolithic model, an exponential (in the
number of periods per day) number of inequalities, that the authors called Cuts from
Event/Free-Period Patterns or, even, Type 1 Cuts, to stress that they are required to
guarantee the correctness of the resulting formulation. For a given curriculum q ∈ Q,
letBq be the index set of all n-dimensional vectors bβ ∈ {1,−1}n , β = 1, . . . , |Bq |,
where n is the number of daily time periods and bβ

h , h = 1, . . . , n, indicates if a lecture

of curriculum q is scheduled at time period h (bβ
h = 1) or not (bβ

h = −1). For each
vector bβ , β = 1, . . . , |Bq | of curriculum q ∈ Q, let us indicate by πβ the number
of corresponding isolated lectures and by oβ the number of schedule lectures (i.e.,

oβ = |{bβ
h : bβ

h = 1, h = 1, . . . , n}|). Then, curriculum compactness constraints can
be modeled by replacing constraints (10) with the following Type 1 Cuts

πβ

⎛

⎝1 − oβ +
n∑

h=1

⎛

⎝bi
∑

c∈Cq

∑

r∈R
xchr

⎞

⎠

⎞

⎠ ≤ zdq q ∈ Q, d ∈ D, β = 1, . . . , |Bq |.

Burke et al. (2012) also introduced three classes of valid inequalities to improve
the linear relaxation of the Relaxed Monolithic model.

1. Implied Bounds (IB) cuts explicitly define lower and/or upper bounds on the vari-
ables. In particular

1 ≤
∑

d∈D
vcd ≤ lctc c ∈ C

1 ≤
∑

r∈R
ycr ≤ lctc c ∈ C

ycr ≤
∑

h∈H
xchr ≤ lctc ycr c ∈ C , r ∈ R

uc ≤ mwdc − 1 c ∈ C .

2. Days of Instruction (DI) cuts take into account soft constraints penalizing insuffi-
cient number of distinct days of instruction per course and stipulate a link between
x and u variables. In particular, the number of lectures of a given course c ∈ C
taking place on a given day d ∈ D cannot be higher than one plus the number
of lectures not necessary to maintain the spread of lectures throughout the week
(lctc − mwdc), if penalty uc is set to 0, namely

∑

h∈Hd

∑

r∈R
xchr ≤ 1 + lctc − mwdc + uc c ∈ C , d ∈ D . (19)

123

An overview of curriculum-based course timetabling 323

Cuts (19) can be extended to cover an arbitrary subset D̂ of days

∑

d∈D̂

∑

h∈Hd

∑

r∈R
xchr ≤ |D̂ | + lctc − mwdc + uc c ∈ C , D̂ ⊂ D . (20)

3. Clique (CLI) cuts state that at most a lecture of properly selected subsets of courses
can take place at a given time period in any room. LetS be a collection of subsets of
courses, where each subset S ⊆ C , S ∈ S , corresponds to a complete subgraph in
the course-based conflict graph having a node for each course and an edge between
two nodes if the two courses cannot be scheduled simultaneously (that is, the two
courses are given by the same teacher and/or belong to the same curriculum). For
each subset S ∈ S and each time period h ∈ H , the following Clique cut is valid

∑

c∈S

∑

r∈R
xchr ≤ 1 h ∈ H , S ∈ S .

3.3 The two-stage ILP method of Lach and Lübbecke (2012)

Lach and Lübbecke (2012) approached CB-CTT through an ILP model. Instead of
solving a formulation with three-index variables for the course/room/time period
assignment (that is, xchr variables of the Monolithic formulation), they decomposed
the problem in two stages corresponding to two different ILP models. The goal of the
first stage is to assign lectures to time periods, without explicitly considering rooms
and minimizing penalties for room capacity, curriculum compactness, and minimum
working days. In the second stage, the assignment of lectures to rooms is performed
and room stability comes into play.

The proposed method consists of solving the two ILP models in sequence. Once
the first stage assigns lectures to time periods, the second stage starts from such an
assignment to assign the lectures of each time period to rooms. Under some conditions,
the final solution is a global optimum, provided that enough time is given to solve the
two models to optimality, but the achieved solution is usually a heuristic one. In
particular, since the soft constraint of room stability is taken into account only in the
second stage, the model is exact only for UD1 (in which room stability is neglected).
The proposed method obtains the optimal solutions for test1–test4 instances of
UD1. Nonetheless, the optimal solution of the first stage always provides a valid lower
bound to CB-CTT.

Some additional notation is necessary to describe the ILP model solved in the first
stage. LetS be the set of all different room capacities.Moreover, letC>s denote the set
of courses with demand larger than s ∈ S (i.e., C>s = {c ∈ C : stc > s}) and R>s

denote the set of rooms with capacity larger than s (i.e.,R>s = {r ∈ R : capr > s}).
Six sets of variables are used:

– xch ∈ B equals 1 if a lecture of course c ∈ C is given at time period h ∈ H ;
– wchs ∈ B equals 1 if the lecture course c ∈ C given at time period h ∈ H takes
place in a room of capacity smaller than s ∈ S ;

123

324 A. Bettinelli et al.

– rhq ∈ B equals 1 if there is an isolated lecture of curriculum q ∈ Q at time period
h ∈ H ;

– u, v, z as introduced for the Monolithic formulation in Sect. 3.1.

The ILP model solved in the first stage is:

min WRC
∑

s∈S

∑

c∈C>s

∑

h∈H
(stc − capr)wchs

+ WCC
∑

h∈H

∑

q∈Q
rhq + WWD

∑

c∈C
uc (21)

s.t.
∑

h∈H
xch = lctc c ∈ C (22)

∑

c∈C
xch ≤ |R| h ∈ H (23)

xch ≥ wchs s ∈ S , h ∈ H , c ∈ C>s (24)
∑

c∈C>s

xch − wchs ≤ |R>s | s ∈ S , h ∈ H (25)

∑

h∈Hd

xch ≥ vcd c ∈ C , d ∈ D (26)

∑

r∈R
xchr ≤ vcdh c ∈ C , h ∈ H (27)

∑

d∈D
vcd ≥ mwdc − uc c ∈ C (28)

∑

q∈Cq

xch = rhq q ∈ Q, h ∈ H (29)

rhq − rh−1,q − xh+1,r ≤ zhq q ∈ Q, h ∈ H (30)
∑

c∈Ct

xch ≤ 1 h ∈ H , t ∈ T (31)

xch ∈ B c ∈ C , h ∈ H (32)

wchs ∈ B s ∈ S , c ∈ C>s, h ∈ H (33)

vcd ∈ B c ∈ C , d ∈ D (34)

uc ∈ Z c ∈ C (35)

zhq , rhq ∈ B h ∈ H , q ∈ Q. (36)

The objective function (21) allows to minimize the penalties for room occupancy,
curriculum compactness, and minimumworking days. Constraints (22) force the solu-
tion to schedule all lctc lectures of each course c ∈ C . No more than |R| lectures
can be scheduled at a given time period h ∈ H (see (23)). The relationship between
the x and w variables is stated by constraints (24)–(25). The correct setting of v vari-
ables is assured by constraints (26)–(27). Penalties for minimum working days are

123

An overview of curriculum-based course timetabling 325

paid because of constraints (28). Constraints (29) establish the relationship between
x and r variables. The correct penalty for curriculum compactness is guaranteed by
constraints (30). No two simultaneous lectures given by the same teacher can be sched-
uled because of constraints (31). Integrality is imposed on the variables by constraints
(32)–(36).

The ILP model of the second stage corresponds to the standard formulation of a
(one-sided perfect) matching in a bipartite graph with additional constraints to take
room stability into account. The bipartite graph is defined on the values of the x
variables in the optimal solution found in the first stage. For a detailed description of
the second stage, the reader is referred to Lach and Lübbecke (2012).

3.4 The divide-and-conquer approach of Hao and Benlic (2011)

To derive valid lower bounds for CB-CTT, Hao and Benlic (2011) developed a
partition-based approach that follows the divide-and-conquer principle. From the orig-
inal problem, a selected subset of the constraints are eliminated in such a way that the
resulting problem is decomposable into smaller independent subproblems. Each sub-
problem can be solved using the ILPmodel (21)–(36) proposed by Lach and Lübbecke
(2012). A valid lower bound to the whole CB-CTT is then obtained by summing up
the optimal solution costs of the individual subproblems.

The rational of the proposed approach can be more formally described as fol-
lows. Let {X p}1≤p≤k denote a partition of the courses of the set C in k classes (i.e.,
∪k
p=1X p = C and Xi ∩ X j = ∅, i, j ∈ {1, . . . , k}, i 	= j). Let P(X p), p = 1, . . . , k,

denote the p-th subproblem derived from model (21)–(36) by keeping only the vari-
ables of the set X p; problem P(X p) is clearly a relaxation of the whole problem
(21)–(36). If LBp, p = 1, . . . , k, indicates the optimal solution cost of problem
P(X p), then

∑k
p=1 LBp represents a valid lower bound to CB-CTT.

The divide-and-conquer approach of Hao and Benlic (2011) consists of three main
steps:

1. Generate a partition {X p} of the set of courses C .
2. Solve each subproblem P(X p), p = 1, . . . , k, with a generic ILP solver to compute

lower bound LBp.
3. Sum up the k values LBp to achieve the final lower bound to CB-CTT.

The partition defined at Step 1 is achieved by running an Iterated Tabu Search
(ITS)—we refer the reader to Hao and Benlic (2011) for all the details. The ITS
determines a k-partition of the graph G = {V, E} defined as follows: the set of nodes
V contains a node for each course c ∈ C , and an edge (c1, c2) belongs to E if there
exists at least a curriculum q ∈ Q containing both courses (i.e., c1, c2 ∈ Cq for some
q ∈ Q). A k-partition is obtained by iteratively removing, from graph G, some of
the edges until the graph contains exactly k connected components. In the end, if any
of the edges added to the original edge set E , for curriculum q is removed, all other
edges induced by the same curriculum q are removed.

In the problem (21)–(36) corresponding to the k-partition defined at Step 1, a subset
of the constraints (29)–(30) corresponding to the eliminated edges can be removed.

123

326 A. Bettinelli et al.

Similarly, constraints modeling room occupancy (22)–(24) and conflict constraints
(29) that link subproblems of a partition can be relaxed. The resulting problem is
decomposable in k different subproblems that can be independently solved.

3.5 The column generation method of Cacchiani et al. (2013)

Cacchiani et al. (2013) presented different formulations for CB-CTT all featuring
exponentially many variables. In the following, we focus on the formulation, called
Two Weekly Schedule Types (2WST), that achieved the best computational results.
Such a formulation presents two sets of binary variables. The first set of variables
is represented by all possible feasible assignments of lectures to rooms and time
periods and considers penalties for room capacity and room stability. The second set
of variables is represented by all possible feasible assignments of lectures to time
periods and considers penalties for curriculum compactness and minimum working
days. To introduce the formulation, we need some additional definitions.

A feasible assignment of lectures to rooms and time periods is a vector x ∈
B

|C |×|H |×|R| made up of components xchr ∈ B representing the assignment of course
c ∈ C to room r ∈ R at time period h ∈ H . Vector x has to be such that: all lectures
of all courses are scheduled; no more than a lecture takes place in the same room
at the same time period; no two lectures given by the same teacher or belonging to
the same curriculum are scheduled simultaneously. The cost of such an assignment
encompasses room capacity and room stability only. Therefore, the set X of all fea-
sible assignments courses/time periods/rooms correspond to all vectors x that satisfy
constraints (2) + (3) + (5) + (6) + (13) + (17) and constraints

∑

h∈H
xchr ≤ lctc ycr c ∈ C , r ∈ R,

where variables x and y are defined as in Sect. 3.1. The cost of any vector x ∈ X is
defined as

c(x) = WRC
∑

c∈C

∑

h∈H

∑

r∈R :
capr<stc

(stc − capr)xchr + WRS
(∑

c∈C

∑

r∈R
(ycr − 1)

)
.

Similarly, a feasible assignment of lectures to time periods is a vector θ ∈ B
|C |×|H |

made up of components θch ∈ B that indicates if a lecture of course c ∈ C is sched-
uled at time period h ∈ H . Vector θ has to be such that: all lectures of all courses
are scheduled; no two lectures given by the same teacher or belonging to the same
curriculum are scheduled simultaneously. The cost of such an assignment covers cur-
riculum compactness and minimum working days only. Therefore, the set � of all
feasible assignments courses/time periods correspond to all vectors θ that satisfy the
following constraints

∑

h∈H
θch = lctc c ∈ C

123

An overview of curriculum-based course timetabling 327

∑

c∈Cq

θch ≤ 1 h ∈ H , q ∈ Q

∑

c∈Ct

θch ≤ 1 h ∈ H , t ∈ T

∑

h∈Hd

θch ≥ vcd c ∈ C , d ∈ D

∑

d∈D
vcd + uc ≥ mwdc c ∈ C

∑

c∈Cq

(θch − θc,h−1 − θc,h+1) ≤ zhq h ∈ H , q ∈ Q

θch ∈ B c ∈ C , h ∈ H

+ (14) + (15) + (16)

where variables u, v, and z are defined as in Sect. 3.1, and the cost d(θ) of any vector
θ ∈ � is defined as

d(θ) = WWD
∑

c∈C
uc + WCC

∑

h∈H

∑

q∈Q
zhq .

Given the definition of the sets X and �. CB-CTT can be formulated as follows.
Let ξ� ∈ B be a binary variable equal to 1 if and only if vector x� ∈ X is selected,
and let ϕ� ∈ B be a binary variable equal to 1 if and only if vector θ� ∈ � is selected.
The 2WST formulation reads as follows:

min
∑

�∈X
c�ξ� +

∑

�∈�

d�ϕ� (37)

s.t.
∑

�∈X
ξ� = 1 (38)

∑

�∈�

ϕ� = 1 (39)

∑

�∈X

∑

r∈R
x�
chrξ� =

∑

�∈�

θ�
chϕ� c ∈ C , h ∈ H (40)

ξ� ∈ B � ∈ X (41)

ϕ� ∈ B � ∈ �. (42)

The objective function (37) aims at minimizing the total cost of the selected
assignments. Constraint (38) force to select exactly one of the courses/time peri-
ods/rooms assignments of the set X . Constraint (39) force to select exactly one of
the courses/time periods assignments of the set �. The correspondence between the
two types of variables is stipulated by constraints (40) that force the ϕ variables to
schedule a lecture of course c ∈ C at time period h ∈ H if and only if such a lecture

123

328 A. Bettinelli et al.

is scheduled in the selected variable ξ�. Integrality on the variables is imposed by
constraints (41)–(42).

Using formulation (37)–(42) for directly solvingCB-CTT is not doable, not even for
small/medium size CB-CTT instances. Even solving the linear relaxation of (37)–(42)
is hard due to the exponential number of variables and the complexity of generating
columns. Therefore, Cacchiani et al. (2013) proposed to compute a valid lower bound
to CB-CTT by dropping constraints (40) and solving the remaining problem, which is
clearly decomposable in the two separate subproblems corresponding to finding the
minimum cost assignment of set X and set �. The computed lower bound is given
by minx∈X {c(x)}+minθ∈�{d(θ)}. If the problem of finding the min-cost assignment
θ is still computationally intractable, Cacchiani et al. (2013) suggested to reformulate
the problem as an ILP model with exponentially many variables and to compute the
optimal solution cost of its linear relaxation.

3.6 Asín Achá and Nieuwenhuis (2014): Formulations via SAT and MaxSAT

Asín Achá and Nieuwenhuis (2014) proposed different encodings of CB-CTT to be
solvedbySATsolvers. Such encodings differ for the subsets of hard and soft constraints
modeled and for the way these constraints are defined. The proposed encodings can
provide either lower or upper bounds to CB-CTT. Optimality can also be proved.

All the encodings are based on a Basic SAT encoding, where all constraints (both
hard and soft) of CB-CTT are defined as hard. Therefore, for those instances for which
the SAT solver finds a solution, this has a zero-cost. The Basic SAT encoding defines
the following four sets of propositional variables:

– xch : course c ∈ C takes place at time period h ∈ H ;
– vcd : course c ∈ C takes place on day d ∈ D ;
– ycr : course c ∈ C is held in room r ∈ R;
– zhq : one of the lectures of curriculum q ∈ Q takes place at time period h ∈ H .

The following relationships among the propositional variables are stipulated (¬x
indicates the negation of literal x , and ∨ indicates a disjunction):

– If a course c ∈ C takes place at a time period h ∈ H , then it takes place on day dh

¬xch ∨ vcdh c ∈ C , h ∈ H .

– If a course c ∈ C is held on day d ∈ D , it has to take place at, at least, one of the
time periods of the set Hd = {h1, h2, . . . , hn} of day d

¬vcd ∨ xch1 ∨ xch2 ∨ . . . ∨ xchn c ∈ C , d ∈ D .

– If a lecture of course c ∈ C is held at time period h ∈ H , all the curricula of the
setQc occur at time period h

¬xch ∨ zhq c ∈ C , h ∈ H , q ∈ Qc

123

An overview of curriculum-based course timetabling 329

– If a curriculum q ∈ Q takes place at time period h ∈ H , then at least one of the
courses of the set Cq = {c1, c2, . . . , cn} must occur at time period h

¬zhq ∨ xc1h ∨ xc2h ∨ . . . ∨ xcnh h ∈ H , q ∈ Q.

Hard and soft constraints of CB-CTT are all encoded as hard constraints through
the following clauses, where eq(k, S) (geq(k, S), resp.) represents a set of literals S
that are satisfied if and only if exactly (at least, resp.) k of the variables of S are true:

– CurriculumClashes: No two courses c1, c2 ∈ C forwhich there exists a curriculum
q ∈ Q such that c1, c2 ∈ Cq can be scheduled at the same time period h ∈ H

¬xc1h ∨ ¬xc2h h ∈ H , c1, c2 ∈ C : Qc1 ∩ Qc2 	= ∅.

– Teacher Clashes: No two courses c1 and c2 given by the same teacher t ∈ T may
be scheduled at the same time period h ∈ H

¬xc1h ∨ ¬xc2h h ∈ H , t ∈ T , c1, c2 ∈ Ct .

– RoomClashes: No two courses c1 and c2 can be scheduled in the same room r ∈ R
at the same time period h ∈ H

¬xc1h ∨ ¬xc2h ∨ ¬yc1r ∨ ¬yc2r h ∈ H , r ∈ R, c1, c2 ∈ C .

– Time Period Availability: If a course c ∈ C cannot be scheduled at time period
h ∈ H , the one-literal clause ¬xch is added.

– Number of Lectures: Exactly lctc lectures must be scheduled for course c ∈ C

eq(lctc, {xch1, xch2 , . . . , xchn }) c ∈ C ,

where H = {h1, h2, . . . , hn}.
– Room Capacity: Each course must be scheduled into a room in which it fits

¬ycr c ∈ C , r ∈ R : capr < stc.

– Minimum Working Days: For each course c ∈ C , at least mwdc literals of the set
vcd1, vcd2 , . . . , vcd|D| must be true, where D = {d1, d2, . . . , d|D|}:

geq(mwdc, {vcd1, vcd2 , . . . , vcd|D| }) c ∈ C .

– Isolated Lectures: If some curriculum q ∈ Q takes place at a given time period
h ∈ H , then q must also occur at time period h−1 (if h is not the first time period
of the day) and/or time period h + 1 (if h is not the last time period of the day)

¬zhq ∨ zh−1,q ∨ zh+1,q c ∈ C , h ∈ H .

123

330 A. Bettinelli et al.

– Room Stability: Each course must be assigned to exactly one room of the set
R = {r1, r2, . . . , rn}

eq(1, {ycr1 , ycr2 , . . . , ycrn }) c ∈ C .

Asín Achá and Nieuwenhuis (2014) proposed different encodings based on the
Basic one just outlined. In particular, they proposed: (i) to relax the soft constraints of
the isolated lectures and to solve the derived model through a Partial MaxSAT solver,
(ii) to relax also the soft constraints of the minimum working days and to solve the
derived model through a Weighted Partial MaxSAT solver, (iii) to relax all the soft
constraints and to solve the derivedmodel through aPartialMaxSAT solver, and (iv) to
use a branch-and-bound algorithm for theWeighted Partial MaxSAT problem. Among
these encodings, the one achieving the best lower bounds consists of relaxing all the
four CB-CTT soft constraints (i.e., room capacity, room stability, curriculum compact-
ness, and minimum working days). Each violation of a soft constraint is described by
as many clauses as its cost—that is, for each curriculum q ∈ Q and each time period
h ∈ H ,WCC clauses are added to take into account curriculum compactness; for each
course c ∈ C , WWD clauses are added to take into account minimum working days;
and so on. This complete encoding, besides providing valid lower bounds to CB-CTT,
allows to achieve the optimal solutions for eleven instances of ITC-2007 (see Sect. 3.8).
The best heuristic solutions are instead obtained by considering all the different types
of encodings, and selecting, for each instance, the best result achieved. The different
heuristic algorithms are tested on the instances of ITC-2007 (comp01–comp21) and
on additional instances (test1–test4) and (DDS1–DDS7). The obtained results
are presented in Sect. 4.3.

3.7 Banbara et al. (2013): Answer Set Programming

Banbara et al. (2013) used Answer Set Programming (ASP) as a modeling language
for CB-CTT. ASP is useful for modeling combinatorial problems in computer science
and artificial intelligence. Each hard constraint was expressed by integrity constraints
and aggregates of ASP. In particular, the authors presented two different encodings
called Direct encoding and Linked encoding and showed that the linked encoding is
faster and can be more scalable to the number of courses than the direct encoding.
For the soft constraints, they used the predicate penalty(S, V,C), which is intended
to express that a soft constraint S is violated by V and its penalty cost is C . The
proposed approach is tested on the ITC-2007 instances (comp01–comp21), and on
DDS1–DDS7, test1–test4 and erlangen*. Since no lower bound is reported
in the corresponding paper, the obtained results are presented in Sect. 4.3.

3.8 Computational results

In this section, we report a computational comparison of the performance of the dif-
ferent approaches described in Sects. 3.1–3.6. The comparison is made by considering

123

An overview of curriculum-based course timetabling 331

the 21 instances comp01–comp21 described in Sect. 2.1, that have been used as bench-
mark to test all exact methods and lower bounds proposed in the literature.

For each of the 21 instances, Table 1 reports the name (Inst) and the best-known
upper bound (WBest), taken from the website http://satt.diegm.uniud.it/ctt, which
is indicated with an asterisk whenever it corresponds to the optimal solution cost.
Then, for the following nine approaches, we report the achieved lower bound and its
percentage with respect to the best-known upper bound:

– BMPR10—Column LB0: Monolithic formulation (see Sect. 3.1) proposed by
Burke et al. (2010a);

– BMPR10—Column LB1: Surface1 (see Sect. 3.1.1) proposed in Burke et al.
(2010a);

– BMPR10—Column LB2: Surface2 (see Sect. 3.1.2) proposed in Burke et al.
(2010a);

– BMPR12—Column LB0: branch-and-cut with both Type 1 and Type 2 cuts (see
Sect. 3.2) proposed in Burke et al. (2012);

– BMPR12—Column LB1: Surface1 plus Implied Bounds cuts (see Sect. 3.2)
reported in Burke et al. (2012);

– LL12: first stage of the two-stage approach of Lach and Lübbecke (2012) (see
Sect. 3.3);

– HB11: divide-and-conquer approach of Hao and Benlic (2011) (see Sect. 3.4);
– CCRT13: column generation of Cacchiani et al. (2013) (see Sect. 3.5);
– AN14: Partial MaxSAT of Asín Achá and Nieuwenhuis (2014) (see Sect. 3.6).

For each instance, the best lower bound found by the compared approaches is
highlighted in bold. In lines labeled Avg1–14 and Avg1–21, we indicate the number
of times each method achieves the best-known lower bound and the corresponding
average percentage lower bounds over the first 14 and all 21 instances, respectively. At
the time of writing this paper, the website http://satt.diegm.uniud.it/ctt reports, as best-
known lower bounds for the five instances comp05, comp09, comp18, comp19,
and comp21, the following values 211, 96, 61, 57, and 74, respectively, that, to the
best of our knowledge, have not appeared in any published paper available from the
literature.

Table 1 indicates that none of the exact approaches developed so far can guarantee
to provide really tight lower bounds on all benchmark instances. Considering the
different machines used and the different time limits imposed on the algorithms, it
is hard to have a fair comparison among the different approaches. Nonetheless, the
divide-and-conquer algorithm of Hao and Benlic (2011) (although with very large
computing times), the column generation of Cacchiani et al. (2013), and the Partial
MaxSAT of Asín Achá and Nieuwenhuis (2014) seem to be, globally, the three best
approaches currently available.

However, the choice of the approach to be used depends on the characteristics of the
problem to be solved. In case of very constrained problems, SAT-type methodologies
seem to be more promising. If the problem does not contain constraints related to a
“group of rooms” (such as room stability), a two-stage ILPmethod, such that proposed
by Lach and Lübbecke (2012), has certainly advantages, as room assignment can be
performed in a second stage, using a matching procedure. Due to the wide variety of

123

http://satt.diegm.uniud.it/ctt
http://satt.diegm.uniud.it/ctt

332 A. Bettinelli et al.

Ta
bl
e
1

C
om

pa
ri
so
n
of

th
e
lo
w
er

bo
un

ds
ac
hi
ev
ed

by
th
e
di
ff
er
en
ta
pp

ro
ac
he
s
de
sc
ri
be
d
ea
rl
ie
r
in

th
is
se
ct
io
n
(U
D
2
)

In
st

W
B
es
t

B
M
PR

10
B
M
PR

12
L
L
12

H
B
11

C
C
R
T
13

A
N
14

L
B
0

%
L
B
1

%
L
B
2

%
L
B
0

%
L
B
1

%
L
B

%
L
B

%
L
B

%
L
B

%

co
m
p0

1
5∗

4
80

.0
0

0
0.
00

5
10

0.
00

4
80

.0
0

5
10

0.
00

4
80

.0
0

4
80

.0
0

5
10

0.
00

0
0.
00

co
m
p0

2
24

1
4.
17

0
0.
00

1
4.
17

0
0.
00

6
25

.0
0

11
45

.8
3

12
50

.0
0

16
66

.6
7

16
66

.6
7

co
m
p0

3
64

25
39

.0
6

25
39

.0
6

33
51

.5
6

0
0.
00

43
67

.1
9

25
39

.0
6

38
59

.3
8

52
81

.2
5

28
43

.7
5

co
m
p0

4
35

∗
8

22
.8
6

35
10

0.
00

35
10

0.
00

0
0.
00

2
5.
71

28
80

.0
0

35
10

0.
00

35
10

0.
00

35
10

0.
00

co
m
p0

5
28

4
11

1
39

.0
8

11
9

41
.9
0

11
4

40
.1
4

95
33

.4
5

18
3

64
.4
4

10
8

38
.0
3

18
3

64
.4
4

16
6

58
.4
5

48
16

.9
0

co
m
p0

6
27

∗
12

44
.4
4

13
48

.1
5

16
59

.2
6

0
0.
00

6
22

.2
2

10
37

.0
4

22
81

.4
8

11
40

.7
4

27
10

0.
00

co
m
p0

7
6∗

0
0.
00

6
10

0.
00

6
10

0.
00

0
0.
00

0
0.
00

6
10

0.
00

6
10

0.
00

6
10

0.
00

6
10

0.
00

co
m
p0

8
37

∗
11

29
.7
3

37
10

0.
00

37
10

0.
00

0
0.
00

2
5.
41

37
10

0.
00

37
10

0.
00

37
10

0.
00

37
10

0.
00

co
m
p0

9
96

∗
21

21
.8
8

68
70

.8
3

66
68

.7
5

0
0.
00

0
0.
00

46
47

.9
2

72
75

.0
0

92
95

.8
3

35
36

.4
6

co
m
p1

0
4∗

2
50

.0
0

3
75

.0
0

4
10

0.
00

0
0.
00

0
0.
00

4
10

0.
00

4
10

0.
00

2
50

.0
0

4
10

0.
00

co
m
p1

1
0∗

0
10

0.
00

0
10

0.
00

0
10

0.
00

0
10

0.
00

0
10

0.
00

0
10

0.
00

0
10

0.
00

0
10

0.
00

0
10

0.
00

co
m
p1

2
29

8
39

13
.0
9

10
1

33
.8
9

95
31

.8
8

0
0.
00

5
1.
68

53
17

.7
9

10
9

36
.5
8

10
0

33
.5
6

99
33

.2
2

co
m
p1

3
59

∗
14

23
.7
3

52
88

.1
4

54
91

.5
3

3
5.
08

0
0.
00

41
69

.4
9

59
10

0.
00

57
96

.6
1

59
10

0.
00

co
m
p1

4
51

∗
40

78
.4
3

41
80

.3
9

42
82

.3
5

0
0.
00

0
0.
00

46
90

.2
0

51
10

0.
00

48
94

.1
2

51
10

0.
00

A
vg

1-
14

1
39

.0
3

4
62

.6
7

6
73

.5
5

1
15

.6
1

3
27

.9
7

4
67

.5
3

9
81

.9
2

8
79

.8
0

9
71

.2
1

123

An overview of curriculum-based course timetabling 333

Ta
bl
e
1

co
nt
in
ue
d

In
st

W
B
es
t

B
M
PR

10
B
M
PR

12
L
L
12

H
B
11

C
C
R
T
13

A
N
14

L
B
0

%
L
B
1

%
L
B
2

%
L
B
0

%
L
B
1

%
L
B

%
L
B

%
L
B

%
L
B

%

co
m
p1

5
64

38
59

.3
8

52
81

.2
5

28
43

.7
5

co
m
p1

6
18

∗
16

88
.8
9

13
72

.2
2

18
10

0.
00

co
m
p1

7
56

∗
48

85
.7
1

48
85

.7
1

56
10

0.
00

co
m
p1

8
61

∗
24

39
.3
4

52
85

.2
5

27
44

.2
6

co
m
p1

9
57

∗
56

98
.2
5

48
84

.2
1

46
80

.7
0

co
m
p2

0
4∗

2
50

.0
0

4
10

0.
00

4
10

0.
00

co
m
p2

1
74

∗
61

82
.4
3

68
91

.8
9

42
56

.7
6

A
vg

1–
21

10
78

.6
1

12
81

.8
0

12
72

.5
0

B
M
P
R
10

lo
w
er

bo
un

ds
ob

ta
in
ed

by
B
ur
ke

et
al
.
(2
01

0a
)
w
ith

M
on

ol
ith

ic
fo
rm

ul
at
io
n
(L
B
0)
,
Su

rf
ac
e1

(L
B
1)

an
d
Su

rf
ac
e2

(L
B
2)
—

In
te
l
Pe

nt
iu
m

4
3.
20

G
H
z—

C
pl
ex

11
−t

l=
31

20
0”

(M
on

ol
ith

ic
an
d
Su

rf
ac
e2
),
tl
=
78

0”
(S
ur
fa
ce
1)
;

B
M
P
R
12

lo
w
er

bo
un

ds
ob

ta
in
ed

by
B
ur
ke

et
al
.
(2
01

2)
by

br
an
ch
-a
nd

-c
ut

w
ith

bo
th

Ty
pe

1
an
d
2
cu
ts

(L
B
0)

an
d
by

Su
rf
ac
e1

pl
us

IB
C
ut
s
(L
B
1)
—

In
te
l
Pe

nt
iu
m

4
3.
20

G
H
z—

C
pl
ex

10
an
d
C
pl
ex

12
.1

−t
l=

72
00

”
(B

ra
nc
h-
an
d-
C
ut
),
tl
=
18

00
”
(S
ur
fa
ce
1)
;

L
L
12

fir
st
st
ag
e
of

L
ac
h
an
d
L
üb
be
ck
e
(2
01

2)
—

L
in
ux

PC
3.
4
G
H
z—

C
pl
ex

11
.0
.1

−t
l=

13
00

0”
;

H
B
11

di
vi
de
-a
nd

-c
on

qu
er

of
H
ao

an
d
B
en
lic

(2
01

1)
—

X
eo
n
E
54

40
2.
83

G
H
z—

C
O
IN

-O
R
2.
2.
2−

tl
=
25

20
0”

pe
r
su
bp

ro
bl
em

;
C
C
R
T
13

co
lu
m
n
ge
ne
ra
tio

n
of

C
ac
ch
ia
ni

et
al
.(
20

13
)—

In
te
lX

eo
n
E
53

10
D
ua
lC

or
e
1.
6
G
H
z—

C
pl
ex

11
.2

−t
l=

22
80

0”
;

A
N
14

Pa
rt
ia
lM

ax
SA

T
of

A
sí
n
A
ch
á
an
d
N
ie
uw

en
hu
is
(2
01

4)
us
in
g
B
ar
ce
lo
gi
c
Pa
rt
ia
lM

ax
SA

T
so
lv
er
—

21
00

M
H
z
A
M
D
-O

pt
er
on

—
tl
=
10

0,
00

0”

123

334 A. Bettinelli et al.

features, especially arising in real-world university timetabling problems, and to the
many related constraints and objectives, it is not possible to resort to a single approach,
but rather to a set of alternative approaches.

4 Heuristic algorithms

In this section, we describe the most effective heuristic algorithms proposed for CB-
CTT. In particular, we illustrate the algorithms classified in the first five places accord-
ing to the ranking of the ITC-2007 competition, the seminal works and the most recent
effective methods for CB-CTT. We classify them in ILP-based heuristic algorithms
(Sect. 4.1) and metaheuristic algorithms (Sect. 4.2). We further distinguish the meta-
heuristic algorithms in tabu search methods, simulated annealing methods and hybrid
methods. Clearly, this classification is not strict: most of the methods are complex
ones and incorporate many ingredients coming from different classes of algorithms.
In Sect. 4.3, we report the results of the described methods on ITC-2007 instances.

As it will be shown in Sect. 4.3, metaheuristic algorithms often perform better
than ILP-based ones. In addition, hybridized methods are often very effective, since
they incorporate good features from different types of algorithms. Methods based on
constraint satisfaction are also very effective, even if sometimes they require longer
computing times.

4.1 ILP-based heuristic algorithms

These methods are based on the mathematical models described in Sect. 3.
In Burke et al. (2010a), the authors propose the relaxed mathematical formulations

Surface1 and Surface2, described in Sect. 3.1. Based on these formulations, a heuristic
algorithm is proposed. The idea is to consider, in a first phase, only one computation-
ally difficult component of the full problem and the associated subset of objectives,
formulated as an ILP model (i.e., Surface1 and Surface2), and derive feasible solu-
tions for it. These solutions define the neighborhoods to dive into in a second phase.
More precisely, in the first phase an objective-restricted neighborhood generator is
used to find an assignment of events to periods, such that at most a given number of
events take place at any given period, but disregarding other issues of the assignment
of rooms, such as room capacities. In the diving phase, two value restricted submodels
are defined: PeriodFixed dives, in which the periods of all the courses are fixed to be
those obtained from the surface solution, and DayFixed dives, in which the days of
all the courses are fixed (but not the specific period of the day). The authors consider
three configurations of their algorithm, according to the computing time available: the
first one (1 CPU time unit) consists of solving Surface1 and then diving according
to the PeriodFixed dive, the second one (10 CPU time units) and the third one (40
CPU time units) solve Surface2 and then PeriodFixed dive followed by DayFixed
dive for different time limits. The algorithm is tested on the instances of ITC-2007
(comp01–comp14). The obtained results are presented in Table 2 (see Sect. 4.3).

In Lach and Lübbecke (2012), the two-stage mathematical model described in Sect.
3.3 is proposed. Thismodel is based on the decomposition of the problem in two stages.

123

An overview of curriculum-based course timetabling 335

Ta
bl
e
2

C
om

pa
ri
so
n
of

th
e
be
st
so
lu
tio

n
va
lu
es

fo
un

d
by

th
e
he
ur
is
tic

m
et
ho

ds
(U
D
2
)

In
st

W
B
es
t

B
es
t

M
09

B
M
PR

10
L
H
10

L
H
G
11

L
L
12

A
T
12

B
D
S1

2
B
ST

IS
13

A
N
14

K
14

co
m
p0

1
5∗

5
5

9
5

5
12

5
5

5
5

5

co
m
p0

2
24

24
43

63
34

40
46

26
41

12
5

24
34

co
m
p0

3
64

66
72

12
3

70
71

66
70

66
19

6
11

1
67

co
m
p0

4
35

∗
35

35
36

38
39

38
35

35
36

35
35

co
m
p0

5
28

4
29

5
29

8
62

9
29

8
29

8
36

8
29

5
30

1
94

7
13

43
29

9

co
m
p0

6
27

∗
27

41
46

47
47

51
30

43
15

5
27

40

co
m
p0

7
6∗

6
14

45
19

21
25

7
18

79
6

8

co
m
p0

8
37

∗
37

39
41

43
43

44
37

39
39

37
39

co
m
p0

9
96

∗
96

10
3

10
5

99
10

1
99

10
2

96
26

4
17

1
98

co
m
p1

0
4∗

4
9

23
16

18
16

5
15

4
4

9

co
m
p1

1
0∗

0
0

12
0

0
7

0
0

0
0

0

co
m
p1

2
29

8
30

6
33

1
78

5
32

0
32

0
54

8
31

5
32

0
11

14
97

7
30

6

co
m
p1

3
59

∗
59

66
67

65
65

66
59

64
11

2
59

59

co
m
p1

4
51

∗
51

53
55

52
55

53
61

53
52

51
53

N
o.

of
be
st

3
0

2
2

1
6

5
3

10
5

N
o.

of
be
st
on
ly

0
0

0
0

0
1

1
0

4
1

A
vg

ga
p
14

16
.7
%

44
.1
%

18
.7
%

20
.7
%

36
.4
%

5.
9
%

17
.3
%

41
.7
%

16
.5
%

11
.2
%

123

336 A. Bettinelli et al.

Ta
bl
e
2

co
nt
in
ue
d

In
st

W
B
es
t

B
es
t

M
09

B
M
PR

10
L
H
10

L
H
G
11

L
L
12

A
T
12

B
D
S1

2
B
ST

IS
13

A
N
14

K
14

co
m
p1

5
64

66
69

69
66

19
6

11
1

66

co
m
p1

6
18

∗
18

38
18

28
28

18
28

co
m
p1

7
56

∗
56

80
60

71
17

1
56

67

co
m
p1

8
61

∗
65

67
69

69
18

4
83

65

co
m
p1

9
57

∗
57

59
57

60
91

57
60

co
m
p2

0
4∗

4
35

7
29

80
4

17

co
m
p2

1
74

∗
86

10
5

86
89

23
2

86
87

N
o.

of
be
st

-
-

2
-

-
9

6
3

15
7

N
o.

of
be
st
on
ly

-
-

0
-

-
1

1
0

6
2

A
vg

ga
p
21

-
-

22
.0
%

-
-

6.
8
%

19
.0
%

48
.3
%

14
.0
%

13
.9
%

M
09

M
ül
le
r
(2
00

9)
—

be
st
of

10
0
ru
ns
,1

C
PU

tim
e
un

it;
B
M
P
R
10

B
ur
ke

et
al
.(
20

10
a)
—

40
C
PU

tim
e
un

its
(1

C
PU

tim
e
un

it
=
78

0
s)
—

In
te
lP

en
tiu

m
4
3.
2
G
H
z;

L
H
10

L
ü
an
d
H
ao

(2
01

0)
—

be
st
ov
er

10
0
ru
ns
,1

C
PU

tim
e
un

it
(=
39

0
s)
—

3.
4
G
H
z
PC

;
L
H
G
11

L
ü
et
al
.(
20

11
)—

be
st
of

10
ru
ns
,1

C
PU

tim
e
un

it—
3.
4
G
H
z
co
m
pu

te
r;

L
L
12

L
ac
h
an
d
L
üb
be
ck
e
(2
01

2)
—

40
C
PU

tim
e
un

its
(1

C
PU

tim
e
un

it
=
40

0s
)—

L
in
ux

PC
3.
4
G
H
z;

A
T
12

A
bd
ul
la
h
an
d
T
ur
ab
ie
h
(2
01

2)
—

be
st
of

10
ru
ns
,1

C
PU

tim
e
un

it
(=
60

0
s)
—

In
te
lP

en
tiu

m
4
2.
33

G
H
z;

B
D
S1

2
B
el
lio

et
al
.(
20

12
)—

1
C
PU

tim
e
un

it,
be
st
so
lu
tio

ns
fo
un

d
du

ri
ng

th
e
ex
pe
ri
m
en
ta
tio

n—
In
te
lQ

ua
d
co
re
;

B
ST

IS
13

B
an
ba
ra

et
al
.(
20

13
)—

3
h—

2.
66

G
H
z
In
te
lX

eo
n;

A
N
14

A
sí
n
A
ch
á
an
d
N
ie
uw

en
hu
is
(2
01

4)
—

10
0,
00

0
s—

2.
1
G
H
z
A
M
D
-O

pt
er
on

;
K
14

K
ie
fe
r
et
al
.(
20

14
)—

be
st
ov
er

10
ru
ns
,1

C
PU

tim
e
un

it—
C
or
e
i5
-3
55

0
3.
30

G
H
z

123

An overview of curriculum-based course timetabling 337

The soft constraint of room stability is taken into account only in the second stage
and the model gives therefore heuristic solutions for UD2. The model is tested on
the instances of ITC-2007 (comp01–comp14) and on additional instances reflecting
the timetabling situation at the Technical University of Berlin (DDS1–DDS7). The
obtained results are presented in Table 2 (see Sect. 4.3).

4.2 Metaheuristic algorithms

In this section, we describe effective metaheuristic algorithms for CB-CTT. They are
usually characterized by the definition and exploration of several different neighbor-
hoods, obtained, for example, by changing the time period assigned to a lecture, or
by changing the room assignment for a lecture or by interchanging Kempe chains
(i.e., by moving a subset of courses in the timetable to any other time period, while
always keeping the feasibility of the solution). More complex neighborhoods are also
used and in some cases it is allowed to accept moves to infeasible solutions. The meta-
heuristic algorithms are often divided in phases: the first phase is used for constructing
an initial solution and the subsequent phases are used to explore the neighborhoods
to determine an improved solution. Another common feature of these algorithms is
to introduce a way to avoid being trapped in local optima. To this aim tabu search,
simulated annealing or great deluge are used. Most of the methods combine more
components.

In the following sections, we give an overview of these metaheuristic algorithms.

4.2.1 Tabu search algorithms

As described in the seminal paper by Di Gaspero and Schaerf (2003), one of the
most critical choices in local search is the definition of the neighborhood structure. In
their paper, the authors investigate and compare three different structures: (i) neigh-
borhood union: in this case the union of many neighborhoods is considered and,
at each iteration, the local search algorithm selects a move belonging to any of the
components; (ii) neighborhood composition: in this case chains of moves belonging
to different neighborhoods are considered; (iii) token-ring search: given an initial
state and a set of algorithms based on different neighborhood functions, the token-
ring search makes circularly a run of each algorithm, always starting from the best
solution found by the previous one. The search space is composed of the assign-
ments for which all the lectures are scheduled and assigned to distinct periods, and
the availability constraints are respected. The violations of the other hard constraint
are penalized in the cost function, together with the soft constraints. Two types of
neighborhoods are considered: the first one is defined by changing the time period
assigned to a lecture of a given course to a new one which satisfies the availability
constraints; the second one is defined by changing the room assigned to a lecture in
a given time period. Hill climbing and tabu search algorithms are compared on these
two types of neighborhoods, on their union, on their composition, and combined in a
token-ring search. The algorithms are tested on four instances of the Udine University
(test1–test4).

123

338 A. Bettinelli et al.

Atsuta et al. (2008) propose to formulate the timetabling instances of CB-CTT as
instances of the constraint satisfaction problem (CSP), and then to apply a general
purpose CSP solver, which adopts tabu search and iterated local search procedures, to
find their solutions. The proposed approach is tested on the ITC-2007 instances, and
classified in the third position at the ITC-2007 competition.

In Clark et al. (2009), the authors present a solver called QuickFix. It constructs
an initial assignment of teacher, period and room to each lecture of each course, by
allowing the violation of constraints. Then, it picks a violated constraint, selected
randomly out of the set of violated constraints, with the selection weighted by con-
straint weights (hard constraints have a very high weight while soft constraints have
the weight as in the objective function). A move is applied to repair the constraint: in
particular, the solution assignments are updated by performing swap moves (teacher–
period swap or room–period swap). To avoid being trapped in local minima, QuikFix
employs two tabu lists that store the recent and the bad moves, and adopts the strategic
oscillation technique, a mechanism for escaping from local minima by modifying the
weights of the constraints. In addition, if the algorithm is not able to find a feasible
solution better than the initial one within a given number of moves, it re-starts the
search from the best solution found so far. The algorithm is tested on the instances of
ITC-2007 (comp01–comp14) and classified in the fifth position at the ITC-2007
competition.

An adaptive tabu search is proposed in Lü and Hao (2010). The algorithm consists
of three phases: initialization, intensification and diversification. In the initialization
phase, a sequential greedy algorithm constructs a feasible timetable. The algorithm
starts from an empty timetable and iteratively selects a lecture of a course (courseswith
a small number of available periods and a large number of unassigned lectures have
priority) and assigns it a period and a room. As soon as a feasible initial assignment is
reached, the adaptively combined intensification and diversification phases are used to
reduce the number of soft constraint violations. The intensification phase consists of a
tabu search algorithm that exploits two neighborhoods: one consists of exchanging the
periods and rooms assigned to two lectures of different courses; the other one combines
moves defined by interchanging two Kempe chains (see Lü and Hao 2010 for more
details). When the search ends at a local optimum, the tabu search is restarted from
this local optimum, but using the other neighborhood. This process is repeated until no
improvement is possible. Iterated local search provides the diversification mechanism
to guide the search to escape from the current local optimum. To destruct the reached
local optimum solution, the algorithm uses a penalty-guided perturbation operator
(see Lü and Hao 2009) based on the identification of a set of highly-penalized lectures
and a random selection of a given number of neighborhood moves. The algorithm is
tested on the instances of ITC-2007 (comp01–comp21) and classified in the second
position at the ITC-2007 competition. The obtained results are presented in Tables 2
and 3 (see Sect. 4.3).

In Lü et al. (2011), an experimental analysis of neighborhood relations for local
search algorithms is presented. The authors examine three neighborhoods from the
literature and introduce a newone, calledKempe swap, which consists of interchanging
the lectures of two distinct Kempe chains. They also consider neighborhood union
(at each iteration the neighborhood structure includes all the moves of two different

123

An overview of curriculum-based course timetabling 339

Table 3 Comparison of the average solution values found by the heuristic methods (UD2)

Inst WBest Best M09 LH10 AT12 TAA13 BCDSU14 K14

comp01 5∗ 5 5.0 5.0 5.0 5.0 5.3 5.0

comp02 24 24 61.3 60.6 36.4 42.2 54.7 41.9

comp03 64 66 94.8 86.6 74.4 81.3 80.7 72.8

comp04 35∗ 35 42.8 47.9 38.5 50.7 40.4 35.2

comp05 284 295 343.5 328.5 314.5 301.3 339.0 306.3

comp06 27∗ 27 56.8 69.9 45.3 56.7 53.7 48.1

comp07 6∗ 6 33.9 28.2 12.0 21.1 26.8 15.3

comp08 37∗ 37 46.5 51.4 40.8 52.4 44.5 40.6

comp09 96∗ 96 113.1 113.2 108.4 106.3 107.9 102.4

comp10 4∗ 4 21.3 38.0 8.4 11.1 22.9 13.3

comp11 0∗ 0 0.0 0.0 0.0 0.0 0.0 0.0

comp12 298 306 351.6 365.0 320.3 314.1 340.1 323.9

comp13 59∗ 59 73.9 76.2 64.3 76.3 75.7 63.8

comp14 51∗ 51 61.8 62.9 64.4 64.6 58.6 56.1

comp15 64 66 94.8 87.8 72.7 75.5 80.0 73.8

comp16 18∗ 18 41.2 53.7 23.7 42.5 39.3 34.8

comp17 56∗ 56 86.6 100.5 76.4 71.3 79.9 73.0

comp18 61∗ 65 91.7 82.6 75.6 79.9 83.7 66.5

comp19 57∗ 57 68.8 75.0 66.8 70.7 67.1 64.6

comp20 4∗ 4 34.3 58.2 13.5 17.8 47.5 24.0

comp21 74∗ 86 108.0 125.3 100.7 87.8 104.7 95.3

No. of best 2 2 8 6 1 11

Avg gap 33.46% 36.05% 20.51% 27.50% 30.37% 21.78%

M09 Müller (2009)—average out of 10 runs, 1 CPU time unit (results taken from the competition website
http://www.cs.qub.ac.uk/itc2007/);
LH10 Lü and Hao (2010)—average out of 100 runs, 1 CPU time unit—3.4GHz PC;
AT12 Abdullah and Turabieh (2012)—average out of 10 runs, 1 CPU time unit (=600s)—Intel Pentium 4
2.33GHz;
TAA13 Tarawneh et al. (2013)—average out of 30 runs, 1 CPU time unit—2.1GHz PC;
BCDSU14 Bellio et al. (2014)—average out of 10 runs, 1 CPU time unit—Intel Xeon E-2660 2.2GHz;
K14 Kiefer et al. (2014)—average over 10 runs, 1 CPU time unit—Core i5-3550 3.30GHz

neighborhoods) and token-ring search (different neighborhoods are consecutively used
on the local optimum of the previous neighborhood until no improvement is possible).
To evaluate the behaviors of the different neighborhoods and their combinations, a
steepest descent algorithmand threemetaheuristic algorithms, i.e., tabu search, iterated
local search and adaptive tabu search, are used. Three evaluation criteria are introduced
to characterize the search capability of a neighborhood: percentage of improving
neighbors, improvement strength and search steps. The analysis shows that the Kempe
swap neighborhood is more powerful than the other neighborhoods, and expresses the
superiority of the token-ring search for a combination of neighborhoods. Results on
the instances of ITC-2007 are reported (comp01–comp14). The obtained results are
presented in Table 2 (see Sect. 4.3).

123

http://www.cs.qub.ac.uk/itc2007/

340 A. Bettinelli et al.

4.2.2 Simulated annealing algorithms

Geiger (2012) proposes a local search procedure based on threshold accepting, a
simplified deterministic variant of simulated annealing. This technique is used to
overcome local optima by a deterministic acceptance of inferior solutions up to a
given threshold. A constructive phase tries to determine a feasible assignment of
lectures to time periods: at each iteration, the most critical event, i.e., the lecture with
the smallest number of time periods to which it may be assigned, is selected. Then,
the assignment is performed taking into account how well the number of students
of the lecture matches the capacity of the available rooms. A reactive procedure is
applied that gives priority to the most difficult events found in the constructive phase.
An iterative procedure is then applied: at each step, a number of randomly chosen
events is unassigned; a reassignment randomized phase follows, giving to each event
the same probability. Two criteria are considered for evaluating the timetables, i.e.,
the distance from feasibility and the total penalty due to the soft constraints violation.
In case of identical distance from feasibility, solutions with a higher total penalty are
accepted up to a given threshold. The algorithm is tested on the instances of ITC-2007
(comp01–comp21) and classified in the fourth position at the ITC-2007 competition.

In Bellio et al. (2014) (see also Bellio et al. 2013), a simulated annealing algorithm
is proposed. Two neighborhoods are considered, i.e., the move of a lecture from a
time period/room to another time period and/or another room (possibly to one that is
empty in that time period), and the swap of time periods and rooms of two lectures of
distinct courses. The algorithm uses a swap rate parameter to control how often the
second neighborhood is selected with respect to the first one. The algorithm consists of
a single-stage simulated annealing, which is enhanced by two features: a cutoff-based
temperature cooling scheme and a stopping condition based on the maximum number
of allowed iterations. The authors develop a deep statistical analysis and are able
to determine a linear regression model between the instance features and the search
method parameters, that allows to set the parameters for new instances on the basis of
a simple inspection of the characteristics of the instance. The algorithm is trained on a
large set of instances generated by the generator of Lopes and Smith-Miles (2010) and
is validated on the instances of ITC-2007 (comp01–comp21). Finally, the algorithm
is tested on new instances (DDS1–DDS7,erlangen*,Udine*,EA*). The obtained
results are presented in Table 3 (see Sect. 4.3).

Tarawneh et al. (2013) present a hybrid simulated annealing algorithm, enhanced
by storing unaccepted solutions and using them when trapped in a local optimum.
An initial feasible solution is build with the greedy algorithm by Lü and Hao (2010).
Then simulated annealing is applied. Three neighborhoods are considered: (i) mov-
ing one lecture from a time period to a free time period that does not cause any
conflict, (ii) swapping two lectures without violating the hard constraints, and (iii)
swapping the time period with the highest penalty with a randomly selected time
period. The algorithm is tested on the instances of ITC-2007 (comp01–comp21)
and on test1–test4, DDS1–DDS7. The obtained results are presented in Table 3
(see Sect. 4.3).

123

An overview of curriculum-based course timetabling 341

4.2.3 Hybrid algorithms

In Müller (2009), a hybrid approach consisting of three phases is presented. In the
construction phase, a complete feasible solution is found using an iterative forward
search that iteratively selects a lecture of a course and assigns it a room and a time
period. If this causes any violations of hard constraints with existing assignments,
the conflicting assignments are unassigned. The search ends when all the lectures are
assigned a room and a time period. Once a complete solution is found, a hill climb-
ing phase is applied to find a local optimum. Several neighborhoods are considered,
corresponding to time/room/lecture moves as well as moves related to the soft con-
straints. Hill climbing is stopped after a given number of iterations during which a
solution has not been improved. Once a solution can no longer be improved using this
method, a great deluge phase is used, in which a bound is imposed on the value of the
current solution, and the bound is iteratively decreased during the search according
to a cooling rate. Optionally, simulated annealing can also be used. The search ends
after a predetermined time limit has been reached. The algorithm was applied to the
instances of the three tracks of ITC-2007 and was the winner of two tracks, including
CB-CTT. The algorithm is tested on the ITC-2007 instances (comp01–comp21).
The obtained results are presented in Sect. 4.3.

In Abdullah and Turabieh (2012), a tabu-based memetic algorithm that hybridises
a genetic algorithm with a tabu search algorithm is proposed. An initial population is
generated in a heuristic way. In this population, a chromosome represents a feasible
solution. Two solutions are selected from this population, according to the roulette
wheel selection procedure. Crossover and mutation are then employed: the crossover
operation represents a period-exchange crossover that ensures that the feasibility of
the offspring is maintained, and the mutation is used to allow diversification by mov-
ing/swapping some events from one time period to another one. A set of involved
neighborhoods are then employed in an improvement procedure. A tabu list is embed-
ded to control the selection of neighborhoods. The best solution found is added to the
population and the process is iterated until a time limit is reached. Different ways of
selecting the sequence of neighborhood explorations are investigated and the algorithm
is tested on the instances of ITC-2007 (comp01–comp21). The obtained results are
presented in Sect. 4.3. The algorithm is also tested on the examination timetabling
problem.

In Bellio et al. (2012), a hybrid local search algorithm is presented, which combines
simulated annealing with dynamic tabu search. The search space is the same as in
Di Gaspero and Schaerf (2003). It takes into account the same neighborhoods used in
Bellio et al. (2013). In the tabu search algorithm, the size of the tabu list is variable and
all non-tabu neighbors are evaluated to select the best one. The tabu search algorithm
is dynamic, i.e., it changes continuously the shape of the cost function in an adaptive
way, by changing the weights of the constraints penalized in the cost function. The
simulated annealing phase and the tabu search phase are combined in a token-ring
search, that makes circularly a run of each algorithm, always starting from the best
solution found by the previous one. A complex statistical analysis is developed. The
hybrid algorithm is tested on the instances of ITC-2007 (comp01–comp21). The
obtained results are presented in Sect. 4.3.

123

342 A. Bettinelli et al.

In Shaker et al. (2013), a combination of twometaheuristic algorithms is presented,
namely great deluge and tabu search. A feasible timetable is constructed bymeans of a
largest degree heuristic. An improvement algorithm is then applied, which combines
great deluge and tabu search. Two types of neighborhoods are considered: the first
one consists of randomly choosing a lecture and moving it to the feasible time period
that gives the smallest penalty cost; the second one consists of randomly selecting two
lectures in the same room and swapping their time periods. In the great deluge phase,
if a better solution is found, it is updated. Otherwise, the solution cost is compared to
a threshold level and the new solution is accepted only if its cost is below this level. In
the tabu search phase, a tabu list is used to avoid repeatingmoves for a given number of
iterations. The process is repeated until a time limit is reached. The algorithm is tested
on the instances of ITC-2007 (comp01–comp21) and on DDS1–DDS7. A variant of
the algorithm is tested on the post-enrolment course timetabling problem.

In Kiefer et al. (2014), an adaptive large neighborhood search algorithm is pro-
posed. Starting from an initial feasible solution, at each iteration parts of the incumbent
solution are destroyed and subsequently repaired to improve the solution. We refer the
reader to Kiefer et al. (2014) for full details on the many different destroy and repair
operators employed in the algorithm. Each operator is assigned a weight: initially,
each operator has the same selection probability. At each iteration, the selection of
destroy and repair operators is based on a roulette wheel mechanism. Each time the
algorithm has performed a given number of iterations, the weights are recomputed,
taking into account the old weight and the score, that depends on the solution qual-
ity achieved during these iterations (the scores are normalized by the computational
effort). The destroy operators are responsible for releasing parts of the search space
that are subsequently explored by a repair heuristic. In particular, at each iteration, a
given number of lectures is removed from the current timetable and then reinserted
through a repair heuristic, while the other lectures are kept fixed in the schedule. The
number of lectures to be removed is randomly chosen in a range where the maximum
value is decreased during the iterative process. The acceptance scheme for the obtained
solutions is based on simulated annealing. In addition, the algorithm does not prohibit
infeasible solutions, with the advantage of allowing for making shortcuts by traversing
infeasible regions of the search space and reducing the computing time of the repair
heuristic algorithm. A large neighborhood search algorithm is also presented, which
is based on the information on the selection rates of the operators used during the
adaptive large neighborhood search. In particular, the average selection rates, com-
puted over ten runs for each instance, are used as input for the large neighborhood
search. The latter has the advantage to use predefined operator selection probabili-
ties from the very beginning. The algorithm is tested on the instances of ITC-2007
(comp01–comp21) and on DDS1–DDS7, Udine* and EA*. The results obtained
by the large neighborhood search algorithm are presented in Sect. 4.3.

4.3 Computational results

In this section, we report the computational results obtained by the most effec-
tive heuristic algorithms described in Sect. 4. We consider UD2 and the instances

123

An overview of curriculum-based course timetabling 343

comp01–comp21 used for the ITC-2007 competition. We present the results in two
tables: in Table 2 we report, for each instance, the best solution value obtained by each
algorithm, while in Table 3 we report the average solution values obtained over multi-
ple runs of the algorithms, similarly to what was done for the ITC-2007 competition.
If only the best solution values (the average solution values, resp.) are known for an
algorithm, then it will appear only in Table 2 (Table 3, resp.).

In each table, we indicate in the first column the instance name (Inst), in the second
column the best known solution (WBest) as taken from the website (http://satt.diegm.
uniud.it/ctt),3 and in the third column the best solution (Best) obtained by one of the
considered heuristic algorithms. Each of the remaining columns corresponds to one
of the algorithms (indicated in chronological order). In particular, we compare the
following algorithms:

– M09: Hybrid algorithm (see Sect. 4.2.3) proposed by Müller (2009);
– BMPR10: ILP-based algorithm (see Sect. 4.1) proposed by Burke et al. (2010a);
– LH10: Tabu search algorithm (see Sect. 4.2.1) proposed by Lü and Hao (2010);
– LHG11: Tabu search algorithm (see Sect. 4.2.1) proposed by Lü et al. (2011);
– LL12: ILP-based algorithm (see Sect. 4.1) proposed byLach andLübbecke (2012);
– AT12: Hybrid algorithm (see Sect. 4.2.3) proposed by Abdullah and Turabieh
(2012);

– BDS12: Hybrid algorithm (see Sect. 4.2.3) proposed by Bellio et al. (2012);
– BSTIS13: Constraint satisfaction algorithm (see Sect. 3.7) proposed by Banbara
et al. (2013);

– AN14: Constraint satisfaction algorithm (see Sect. 3.6) proposed by Asín Achá
and Nieuwenhuis (2014);

– K14: Hybrid algorithm (see Sect. 4.2.3) proposed by Kiefer et al. (2014);
– TAA13: Hybrid simulated annealing algorithm (see Sect. 4.2.2) proposed by
Tarawneh et al. (2013);

– BCDSU14: Simulated annealing algorithm (see Sect. 4.2.2) proposed by Bellio
et al. (2014).

At the bottom of each table, we indicate a legend with the reference corresponding to
each algorithm, the time limit used by it (expressed in CPU time units when available)
and the computer used. We identify with an ‘*’ the optimal solution values and in
bold the best values. In Tables 2 and 3 we report, for each method, the number of best
solution values obtained (out of 14 or 21 instances) and the average percentage gaps
from the best solution values obtained by one of the considered algorithms (computed
on 14 or 21 instances). In addition, in Table 2 we report, for each method, the number
of instances for which the considered algorithm is the only one able to determine the
best solution value (out of 14 or 21 instances).

We wish to mention that it is difficult to establish an overall “best” algorithm, since
not all the algorithms are run for the same computing time, and also because more than
one algorithm turn out to be effective. We can observe that metaheuristic algorithms
and algorithms based on constraint satisfaction usually have a better performance
than those based on mathematical models. In particular, the method proposed by

3 Visualized on 9 October 2014.

123

http://satt.diegm.uniud.it/ctt
http://satt.diegm.uniud.it/ctt

344 A. Bettinelli et al.

Asín Achá and Nieuwenhuis (2014) obtains many of the best solution values and for
many instances is the only algorithm able to determine the best solution value, while
that proposed by Abdullah and Turabieh (2012) is the one reaching the best average
percentage gap. We can also see that there is still room for improvement of the results.

5 Extensions of the problem

As mentioned in Sect. 2, some simplifications have been introduced to keep a certain
level of generality in the definition of CB-CTT. In this section, we present some
variants and extensions of CB-CTT. First of all, we describe the extensions proposed
in Bonutti et al. (2012). In addition or in replacement of (some of) the soft constraints
described in Sect. 2, other cost components can be taken into account:

– windows: this is an alternative way to take into account curriculum compactness:
lectures of a curriculum should not have time windows without teaching between
them; for a given curriculum, a violation is considered every time there is an empty
window between two lectures of the curriculum in the same day;

– student min/max load: for a given curriculum, the number of daily lectures that a
student must attend should be within a given range;

– travel distance: students should have the time tomove from one building to another
one between two lectures;

– room suitability: some rooms may be not suitable for a given course because of
the absence of necessary equipment (this is modeled as a hard constraint in UD4);

– double lectures: some courses require that lectures in the same day are grouped
together, i.e., they should be scheduled in adjacent time periods and in the same
room.

These additional features appear in the variants of CB-CTT defined as UD3, UD4
and UD5. Such alternative variants of CB-CTT have received in the literature (Bellio
et al. 2012; Lach and Lübbecke 2012; Banbara et al. 2013; Phillips et al. 2015) less
attention than UD2 even if they deal with important aspects of the problem.

In Bonutti et al. (2012), the authors underline that the real-world problems can
contain many other features, such as preassignment of a lecture to a specific room
or time period, lunch break, i.e., leaving an empty time period around lunch time,
teacher min/max load, i.e., imposing bounds on the daily teaching activity for each
teacher, day patterns that specify specific patterns for some course (e.g. lectures in the
morning and laboratory exercises in the afternoon), etc. We refer the reader to Bonutti
et al. (2012) for a complete overview of the proposed variants.

As shown for example in Avella and Vasil’ev (2005), Daskalaki and Birbas (2005),
Schimmelpfeng and Helber (2007) and Lach and Lübbecke (2012), preferences can
be given by teachers to time periods (or even more complex types of preferences as
in Schimmelpfeng and Helber (2007)) and this can become one of the objectives or
even the main goal to be optimized.

Multi-objective optimization also plays a role in this context (see e.g. Landa-Silva
et al. 2004). Often conflicting objectives appear in university timetabling, taking into
account the needs of the students as well as those of the faculties. A common approach
is to introduce soft constraints and penalize their violations in aweighted cost objective

123

An overview of curriculum-based course timetabling 345

function to be minimized. In Geiger (2009), a weighted sum method and a reference
point-based approach are compared. An interesting alternative is to tackle the problem
as a multi-objective one and determine the entire Pareto front (see Phillips et al.
2015).

In Mühlenthaler andWanka (2014), fairness is taken into account in the determina-
tion of university course timetables. In this context, fairness requires that the penalties
due to the violation of the soft constraints assigned to a timetable are distributed in a
fair way among the different curricula. The authors consider two types of fairness. The
first one isMax–min fairness that aims at producing an optimal outcome for the worst-
off stakeholder and, under this condition, aims at producing an optimal outcome for
the second worst-off stakeholder, and so on for all the remaining stakeholders, consid-
ered in lexicographic order. The second one is Jain’s fairness index (Jain et al. 1984)
that corresponds to a bi-criteria optimization problem, taking into account fairness
and efficiency.

In Beliën and Mercy (2013), the student flows minimization related to the determi-
nation of university timetables is considered. Queues and congestion problems in stair
halls and elevators are often caused by students that move from a room to another one
between two consecutive lectures. The authors propose to take into account student
flows when constructing the course timetables, e.g. timetables in which consecutive
lectures are scheduled in the same room or in rooms situated on the same floor are to
be preferred.

6 Conclusions and open perspectives

We have presented a review on a very active research topic, i.e., the curriculum-based
course timetabling problem. As it is evident from the review, an important contribution
to this area has been the organization of the International Timetabling Competitions,
which have been a successful way to attract more researchers to work on the topic,
and have provided benchmark instances coming from real-world problems. One of the
aims of this paper is to increase the interest on this topic and open new perspectives
of further developments.

Besides the interesting approaches described in this paper, we have also presented
some extensions and variants of the problem that could be investigated as future
research, some of which have recently been studied. In particular, the aspect of fairness
between different curricula, but even between different teachers, seems to be very
relevant in this context. It could be preferable to have a solution with a higher global
penalty but which spreads the penalties over all the curricula instead of having a few
curricula with a “bad” schedule.

Some of the soft constraints, such as room capacity or travel distance, could be
dealt with as hard ones. Often room capacity cannot be considered as a hard constraint
because this would lead to infeasible solutions. However, some universities, especially
the new ones, should have enough seats for the students and in this case, it would be
natural to have room capacity as a hard constraint. Travel distance might also become
a hard constraint: some universities are characterized by several buildings, which can

123

346 A. Bettinelli et al.

be placed far away from each other and it is therefore necessary to give the students
and/or the teachers enough time to move from one place to another one.

If we look at the methodologies proposed for CB-CTT, we can see that there are
many complex algorithms and models that produce good quality results. We can also
observe that the problem is still hard to be solved to optimality and only few meth-
ods have been proposed for determining its optimal solution. The recent availabil-
ity of affordable general purpose GPUs has increased the development of parallel
processing methods (see e.g. Bożejko et al. 2014; Kolonias et al. 2014 in the educa-
tional timetabling context). This is an interesting research area, that can improve the
effectiveness of exact methods. In addition, new benchmark instances (erlangen*,
Udine* and EA* described in Sect. 2.1) have recently been uploaded on the website
http://satt.diegm.uniud.it/ctt. This should also stimulate the research in solving these
challenging problems.

Another challenge is to keep the studied problems as close to real-world practical
problems as possible. Indeed, standardization of timetabling benchmarks might lead
to problems that are far from practical applications. Therefore, there must be a direct
connection between academic problems/methods and practical needs. Furthermore,
in a real-world environment, it is not only important to develop an effective method
that obtains good or even optimal timetables, but also to have a whole automated
framework that takes into account data integrity, graphical user interface, security,
access level, etc.

We have noticed that we did not find a “winner” method able to outperform all the
other ones in all the benchmark instances. Therefore, it is hard to say which methods
should be investigated or could be more effective in different situations. Certainly, it
would be interesting to determine why a method fails or succeeds in different sets of
instances with specific features. This would also be useful to practitioners, who can
then appropriately choose the method to be applied.We leave this as a future challenge
to be investigated.

Acknowledgments We would like to thank the ITC-2002 and ITC-2007 organizers for providing the
benchmark instances and the formal description of the CB-CTT, as well as Alex Bonutti, Luca Di Gaspero
and Andrea Schaerf who maintain the website. We would like to thank Miguel A. Goberna, the editor of
TOP, for the invitation to write this paper. We would also like to thank Roberto Asín, Edmund K. Burke,
John H. Drake, Marco Lübbecke, Barry McCollum, Ender Özcan and Andrea Schaerf for their insightful
comments on the first version of the paper.

References

Abdullah S, Turabieh H (2012) On the use of multi neighbourhood structures within a tabu-based memetic
approach to university timetabling problems. Inf Sci 191:146–168

Abdullah S, Burke EK, McCollum B (2007) Using a randomised iterative improvement algorithm with
composite neighbourhood structures for the university course timetabling problem. In: Doerner
K, Gendreau M, Greistorfer P, Gutjahr W, Hartl R, Reimann M (eds) Metaheuristics, operations
research/computer science interfaces series, vol 39. Springer, US, pp 153–169

Al-Yakoob S, Sherali H (2007) A mixed-integer programming approach to a class timetabling problem: a
case study with gender policies and traffic considerations. Eur J Oper Res 180(3):1028–1044

Asín Achá R, Nieuwenhuis R (2014) Curriculum-based course timetabling with SAT and MaxSAT. Ann
Oper Res 218(1):71–91

123

http://satt.diegm.uniud.it/ctt

An overview of curriculum-based course timetabling 347

Atsuta M, Nonobe K, Ibaraki T (2008) Itc 2007 track 2, an approach using general csp solver. Technical
report, www.cs.qub.ac.uk/itc2007

Avella P, Vasilev I (2005) A computational study of a cutting plane algorithm for university course
timetabling. J Sched 8(6):497–514

Babaei H, Karimpour J, Hadidi A (2014) A survey of approaches for university course timetabling problem.
Comput Ind Eng. doi:10.1016/j.cie.2014.11.010

Banbara M, Soh T, Tamura N, Inoue K, Schaub T (2013) Answer set programming as a modeling language
for course timetabling. Theory Pract Log Program 13(4–5):783–798

Beliën J, Mercy A (2013) Building university course timetables with minimized resulting student flows. In:
Proceedings of the 6th multidisciplinary international conference on scheduling: theory and applica-
tions (MISTA 2013), Belgium, pp 737–740

Bellio R, Di Gaspero L, Schaerf A (2012) Design and statistical analysis of a hybrid local search algorithm
for course timetabling. J Sched 15(1):49–61

Bellio R, Ceschia S, Di Gaspero L, Schaerf A, Urli T (2013) A simulated annealing approach to the
curriculum-based course timetabling problem. In: Proceedings of the 6th multidisciplinary interna-
tional conference on scheduling: theory and applications (MISTA 2013), Belgium, pp 314–317

Bellio R, Ceschia S, Di Gaspero L, Schaerf A, Urli T (2014) Feature-based tuning of simulated annealing
applied to the curriculum-based course timetabling problem. arXiv:1409.7186

BonuttiA,DeCescoF,DiGasperoL, SchaerfA (2012)Benchmarking curriculum-based course timetabling:
formulations, data formats, instances, validation, visualization, and results. Ann Oper Res 194(1):59–
70

Bożejko W, Gniewkowski Ł, Wodecki M (2014) Solving timetabling problems on gpu. In: Artificial intel-
ligence and soft computing, Springer, pp 445–455

Burke E, Petrovic S (2002) Recent research directions in automated timetabling. Eur JOper Res 140(2):266–
280

Burke E, Jackson K, Kingston JH, Weare R (1997) Automated university timetabling: the state of the art.
Comput J 40(9):565–571

Burke E, Mareček J, Parkes A, Rudová H (2008) Penalising patterns in timetables: novel integer program-
ming formulations. Oper Res Proc 2007:409–414

Burke E, Mareček J, Parkes A, Rudová H (2010a) Decomposition, reformulation, and diving in university
course timetabling. Comput Oper Res 37(3):582–597

Burke E, Mareček J, Parkes A, Rudová H (2010b) A supernodal formulation of vertex colouring with
applications in course timetabling. Ann Oper Res 179(1):105–130

Burke E, Mareček J, Parkes A, Rudová H (2012) A branch-and-cut procedure for the Udine course
timetabling problem. Ann Oper Res 194(1):71–87

Cacchiani V, Caprara A, Roberti R, Toth P (2013) A new lower bound for curriculum-based course
timetabling. Comput Oper Res 40(10):2466–2477

Carter M (2001) A comprehensive course timetabling and student scheduling system at the university of
waterloo. In: Burke E, Erben W (eds) Practice and theory of automated timetabling III, vol 2079.,
Lecture notes in computer scienceSpringer, Berlin, pp 64–82

Carter M (2013) Timetabling. In: Gass S, Fu M (eds) Encyclopedia of operations research and management
science. Springer, US, pp 1552–1556

Chiarandini M, Birattari M, Socha K, Rossi-Doria O (2006) An effective hybrid algorithm for university
course timetabling. J Sched 9(5):403–432

Clark M, Henz M, Love B (2009) Quikfix a repair-based timetable solver. In: Proceedings of the 7th
international conference on the practice and theory of automated timetabling (PATAT-2008)

Daskalaki S, Birbas T (2005) Efficient solutions for a university timetabling problem through integer
programming. Eur J Oper Res 160(1):106–120

Daskalaki S, Birbas T, Housos E (2004) An integer programming formulation for a case study in university
timetabling. Eur J Oper Res 153(1):117–135

Di Gaspero L, Schaerf A (2003) Multi-neighbourhood local search with application to course timetabling.
In: Burke E, De Causmaecker P (eds) Practice and theory of automated timetabling IV, vol 2740.,
Lecture notes in computer scienceSpringer, Berlin, pp 262–275

Di Gaspero L, Schaerf A (2006) Neighborhood portfolio approach for local search applied to timetabling
problems. J Math Model Algorithms 5(1):65–89

Di Gaspero L,McCollumB, Schaerf A (2007) The second international timetabling competition (itc-2007):
curriculum-based course timetabling (track 3). Technical report, School of Electronics, Electrical

123

http://dx.doi.org/10.1016/j.cie.2014.11.010
http://arxiv.org/abs/1409.7186

348 A. Bettinelli et al.

Engineering and Computer Science, Queens University, Belfast (UK), ITC-2007. site: http://www.cs.
qub.ac.uk/itc2007/

Geiger MJ (2009) Multi-criteria curriculum-based course timetablinga comparison of a weighted sum and
a reference point based approach. In: Ehrgott M, Fonseca CM, Gandibleux X, Hao JK, Sevaux M
(eds) In: Proceedings of the 5th international conference on evolutionary multi-criterion optimization,
EMO 2009, Springer, Lecture notes in computer science, vol 5467, pp 290–304

Geiger MJ (2012) Applying the threshold accepting metaheuristic to curriculum based course timetabling.
Ann Oper Res 194(1):189–202

Hansen P, Hertz A, Kuplinsky J (1993) Bounded vertex colorings of graphs. Discret Math 111(13):305–312
Hao JK, Benlic U (2011) Lower bounds for the ITC-2007 curriculum-based course timetabling problem.

Eur J Oper Res 212(3):464–472
Jain R, Chiu DM, Hawe WR (1984) A quantitative measure of fairness and discrimination for resource

allocation in shared computer system. Technical report DEC-TR-301, Eastern Research Laboratory,
Digital Equipment Corporation Hudson, MA

Kiefer A, Hartl R, Schnell A (2014) Adaptive large neighborhood search for the curriculum-based course
timetabling problem. Technical report UNIVIE-PLIS-2014-001, University of Vienna

Kingston JH (2013) Educational timetabling. In:UyarAS,OzcanE,UrquhartN (eds)Automated scheduling
and planning, studies in computational intelligence, vol 505. Springer, Berlin, pp 91–108

Kolonias V, Goulas G, Gogos C, Alefragis P, Housos E (2014) Solving the examination timetabling problem
in gpus. Algorithms 7(3):295–327

Kostuch P (2005) The university course timetabling problem with a three-phase approach. In: Burke E,
Trick M (eds) Practice and theory of automated timetabling V, vol 3616., Lecture notes in computer
scienceSpringer, Berlin, pp 109–125

Kristiansen S, Stidsen T (2013) A comprehensive study of educational timetabling—a survey. Technical
report, DTU Management Engineering

Lach G, Lübbecke M (2008) Optimal university course timetables and the partial transversal polytope.
In: McGeoch C (ed) Experimental algorithms, vol 5038., Lecture notes in computer scienceSpringer,
Berlin, pp 235–248

Lach G, Lübbecke M (2012) Curriculum based course timetabling: new solutions to Udine benchmark
instances. Ann Oper Res 194(1):255–272

Landa-Silva D, Obit JH (2008) Great deluge with non-linear decay rate for solving course timetabling
problems. In: Intelligent systems, 2008. IS’08. In: 4th international IEEE conference, IEEE, vol 1, pp
8–11

Landa-Silva J, Burke E, Petrovic S (2004) An introduction to multiobjective metaheuristics for scheduling
and timetabling. In: Metaheuristics for multiobjective optimisation. Springer, pp 91–129

Lewis R (2008) A survey of metaheuristic-based techniques for university timetabling problems. OR Spectr
30(1):167–190

Lewis R, Paechter B, Rossi-Doria O (2007) Metaheuristics for university course timetabling. Stud Comput
Intell 49(49):237–272

Lopes L, Smith-Miles K (2010) Pitfalls in instance generation for udine timetabling. In: Blum C, Battiti
R (eds) Learning and intelligent optimization, vol 6073., Lecture notes in computer scienceSpringer,
Berlin, pp 299–302

Lopes L, Smith-Miles K (2013) Generating applicable synthetic instances for branch problems. Oper Res
61(3):563–577

Lü Z, Hao JK (2009) A critical element-guided perturbation strategy for iterated local search. In: Cotta C,
Cowling P (eds) Evolutionary computation in combinatorial optimization, vol 5482., Lecture notes in
computer scienceSpringer, Berlin, pp 1–12

Lü Z, Hao JK (2010) Adaptive tabu search for course timetabling. Eur J Oper Res 200(1):235–244
LüZ,Hao JK,Glover F (2011)Neighborhood analysis: a case study on curriculum-based course timetabling.

J Heuristics 17(2):97–118
McCollumB (2007)Aperspective on bridging the gap between theory and practice in university timetabling.

In: Burke E, Rudov H (eds) Practice and theory of automated timetabling VI, vol 3867., Lecture notes
in computer scienceSpringer, Berlin, pp 3–23

McCollum B, Ireland N (2006) University timetabling: bridging the gap between research and practice. In:
Proceedings of the 5th international conference on the practice and theory of automated timetabling,
pp 15–35

123

http://www.cs.qub.ac.uk/itc2007/
http://www.cs.qub.ac.uk/itc2007/

An overview of curriculum-based course timetabling 349

McCollum B, Schaerf A, Paechter B, McMullan P, Lewis R, Parkes A, Di Gaspero L, Qu R, Burke E
(2010) Setting the research agenda in automated timetabling: the second international timetabling
competition. INFORMS J Comput 22(1):120–130

Miranda J (2010) eClasSkeduler: a course scheduling system for the executive education unit at the Uni-
versidad de Chile. Interfaces 40(3):196–207

MirHassani S (2006) A computational approach to enhancing course timetablingwith integer programming.
Appl Math Comput 175(1):814–822

MirHassani S, Habibi F (2013) Solution approaches to the course timetabling problem. Artif Intel Rev
39(2):133–149

Mühlenthaler M, Wanka R (2014) Fairness in academic course timetabling. Ann Oper Res 1–18
Müller T (2009) Itc 2007 solver description: a hybrid approach. Ann Oper Res 172(1):429–446
Müller T, Murray K (2010) Comprehensive approach to student sectioning. Ann Oper Res 181(1):249–269
Petrovic S, Burke E (2004)University timetabling. In: Leung JYT (ed) Handbook of scheduling: algorithms,

models, and performance analysis, CRC Press, Boca Raton
Phillips AE,Waterer H, EhrgottM, RyanDM (2015) Integer programmingmethods for large-scale practical

classroom assignment problems. Comput Oper Res 53:42–53
Pillay N (2014) A review of hyper-heuristics for educational timetabling. Ann Oper Res 1–36. doi:10.1007/

s10479-014-1688-1
QualizzaA,SerafiniP (2005)Acolumngeneration scheme for faculty timetabling. In:BurkeE,TrickM(eds)

Practice and theory of automated timetabling V, vol 3616., Lecture notes in computer scienceSpringer,
Berlin, pp 161–173

Schaerf A (1999) A survey of automated timetabling. Artif Intel Rev 13(2):87–127
Schimmelpfeng A, Helber S (2007) Application of a real-world university-course timetabling model solved

by integer programming. OR Spectr 29(4):783–803
Shaker K, Abdullah S, Alqudsi A, Jalab H (2013) Hybridizing meta-heuristics approaches for solving

university course timetabling problems. In: Lingras P, Wolski M, Cornelis C, Mitra S, Wasilewski P
(eds) Rough sets and knowledge technology, vol 8171., Lecture notes in computer scienceSpringer,
Berlin, pp 374–384

Tarawneh HY, Ayob M, Ahmad Z (2013) A hybrid simulated annealing with solutions memory for
curriculum-based course timetabling problem. J Appl Sci 13:262–269

Van Den Broek J, Hurkens C, Woeginger G (2009) Timetabling problems at the TU Eindhoven. Eur J Oper
Res 196(3):877–885

Wren A (1996) Scheduling, timetabling and rostering a special relationship? In: Burke E, Ross P (eds)
Practice and theory of automated timetabling, vol 1153., Lecture notes in computer scienceSpringer,
Berlin, pp 46–75

123

http://dx.doi.org/10.1007/s10479-014-1688-1
http://dx.doi.org/10.1007/s10479-014-1688-1

	An overview of curriculum-based course timetabling
	Abstract
	1 Introduction
	2 Problem description
	2.1 Benchmark instances
	2.2 Notation

	3 Mathematical models, lower bounds and exact algorithms
	3.1 The compact formulation of Burke et al. (2010a) and various possible lower bounds
	3.1.1 First lower bound derived from the monolithic formulation: Surface1
	3.1.2 Second lower bound derived from the monolithic formulation: Surface2

	3.2 The exact branch-and-cut algorithm of
	3.3 The two-stage ILP method of
	3.4 The divide-and-conquer approach of
	3.5 The column generation method of
	3.6 4: Formulations via SAT and MaxSAT
	3.7 : Answer Set Programming
	3.8 Computational results

	4 Heuristic algorithms
	4.1 ILP-based heuristic algorithms
	4.2 Metaheuristic algorithms
	4.2.1 Tabu search algorithms
	4.2.2 Simulated annealing algorithms
	4.2.3 Hybrid algorithms

	4.3 Computational results

	5 Extensions of the problem
	6 Conclusions and open perspectives
	Acknowledgments
	References

