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Abstract The paper deals with a class of discounted discrete-time Markov control
models with non-constant discount factors of the form α̃(xn, an, ξn+1), where xn, an,

and ξn+1 are the state, the action, and a random disturbance at time n, respectively,
taking values in Borel spaces. Assuming that the one-stage cost is possibly unbounded
and that the distributions of ξn are unknown, we study the corresponding optimal
control problem under two settings. Firstly we assume that the random disturbance
process {ξn} is formed by observable independent and identically distributed random
variables, and then we introduce an estimation and control procedure to construct
strategies. Instead, in the second one, {ξn} is assumed to be non-observable whose
distributions may change from stage to stage, and in this case the problem is studied
as a minimax control problem in which the controller has an opponent selecting the
distribution of the corresponding random disturbance at each stage.
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1 Introduction

We consider discounted discrete-time Markov control models with non-constant dis-
count factors of the form

α̃(xn, an, ξn+1), (1)

where xn and an are the state and the action at time n, respectively, and {ξn} is a
sequence of random variables representing a random disturbance at each time n. The
discount factors (1) play the following role during the evolution of the system. At the
initial state x0, the controller chooses an action a0. Then a cost c(x0, a0) is incurred,
and the system moves to a new state x1 according to a transition law, and the random
disturbance ξ1 comes in. Once the system is in state x1 the controller selects an action
a1 and incurs a discounted cost α̃(x0, a0, ξ1)c(x1, a1). Next the system moves to a
state x2 and the process is repeated. That is, on the record of the states–actions and
random disturbances, the controller incurs, for the stage n ≥ 1, the discounted cost

α̃(x0, a0, ξ1)α̃(x1, a1, ξ2) · · · α̃(xn−1, an−1, ξn)c(xn, an). (2)

Thus, the costs are discounted in amultiplicative discount rate, and therefore, assuming
c(·, ·) possibly unbounded, our objective is to study the optimality under the perfor-
mance index defined by the accumulation throughout the evolution of the system of
these costs.

The main motivation in considering non-constant discount factors comes from
the point of view of the applications. Indeed, in economic and financial models, the
discount factors are typically functions of the interest rates, which in turn are uncertain.
Such uncertainty may be due to the amount of currency, and/or the decision-makers’
actions, and furthermore, to external random noises whose distributions really are
unknown. Therefore, in these cases, we have random state–action-dependent discount
factors which, in this paper, are supposed to be determined by a function as in (1).
Then, assuming that the distributions of the random variables ξn are unknown, we
study the corresponding control problem under two settings.

Firstly, we assume that the random disturbance process {ξn} is formed by observ-
able, independent and identically distributed (i.i.d.), and independent of the state–
action pairs, random variables. The common (unknown) distribution, denoted by
θ , is estimated from historical observations of ξn using the empirical distribution.
Then, we combine this estimation scheme with a suitable minimization process to
construct asymptotically optimal strategies. It is worth remarking that the hypothe-
ses of observability as well as the non-dependence on the state–action pairs of the
random disturbance process are crucial to implement such statistical estimation and
control procedure, which is also known as certainty equivalence principle (see, e.g.,
Hernández-Lerma 1989; Mandl 1974). However, there are situations, perhaps most of
them in economic and financial models, where (i) the random variable ξn really repre-
sents a random noise which is impossible to observe; or (ii) {ξn} is a stochastic process
which is difficult to handle inside a controlled system. The last situation might occur,
for instance, when {ξn} represents the interest rate. Indeed, in dynamical financial sys-
tems (see, e.g., Brigo and Mercurio 2007; Heath et al. 1992; Vasicek 1977) generally
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Markov control models with non-constant discount factors 745

the evolution of the interest rate is modeled by a stochastic difference equation (dif-
ferential equation if the system is analyzed in continuous time), then when inserting
such equation in a control system through the discount factor, as it would be our case,
the study of the resulting optimal control problem becomes difficult. Considering the
situations (i) and (ii), our second setting consists in supposing that {ξn} is a sequence of
independent and possibly non-observable random variables whose distributions may
change from stage to stage. The only information possessing the controller is that at
each stage, the corresponding distribution belongs to an appropriate set of probability
measures �. In this case, the optimal control problem is studied as a minimax control
problem known as game against nature. Indeed, we suppose that the controller has an
opponent, namely, the “nature”, which, at each stage, is selecting a distribution from
the set� for the corresponding random disturbance. Hence, the controller is interested
in selecting actions directed to minimize the maximum discounted cost—with random
state–action-dependent discount factors—generated on the set �. Thus, the second
objective is to show the existence of minimax strategies.

Observe that under the minimax approach it is possible to study the optimal control
problem in general scenarios. These include the cases when the random disturbances
are observable or unobservable, with constant or non-constant distribution throughout
the evolution of the system. Moreover, modeling a control problem as a minimax
system simplifies the mathematical analysis since it avoids dealing directly with the
disturbance process, as is the case of point (ii). Although these facts constitute certain
advantages, it is important to keep inmind that, under this formulation,we are obtaining
minimax strategies instead of optimal strategies, which is the price we must pay. In
particular, if ξn are i.i.d. and observable random variables, as the conditions in the
estimation and control scheme, the minimax procedure works if we assume that the
common and unknown distribution θ belongs to a set�. Clearly, in this case, we obtain
minimax strategies instead of asymptotically optimal strategies.

Our general approach to analyze these two problems is based on the following. We
introduce a minimax value iteration algorithm which converges geometrically to the
minimax value function. Such value function is characterized as the unique solution
of a minimax equation, and then, by imposing appropriate conditions, we prove the
existence ofminimax strategies. In addition, taking into account that an optimal control
problem is a particular case of a minimax problem, we apply the minimax results to
study the estimation and control problem, for which we first prove that the Markov
strategies are sufficient.

Among the performance indices to study a stochastic optimal control problem, the
discounted criterion with constant and non-random discount factor is the best under-
stood. It has been widely studied under different approaches: dynamic programming
(see Bertsekas 1987; Hernández-Lerma 1989; Hernández-Lerma and Lasserre 1996,
1999; Puterman 1994 and references therein); convex analysis (Altman 1999; Borkar
1998; Piunovskiy 1997); linear programming (Altman 1999; Hernández-Lerma and
Lasserre 1996, 1999; Hernández-Lerma and González-Hernández 2000; Piunovskiy
1997); Lagrange multipliers (López-Martínez and Hernández-Lerma 2003); adaptive
procedures (Gordienko and Minjárez-Sosa 1998; Hilgert and Minjárez-Sosa 2001,
2006); minimax systems (González-Trejo et al. 2003; Iyengar 2005; Jaskiewicz and
Nowak 2011). However, although infrequently, there have been important works deal-

123



746 J. A. Minjárez-Sosa

ing with the problem with non-constant discount factors under several settings. For
instance, in Feinberg and Shwartz (1994) is studied the problem assuming K < ∞
different discount factors α1, α2, . . . , αK which are independent of the state–action
pairs (see also Carmon and Shwartz 2009; Feinberg and Shwartz 1995, 1999). In fact,
in Carmon and Shwartz (2009) is presented an extension to the case K = ∞. In addi-
tion, performance indices with multiplicative discount rates as (2) have been treated in
Hinderer (1979) and Schäl (1975). Specifically, in Hinderer (1979), the discount factor
is defined as a function of the state–action history of the system, while in Schäl (1975)
it is state–action-dependent. In both papers is assumed bounded one-stage costs from
below. Recently, in Wei and Guo (2011), some results in Schäl (1975) were extended
to the unbounded cost case considering state-dependent discount factors. On the other
hand, randomized discounted criteria have been analyzed inGonzález-Hernández et al.
(2007, 2008, 2009, 2013, 2014) addressing several issues: existence of optimal strate-
gies, adaptive control, approximation algorithms, and problems with constraints. In
these cases, the discount factor is modeled as a stochastic process, independent of
the state–action pairs, which is defined in terms of a suitable discrete-time Markov
process.

According to the description of the literature, our work presents an alternative form
to study discounted optimal problems with non-constant discount factors. That is, to
the best of our knowledge, discounted criteria with random state–action-dependent
discount factors, and moreover with unknown disturbance distribution, have not been
studied.

The organization of the paper is as follows. In Sect. 2, we present the control
models we are concerned with. Next, Sect. 3 contains the optimality criteria, and
then the minimax and the estimation and control problems are introduced. General
assumptions as well as some preliminary results are stated in Sect. 4. Theminimax and
the asymptotically optimal strategies are constructed in Sects. 5 and 6, respectively.
Finally, in Sect. 7 are given some examples to illustrate our results.

2 The control models

In this section, we present the control models that will be analyzed in the paper. We
first introduce theMarkovmodel corresponding to the estimation and control problem,
and next we describe the minimax control model to study the case of non-observable
random disturbance. We will use the following notation.

Notation Given a Borel space Z—that is, a Borel subset of a complete separable
metric space—B(Z) denotes the Borel σ -algebra and “ measurability” always means
measurability with respect to B(Z). The class of all probability measures on Z is
denoted by P(Z). Given two Borel spaces Z and Z ′, a stochastic kernel ϕ(·|·) on Z
given Z ′ is a function such that ϕ(·|z′) is in P(Z) for each z′ ∈ Z ′, and ϕ(B|·) is a
measurable function on Z ′ for each B ∈ B(Z). Moreover, R+ stands for the nonneg-
ative real numbers’ subset and N(N0, resp.) denotes the positive (nonnegative, resp.)
integers’ subset. The class P(Z) is endowed with the topology of weak convergence.
That is, a sequence {μn} in P(Z) converges weakly to μ (μn → μ) if

123



Markov control models with non-constant discount factors 747

∫
Z

udμn →
∫

Z
udμ

for all bounded and continuous function u. In this case, we have that if Z is a Borel
space, then so is P(Z).

2.1 Markov control model

We consider the control model with random state–action-dependent discount factors

M = (X,A, S, Q, α̃, c) (3)

satisfying the following conditions. The state space X, the action space A, and the
discount factor disturbance space S are Borel spaces. To each x ∈ X, we associate a
nonempty measurable subset A(x) of A denoting the set of admissible controls (or
actions) when the system is in state x . The set

KA = {(x, a) : x ∈ X, a ∈ A(x)} (4)

of admissible state–action pairs is assumed to be a Borel subset of the Cartesian
product of X and A. The transition law Q(· | ·) is a stochastic kernel on X given
KA, and α̃ : KA × S → (0, 1) is a function as in (1) representing the discount
factors, where {ξn} is a sequence of observable i.i.d. random variables on a probability
space (�,F , P) with values in S and unknown distribution θ ∈ P(S). Finally, the
cost-per-stage c is a measurable real-valued function on KA, possibly unbounded.

Throughout the paper, the probability space (�,F , P) is fixed and a.s. means
almost surely with respect to P.

In this context, since θ is unknown and the random disturbance process {ξn} is
observable, before choosing the action an at stage n ∈ N, the controller uses the

empirical distribution to get an estimate θ̂n of θ. That is,
{
θ̂n

}
⊂P(S) is obtained by

the process:

θ̂n(B) := 1

n

n∑
i=1

1B(ξi ), for all n ∈ N and B ∈ B(S), (5)

where 1B(·) denotes the indicator function of the set B ∈ B(S).Next, he/she combines
this with the history of the system to select a control a = an(θ̂n) ∈ A(xn). Then, a
discounted cost as in (2) is incurred, and the system moves to a new state xn+1 = x ′
according to the transition law

Q(D|xn, an) := Pr
[
xn+1 ∈ D|xn, an

]
, D ∈ B(X). (6)

Once the transition to state xn+1 occurs, the process is repeated. The costs are accumu-
lated throughout the evolution of the system in an infinite horizon using a discounted
cost criterion with random state–action-dependent discount factors defined below.
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748 J. A. Minjárez-Sosa

2.2 Minimax control model

Now we are interested in the situation where the random variable ξn represents a
random noise which is impossible to observe and, furthermore, its distribution may
change from stage to stage. In opposite to the Markov model (3), in this case, the
controller cannot estimate, by means of statistical methods, the unknown distribution,
and under this scenario we model the control problem as a minimax system. That is,
we assume that the controller has an opponent which selects the distribution θn for ξn

at each time n ∈ N. Specifically, we consider a minimax control model of the form

Mmin
max = (X,A,�,KA,K, Q, α̃, c), (7)

where X,A, Q, α̃, c, and KA are as in (3) and (4), and � ⊂ P(S) is a Borel subset
of probability measures on S, which represents the opponent action space. The set
K ∈ B(X × A × �) is the constraint set for the opponent. Hence, we suppose that
{ξn} is a sequence of independent and possibly non-observable random variables on
(�,F , P) taking values on S, with corresponding distribution θn ∈ �. That is,

θn(B) := P [ξn ∈ B] , n ∈ N, B ∈ B(S).

The model (7) represents a controlled stochastic systems which can be seen as a
game against the nature whose evolution is as follows. At time n ∈ N, the system
is in state xn ∈ X, the controller chooses an action an ∈ A(xn) and the opponent,
the “nature”, picks a distribution θn ∈ � for the random disturbance ξn . Then the
controller incurs a discounted cost

α(x0, a0, θ1)α(x1, a1, θ2) · · · α(xn−1, an−1, θn)c(xn, an), (8)

where α : K → (0, 1) is the mean discount factor function

α(x, a, θ) :=
∫

S
α̃(x, a, s)θ(ds), (x, a, θ) ∈ K. (9)

Next, the process moves to a new state according to the transition law Q and the
process is repeated. Thus, the goal of the controller is to minimize the maximum cost
incurred by the nature. The corresponding minimax control problem will be defined
below in a precise form.

3 Optimality criteria

As will be stated below, some properties on the Markov control model (3) as the
optimality equation, can be deduced from the results on minimax control model (7)
by letting � = {θ} , where θ is the common but unknown distribution of the process
{ξn} . Taking into account this fact, and for a clear presentation, we first define the
minimax criterion, and hereupon we introduce the performance index corresponding
to the model (3).
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Markov control models with non-constant discount factors 749

3.1 Minimax control problem

Let H0 := X, H
′
0 := KA, and for n ∈ N let Hn := K

n × X and
H

′
n := K

n × KA. Generic elements of Hn and H
′
n take the form hn =

(x0, a0, θ1, . . . , xn−1, an−1, θn, xn) and h′
n = (hn, an), respectively. A strategy for

the controller is a sequence π = {πn} of stochastic kernels on A given Hn such that
πn(A(xn)|hn) = 1 for all hn ∈ Hn and n ∈ N0. If there exists a sequence ϕ = {ϕn}
of stochastic kernels on A given X such that πn (·|hn) = ϕn (·|xn) then π is called a
Markov strategy. We denote by 
A the set of all strategies for the controller and by

M

A
⊂ 
A the subset of Markov strategies. A strategy ϕ ∈ 
M

A
is deterministic if

there exists a sequence { fn} of functions in the set

FA := { f : X → A| f is measurable and f (x) ∈ A(x) ∀x ∈ X}

such that ϕn (·|xn) is concentrated at fn(xn) for each n ∈ N0. If fn = f ∈ FA

then ϕ is said to be a deterministic stationary strategy for the controller. If necessary,
see for instance Hernández-Lerma and Lasserre (1996) for further information on
those strategies. Following a standard convention, we denote by FA ⊂ 
M

A
the set of

deterministic stationary strategies for the controller, and we denote π ∈ FA by f.
The strategies for the opponent are defined similarly. That is, a strategy for the

opponent is a sequence π ′ = {π ′
n} of stochastic kernels on � given H

′
n such that

π ′
n

(
�|h′

n

) = 1 for all h′
n ∈ H

′
n and n ∈ N0. We denote by 
� the set of all strategies

for the opponent, and byF� ⊂ 
� the set of all deterministic stationary strategies.We
identify a deterministic stationary strategy π ′ ∈ F� with some measurable function
g : X × A → � such that π ′

n

(·|h′
n

)
is concentrated in g(xn, an) ∈ � for all h′

n ∈ H
′
n

and n ∈ N0.

To ease the notation, for each f ∈ FA, we write

c(x, f ) := c(x, f (x)) and α(x, f, θ) := α(x, f (x), θ), θ ∈ �, x ∈ X.

According to (8), we are assuming that a cost C incurred at stage n is equivalent to
a cost �nC at time 0, where

�n =
n−1∏
k=0

α(xk, ak, θk+1) if n ∈ N, (10)

and �0 = 1. Hence, for each pair of strategies (π, π ′) ∈ 
A × 
� and initial state
x ∈ X, we define the total expected discounted cost—with random state–action-
dependent discount factors—as

V (x, π, π ′) := Eππ ′
x

[ ∞∑
n=0

�nc(xn, an)

]
, (11)
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where Eππ ′
x denotes the expectation operator with respect to the probability measure

Pππ ′
x induced by (π, π ′) ∈ 
A × 
�, given x0 = x [for the construction of Pππ ′

x
see, for instance, Dynkin and Yushkevich (1979)].

Thus, the minimax control problem to the controller is to find a strategy π∗ ∈ 
A

such that

V ∗(x) := inf
π∈
A

sup
π ′∈
�

V (x, π, π ′) = sup
π ′∈
�

V (x, π∗, π ′), x ∈ X. (12)

In this case, the strategy π∗ is said to be minimax, whereas V ∗ is the minimax value
function.

3.2 The estimation and control problem

Since the disturbance process {ξn} is a sequence of observable i.i.d. random variables,
the actions or controls applied at time n ∈ N0 by the controller are selected on the
knowledge of the observed history hn = (x0, a0, ξ1, . . . , xn−1, an−1, ξn, xn). That
is, we consider H0 := X and Hn := (KA × S)n × X for n ∈ N , as the spaces
of admissible histories up to time n. Then the strategies for the controller under this
context are defined similarly as the minimax criterion. For notational convenience, we
will keep denoting by 
A and FA the sets of all strategies and stationary strategies for
the controller, respectively.

Now, taking into account (2), when using a strategy π ∈ 
A, given the initial state
x0 = x ∈ X, we define the total expected discounted cost—with random state–action-
dependent discount factors—as

V (x, π) := Eπ
x

[ ∞∑
n=0

�̃nc(xn, an)

]
, (13)

where

�̃n =
n−1∏
k=0

α̃(xk, ak, ξk+1) if n ∈ N, and �̃0 = 1.

Then, the optimal control problem associated with the control model (3) is to find an
optimal strategy π∗ ∈ 
A such that V (x, π∗) = V (x) for all x ∈ X, where

V (x) := inf
π∈
A

V (x, π), x ∈ X, (14)

is the optimal value function.
However, as is proved in Lemma 15 in Sect. 6, the Markov strategies are sufficient

to solve the optimal control problem. That is, for each π ∈ 
A there exists ϕ ∈ 
M
A

such that
V (x, π) = V (x, ϕ), x ∈ X. (15)
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Markov control models with non-constant discount factors 751

Therefore, our problem is to find a strategy ϕ∗ ∈ 
M
A

such that

V (x, ϕ∗) = inf
ϕ∈
M

A

V (x, ϕ) =: V (x), x ∈ X. (16)

Furthermore (see Lemma 16, Sect. 6), on the class of Markov strategies 
M
A

we
can write the performance index (13) in terms of the unknown distribution θ of the
disturbance process {ξn} as (see Lemma 16 , below)

V (x, ϕ) := Eϕ
x

[ ∞∑
n=0

�nc(xn, an)

]
, x ∈ X, ϕ ∈ 
M

A
, (17)

where �n is as in (10). Observe that in this case

�n =
n−1∏
k=0

α(xk, ak, θ), if n ∈ N.

The optimal control problem is studied by combining the empirical estimation
process (5) of the distribution θ with minimization procedures. However, as the per-
formance index (13) depends strongly on the controls selected at the first stages,
precisely when the information about the unknown distribution is poor, we cannot
ensure, in general, the existence of optimal strategies. Hence, the optimality of strate-
gies constructed under this context will be studied in the following asymptotic sense.

Definition 1 A strategy π ∈ 
A is said to be asymptotically optimal for the control
model M if, for all x ∈ X,

∣∣∣V (n)(x, π) − Eπ
x [V (xn)]

∣∣∣ → 0 as n → ∞,

where

V (n)(x, π) := Eπ
x

[ ∞∑
t=n

�n,t c(xt , at )

]
(18)

is the total expected discounted cost—with random state–action-dependent discount
factors—from stage n onward, and

�n,t =
t−1∏
k=n

α(xk, ak, θ), for t > n and �n,n = 1. (19)

The notion of asymptotic optimality was introduced by Schäl (1987) to study a
problem of estimation and control in dynamic programming with constant random
discount factors (see also Gordienko and Minjárez-Sosa 1998; Hilgert and Minjárez-
Sosa 2001).
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4 Assumptions and preliminary results

We shall require the following general boundedness and continuity assumptions on
the control models. Observe that Assumption 2(a) allows an unbounded cost func-
tion c(x, a) provided that it is majorized by a “bounding” function W. Under these
assumptions, we next establish some preliminary facts which will be used to prove
our main results.

Assumption 2 (a) The cost function c(x, a) is lower semi-continuous (l.s.c.) onKA.
Moreover, there exist a continuous function W : X → [1,∞) and a positive
constant c0 such that

|c(x, a)| ≤ c0W (x) ∀(x, a) ∈ KA. (20)

(b) The transition law Q is weakly continuous, that is, for each continuous and
bounded function u : X → R, the function

(x, a) �−→
∫

X

u (y) Q (dy | x, a) (21)

is continuous on KA.
(c) The function

(x, a) �−→
∫

X

W (y) Q (dy | x, a)

is continuous on KA.
(d) The multifunction x → A(x) is upper semi-continuous (u.s.c.), and the set A(x)

is compact for each x ∈ X.
(e) The function α̃(x, a, s) is continuous on KA × S, and

α∗ := sup
(x,a,s)∈KA×S

α̃(x, a, s) < 1. (22)

(f) There exists a positive constant b such that

1 ≤ b < (α∗)−1,

and for all (x, a) ∈ KA

∫

X

W (y)Q(dy | x, a) ≤ bW (x). (23)

We denote by BW the Banach space of all measurable functions u : X → R with
the W -norm

‖u‖W := sup
x∈X

|u (x)|
W (x)

< ∞, (24)
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Markov control models with non-constant discount factors 753

and byLW the subspace of l.s.c. functions inBW .Wewill repeatedly use the following
inequalities. For any u ∈ BW ,

|u(x)| ≤ ‖u‖W W (x) (25)

and ∫

X

u (y) Q (dy | x, a) ≤ b ‖u‖W W (x), (26)

for all (x, a) ∈ KA.The inequality (25) is a consequence of the definition (24),whereas
(26) follows from (23) and (25).

Remark 3 (a) As is well known (see Hernández-Lerma and Lasserre 1996), the
Assumption 2(b) can be substituted by the following equivalent condition: For
each l.s.c. and bounded below function u : X → R, the function in (21) is l.s.c.
on KA.

(b) Under Assumption 2(e), the monotone convergence theorem yields that the func-
tion α : K → (0, 1) defined in (9) is continuous. Indeed, let {(xn, an, θn)} ∈ K

be a sequence converging to (x, a, θ) ∈ K and denote α̃∗(s) := lim infn→∞ α̃

(xn, an, s) and α̃k(s) := inf j≥k α̃(x j , a j , s). Observe that α̃k(s) ↗ α̃∗(s), as
k → ∞. Then, for all n ≥ k, α̃(xn, an, ·) ≥ α̃k(·). Hence, since θn → θ weakly,

lim inf
n→∞

∫

S

α̃(xn, an, s)θn(ds) ≥ lim inf
n→∞

∫

S

α̃k(s)θn(ds) =
∫

S

α̃k(s)θ(ds).

Now, letting k → ∞, byAssumption 2(e) and themonotone convergence theorem
we obtain

lim inf
n→∞

∫

S

α̃(xn, an, s)θn(ds) ≥
∫

S

α̃∗(s)θ(ds) =
∫

S

α̃(x, a, s)θ(ds). (27)

Similarly we can prove the inequality

lim sup
n→∞

∫

S

α̃(xn, an, s)θn(ds) ≤
∫

S

α̃(x, a, s)θ(ds),

which combined with (27) implies that α : K → (0, 1) is a continuous function.
(c) From Assumption 2(f), for all x ∈ X, n ∈ N0, and

(
π, π ′) ∈ 
A × 
�,

Eππ ′
x

[
W (xn+1)

] ≤ bEππ ′
x [W (xn)] .

Iterating this inequality we obtain

Eππ ′
x

[
W (xn+1)

] ≤ bn+1W (x) , x ∈ X. (28)
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Therefore, from Assumptions 2(a), (e), and (f), for each x ∈ X, and
(
π, π ′) ∈


A × 
�,

∣∣V (
x, π, π ′)∣∣ ≤ Eππ ′

x

[ ∞∑
n=0

(
α∗)n |c(xn, an)|

]

≤ c0W (x)

∞∑
n=0

(
bα∗)n = c0W (x)

1 − bα∗ .

This implies that V ∗∈ BW. In fact we have,

∥∥V ∗∥∥
W ≤ c0

1 − bα∗ . (29)

We next introduce the following family of operators. For each function u on X and
(x, a, θ) ∈ K we define:

T(a,θ)u(x) := c(x, a) + α(x, a, θ)

∫

X

u(y)Q(dy | x, a), (30)

T̂au(x) := sup
θ∈�

T(a,θ)u(x), (31)

and
T u(x) := inf

a∈A(x)
sup
θ∈�

T(a,θ)u(x) = inf
a∈A(x)

T̂au(x). (32)

We conclude this section summarizing some useful properties of the operators
(30)–(32).

Lemma 4 If Assumption 2 holds, then:

(a)
∣∣∣T̂au(x)

∣∣∣ ≤ M̂W (x) for all (x, a) ∈ KA, u ∈ BW , and some M̂ < ∞.

(b) The mapping (x, a, θ) → T(a,θ)u(x) is l.s.c. on K for all u ∈ LW .

(c) The operator T is a contraction on BW with modulus bα∗ < 1.
In addition, if � is a compact set, then

(d) T maps LW into itself.
(e) For each u ∈ LW , there exists f ∗ ∈ FA such that

T u(x) = sup
θ∈�

T( f ∗,θ)u(x), x ∈ X.

Proof (a) This part follows from (20), (22), (25), and (26) by taking M̂ := c0 +
α∗b ‖u‖W .

(b) Observe that if u ∈ LW then, from (24) and Assumption 2(a), the function
v (x) := u (x) + ‖u‖W W (x) is nonnegative and l.s.c. Thus, Assumption 2(b)
(see Remark 3(a)) implies that the mapping (x, a) → ∫

X
v(y)Q(dy | x, a) is

l.s.c. on KA, which, together with Assumption 2(c) implies that the mapping
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(x, a) → ∫
X

u(y)Q(dy | x, a) is l.s.c. on KA. Then, Assumptions 2(a), (e) yield
the lower semi-continuity of T(a,θ)u(x) on K.

(c) Let u, u′ ∈ BW . Then, from definition (32) of the operator T, we have, for each
x ∈ X,

∣∣T u(x) − T u′(x)
∣∣ ≤ sup

a∈A(x)

sup
θ∈�

α(x, a, θ)

∫

X

∣∣u (y) − u′ (y)
∣∣ Q(dy | x, a)

≤ α∗ ∥∥u − u′∥∥
W

∫

X

W (y)Q(dy | x, a)

≤ α∗b
∥∥u − u′∥∥

W W (x),

where the last two inequalities follows from (25) and (26 ). Therefore,

∥∥T u − T u′∥∥
W ≤ α∗b

∥∥u − u′∥∥
W .

(d) Let {(xm, am)} ⊂ KA be a sequence such that (xm, am) → (x, a) ∈ KA, and
θ ∈ � be arbitrary. From the compactness of the set � there exists a sequence
{θm} such that θm → θ . Then, from the part (b) of the lemma,

lim inf
m→∞ T̂am u(xm) = lim inf

m→∞ sup
θ∈�

T(am ,θ)u(xm)

≥ lim inf
m→∞ T(am ,θm )u(xm)

≥ T(a,θ)u(x).

Since θ is arbitrary, we have

lim inf
m→∞ T̂am u(xm) ≥ T̂au(x),

which implies that T̂au(x) is l.s.c. onKA. Therefore, from the part (a), the function
T̂au(x) + M̂W (x) is nonnegative and l.s.c. on KA. Thus, from Assumption 2(d)
and due to a well-known result in Schäl (1975) [see also Proposition D.5 in
Hernández-Lerma and Lasserre (1996) and Rieder (1978)], we have that

inf
a∈A(x)

{
T̂au(x) + M̂W (x)

}
= T u (x) + M̂W (x) (33)

is a l.s.c. function onX, which, in turn implies the lower semi-continuity of T u (x)

onX. Finally, because ‖T u‖W < ∞ [see part (a) of the Lemma and (32)] we have
that T maps LW into itself.

(e) Since T̂au(x) + M̂W (x) is a nonnegative and l.s.c. function, from Assumption
2(d) and by applying standard arguments on the existence of minimizers [see, for
instance, Rieder (1978); Schäl (1975)] there exists f ∗ ∈ FA such that

inf
a∈A(x)

{
T̂au(x) + M̂W (x)

}
= T̂ f ∗u(x) + M̂W (x) ,
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which, together with (33) proves the part (e).
�

5 Minimax strategies

In this section, we present the results corresponding to the minimax criterion. First,
we define the minimax value iteration function and prove the geometric convergence
to the minimax value function. Then we show the existence of minimax strategies

It is easy to prove that LW ⊂ BW is a closed set, which implies that it is a complete
subset of BW . Then, from Lemma 4(c) and the Banach’s Fixed Point Theorem, there
exists a unique function ũ ∈ LW such that for all x ∈ X,

ũ (x) = T ũ (x) (34)

and ∥∥T nu − ũ
∥∥

W ≤ (
bα∗)n ‖u − ũ‖W ∀u ∈ LW , n ∈ N0. (35)

Now we define the sequence of minimax value iteration function {vn} in LW as

v0 = 0,

vn(x) = T vn−1(x) = T nv0, n ∈ N, x ∈ X. (36)

Observe that from (35) and (36), taking u = v0 we get

‖vn − ũ‖W ≤ (
bα∗)n ‖ũ‖W ∀n ∈ N0. (37)

We state our minimax result as follows.

Theorem 5 If Assumption 2 holds and � is a compact set, then:

(a) The minimax value function (12) is the unique solution in LW satisfying

V ∗(x) = T V ∗(x), x ∈ X. (38)

(b) For each n ∈ N, ∥∥vn − V ∗∥∥
W ≤ c0

(bα∗)n

1 − bα∗ .

(c) There exists f ∗ ∈ FA such that

V ∗(x) = sup
θ∈�

T( f ∗,θ)V
∗(x) = T̂ f ∗ V ∗(x), x ∈ X, (39)

and moreover, f ∗ is a minimax strategy for the controller, that is,

V ∗(x) = sup
π ′∈
�

V (x, f ∗, π ′).
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Proof From (34) and (37), parts (a) and (b) will be proved if we show that ũ = V ∗.
To this end, let f ∈ FA be a selector such that

ũ (x) = sup
θ∈�

T( f,θ)ũ (x) , x ∈ X,

which exists because of Lemma 4(e). Then, from (30)

ũ (x) ≥ c(x, f ) + α(x, f, θ)

∫

X

ũ(y)Q(dy | x, f ) ∀x ∈ X, θ ∈ �. (40)

Now, for an arbitrary strategy π ′ ∈ 
� for the opponent, iteration of the inequality
(40) yields

ũ (x) ≥ E f π ′
x

[
c(x0, f ) +

m−1∑
n=1

n−1∏
k=0

α(xk, f, θk+1)c(xn, f )

]

+E f π ′
x

[
m−1∏
k=0

α(xk, f, θk+1)ũ (xm)

]

= E f π ′
x

[
m−1∑
n=1

�nc(xn, f )

]
+ E f π ′

x
[
�mũ (xm)

]
. (41)

Combining (22), (25), and (28), we have

E f π ′
x

[
�mũ (xm)

] ≤ (
bα∗)m ‖ũ‖W W (x) , x ∈ X.

Hence, letting m → ∞ in (41), from (11) we get

ũ (x) ≥ V
(
x, f, π ′) ∀x ∈ X, π ′ ∈ 
�. (42)

As π ′ ∈ 
� is arbitrary, (42) and (12) yield

ũ (x) ≥ V ∗(x) ∀x ∈ X. (43)

On the other hand, since α is a continuous function in θ (see Remark 3(b)), from
(34) and the compactness of �, for each (x, a) ∈ KA, there exists g : KA → �, such
that g (x, a) ∈ � satisfies

ũ (x) = inf
a∈A(x)

T(a,g)ũ (x) = inf
a∈A(x)

⎧⎨
⎩c(x, a) + α(x, a, g)

∫

X

ũ(y)Q(dy | x, a)

⎫⎬
⎭

≤ c(x, a) + α(x, a, g)

∫

X

ũ(y)Q(dy | x, a) ∀x ∈ X, a ∈ A (x) . (44)
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Similarly as in (41) and (42), for a strategy π ∈ 
A, iteration of (44) yields

ũ (x) ≤ V (x, π, g) ∀x ∈ X. (45)

Thus, since

V (x, π, g) ≤ sup
g∈F�

V (x, π, g) ≤ sup
π ′∈
�

V
(
x, π, π ′) ∀x ∈ X,

and, in addition, π ∈ 
A is arbitrary, (45) implies

ũ (x) ≤ inf
π∈
A

sup
π ′∈
�

V
(
x, π, π ′) = V ∗ (x) ∀x ∈ X. (46)

Therefore, combining (43) and (46) we get ũ = V ∗ which proves the parts (a) and (b)
of the theorem.

Finally, the existence of f ∗ ∈ FA satisfying (39) follows from (38) and Lemma
4(e). Moreover, similarly as in (42), we have that for an arbitrary strategy π ′ ∈ 
�,

V ∗ (x) ≥ V
(
x, f ∗, π ′) ∀x ∈ X,

which implies that

V ∗ (x) = sup
π ′∈
�

V
(
x, f ∗, π ′) ∀x ∈ X.

�

6 Asymptotically optimal strategies

We consider the control model (3). In this case we are supposing that {ξn} is a sequence
of observable i.i.d. random variables with unknown distribution θ ∈ P(S), and our
objective is to study the optimal control problem (16) which, taking � = {θ} , can be
seen as a particular case of the minimax control problem (12).

Considering this fact and (17) (see (11)), the operator T defined in (32) takes the
form

T u(x) = inf
a∈A(x)

T(a,θ)u(x)

= inf
a∈A(x)

⎧⎨
⎩c(x, a) + α(x, a, θ)

∫

X

u(y)Q(dy | x, a)

⎫⎬
⎭ ,

for each function u on X. Hence, we have the following consequences of Theorem 5.

Proposition 6 Suppose that Assumption 2 holds. Then:
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(a) The value function (14) (see (16)) satisfies

V (x) = T V (x), x ∈ X, (47)

and moreover (see (29)),

‖V ‖W ≤ c0
1 − bα∗ . (48)

(b) There exists f ∗ ∈ FA such that

V (x) = T( f ∗,θ)V (x) = c
(
t x, f ∗)+α

(
x, f ∗, θ

) ∫

X

V (y)Q(dy | x, f ∗), x ∈ X.

Since θ is unknown, the solution given for the Proposition 6 is not accessible for the
controller. Under these circumstances, using the empirical distribution θ̂n to estimate
θ (see (5)), our objective is to show the existence of asymptotically optimal strategies.

6.1 Empirical estimation

It is well known that θ̂n converges weakly to θ a.s. Hence, for each (x, a) ∈ KA

∫

S

α̃(x, a, s)θ̂n(ds) →
∫

S

α̃(x, a, s)θ(ds) a.s, as n → ∞.

That is, as n → ∞,

α
(

x, a, θ̂n

)
→ α(x, a, θ) a.s.

However, this convergence is not sufficient for our objective. Specifically we require
uniform convergence on the set KA. Then, to state the suitable estimation process we
need to impose the following assumption.

Assumption 7 The family of functions

A := {α̃(x, a, ·) : (x, a) ∈ KA}

is equicontinuous on S.

Then, as a consequence of Theorem 6.4 in Ranga Rao (1962) we have the following
result.

Lemma 8 Under Assumption 7, as n → ∞,

sup
(x,a)∈KA

∣∣∣α(x, a, θ̂n) → α(x, a, θ)

∣∣∣ → 0 a.s. (49)

Remark 9 An obvious sufficient condition for Assumption 7 is that the disturbance
set S is countable with the discrete topology.
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The uniform convergence (49) is used to obtain a (non-stationary) value iteration
algorithm to approximate the value function (16), whichwill be a key point to construct
asymptotically optimal strategies in the next subsection.

Let {Vn} be a sequence of functions defined as

V0 ≡ 0;
Vn(x) = inf

a∈A(x)
T

(a,θ̂n)
Vn−1(x). (50)

A straightforward calculation shows that (see (48))

‖Vn‖W ≤ c0
1 − bα∗ a.s., ∀n ∈ N. (51)

That is, Vn ∈ BW a.s., for all n ∈ N.

Proposition 10 Under Assumptions 2 and 7,

‖V − Vn‖W → 0 a.s., as n → ∞.

Proof From (47) and (50), by adding and subtracting the term α(x, a, θ̂n)
∫
X

V (y)

Q(dy | x, a), we have, for each x ∈ X and n ∈ N,

|V (x) − Vn(x)| ≤ sup
a∈A(x)

{∣∣∣α(x, a, θ) − α
(

x, a, θ̂n

)∣∣∣
∫
X

|V (y)| Q(dy|x, a)

+α(x, a, θ̂n)

∫
X

|V (y) − Vn−1(y)| Q(dy|x, a)

}

≤ b ‖V ‖W W (x) sup
a∈A(x)

∣∣∣α(x, a, θ) − α
(

x, a, θ̂n

)∣∣∣
+α∗b ‖V − Vn−1‖W W (x),

where the last inequality comes from (22)–(26). Therefore, from (48),

‖V − Vn‖W ≤ bc0
1 − α∗b

sup
(x,a)∈K

∣∣∣α(x, a, θ) − α
(

x, a, θ̂n

)∣∣∣ + α∗b ‖V − Vn−1‖W .

(52)
Now, let l := lim supn→∞ ‖V − Vn‖W < ∞ (see (48) and (51)). Taking lim sup on
both sides of (52), from Lemma 8 we get l < α∗bl. Then, observing that 0 < α∗b < 1
(see Assumption 2(f)) we obtain l = 0 which proves the proposition. �

6.2 Asymptotically optimal strategies

Consider the value iteration function Vn defined in (50). Observe that under Assump-
tion 2, applying standard arguments on the existence of minimizers (see Proposition
6), for each n ∈ N, there exists fn ∈ FA such that
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Vn(x) = T(
fn ,θ̂n

)Vn−1(x), x ∈ X. (53)

Now, let π̂ = {
π̂n
} ∈ 
M

A
be the strategy determined by the sequence { fn} , that is,

π̂n(·|hn) is concentrated on fn(xn) for all hn ∈ Hn and n ∈ N, with π̂0 any fixed
action. Then, our objective is to show that π̂ is an asymptotically optimal strategy.

Before to state the result, we need to impose the following technical requirement.

Assumption 11 There exist positive constants d0 < ∞, β0 < 1, and p > 1 such that
for all (x, a) ∈ KA,

∫

X

W p(y)Q(dy|x, a) ≤ β0W p(x) + d0. (54)

Remark 12 (a) Applying Jensen’s inequality to (54) we have, for all (x, a) ∈ KA,

∫

X

W (y)Q(dy|x, a) ≤ β ′W (x) + d ′, (55)

where β ′ = β
1/p
0 and d ′ = d1/p

0 . Moreover, as a consequence of both inequalities
(54) and (55) we have

sup
n∈N0

Eπ
x

[
W p (xn)

]
< ∞ (56)

and
sup

n∈N0

Eπ
x [W (xn)] < ∞. (57)

Indeed, first note that from (54)

Eπ
x

[
W p(xn)] ≤ β0Eπ

x [W p(xn−1)
] + d0 , n ∈ N.

Then, iterating this inequality and using the fact β0 < 1 we obtain

Eπ
x

[
W p(xn)

] ≤ βn
0 W p(x) +

(
1 + β0 + · · · + βn−1

0

)
d0 ≤ W p(x)+d0/(1−β0),

which, in turns implies (56). Similarly, (57) follows from (55).

(b) In addition, since W (·) ≥ 1, observe that if
(
β
1/p
0 + d1/p

0

)
α∗ < 1, the relation

(55) implies Assumption 2(f).

Theorem 13 Under Assumptions 2, 7, and 11 the strategy π̂ is asymptotically optimal.

The proof of Theorem 13 is based on the following characterization of asymptotic
optimality which is an adaptation of the Theorem 4.6.2 in Hernández-Lerma and
Lasserre (1996).
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Lemma 14 Under Assumption 2, a policy π ∈ 
A is asymptotically optimal for the
control model M if for all x ∈ X,

lim
n→∞ Eπ

x [(xn, an)] = 0,

where

(x, a) := c(x, a) + α(x, a, θ)

∫
X

V (y) Q(dy|x, a) − V (x), (x, a) ∈ KA.

Proof First observe the following facts. For each x ∈ X, π ∈ 
A, and n ∈ N, from
Assumptions 2(e), (f), and relations (28) and (48),

Eπ
x

[
�n,m V (xm)

] ≤ (α∗)m−nbmc0
1 − bα∗ W (x).

Hence, because α∗b ∈ (0, 1),

lim
m→∞ Eπ

x

[
�n,m V (xm)

] = 0. (58)

In addition, since  is nonnegative (see (47)), for each x ∈ X and π ∈ 
A,

lim
t→∞ Eπ

x [(xt , at )] = 0 implies lim
n→∞

∞∑
t=n

Eπ
x

[
�n,t(xt , at )

] = 0. (59)

Now, for each x ∈ X, π ∈ 
A, and t ∈ N,

(xt , at ) = Eπ
x

[
c(xt , at ) + α(xt , at , θ)V (xt+1) − V (xt )|ht , at

]
, (60)

where ht is the history of the system up to time t. Then, from (18), (19), (60), and
applying properties of conditional expectation, for each n ≥ t, x ∈ X, and π ∈ 
A,

∞∑
t=n

Eπ
x

[
�n,t(xt , at )

]

=
∞∑

t=n

Eπ
x

[
�n,t Eπ

x

[
c(xt , at ) + α(xt , at , θ)V (xt+1) − V (xt )|ht , at

]]

=
∞∑

t=n

{
Eπ

x

[
�n,t c(xt , at )

] + Eπ
x

[
�n,t+1V (xt+1) − �n,t V (xt )

]}

= V (n)(x, π) − Eπ
x [V (xn)] + lim

m→∞ Eπ
x

[
�n,m V (xm)

]

= V (n)(x, π) − Eπ
x [V (xn)], (61)

where the last equality follows from (58). Finally, (61), Definition 1 and (59) yield the
desired result. �
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Proof of Theorem 13 According to Lemma 14, to prove the theorem it is sufficient to
show

lim
n→∞ E π̂

x [(xn, an)] = 0.

To this end, for each n ∈ N, we define the function n : KA → R as

n(x, a) := c(x, a) + α(x, a, θ̂n)

∫
X

Vn−1(y)Q(dy|x, a) − Vn(x).

Thus, from (53)
n(x, fn) = 0, ∀n ∈ N, x ∈ X. (62)

Now, if {(xn, an)} is the sequence of state–action pairs corresponding to the application
of the strategy π̂ , observe that from (62)

(xn, an) ≤ |(xn, an) − n (xn, an)|
≤ sup

a∈A(xn)

|(xn, a) − n(xn, a)|

≤ W (xn)Ln a.s.,

where

Ln := sup
(x,a)∈K

|(x, a) − n(x, a)|
W (x)

.

Hence, the remainder of the proof consists in proving

lim
n→∞ E π̂

x (W (xn)Ln) = 0. (63)

By adding and subtracting the termα
(

x, a, θ̂n

) ∫
X

V (y) Q(dy|x, a), using (25), (26),

and (48), it is easy to see that, for each n ∈ N,

Ln ≤ bc0
1 − bα∗ sup

(x,a)∈K

∣∣∣α(x, a, θ) − α(x, a, θ̂n)

∣∣∣
+ bα∗ ‖V − Vn−1‖W + ‖V − Vn‖W .

Thus, from Lemma 8 and Proposition 10

Ln → 0 a.s., as n → ∞.

Note that from the property (69) below we also have that

Ln → 0 P π̂
x − a.s., as n → ∞. (64)
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Furthermore, observe that supn∈N Ln ≤ L1 < ∞ for some constant L1, and from
(64) we have the convergence in probability

Ln
P π̂

x−→ 0 as n → ∞. (65)

Also, from (56)

sup
n

E π̂
x (W (xn)Ln)p ≤ L p

1 sup
n

E π̂
x

(
W p(xn)

)
< ∞.

This implies (see, for instance, Lemma 7.6.9 in Ash 1972)) that {W (xn)Ln} is
P π̂

x -uniformly integrable.
On the other hand, for arbitrary positive numbers m1 and m2, we have,

P π̂
x (W (xn)Ln > m1) ≤ P π̂

x

(
Ln >

m1

m2

)
+ P π̂

x (W (xn) > m2),

which implies, from Chebyshev’s inequality, that

P π̂
x (W (xn)Ln > m1) ≤ P π̂

x

(
Ln >

m1

m2

)
+ E π̂

x (W (xn))

m2
.

This relation, together with (65), yields the convergence in probability

W (xn)Ln
P π̂

x−→ 0 as n → ∞.

Therefore, since {W (xn)Ln} is P π̂
x -uniformly integrable,we obtain (63)which implies

the asymptotic optimality of the strategy π̂ . �

6.3 Sufficiency of Markov strategies

We conclude proving the relations (15) and (17). To this end, we will use the following
well-known properties of the probabilitymeasure Pπ

x (see, e.g., Hernández-Lerma and
Lasserre 1996, 1999). For each π = {πn} ∈ 
A and x ∈ X,

Pπ
x [x0 ∈ X ] = δx (X), X ∈ B(X); (66)

Pπ
x [an ∈ A|hn] = πn (A|hn) , A ∈ B(A); (67)

Pπ
x

[
xn+1 ∈ X |hn, an, ξn+1

] = Q (X |xn, an) , X ∈ B(X); (68)

Pπ
x

[
ξn+1 ∈ B|hn, an

] = θ(B), B ∈ B(S), (69)

where δx is the Diracmeasure concentrated at x and hn = (x0, a0, ξ1, . . . , xn−1, an−1,

ξn, xn) ∈ Hn := (KA × S)n × X for n ∈ N.
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Lemma 15 For each π ∈ 
A there exists ϕ ∈ 
M
A

such that

V (x, π) = V (x, ϕ), x ∈ X.

Proof For each π ∈ 
A, x ∈ X, and n ∈ N0, we define the finite measures Mπ
x,n on

X × A and mπ
x,n on X as

Mπ
x,n(K ) := Eπ

x �̃n1{(xn ,an)∈K }, K ∈ B(X × A) (70)

and
mπ

x,n(X) := Eπ
x �̃n1{xn∈X}, X ∈ B(X). (71)

Observe thatmπ
x,n is themarginal of Mπ

x,n onX. Then, byCorollary 7.27.2 in Bertsekas
and Shreve (1978), there exists a stochastic kernel ϕn on A given X such that, for
X ∈ B(X) and A ∈ B(A),

Mπ
x,n(X × A) =

∫
X

ϕn(A|y)mπ
x,n(dy) =

∫
X

∫
A

ϕn(da|y)mπ
x,n(dy). (72)

Since Mπ
x,n is concentrated on KA, we can select versions of ϕn , n ∈ N0, such that

ϕn(A(y)|y) = 1, for y ∈ X. Thus, ϕ := {ϕn} ∈ 
M
A

. Therefore, to prove the lemma,
it is enough to prove the equality

Mπ
x,n = Mϕ

x,n, x ∈ X, n ∈ N0. (73)

Indeed, first note that from (70) and applying standard arguments on integration theory
as linearity and the monotone convergence theorem, we can obtain

Eπ
x �̃ng(xn, an) =

∫
X×A

g(y, a)Mπ
x,n(d(y, a)), (74)

for any measurable function g : X × A → �. Then, from (73) and (74) with g = c,
we get

Eπ
x �̃nc(xn, an) =

∫
X×A

c(y, a)Mϕ
x,n(d(y, a)) = Eϕ

x �̃nc(xn, an),

which, from (13) proves the lemma.
We then proceed to prove (73) by induction. First observe that from ( 66)

mπ
x,0(X) := Eπ

x 1{x0∈X} = δx (X) = mϕ
x,0(X), X ∈ B(X).

Then, from (70) and (72),

Mπ
x,0(X × A) := Eπ

x 1{(x0,a0)∈X×A} =
∫

X
ϕ0(A|y)mπ

x,0(dy)

=
∫

X
ϕ0(A|y)mϕ

x,0(dy) = Mϕ
x,0(X × A), X × A ∈ B(X × A).
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Now we assume that (73) holds for some n ∈ N0. Then, using properties of condi-
tional expectation, from (68) and (69),

mπ
x,n+1(X) = Eπ

x �̃n+11{xn+1∈X} = Eπ
x

[
Eπ

x

[
�̃nα̃(xn, an, ξn+1)1{xn+1∈X}|hn, an

]]

= Eπ
x

[
�̃n Eπ

x

[
α̃(xn, an, ξn+1)1{xn+1∈X}|hn, an

]]

= Eπ
x

[
�̃n Q (X |xn, an)

∫
S
α̃(xn, an, s)θ(ds)

]
.

Then, taking g(y, a) = Q (X |y, a)
∫

S α̃(y, a, s)θ(ds), from (74) we have, for each
π ∈ 
A,

mπ
x,n+1(X) =

∫

X×A

g(y, a)Mπ
x,n(d(y, a))

=
∫

X×A

g(y, a)Mϕ
x,n(d(y, a)). (75)

In particular, letting π = ϕ, we obtain

mϕ
x,n+1(X) =

∫

X×A

g(y, a)Mϕ
x,n(d(y, a)),

which, together with (75), yields

mπ
x,n+1(X) = mϕ

x,n+1(X). (76)

Now we use this fact to prove (73). From (72) and (76 ),

Mπ
x,n+1(X × A) =

∫
X

∫
A

ϕn+1(da|y)mπ
x,n+1(dy)

=
∫

X

∫
A

ϕn+1(da|y)mϕ
x,n+1(dy). (77)

On the other hand, observe that, similar to (74), we have that for each π ∈ 
A and
n ∈ N0,

Eπ
x �̃nh(xn) =

∫
X

h(y)mπ
x,n(dy), (78)

for any measurable function h : X → �. Then, from ( 70) and (67),

Mϕ
x,n+1(X × A) = Eϕ

x �̃n+11{xn+1∈X,an+1∈A}

= Eϕ
x

[
Eϕ

x

[
�̃n+11{xn+1∈X,an+1∈A}|hn+1

]]
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= Eϕ
x

[
�̃n+11{xn+1∈X}Eϕ

x

[
1{an+1∈A}|hn+1

]]

= Eϕ
x

[
�̃n+11{xn+1∈X}

∫
A

ϕn+1(dan+1|xn+1)

]
.

Taking h(y) = 1{y∈X}
∫

A ϕn+1(da|y), from (78) we get

Mϕ
x,n+1(X × A) =

∫
X

1{y∈X}
∫

A
ϕn+1(da|y)mπ

x,n+1(dy)

=
∫

X

∫
A

ϕn+1(da|y)mπ
x,n+1(dy). (79)

Thus, (77) and (79) yield (73), which proves the lemma. �

Lemma 16 For each x ∈ X and ϕ ∈ 
M
A

, the relation (17) holds, that is

V (x, ϕ) := Eϕ
x

[ ∞∑
n=0

�nc(xn, an)

]
,

where �n = ∏n−1
k=0 α(xk, ak, θ), if n ∈ N and �0 = 1.

Proof The relation (17) is consequence of the properties of the probability measure
Pϕ

x (66)–(69) and Lemma 15. Indeed, for each x ∈ X and ϕ ∈ 
M
A
,

Eϕ
x α̃(x0, a0, ξ1)c(x1, a1) =

∫∫∫∫

A×S×X×A

α̃
(
x0, a′

0, ξ
′
1

)
c
(
x ′
1, a′

1

)

× ϕ1
(
da′

1|x ′
1

)
Q
(
dx ′

1|x0, a′
0

)
θ
(
dξ ′

1

)
ϕ0

(
da′

0|x0
)

=
∫

A

∫

S

α̃
(
x0, a′

0, ξ
′
1

)
θ
(
dξ ′

1

) ∫

X

∫

A

c
(
x ′
1, a′

1

)
ϕ1

(
da′

1|x ′
1

)

×Q
(
dx ′

1|x0, a′
0

)
ϕ0

(
da′

0|x0
)

=
∫

A

∫

X

∫

A

α
(
x0, a′

0, θ
)

c
(
x ′
1, a′

1

)
ϕ1

(
da′

1|x ′
1

)

×Q
(
dx ′

1|x0, a′
0

)
ϕ0

(
da′

0|x0
)

= Eϕ
x α (x0, a0, θ) c(x1, a1). (see (9))

Applying similar arguments, it is easy to see that, for n = 2, 3, . . . ,

Eϕ
x �̃nc(xn, an) = Eϕ

x �nc(xn, an),

which implies (17). �
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7 Example

Besides the problems with constant discount factor, our theory, additionally, covers
some particular cases with non-constant discount factor, for instance, state-dependent
discount factor systems, and problems with random discount factor but independent
of the state–action process, see Wei and Guo (2011) and González-Hernández et al.
(2008, 2013, 2014). In theseworks are introduced application examples corresponding
to each particular case. Nowwe present further exampleswhich satisfy our hypotheses.

7.1 A cash-balance model

We consider a simple discrete-time cash-balance model introduced in Hordjik and
Yushkevich (1999) (see also Wei and Guo 2011). The problem consists in to control
the level of a firm’s cash balance to meet its demand for cash at minimum total
discounted cost.

We define the following variables:

xn is the cash balance at time n;
an is the withdrawal of size −an (if an < 0) of money in cash, or a supply in
amount an (if aa > 0), at time n;
wn is the demand for cash during the stage n. A positive demand means cash
outflow and a negative demand means a cash inflow.

Then, the cash-balance process {xn} evolves on the state space X = R according
to the recursive equation

xn+1 = xn + an + wn, n = 0, 1, . . . (80)

We assume that {wn} is a sequence of i.i.d. random variables with standard normal
distribution

ρ(w) := 1√
2π

exp

(
−w2

2

)
, w ∈ R;

and furthermore the set of admissible actions when the cash balance is x ∈ R is
A(x) = [− |x | , |x |] . The one-stage cost function is an arbitrary l.s.c. on

KA := {(x, a) : x ∈ R, a ∈ [− |x | , |x |]}

such that
|c(x, a)| ≤ c0(x2 + 1),

for some positive constant c0.
Under these conditions, clearly Assumptions 2(a) and (d) are satisfied with

W (x) := x2 + 1, x ∈ R. (81)
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To verify Assumptions 2(b) and (c), let us, first, note that the transition law (6) takes
the form

Q(D|x, a) =
∫
R

1D[x + a + w]ρ(w)dw

=
∫
R

1D[x + a + w] 1√
2π

exp

(
−w2

2

)
dw, D ∈ B(R). (82)

Hence, from the continuity of the density ρ as well as of the function (x, a, w) →
x + a + w, it is easy to prove that the functions

(x, a) �−→
∫
R

u[x + a + w] 1√
2π

exp

(
−w2

2

)
dw

and

(x, a) �−→
∫
R

W [x + a + w] 1√
2π

exp

(
−w2

2

)
dw

are continuous on KA, for each continuous and bounded function u : R → R [see,
e.g., Examples C.6 and C.8, Appendix C in Hernández-Lerma and Lasserre (1996)],
which yield Assumptions 2(b) and (c).

We will now proceed to verify Assumptions 2(e) and (f). Let us assume that the
random disturbance process {ξn} is a sequence of independent random variables taking
values on S := [0, 1] with unknown distribution θ ∈ � = P(S). In addition, the
discount factor function is defined as

α̃(x, a, s) = s

γ (x2 + a2 + 1)
, (x, a) ∈ KA, s ∈ S, (83)

for a constant γ > 4. Hence, clearly

α∗ := sup
(x,a,s)∈KA×S

α̃(x, a, s) <
1

4
, (84)

which implies that Assumption 2(e) holds.
Furthermore, from (81) and (82), observe that

∫
R

W (y)Q(dy|x, a) =
∫
R

[(x + a + w)2 + 1] 1√
2π

exp

(
−w2

2

)
dw

=
∫
R

(x + a + w)2
1√
2π

exp

(
−w2

2

)
dw + 1

=
∫
R

y2
1√
2π

exp

(
− (y − (x + a)2

2

)
dy + 1

= (x + a)2 + 2, (x, a) ∈ KA.
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Now, because A(x) = [− |x | , |x |] , it is easy to see that
∫
R

W (y)Q(dy|x, a) ≤ 4x2 + 2 ≤ 4(x + a)2 = 4W (x).

Thus, from (84), Assumption 2(f) is satisfied with b = 4.
Therefore, from Theorem 5, there exists a minimax strategy.

7.2 An autoregressive control model

We consider a controlled process of the form

xn+1 = G(an)xn + wn, n = 0, 1, . . . ,

x0 given, with state space X = [0,∞), and compact action set A(x) = A ⊂ R,

x ∈ X, and G : A → (0, λ] is a given measurable function with λ < 1. The random
disturbance process {wn} is formed by i.i.d. and nonnegative random variables with
a continuous density ρ and finite expectation, say E [w0] = w̄ < ∞. Hence, the
transition law is

Q(D|x, a) =
∫
R

1D[G(a)x + w]ρ(w)dw, D ∈ B(X).

In addition, the one-stage cost c is an arbitrary l.s.c. function onKA = {(x, a) : x ≥ 0,
x ∈ A} such that

|c(x, a)| ≤ (x + b̄)1/p, (x, a) ∈ KA,

for some constants b̄ > 1 and p > 1.
Similarly as previous example, defining W (x) := (x + b̄)1/p we have that Assump-

tions 2(a)–(d) hold. Moreover, for all (x, a) ∈ KA,

∫ ∞

0
W p [G(a)x + w] ρ(w)dw =

∫ ∞

0

[
G(a)x + w + b̄

]
ρ(w)dw

≤ λ(x + b̄) + b̄ + w̄,

which implies Assumption 11 with β0 := λ and d0 := b̄ + w̄. From Remark 12(a),
we also have

∫ ∞

0
W [G(a)x + w] ρ(w)dw =

∫ ∞

0

[
G(a)x + w + b̄

]1/p
ρ(w)dw

≤ λ1/pW (x) + (
b̄ + w̄

)1/p
, (x, a) ∈ KA. (85)

We again assume that the discount factor function is as (83), but where the constant
γ satisfies

1 < λ1/p + (
b̄ + w̄

)1/p = β
1/p
0 + d1/p

0 < γ.
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In addition, ξn, n ≥ 0, are i.i.d. random variables taking values on S = [0, 1] with
unknown distribution θ ∈ P(S). Then, under these conditions, we have

α∗ <
1

λ1/p + (
b̄ + w̄

)1/p < 1, (86)

and, because W (·) ≥ 1, from (85) we get

∫ ∞

0
W [G(a)x + w] ρ(w)dw ≤

(
λ1/p + (

b̄ + w̄
)1/p

)
W (x), (x, a) ∈ KA. (87)

Therefore, defining b := (λ1/p + (
b̄ + w̄

)1/p
), (86) and (87) yield Assumptions 2(e)

and (f).
Finally, observe that the derivative of α̃ with respect to s satisfies

α̃′(x, a, s) = 1

γ (x2 + a2 + 1)
< 1, ∀(x, a) ∈ KA, s ∈ [0, 1].

This fact implies that the family of functions

A := {α̃(x, a, ·) : (x, a) ∈ KA}

is equi-Lipschitz, and therefore equicontinuous on S. Then Assumption 7 is satisfied.
Therefore, from Theorem 13, there exists an asymptotically optimal strategy.
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