
TOP (2015) 23:799–836
DOI 10.1007/s11750-014-0354-8

ORIGINAL PAPER

Approximation of zero-sum continuous-time Markov
games under the discounted payoff criterion

Tomás Prieto-Rumeau · José María Lorenzo

Received: 1 April 2014 / Accepted: 20 November 2014 / Published online: 10 December 2014
© Sociedad de Estadística e Investigación Operativa 2014

Abstract We deal with a two-person zero-sum continuous-timeMarkov game G with
denumerable state space, general action spaces, and unbounded payoff and transition
rates. We consider noncooperative equilibria for the discounted payoff criterion. We
are interested in approximating numerically the value and the optimal strategies of G.
To this end, we propose a definition of a sequence of game models Gn converging to
G, which ensures that the value and the optimal strategies of Gn converge to those of
G. For numerical purposes, we construct finite state and actions game models Gn that
can be explicitly solved, and we study the convergence rate of the value of the games.
A game model based on a population system illustrates our results.
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1 Introduction

This paper deals with a two-person zero-sum continuous-time Markov game with
denumerable state space, general action spaces, and possibly unbounded payoff and
transition rates. The optimality criterion consists in finding a Nash equilibrium for the
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total expected discounted payoff of the players. The existence of such Nash equilib-
rium, as well as the existence of optimal strategies for the players, has been established
in Guo and Hernández-Lerma (2005). In that reference, it is shown that the value of
the game is the solution of an optimality equation (also referred to as the Shapley
equation).

Now we explain, somehow loosely, the form of this Shapley equation. Let i ∈ S be
the state of the system, and denote by a ∈ A and b ∈ B the actions of the players that
take values in some Borel spaces A and B. There is some operator H that maps, for
each fixed a ∈ A and b ∈ B, a function {u(i)}i∈S into the function {(Hu)(i, a, b)}i∈S
such that the value of the game {V (i)}i∈S is the unique solution of the equations

V (i) = sup
φ∈P(A)

inf
ψ∈P(B)

∫
A

∫
B
(HV )(i, a, b)ψ(db)φ(da) (1.1)

= inf
ψ∈P(B)

sup
φ∈P(A)

∫
A

∫
B
(HV )(i, a, b)ψ(db)φ(da) (1.2)

for all i ∈ S, where P(A) and P(B) denote the family of probability measures on A
and B, respectively.

It should be clear that one cannot expect to solve, in general, the Eqs. (1.1)–(1.2)
explicitly. For computational purposes, therefore, one should use some kind of dis-
cretization technique to, at least, approximate the value of the game and the optimal
strategies of the players. This is precisely the purpose of this paper.

Let G be the “original” game model, with denumerable state space and Borel action
spaces, and let {Gn}n≥1 be a sequence of game models. In this paper, we propose a
definition of the convergence Gn → G which, under adequate conditions, implies that
the value of the games Gn and the corresponding optimal strategies converge to the
value and the optimal strategies of the game G. Then, for computational purposes,
we show how we can construct, starting from the game model G, a sequence of game
models {Gn}n≥1 with finite state and action spaces that converge to G. Such finite mod-
els can be solved explicitly and, hence, we can provide computable approximations
of the value of the game model G. Our proofs make use of separability of spaces of
probability measures in the Wasserstein metric.

As far as we know, this is the first attempt to provide such computable approxi-
mations for continuous-time Markov games with denumerable state space and gen-
eral action spaces. The reader interested in related works can consult (Jaśkiewicz
and Nowak 2006; Nowak and Altman 2002), in which the idea of approximat-
ing a game model G with “simpler” models has been studied. The reference
(Chang et al. 2010) also considers computational issues for a continuous-time
game with general state space and finite action spaces. Approximation techniques
similar to those developed in the present paper, but for continuous-time con-
trolled (say, with a single player) Markov chains, have been studied in Prieto-
Rumeau and Hernández-Lerma (2012) for the discounted reward criterion and in
Prieto-Rumeau and Lorenzo (2010) for the average cost criterion; see also Prieto-
Rumeau and Hernández-Lerma (2012). The reference Guo and Zhang (2014) pro-
poses approximation techniques for discounted cost Markov decision processes
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Approximation of zero-sum continuous-time Markov games 801

with constraints (the previous references are concerned with unconstrained prob-
lems). Their setting is similar to ours, in the sense that they propose a defini-
tion of convergence for control models. The technique proofs in Guo and Zhang
(2014) mainly rely on linear programming, while (Prieto-Rumeau and Hernández-
Lerma 2012; Prieto-Rumeau and Lorenzo 2010) use dynamic programming argu-
ments.

At this point, it is interesting to make a comparison between the approximation
approaches for control and game models. Approximating a game model by means of
finite state and actions game models is, from a technical point of view, more compli-
cated than such approximations for control models. The analogous to (1.1)–(1.2) for
a control model, in which the state space is S and the action space of the controller is
A, is the optimality (or dynamic programming) equation

V (i) = sup
a∈A

{(HV )(i, a)} for i ∈ S. (1.3)

When making a finite approximation, one roughly considers an optimality equation
as in (1.3) with finite S and A. Then, one can use, for instance, the policy itera-
tion algorithm that solves this optimality equation in a finite number of steps. For a
game model, however, the Eqs. (1.1)–(1.2) are, even in the case of finite S, A, and
B, of a continuous nature because we are optimizing on a set of probability mea-
sures (say, a simplex). This makes the computational problems less straightforward.
Here, we combine linear programming with a “value iteration” algorithm to solve
such problems. Moreover, from a computational perspective, the maximum of a func-
tion (as in (1.3)) is easier to approximate than the saddle point of a function (as in
(1.1)–(1.2)).

The rest of the paper is organized as follows. In Sect. 2, we define the game models
wewill be dealingwith, state ourmain assumptions, and recall some previously known
results. The main convergence results are presented in Sect. 3. In Sect. 4, these results
are specialized to the case of finite state and actions approximations. Moreover, under
some additional conditions, we can obtain the convergence rate of the value of the
games. Finally, in Sect. 5, we make an application to a population system for which
we provide some explicit approximations.

2 Definitions and assumptions

The definition of the game model in this section and the corresponding results are
mainly based on Guo et al. (2003); Guo and Hernández-Lerma (2005) and (Prieto-
Rumeau and Hernández-Lerma 2012, Chapter 10).

2.1 The game model G

Definition of the game model. We consider a two-player zero-sum continuous-
time Markov game model G = {S, A, B,K, Q, r}, where the elements of G are the
following.
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• S = {0, 1, 2, . . .} is the state space.
• A and B are the action spaces for players 1 and 2, respectively. We assume that A
and B are Borel spaces (i.e., measurable subsets of complete and separable metric
spaces). The corresponding metrics are denoted by dA and dB , respectively.

• For each i ∈ S, the measurable sets A(i) ⊆ A and B(i) ⊆ B stand for the
actions available for players 1 and 2 in state i ∈ S, respectively. (Throughout this
paper, measurability is always understood with respect to the Borel σ -algebra).
The family of feasible triplets is defined as:

K = {(i, a, b) ∈ S × A × B : a ∈ A(i), b ∈ B(i)}.

• The transition rate matrix of the system is Q = [qi j (a, b)]. It is assumed that:
1. The function (a, b) �→ qi j (a, b) is measurable on A(i)× B(i) for all i, j ∈ S;
2. The transition rates are conservative, that is,

∑
j∈S

qi j (a, b) = 0 for all (i, a, b) ∈ K,

with qi j (a, b) ≥ 0 whenever i �= j ;
3. The transition rates are stable, i.e., q(i) := supa∈A(i),b∈B(i){−qii (a, b)} < ∞.

• Finally, the measurable function r : K → R is interpreted as the reward rate
function for player 1 and the cost rate function for player 2.

The game G is played as follows. At each time t ≥ 0, both players observe the state
of the system x(t) = i ∈ S and then, independently and simultaneously, they choose
actions a(t) = a ∈ A(i) and b(t) = b ∈ B(i). In a small time interval [t, t + dt]:
• player 1 receives a reward r(i, a, b)dt ,
• player 2 incurs a cost r(i, a, b)dt ,
• the system remains in state i ∈ S with probability 1 + qii (a, b)dt or makes a
transition to the state j �= i with probability qi j (a, b)dt .

This procedure is carried on over all the time horizon t ∈ [0,∞).
We suppose that the reward/cost of the players is depreciated at a constant discount

rate α > 0, and so the reward/cost r(i, a, b) at time t ≥ 0 is brought to its present
value, that is, e−αt r(i, a, b). The goal of player 1 is to maximize his total expected
discounted reward, loosely,

E
[ ∫ ∞

0
e−αt r(x(t), a(t), b(t))dt

]
,

while player 2wants tominimize his total expecteddiscounted cost.A formal definition
will be given below.

Assumptions on the game model. Next, we state all the assumptions we will make
on the game model G. We will use the following terminology.

Definition 2.1 We say that w : S → [1,∞) is a Lyapunov function on S when w is
monotone nondecreasing and, in addition, limi→∞ w(i) = +∞.
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Assumption 2.2 The game model G satisfies the following conditions.

(i) There exists a Lyapunov function w on S, and constants c1 < α and d1 ≥ 0 with

∑
j∈S

qi j (a, b)w( j) ≤ c1w(i) + d1 for all (i, a, b) ∈ K.

For each i ∈ S, we have q(i) ≤ w(i).
(ii) There exists a constantM > 0 such that |r(i, a, b)| ≤ Mw(i) for all (i, a, b) ∈ K.
(iii) For each i ∈ S, the sets A(i) and B(i) are compact. For all i, j ∈ S, the functions

r(i, a, b) and qi j (a, b) are continuous on A(i) × B(i).
(iv) There exist constants c2 ∈ R and d2 ≥ 0 with

∑
j∈S

qi j (a, b)w2( j) ≤ c2w
2(i) + d2 for all (i, a, b) ∈ K.

In the sequel, we will explain the use of the above hypotheses.

Strategies of the players. We introduce some notation. Let A(i) and B(i) be the
families of probability measures on A(i) and B(i), when endowed with their Borel
σ -algebras B(A(i)) and B(B(i)), respectively. Let

π1 ≡ {π1
t (C |i)}t≥0,i∈S,C∈B(A(i))

be such that π1
t (·|i) is in A(i) for all t ≥ 0 and i ∈ S, and such that t �→ π1

t (C |i) is
a measurable function on [0,∞) for all C ∈ B(A(i)) and i ∈ S. We say that π1 is
a randomized Markov strategy for player 1, and we denote by �1 the set of all such
strategies. The family �2 of randomized Markov strategies

π2 ≡ {π2
t (C |i)}t≥0,i∈S,C∈B(B(i))

for player 2 is defined similarly.
We say that π1 ∈ �1 is a randomized stationary strategy for player 1 when π1

t (C |i)
does not depend on t ≥ 0. Thus, the class �1,s of stationary strategies for player 1
can be identified with

�1,s =
∏
i∈S

A(i).

Similarly, the class of randomized stationary strategies for player 2 is �2,s =∏
i∈S B(i).
Given a pair of strategies (π1, π2) ∈ �1 × �2, define

qi j (t, π
1, π2) =

∫
A(i)

∫
B(i)

qi j (a, b)π2
t (db|i)π1

t (da|i).

123



804 T. Prieto-Rumeau, J. M. Lorenzo

The above integral is well defined and finite because the system’s transition rates are
conservative and stable. In particular, they satisfy

−qii (t, π
1, π2) =

∑
j �=i

qi j (t, π
1, π2) ≤ q(i) for each t ≥ 0 and i ∈ S.

We will also use the following notation. Given i, j ∈ S, φ ∈ A(i), and ψ ∈ B(i), let

qi j (φ,ψ) =
∫
A(i)

∫
B(i)

qi j (a, b)ψ(db)φ(da), (2.1)

r(i, φ, ψ) =
∫
A(i)

∫
B(i)

r(i, a, b)ψ(db)φ(da), (2.2)

and for stationary strategies (π1, π2) ∈ �1,s × �2,s , we write

qi j (π
1, π2) = qi j (π

1(·|i), π2(·|i)) and r(i, π1, π2) = r(i, π1(·|i), π2(·|i)).

Our next result summarizes themain results on the existence of the state and actions
processes. See, e.g., Proposition 3.1 in Guo et al. (2003), Assumption A in Guo
and Hernández-Lerma (2005), or Proposition 10.3 in Prieto-Rumeau and Hernández-
Lerma (2012).

Theorem 2.3 Suppose that Assumption 2.2(i) is satisfied.

(i) For every (π1, π2) ∈ �1 × �2, there exists a regular (nonhomogeneous) transi-
tion function

{Pπ1,π2

i j (s, t)}i, j∈S,0≤s≤t

with transition rates qi j (t, π1, π2), that is,

lim
h↓0

Pπ1,π2

i j (t, t + h) − δi j

h
= qi j (t, π

1, π2) for all i, j ∈ S and t ≥ 0.

Let 	 = K
[0,∞) = {(x(t), a(t), b(t))}t≥0 be endowed with the product σ -

algebra F .
(ii) Given an initial state i ∈ S at time 0 and (π1, π2) ∈ �1 × �2, there exists a

unique probability measure Pi,π1,π2
on (	,F) such that:

• For each A0 ∈ B(A(i)) and B0 ∈ B(B(i)), we have

Pi,π1,π2{x(0) = i, a(0) ∈ A0, b(0) ∈ B0} = π1
0 (A0|i) · π2

0 (B0|i).
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• Given arbitrary n ≥ 1 and 0 ≤ s1 ≤ s2 ≤ . . . ≤ sn, and, on the other hand, given
ik ∈ S, Ak ∈ B(A(ik)), and Bk ∈ B(B(ik)), for k = 1, . . . , n, we have

Pi,π1,π2{x(s1) = i1, a(s1) ∈ A1, b(s1) ∈ B1, . . . ,

x(sn) = in, a(sn) ∈ An, b(sn) ∈ Bn}

=
n∏

k=1

Pπ1,π2

ik−1ik
(sk−1, sk)π

1
sk (Ak |ik)π2

sk (Bk |ik),

with the convention that i0 = i and s0 = 0.

We will refer to {x(t)}t≥0 as the state process, while {a(t)}t≥0 and {b(t)}t≥0 are
the action processes for players 1 and 2. The expectation operator associated with
Pi,π1,π2

will be denoted by Ei,π1,π2
.

Let Bw(S) be the family of functions u : S → R such that

||u||w = sup
i∈S

{|u(i)|/w(i)} < ∞.

We have that || · ||w is a norm on Bw(S), under which it is a Banach space.

The discounted reward/cost optimality criterion. For the discount rate α > 0, given
an initial state i ∈ S and a pair of strategies (π1, π2) ∈ �1 × �2, we define the total
expected discounted payoff as

V α(i, π1, π2) = Ei,π1,π2

[∫ ∞

0
e−αt r(x(t), a(t), b(t))dt

]
. (2.3)

Thus, V α(i, π1, π2) is the total expected discounted reward for player 1, and it is the
total expected discounted cost for player 2. Using Guo and Hernández-Lerma 2003,
Lemma 3.2 or Guo andHernández-Lerma 2009, Lemma 6.3, under Assumption 2.2(i),
we have that

Ei,π1,π2 [w(x(t))] ≤ ec1tw(i) + d1
c1

(ec1t − 1). (2.4)

(if c1 = 0, then the righthand term is w(i) + d1t ; to see this, just let c1 ↓ 0 in (2.4)).
As a consequence of Assumption 2.2(ii) given i ∈ S and (π1, π2) ∈ �1 × �2, we
have

|V α(i, π1, π2)| ≤ M
∫ ∞

0
e−αt Ei,π1,π2 [w(x(t))]dt ≤ Mw(i)

α − c1
+ d1M

α(α − c1)
.

Hence, letting M = M(α+d1)
α(α−c1)

, it follows that

‖V α(·, π1, π2)‖w ≤ M for all (π1, π2) ∈ �1 × �2. (2.5)
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Remark 2.4 If (π1, π2) is a pair of stationary strategies, by Theorem 2.3(ii) we have
(cf. (2.3))

V α(i, π1, π2) = Ei,π1,π2
[∫ ∞

0
r(x(t), π1, π2)dt

]
for each i ∈ S.

Given the initial state i ∈ S, the lower value and upper value of G are defined as:

Lα(i) = sup
π1∈�1

inf
π2∈�2

V α(i, π1, π2)

Uα(i) = inf
π2∈�2

sup
π1∈�1

V α(i, π1, π2),

respectively. We note that, as a consequence of (2.5), we have

||Lα||w ≤ M and ||Uα||w ≤ M.

The lower value of the game is the maximal discounted reward for player 1 when
using a “maximin” strategy. Indeed, for every fixed strategy π1 ∈ �1, the worst
scenario for player 1 is when player 2 chooses the strategy π2 ∈ �2 attaining the
infimum

inf
π2∈�2

V α(i, π1, π2).

Then, player 1 chooses the strategy yielding the maximal reward, that is, the one
achieving the supremum in the definition of Lα(i). Similarly, the upper value of the
game corresponds to the optimal payoff of player 2 when using a “minimax” strategy.
It is easy to see that Lα(i) ≤ Uα(i) for every i ∈ S.

Definition 2.5 The game G has a value when Lα(i) = Uα(i) for all i ∈ S. The
function V α(i) := Lα(i) = Uα(i) is called the value function of the game G.

In this case, we say that (π∗1, π∗2) ∈ �1 × �2 is a pair of discount optimal
strategies when

V α(i, π1, π∗2) ≤ V α(i, π∗1, π∗2) ≤ V α(i, π∗1, π2)

for all i ∈ S and (π1, π2) ∈ �1 × �2.

A direct calculation shows that if V α is the value function of the game and
(π∗1, π∗2) ∈ �1 × �2 is a pair of discount optimal strategies, then V α(i) =
V α(i, π∗1, π∗2) for each i ∈ S. A pair of optimal strategies is usually referred to
as a noncooperative or Nash equilibrium of the game.

Existence of the value function of G and the Shapley equations. The following is
a consequence of our assumptions that will be useful in the forthcoming.
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Corollary 2.6 Suppose that Assumption 2.2 holds.

(i) Given i ∈ S and k > i , we have

∑
j≥k

qi j (φ,ψ)w( j) ≤ 1

w(k)

(
c2w

2(i) + d2 + q(i)w2(i)
)

for all φ ∈ A(i) and ψ ∈ B(i).
(ii) Given arbitrary u ∈ Bw(S), the function (a, b) �→ ∑

j∈S qi j (a, b)u( j) is con-
tinuous on A(i) × B(i) for every i ∈ S.

Proof (i) Given i ∈ S, k > i , and (a, b) ∈ A(i) × B(i) we have

∑
j≥k

qi j (a, b)w( j) ≤ 1

w(k)

∑
j≥k

qi j (a, b)w2( j) (2.6)

≤ 1

w(k)

(∑
j∈S

qi j (a, b)w2( j) − qii (a, b)w2(i)
)

≤ 1

w(k)

(
c2w

2(i) + d2 + q(i)w2(i)
)
, (2.7)

where we have used monotonicity of w in (2.6) and Assumptions 2.2(i) and (iv)
in (2.7). By integration with respect to φ(da) and ψ(db), statement (i) follows.

(ii) From (2.7) we have that

lim
k→∞ sup

(a,b)∈A(i)×B(i)

∑
j≥k

qi j (a, b)w( j) = 0

and, in particular,

lim
k→∞ sup

(a,b)∈A(i)×B(i)

∣∣∣∑
j≥k

qi j (a, b)u( j)
∣∣∣ = 0.

Consequently, the series
∑

qi j (a, b)u( j) of continuous functions converges uni-
formly on A(i) × B(i). It is, therefore, a continuous function. ��

The continuity of
∑

j∈S qi j (a, b)w( j) is a usual requirement in Markov game
models; see Guo and Hernández-Lerma 2005, Assumption C.3 or Prieto-Rumeau and
Hernández-Lerma 2012, Assumption 10.7.b. As seen in Corollary 2.6(ii) above, this
condition is in fact implied by our hypotheses.

The main result on the discounted game G is the following. It is borrowed from
(Guo and Hernández-Lerma 2005; Prieto-Rumeau and Hernández-Lerma 2012).

Theorem 2.7 Suppose that the game model G satisfies Assumption 2.2.

(i) The game has a value V α ∈ Bw(S) with ‖V α‖w ≤ M.
(ii) The value function V α is the unique solution u in Bw(S) of the equations
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αu(i) = sup
φ∈A(i)

inf
ψ∈B(i)

{
r(i, φ, ψ) +

∑
j∈S

qi j (φ,ψ)u( j)
}

(2.8)

= inf
ψ∈B(i)

sup
φ∈A(i)

{
r(i, φ, ψ) +

∑
j∈S

qi j (φ,ψ)u( j)
}

(2.9)

for all i ∈ S.
(iii) There exists a pair of optimal randomized stationary strategies.

Moreover, (π1, π2) ∈ �1,s × �2,s is a pair of optimal randomized stationary
strategies if and only if π1(·|i) and π2(·|i) attain the supremum and the infimum
in (2.8) and (2.9), respectively, for every i ∈ S.

Remark 2.8 The fact that there exists a pair of optimal stationary strategies implies
that the value of the game satisfies

V α(i) = sup
π1∈�1,s

inf
π2∈�2,s

V α(i, π1, π2) = inf
π2∈�2,s

sup
π1∈�1,s

V α(i, π1, π2)

for all i ∈ S. Note that we are taking the infimum and the supremum over the family
of stationary strategies (cf. the definition of the lower and upper value of the game).

2.2 The game models {Gn}n≥1

In the forthcoming, we consider a sequence of game models

Gn = {Sn, A, B,Kn, Qn, rn} for n ≥ 1.

The elements of these game models satisfy the following conditions.

• The state space Sn is a (finite or infinite) subset of S.
• The action spaces are A and B, as for the game model G.
• The set of available actions in state i ∈ Sn is the measurable sets An(i) ⊆ A(i)
and Bn(i) ⊆ B(i) for players 1 and 2, respectively. Let

Kn = {(i, a, b) ∈ Sn × A × B : a ∈ An(i), b ∈ Bn(i)} ⊆ K.

• The transition rate matrix is given by Qn = [qni j (a, b)] for i, j ∈ Sn and (a, b) ∈
An(i)×Bn(i). We assume that (a, b) �→ qni j (a, b) is measurable on An(i)×Bn(i)
for all i, j ∈ Sn . The transition rates are assumed to be conservative and stable,
that is,

∑
j∈Sn

qni j (a, b) = 0 and sup
a∈An(i),b∈Bn(i)

{−qnii (a, b)} =: qn(i) < ∞

for (i, a, b) ∈ Kn , with the condition that qni j (a, b) ≥ 0 for i �= j .
• The reward/cost rate function is rn : Kn → R, assumed to be measurable.
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The discount rateα > 0 is the same for all the gamemodelsGn andG. The dynamics
of the game Gn is similar to that of the game G studied previously. Next, we state our
hypotheses on the sequence {Gn}n≥1.

Assumption 2.9 The following statements hold for every n ≥ 1.

(i) For all (i, a, b) ∈ Kn

∑
j∈Sn

qni j (a, b)w( j) ≤ c1w(i) + d1,

where the Lyapunov function w and the constants c1 < α and d1 ≥ 0 come from
Assumption 2.2(i). For each i ∈ Sn , we have qn(i) ≤ w(i).

(ii) For the constant M > 0 in Assumption 2.2(ii), |rn(i, a, b)| ≤ Mw(i) for all
(i, a, b) ∈ Kn .

(iii) For each i ∈ Sn , the sets An(i) ⊆ A(i) and Bn(i) ⊆ B(i) are compact, while for
all i, j ∈ Sn , the functions rn(i, a, b) and qni j (a, b) are continuous on An(i) ×
Bn(i).

(iv) With c2 ∈ R and d2 ≥ 0 as in Assumption 2.2(iv), we have

∑
j∈Sn

qni j (a, b)w2( j) ≤ c2w
2(i) + d2 for all (i, a, b) ∈ Kn .

Roughly, Assumption 2.9 consists in supposing that Assumption 2.2 holds “uni-
formly” in n ≥ 1. Next, we introduce some notation. For the game model Gn , the
families of randomized Markov strategies for players 1 and 2 are denoted by �1

n and
�2

n , respectively, while the corresponding stationary strategies are

�1,s
n =

∏
i∈Sn

An(i) and �2,s
n =

∏
i∈Sn

Bn(i),

with An(i) and Bn(i) the families of probability measures on An(i) and Bn(i), respec-
tively. Let Bw(Sn) be the Banach space of functions u : Sn → R with finite w-norm

||u||w = sup
i∈Sn

{|u(i)|/w(i)}.

(We note that we use the same notation ||u||w for u : S → R and u : Sn → R).
Notations such as

qni j (φ,ψ) and rn(i, φ, ψ)

for i, j ∈ Sn , φ ∈ An(i), and ψ ∈ Bn(i) are given the obvious definitions; see
(2.1)–(2.2).

We can apply Theorem 2.3 to Gn and, therefore, there indeed exists a stochastic
process {(x(t), a(t), b(t))}t≥0 taking values in Kn that models the state and actions
processes for the gamemodelGn . In particular, the corresponding expectation operator

123



810 T. Prieto-Rumeau, J. M. Lorenzo

will be denoted by Ei,π1,π2

n . Given i ∈ Sn and (π1, π2) ∈ �1
n × �2

n , define the total
expected discounted payoff for the game model Gn as

V α
n (i, π1, π2) = Ei,π1,π2

n

[ ∫ ∞

0
e−αt rn(x(t), a(t), b(t))dt

]
.

We also have (cf. 2.5),

‖V α
n (·, π1, π2)‖ ≤ M for all π1 ∈ �1

n and π2 ∈ �2
n . (2.10)

The lower and upper value functions of the game Lα
n ,Uα

n ∈ Bw(Sn), and the value
function V α

n (provided it exists) are given the usual definitions.We have a result similar
to Corollary 2.6, which is stated without proof.

Corollary 2.10 Suppose that Assumption 2.9 holds and fix n ≥ 1.

(i) Given i ∈ Sn and k > i , we have

∑
j≥k, j∈Sn

qni j (φ,ψ)w( j) ≤ 1

w(k)

(
c2w

2(i) + d2 + q(i)w2(i)
)

for all φ ∈ An(i) and ψ ∈ Bn(i).
(ii) Given arbitrary u ∈ Bw(Sn), the function (a, b) �→ ∑

j∈Sn q
n
i j (a, b)u( j) is con-

tinuous on An(i) × Bn(i) for every i ∈ Sn.

Each discounted game model Gn has a value function that can be characterized by
the corresponding Shapley equations; cf. Theorem 2.7.

Theorem 2.11 Suppose that Assumption 2.9 is satisfied. Then, the following state-
ments hold for each n ≥ 1:

(i) The game Gn has a value V α
n ∈ Bw(Sn) with ‖V α

n ‖w ≤ M.
(ii) The value function V α

n is the unique solution u in Bw(Sn) of the equations

αu(i) = sup
φ∈An(i)

inf
ψ∈Bn(i)

{
rn(i, φ, ψ) +

∑
j∈Sn

qni j (φ,ψ)u( j)
}

(2.11)

= inf
ψ∈Bn(i)

sup
φ∈An(i)

{
rn(i, φ, ψ) +

∑
j∈Sn

qni j (φ,ψ)u( j)
}

(2.12)

for each i ∈ Sn.
(iii) There exists a pair of optimal randomized stationary strategies for the game

model Gn.
Moreover, (π1, π2) ∈ �

1,s
n × �

2,s
n is a pair of optimal randomized stationary

strategies if and only if π1(·|i) and π2(·|i) attain the supremum and the infimum
in (2.11) and (2.12), respectively, for every i ∈ Sn.
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Approximation of zero-sum continuous-time Markov games 811

3 Convergence results

In what follows we will suppose that the game models G and {Gn}n≥1 satisfy Assump-
tions 2.2 and 2.9.

Convergence of game models. We propose a definition of the game models Gn con-
verging to the original game model G. In this definition, we make use of the Hausdorff
metric. We recall that the Hausdorff distance between two closed subsets C and D of
a metric space (X, dX ) is defined as:

dH (C, D) = sup
y∈C

inf
x∈D{dX (x, y)} ∨ sup

x∈D
inf
y∈C{dX (x, y)}

(here,∨ stands for “maximum”). TheHausdorff metric is indeed ametric on the family
of closed subsets of X except that it might not be finite.We say that {Cn}n≥1 converges
to C in the Hausdorff metric when dH (Cn,C) → 0 as n → ∞.

Definition 3.1 We say that Gn → G as n → ∞ when the following conditions hold:

(a) The sequence of states Sn ↑ S.
We define n(i) = min{n ≥ 1 : i ∈ Sn} for each i ∈ S, and so i ∈ Sn if and only if
n ≥ n(i).
(b) For each i ∈ S, the sequences of action sets An(i) and Bn(i) converge to A(i) and

B(i) as n → ∞, respectively, in the Hausdorff metric.
For every i ∈ S, given sequences {an}n≥n(i) and {bn}n≥n(i), with an ∈ An(i) and
bn ∈ Bn(i), such that an → a and bn → b for some a ∈ A(i) and b ∈ B(i), we have:
(c) limn→∞ qni j (an, bn) = qi j (a, b) for all j ∈ S, and
(d) limn→∞ rn(i, an, bn) = r(i, a, b).

Observe that expressions such as dH (A(i), An(i)) or qni j (an, bn) are defined only
for large enough n (namely, n ≥ n(i) in the former case, and n ≥ n(i) ∨ n( j) in the
latter). This is not made explicit in the notation since we are dealing with the limit as
n → ∞.

Our next lemma gives some equivalent statements of Definition 3.1.

Lemma 3.2 (i) The condition in Definition 3.1(c) can be replaced with the following
statement. Given i, j ∈ S and ε > 0 there exists n0 ≥ n(i) ∨ n( j) such that for
all n ≥ n0

sup
(a,b)∈An(i)×Bn(i)

|qni j (a, b) − qi j (a, b)| ≤ ε.

(ii) The condition in Definition 3.1(d) can be replaced with the following statement.
Given i ∈ S and ε > 0 there exists n0 ≥ n(i) such that for all n ≥ n0

sup
(a,b)∈An(i)×Bn(i)

|rn(i, a, b) − r(i, a, b)| ≤ ε.

Proof (i) First we prove that if Definition 3.1 holds, then (i) also holds. We proceed
by contradiction. If (i) does not hold then there is some i, j ∈ S and ε > 0 such that,
for infinitely many n ≥ n(i) ∨ n( j), there exist an ∈ An(i) and bn ∈ Bn(i) with
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|qni j (an, bn) − qi j (an, bn)| > ε. (3.1)

For such n, since an ∈ An(i) ⊆ A(i), there exists a subsequence {n′} and a ∈ A(i)
such that an′ → a. Similarly, for some subsequence, still denoted by {n′}, we have
bn′ → b for some b ∈ B(i). Next, define ãn ∈ An(i) and b̃n ∈ Bn(i), for n ≥ n(i), as
follows.

• If n belongs to the subsequence {n′} then let ãn = an and b̃n = bn ;
• Otherwise, let ãn and b̃n be such that

dA(ãn, a) = inf
x∈An(i)

dA(x, a) ≤ dH (An(i), A(i))

dB(b̃n, b) = inf
y∈Bn(i)

dB(y, b) ≤ dH (Bn(i), B(i)).

We have thus constructed sequences ãn ∈ An(i) and b̃n ∈ Bn(i), for n ≥ n(i), such
that ãn → a and b̃n → b. Consequently, by (c), for n large enough we have

|qni j (ãn, b̃n) − qi j (a, b)| ≤ ε

2
.

In particular, recalling (3.1), along the subsequence {n′} we have

|qi j (an′ , bn′) − qi j (a, b)| >
ε

2
.

This contradicts the continuity of the transition rate function.
Conversely, let us now prove that Definition 3.1(a), (b), and (d), together with (i),

imply (c). Fix i, j ∈ S, and let an ∈ An(i) and bn ∈ Bn(i) be such that an → a ∈ A(i)
and bn → b ∈ B(i). By the condition (i), given ε > 0, for n large enough we have

|qni j (an, bn) − qi j (an, bn)| ≤ ε

2
.

But now continuity of the function (a, b) �→ qi j (a, b) implies that for n large enough
we also have

|qi j (an, bn) − qi j (a, b)| ≤ ε

2
.

This yields

|qni j (an, bn) − qi j (a, b)| ≤ ε

and so limn qni j (an, bn) = qi j (a, b). This completes the proof that (c) ⇔ (i).
To prove statement (ii) we can proceed similarly. ��
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Given a sequence of functions un : Sn → R, for n ≥ 1, we say that {un} converges
pointwise to some function u : S → R when

lim
n→∞ un(i) = u(i) for all i ∈ S.

Note that, for fixed i ∈ S, un(i) is well defined only when n ≥ n(i). Since the above
definition is concerned with the limit as n → ∞, the requirement n ≥ n(i) will not
be explicit in the notation.

Convergence of probability measures. Now we recall some facts on convergence
of probability measures; see, e.g., (Billingsley 1968, Chapter 1) or (Bogachev 2007,
Chapter 8). Given a metric space (X, dX ), let P be the family of Borel probability
measures on X . We say that the sequence {μn} ⊆ P converges weakly to μ ∈ P , and

we will write μn
d−→ μ, if

lim
n→∞

∫
X
f dμn =

∫
X
f dμ (3.2)

for all bounded and continuous functions f : X → R. As a consequence of the
Portmanteau theorem (see Theorems 1.2 and 2.1 in Billingsley 1968), to have weak
convergence it suffices1 that (3.2) holds for all bounded and Lipschitz continuous
functions f : X → R. (We recall that f : X → R is Lipschitz continuous if there
exists a constant L > 0 such that | f (x)− f (y)| ≤ LdX (x, y) for all x, y ∈ X . In this
case, we say that f is L-Lipschitz continuous).

In case that X is a compact metric space, we have that weak convergence is metriz-
able with the Wasserstein distance

sup
f ∈Lip1(X)

{ ∫
X
f dμ −

∫
X
f dν
}

= inf
λ

∫
X×X

dX (x, x ′)λ(dx, dx ′) =: dW (μ, ν),

(3.3)
for μ, ν ∈ P , where the supremum ranges over the set Lip1(X) of all 1-Lipschitz
continuous functions on X , andwhere the infimum ranges over the set of all probability
measures λ on X × X with marginals μ and ν [see Theorems 8.3.2 and 8.10.45, and
Section 8.10(viii) in Bogachev 2007]. With this metric, we have that (P, dW ) is a
compact metric space [Bogachev 2007, Theorem 8.9.3(i)]. In addition, if {x1, x2, . . .}
is a countable dense subset of X , then the countable family of probability measures

k∑
j=1

β jδx j

for all k ≥ 1 and rational β1, . . . , βk ≥ 0with
∑

β j = 1 is dense in (P, dW ), where δx
denotes the Dirac probability measure supported on x ; see [Bogachev 2007, Theorem
8.9.4(ii)] or Bolley (2008).

1 This is not the usual statement of thePortmanteau theorem.Observe, however, that the function constructed
in Billingsley 1968, Theorem 1.2 is bounded and Lipschitz continuous, and then proceed as in the proof of
Billingsley 1968, Theorem 2.1. Another reference for this result is Bogachev 2007, Remark 8.3.1.
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Main results. We need one preliminary lemma before proving our main convergence
result.

Lemma 3.3 Suppose that the game models G and {Gn}n≥1 satisfy Assumptions 2.2
and 2.9, and also that Gn → G. Suppose that the sequence vn ∈ Bw(Sn), for n ≥ 1,
converges pointwise to v ∈ Bw(S), and that

sup
n≥1

||vn||w = m < ∞.

For fixed i ∈ S, assume also that φn ∈ An(i) and ψn ∈ Bn(i), for n ≥ n(i), are such
that

φn
d−→ φ and ψn

d−→ ψ as n → ∞

for some φ ∈ A(i) and ψ ∈ B(i). Under these conditions,

lim
n→∞

[
rn(i, φn, ψn) +

∑
j∈Sn

qni j (φn, ψn)vn( j)
] = r(i, φ, ψ) +

∑
j∈S

qi j (φ,ψ)v( j).

Proof Let us first analyze the term rn(i, φn, ψn). By Lemma 3.2(ii), given ε > 0 there
exists n0 ≥ n(i) such that n ≥ n0 implies

|rn(i, a, b) − r(i, a, b)| ≤ ε

2
for all (a, b) ∈ An(i) × Bn(i).

In particular, we have

|rn(i, φn, ψn) − r(i, φn, ψn)| ≤
∫
An(i)

∫
Bn(i)

|rn(i, a, b) − r(i, a, b)|ψn(db)φn(da)

≤ ε

2
(3.4)

for n ≥ n0. On the other hand, since the function r(i, a, b) is bounded and continu-
ous on A(i) × B(i), by Theorem 3.2 in Billingsley (1968) we have that r(i, φn, ψn)

converges to r(i, φ, ψ) as n → ∞. Consequently, there is some n1 ≥ n(i) such that
n ≥ n1 gives ∣∣r(i, φn, ψn) − r(i, φ, ψ)

∣∣ ≤ ε

2
. (3.5)

From (3.4) and (3.5), we have that |rn(i, φn, ψn) − r(i, φ, ψ)| ≤ ε for n ≥ n0 ∨ n1.
Therefore,

lim
n→∞ rn(i, φn, ψn) = r(i, φ, ψ).

We proceed with the proof. As a consequence of Corollaries 2.6(i) and 2.10(i) we
deduce that, given ε > 0, there exists some k > i such that

∑
j≥k qi j (φ,ψ)w( j) ≤ ε

and such that, for all n ≥ n(i),
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∑
j≥k, j∈Sn

qni j (φn, ψn)w( j) ≤ ε.

Therefore, since ‖vn‖w ≤ m implies ‖v‖w ≤ m, we have

∣∣∣∑
j≥k

qi j (φ,ψ)v( j)
∣∣∣ ≤ mε

and, for all n ≥ n(i),

∣∣ ∑
j≥k, j∈Sn

qni j (φn, ψn)vn( j)
∣∣ ≤ mε.

Consequently, if n ≥ n(i) is such that, in addition, {0, 1, . . . , k − 1} ⊆ Sn , we have

∣∣∣ ∑
j∈Sn

qni j (φn, ψn)vn( j) −
∑
j∈S

qi j (φ,ψ)v( j)
∣∣∣

≤
k−1∑
j=0

∣∣qni j (φn, ψn)vn( j) − qi j (φ,ψ)v( j)
∣∣+ 2mε.

The left-hand term of the last expression can be made arbitrarily small by choosing n
large enough. Indeed, as made at the beginning of this proof, we can prove that

qni j (φn, ψn) → qi j (φ,ψ)

which, together with the fact that vn( j) → v( j) for all j ∈ S, yields the stated result
because, once i ∈ S and ε > 0 are given, the state k remains fixed and does not depend
on n. The proof is now complete. ��

Our next result needs to introduce some terminology. Given randomized stationary
strategies (π1

n , π2
n ) ∈ �

1,s
n × �

2,s
n for the game model Gn , for n ≥ 1, we say that

the randomized stationary strategies (π1, π2) ∈ �1
s × �2

s are a limit strategy of
{(π1

n , π2
n )}n≥1 if there exists a subsequence {n′} such that

π1
n′(·|i) d−→ π1(·|i) and π2

n′(·|i) d−→ π2(·|i)

for all i ∈ S. Clearly, every such sequence {(π1
n , π2

n )} indeed has a limit strategy
because π1

n ∈ A(i) and π2
n ∈ B(i), which are compact metric spaces with theWasser-

stein metric. Next, we state our main convergence result.

Theorem 3.4 Suppose that the game models G and {Gn}n≥1 satisfy Assumptions 2.2
and 2.9. If Gn → G then the following statements are satisfied.

(i) For all i ∈ S, limn→∞ V α
n (i) = V α(i).
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(ii) If (π1
n , π2

n ) is a pair of optimal randomized stationary strategies for Gn, then any
limit strategy (π1, π2) ∈ �1

s × �2
s is a pair of optimal randomized stationary

strategies for G.

Proof (i) Recall that the sequence {V α
n } of the values of the games Gn verifies

|V α
n (i)| ≤ Mw(i) for all n ≥ 1 and i ∈ Sn;

see (2.10). Therefore, using a diagonal argument, we deduce the existence of
u ∈ Bw(S) and a subsequence {kn} such that

lim
n→∞ V α

kn (i) = u(i) for all i ∈ S.

Fix i ∈ S and, for n such that kn ≥ n(i), consider the function on Akn (i)×Bkn (i)

(φ,ψ) �→ rkn (i, φ, ψ) +
∑
j∈Skn

qkni j (φ,ψ)V α
kn ( j).

This function is continuous as a consequence of Corollary 2.10 and Theorem 3.2
in Billingsley (1968). Therefore,

φ �→ inf
ψ∈Bkn (i)

{
rkn (i, φ, ψ) +

∑
j∈Skn

qkni j (φ,ψ)V α
kn ( j)

}

is upper semi-continuous on the compact set Akn (i) and, hence, it has a maxi-
mum which is reached at some φn ∈ Akn (i). There exists a further subsequence

{kn′ } such that φn′
d−→ φ0 for some φ0 ∈ A(i). Without loss of generality, and

to simplify the notation, we will suppose that the whole sequence {φn}
converges to φ0.
Fix now arbitrary ψ ∈ B(i). For each n there exist

x1, . . . , xt ∈ B(i) and β1, . . . , βt ∈ [0, 1]

with
∑

β j = 1 such that dW (ψ, ψ̂n) ≤ 1/n, with ψ̂n =∑β jδx j . Let y j ∈ Bkn (i)
be such thatdB(y j , x j ) = miny∈Bkn (i) dB(y, x j ) for each j = 1, . . . , t , and define

ψ̃n =
t∑

j=1

β jδy j ∈ Bkn (i).

If f is a bounded L-Lipschitz continuous function on B(i) then we have

∣∣∣
∫

f dψ̃n −
∫

f dψ

∣∣∣ ≤
∣∣∣
∫

f dψ̃n −
∫

f dψ̂n

∣∣∣+
∣∣∣
∫

f dψ̂n −
∫

f dψ

∣∣∣.
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We note that

∣∣∣
∫

f dψ̃n −
∫

f dψ̂n

∣∣∣ =
∣∣∣

t∑
j=1

β j [ f (y j ) − f (x j )]
∣∣∣ ≤ L

t∑
j=1

β j dB(y j , x j )

≤ LdH (Bkn (i), B(i)),

which converges to 0 as n → ∞. On the other hand, since ψ̂n
d−→ ψ we have∫

f dψ̂n → ∫
f dψ . So, we have shown that

lim
n→∞

∫
f dψ̃n =

∫
f dψ

for all bounded and Lipschitz-continuous functions on B(i). This implies that

ψ̃n
d−→ ψ . Summarizing, given arbitrary ψ ∈ B(i) we have constructed ψ̃n ∈

Bkn (i) such that {ψ̃n} converges weakly to ψ .
By Theorem 2.11(ii), the value V α

kn
of the game Gkn verifies

αV α
kn (i) = sup

φ∈Akn (i)

inf
ψ∈Bkn (i)

{
rkn (i, φ, ψ) +

∑
j∈Skn

qkni j (φ,ψ)V α
kn ( j)

}

= inf
ψ∈Bkn (i)

{
rkn (i, φn, ψ) +

∑
j∈Skn

qkni j (φn, ψ)V α
kn ( j)

}

≤ rkn (i, φn, ψ̃n) +
∑
j∈Skn

qkni j (φn, ψ̃n)V
α
kn ( j).

Taking the limit as n → ∞ and recalling Lemma 3.3, we obtain

αu(i) ≤ r(i, φ0, ψ) +
∑
j∈S

qi j (φ0, ψ)u( j).

But ψ ∈ B(i) being arbitrary, we conclude that

αu(i) ≤ inf
ψ∈B(i)

{
r(i, φ0, ψ) +

∑
j∈S

qi j (φ0, ψ)u( j)
}
,

and so,

αu(i) ≤ sup
φ∈A(i)

inf
ψ∈B(i)

{
r(i, φ, ψ) +

∑
j∈S

qi j (φ,ψ)u( j)
}
.

Arguing similarly, we can show that

αu(i) ≥ inf
ψ∈B(i)

sup
φ∈A(i)

{
r(i, φ, ψ) +

∑
j∈S

qi j (φ,ψ)u( j)
}
.

123



818 T. Prieto-Rumeau, J. M. Lorenzo

Combining these two inequalities, we conclude that

αu(i) = sup
φ∈A(i)

inf
ψ∈B(i)

{
r(i, φ, ψ) +

∑
j∈S

qi j (φ,ψ)u( j)
}

= inf
ψ∈B(i)

sup
φ∈A(i)

{
r(i, φ, ψ) +

∑
j∈S

qi j (φ,ψ)u( j)
}

for each i ∈ S. By Theorem 2.7(ii), this implies that u equals V α , the value of
the game G.
So far,we have shown that if u is any limit point of {V α

n } then, necessarily, u = V α .
But this implies that limn→∞ V α

n (i) = V α(i) for all i ∈ S. The proof of (i) is
now complete.

(ii) Suppose that (π1, π2) ∈ �1
s × �2

s is a limit strategy through the subsequence
{n′}. Fix i ∈ S and write

φ∗
n = π1

n (·|i), ψ∗
n = π2

n (·|i), φ∗ = π1(·|i), ψ∗ = π2(·|i)

for n ≥ n(i). Then, we have

φ∗
n′

d−→ φ∗ and ψ∗
n′

d−→ ψ∗.

For n ≥ n(i), we know that φ∗
n′ and ψ∗

n′ attain the supremum and the infimum in
the Shapley equation for Gn′ for the state i ; recall Theorem 2.11(iii). Therefore,

αV α
n′ (i) = sup

φ∈An′ (i)
inf

ψ∈Bn′ (i)

{
rn′(i, φ, ψ) +

∑
j∈Sn′

qn
′

i j (φ,ψ)V α
n′ ( j)

}

= inf
ψ∈Bn′ (i)

{
rn′(i, φ∗

n′ , ψ) +
∑
j∈Sn′

qn
′

i j (φ
∗
n′, ψ)V α

n′ ( j)
}
. (3.6)

Proceeding as in the proof of part (i), we can show that for every ψ ∈ B(i) there

exists a sequence ψn′ ∈ Bn′(i) such that ψn′
d−→ ψ , and so, by (3.6),

αV α
n′ (i) ≤ rn′(i, φ∗

n′, ψn′) +
∑
j∈Sn′

qn
′

i j (φ
∗
n′ , ψn′)V α

n′ ( j).

Taking the limit as n′ → ∞ and recalling that V α
n converges pointwise to V α

(part (i) of this theorem) give

αV α(i) ≤ r(i, φ∗, ψ) +
∑
j∈S

qi j (φ
∗, ψ)V α( j).
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Approximation of zero-sum continuous-time Markov games 819

Since ψ ∈ B(i) is arbitrary, we have

αV α(i) ≤ inf
ψ∈B(i)

{
r(i, φ∗, ψ) +

∑
j∈S

qi j (φ
∗, ψ)V α( j)

}
.

But from the Shapley equation for G we know that

αV α(i) = sup
φ∈A(i)

inf
ψ∈B(i)

{
r(i, φ, ψ) +

∑
j∈S

qi j (φ,ψ)V α( j)
}
.

Hence, φ∗ attains the supremum in the Shapley equation for i ∈ S.
Similarly, ψ∗ attains the infimum in the Shapley equation for G and i ∈ S and,
by Theorem 2.7(iii), this implies that (π1, π2) ∈ �1

s × �2
s is indeed a pair of

optimal strategies for G.
��

4 Finite state and actions approximations

Given agamemodelG satisfyingAssumption2.2,we showhow to construct a sequence
of gamemodels {Gn}n≥1 forwhichAssumption 2.9 holds. For each n ≥ 1, the elements
of the game model Gn are the following.
• The state space is Sn = {0, 1, . . . , n}.
• For i ∈ Sn , let An(i) and Bn(i) be finite subsets of A(i) and B(i), respectively,
such that

dH (An(i), A(i)) → 0 and dH (Bn(i), B(i)) → 0

as n → ∞.
• Given i ∈ Sn and 0 ≤ j < n, define qni j (a, b) = qi j (a, b), and let

qnin(a, b) =
∑
j≥n

qi j (a, b)

for (a, b) ∈ An(i) × Bn(i).
• The reward/cost rate is rn(i, a, b) = r(i, a, b) for (a, b) ∈ An(i) × Bn(i).

We note that construction of An(i) and Bn(i) with the property of convergence in
the Hausdorff metric is indeed possible. For instance, for each n ≥ 1, consider the
open cover of A(i) given by the open balls centered in a ∈ A(i) with radius 1/n, and
let An(i) be the centers of a finite subcover. Then, dH (A(i), An(i)) ≤ 1/n.

Theorem 4.1 If the gamemodelG satisfies Assumption 2.2, then the sequence {Gn}n≥1
defined above satisfies Assumption 2.9 and, moreover, Gn → G.
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820 T. Prieto-Rumeau, J. M. Lorenzo

Proof First of all, we observe that the transition rates of Gn are conservative:
∑
j∈Sn

qni j (a, b) =
∑
j∈S

qi j (a, b) = 0 for all (i, a, b) ∈ Kn,

and stable. Indeed, −qnii (a, b) = −qii (a, b) ≤ w(i) for i < n and

−qnnn(a, b) = −
∑
j≥n

qnj (a, b) ≤ −qnn(a, b) ≤ w(n).

Concerning Assumption 2.9(i), observe that for all (i, a, b) ∈ Kn

∑
j∈Sn

qni j (a, b)w( j) =
∑
j∈Sn

qi j (a, b)w( j) +
∑
j>n

qi j (a, b)w(n)

≤
∑
j∈Sn

qi j (a, b)w( j) +
∑
j>n

qi j (a, b)w( j)

=
∑
j∈S

qi j (a, b)w( j) ≤ c1w(i) + d1,

where we make use of the monotonicity of w. The fact that qn(i) ≤ w(i) has been
established along with the stability of the transition rates of Gn . So, Assumption 2.9(i)
indeed holds.

Clearly, Assumptions 2.9(ii)–(iii) are also satisfied, while Assumption 2.9(iv) is
proved similarly to Assumption 2.9(i).

It remains to check that Gn → G. Items (a) and (b) in Definition 3.1 hold by
construction of Gn . Finally, given i, j ∈ S, if (an, bn) ∈ An(i) × Bn(i) are such that
an → a ∈ A(i) and bn → b ∈ B(i) then

rn(i, an, bn) = r(i, an, bn) and qni j (an, bn) = qi j (an, bn)

for n > i ∨ j , and so Definitions 3.1(c)–(d) hold by continuity of the transition and
reward/cost rates of G. ��

As a consequence of Theorem 3.4, the value functions of the finite state and actions
games Gn converge to the value function of G, and any limit strategy of optimal
stationary strategies for Gn is optimal for G. Next, we address the issue of the rate
of convergence of V α

n (i) to V α(i). To establish such convergence rates, we need to
strengthen our hypotheses.

Assumption 4.2 (i) For each i, j ∈ S, the functions (a, b) �→ r(i, a, b) and
(a, b) �→ qi j (a, b) are Lri - and Lqi j -Lipschitz continuous on A(i) × B(i), i.e.,

|r(i, a, b) − r(i, a′, b′)| ≤ Lri

(
dA(a, a′) + dB(b, b′)

)
|qi j (a, b) − qi j (a

′, b′)| ≤ Lqi j

(
dA(a, a′) + dB(b, b′)

)

for all a, a′ ∈ A(i) and b, b′ ∈ B(i), and some Lri > 0 and Lqi j > 0.
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Approximation of zero-sum continuous-time Markov games 821

(ii) With w the Lyapunov function in Assumption 2.2, there exist constants δ > 2,
cδ < α, and dδ ≥ 0 with

∑
j∈S

qi j (a, b)wδ( j) ≤ cδw
δ(i) + dδ for all (i, a, b) ∈ K. (4.1)

Before establishing our main result, we need two preliminary lemmas.

Lemma 4.3 Suppose that the function h : S → [0,∞) satisfies q(i) ≤ h(i) for all
i ∈ S. If there exists a power γ > 0 and a constant cγ ≥ 0 such that

∑
j∈S

qi j (a, b)hγ ( j) ≤ cγ h
γ (i) for all (i, a, b) ∈ K, (4.2)

then for every power 0 < γ ′ < γ

∑
j∈S

qi j (a, b)hγ ′
( j) ≤ cγ h

γ ′
(i) for all(i, a, b) ∈ K.

Proof Fix (i, a, b) ∈ K and η > 0. Rewrite (4.2) as

1

h(i) + η

∑
j �=i

qi j (a, b)hγ ( j)+
(qii (a, b)

h(i) + η
+1
)
hγ (i) ≤

( cγ

h(i) + η
+1
)
hγ (i). (4.3)

Let

pi = qii (a, b)

h(i) + η
+ 1 and p j = qi j (a, b)

h(i) + η
for j �= i.

These coefficients are nonnegative and
∑

j∈S p j = 1. Therefore, (4.3) is equivalent
to

∑
j∈S

p j h
γ ( j) ≤

( cγ

h(i) + η
+ 1
)
hγ (i).

Using Jensen’s inequality for the concave function x �→ xγ ′/γ yields

∑
j∈S

p j h
γ ′

( j) ≤
( cγ

h(i) + η
+ 1
)γ ′/γ

hγ ′
(i)

or, equivalently,

∑
j∈S

qi j (a, b)hγ ′
( j) ≤ hγ ′

(i)

(( cγ

h(i) + η
+ 1
)γ ′/γ − 1

)
(h(i) + η).
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822 T. Prieto-Rumeau, J. M. Lorenzo

Since 0 < γ ′/γ < 1, we have

( cγ

h(i) + η
+ 1
)γ ′/γ − 1 ≤ cγ

h(i) + η
,

and so

∑
j∈S

qi j (a, b)hγ ′
( j) ≤ cγ h

γ ′
(i),

which completes the proof. ��
Consequently, if there exists a power γ > 0 such that the Lyapunov function w

verifies

∑
j∈S

qi j (a, b)wγ ( j) ≤ cγ wγ (i) + dγ for all (i, a, b) ∈ K

and some constants cγ ∈ R and dγ ≥ 0, then for every 0 < γ ′ < γ

∑
j∈S

qi j (a, b)wγ ′
( j) ≤ (|cγ | + dγ )wγ ′

(i) for all (i, a, b) ∈ K

(indeed, just note that
∑

qi j (a, b)wγ ( j) ≤ (|cγ |+ dγ )wγ (i) and use Lemma 4.3). In
particular, if Assumption 4.2(ii) holds then necessarily Assumption 2.2(iv) is satisfied
and, moreover,

∑
j∈S

qi j (a, b)wδ−1( j) ≤ (|cδ| + dδ)w
δ−1(i) for all (i, a, b) ∈ K. (4.4)

Lemma 4.4 Consider a fixed n ≥ 1 and suppose that the game model Gn satisfies
Assumption 2.9. Suppose that there exists a function u ∈ Bw(Sn) such that, for all
i ∈ Sn,

∣∣αu(i) − sup
φ∈An(i)

inf
ψ∈Bn(i)

{rn(i, φ, ψ) +
∑
j∈Sn

qni j (φ,ψ)u( j)}∣∣ ≤ h(i)

for some h(i) ≥ 0. Assume, in addition, that there exist constants ch < α and dh ≥ 0
such that

∑
j∈Sn

qni j (a, b)h( j) ≤ chh(i) + dh for all (i, a, b) ∈ Kn .

Under these conditions,

|V α
n (i) − u(i)| ≤ h(i)

α − ch
+ dh

α(α − ch)
for each i ∈ Sn .
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Proof First of all, we note that for every (π1, π2) ∈ �1
n × �2

n , t ≥ 0, and i ∈ Sn we
have

Ei,π1,π2

n [h(x(t))] ≤ echt h(i) + dh
ch

(echt − 1) if ch �= 0

or Ei,π1,π2

n [h(x(t))] ≤ h(i) + dht when ch = 0 (the proof of these inequalities is
similar to that of (2.4)). Therefore, in either case,

Ei,π1,π2

n

[∫ ∞

0
e−αt h(x(t))

]
≤ h(i)

α − ch
+ dh

α(α − ch)
for all i ∈ Sn . (4.5)

For every i ∈ Sn , there exists some φ ∈ An(i) such that for all ψ ∈ Bn(i)

αu(i) − rn(i, φ, ψ) −
∑
j∈Sn

qni j (φ,ψ)u( j) ≤ h(i).

Consequently, there exists a stationary policy π1 ∈ �
1,s
n such that for every stationary

π2 ∈ �
2,s
n

αu(i) − rn(i, π
1, π2) −

∑
j∈Sn

qni j (π
1, π2)u( j) ≤ h(i) for all i ∈ Sn .

Using Dynkin’s formula gives, for every i ∈ Sn and t ≥ 0,

Ei,π1,π2

n [e−αt u(x(t))] − u(i)

= Ei,π1,π2

n

[ ∫ t

0
e−αs[−αu(x(s)) +

∑
j∈Sn

qnx(s) j (π
1, π2)u( j)]ds

]

≥ −Ei,π1,π2

n

[ ∫ t

0
e−αs[rn(x(s), π1, π2) + h(x(s))]ds

]
.

Now we let t → ∞ in this inequality. Recalling (2.4) and Remark 2.4 for the game
model Gn , and using dominated and monotone convergence, we obtain

u(i) ≤ V α
n (i, π1, π2) + Ei,π1,π2

n

[ ∫ ∞

0
e−αsh(x(s))ds

]

≤ V α
n (i, π1, π2) + h(i)

α − ch
+ dh

α(α − ch)
,

where we have used (4.5). Since this inequality holds for some π1 and all π2, we
obtain
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824 T. Prieto-Rumeau, J. M. Lorenzo

u(i) ≤ sup
π1∈�

1,s
n

inf
π2∈�

2,s
n

{V α
n (i, π1, π2)} + h(i)

α − ch
+ dh

α(α − ch)

= V α
n (i) + h(i)

α − ch
+ dh

α(α − ch)
(4.6)

for all i ∈ Sn (use Remark 2.8 for the game model Gn).
Observe now that, the sets An(i) and Bn(i) being finite, we have

inf
ψ∈Bn(i)

sup
φ∈An(i)

{rn(i, φ, ψ) +
∑
j∈Sn

qni j (φ,ψ)u( j)}

= sup
φ∈An(i)

inf
ψ∈Bn(i)

{rn(i, φ, ψ) +
∑
j∈Sn

qni j (φ,ψ)u( j)};

see Theorem 1 in Frenk et al. (2004). So, using a symmetric argument with the inequal-
ity

−h(i) ≤ αu(i) − inf
ψ∈Bn(i)

sup
φ∈An(i)

{rn(i, φ, ψ) +
∑
j∈Sn

qni j (φ,ψ)u( j)}

gives the existence of π2 ∈ �
2,s
n such that for all π1 ∈ �

1,s
n

V α
n (i, π1, π2) ≤ u(i) + h(i)

α − ch
+ dh

α(α − ch)
for all i ∈ Sn,

and, therefore,

V α
n (i) ≤ u(i) + h(i)

α − ch
+ dh

α(α − ch)
for all i ∈ Sn .

Together with (4.6), this proves the stated result. ��
Finally, we state our main result on the convergence rates to the value of the game.

Theorem 4.5 Suppose that the game model G satisfies Assumptions 2.2 and 4.2.
Let {Gn}n≥1 be the sequence of finite state and actions truncations of G constructed

at the beginning of Sect. 4, and suppose that the action sets for Gn are chosen in such
a way that, for all n ≥ 1 and i ∈ Sn, and for some constant D > 0,

dH (An(i), A(i)) ∨ dH (Bn(i), B(i)) ≤ Dwδ(i)

wδ−2(n + 1)(Lri + 2Mw(n)
∑n−1

j=0 Lqi j )
.

Under these conditions, there exists a constant c > 0 such that, for every n ≥ 1 and
i ∈ Sn,

|V α
n (i) − V α(i)| ≤ c

wδ(i)

wδ−2(n + 1)
.
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Proof Fix n ≥ 1 and i ∈ Sn . We have

αV α(i) = sup
φ∈A(i)

inf
ψ∈B(i)

⎧⎨
⎩r(i, φ, ψ) +

∑
j∈S

qi j (φ,ψ)V α( j)

⎫⎬
⎭

≤ sup
φ∈A(i)

inf
ψ∈Bn(i)

⎧⎨
⎩r(i, φ, ψ) +

∑
j∈S

qi j (φ,ψ)V α( j)

⎫⎬
⎭ . (4.7)

Note that for every (φ,ψ) ∈ A(i) × B(i)

∑
j∈S

qi j (φ,ψ)V α( j) =
n−1∑
j=0

qi j (φ,ψ)(V α( j) − V α(n))

+
∑
j>n

qi j (φ,ψ)(V α( j) − V α(n)),

and recalling that ||V α||w ≤ M,

∣∣∑
j>n

qi j (φ,ψ)(V α( j) − V α(n))
∣∣ ≤ 2M

∑
j>n

qi j (φ,ψ)w( j).

Observe now that proceeding as in the proof of Corollary 2.6(i) and recalling (4.4),
we can show that

∑
j>n

qi j (φ,ψ)w( j) ≤ 1

wδ−2(n + 1)
·
(
(|cδ| + dδ)w

δ−1(i) + q(i)wδ−1(i)
)

≤ (|cδ| + dδ + 1)
wδ(i)

wδ−2(n + 1)
. (4.8)

Therefore, combining (4.7) and (4.8), we obtain

αV α(i)≤ sup
φ∈A(i)

inf
ψ∈Bn(i)

{
r(i, φ, ψ)+

n−1∑
j=0

qi j (φ, ψ)(V α( j)−V α(n))
}
+ C

wδ(i)

wδ−2(n + 1)
,

with

C = 2M(|cδ| + dδ + 1).

By upper semicontinuity, the above supremum is indeed attained. Consequently, there
exists φ ∈ A(i) such that, for every ψ ∈ Bn(i), we have

αV α(i) ≤ r(i, φ, ψ) +
n−1∑
j=0

qi j (φ,ψ)(V α( j) − V α(n)) + C
wδ(i)

wδ−2(n + 1)
. (4.9)
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Given arbitrary ε > 0, there exists a finite set {x1, . . . , xk} ⊆ A(i) andβ1, . . . , βk ≥ 0,
with β1 + . . . + βk = 1, such that

dW (φ,

k∑
j=1

β jδx j ) ≤ ε.

For every x j , let x̂ j ∈ An(i) be such that

dA(x j , x̂ j ) = min
y∈An(i)

dA(x j , y) ≤ dH (A(i), An(i)).

It is easy to see (recall (3.3)) that

dW

⎛
⎝ k∑

j=1

β jδx j ,

k∑
j=1

β jδx̂ j

⎞
⎠ ≤

k∑
j=1

β j dA(x j , x̂ j ) ≤ dH (A(i), An(i)),

and so, letting φ̂ =∑k
j=1 β jδx̂ j ∈ An(i),

dW (φ, φ̂) ≤ ε + dH (A(i), An(i)).

Summarizing, for φ ∈ A(i) we have found a probability measure in φ̂ ∈ An(i) which
is “close” to φ in the Wasserstein metric. By the Lipschitz continuity Assumption 4.2,
observe that the function on A(i) × B(i) given by

(a, b) �→ r(i, a, b) +
n−1∑
j=0

qi j (a, b)(V α( j) − V α(n))

is Lipschitz continuous, with Lipschitz constant Lri + 2Mw(n)
∑n−1

j=0 Lqi j . Conse-
quently, the same applies to

a �→
∫
Bn(i)

[
r(i, a, b) +

n−1∑
j=0

qi j (a, b)(V α( j) − V α(n))
]
ψ(db).

Use now (3.3) to derive that

∣∣∣r(i, φ, ψ) +
n−1∑
j=0

qi j (φ,ψ)(V α( j) − V α(n)) − r(i, φ̂, ψ)

+
n−1∑
j=0

qi j (φ̂, ψ)(V α( j) − V α(n))

∣∣∣
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≤
(
Lri + 2Mw(n)

n−1∑
j=0

Lqi j

)
· dW (φ, φ̂)

≤
(
Lri + 2Mw(n)

n−1∑
j=0

Lqi j

)
· (ε + dH (A(i), An(i))).

Therefore, recalling (4.9), this yields that αV α(i) is less than or equal to

r(i, φ̂, ψ) +
n−1∑
j=0

qi j (φ̂, ψ)(V α( j) − V α(n))

+ C
wδ(i)

wδ−2(n + 1)
+
(
Lri + 2Mw(n)

n−1∑
j=0

Lqi j

)
· (ε + dH (A(i), An(i))).

Since this holds for all ψ ∈ Bn(i) and the particular φ̂ ∈ An(i) constructed above, we
deduce that

αV α(i) ≤ sup
φ∈An(i)

inf
ψ∈Bn(i)

⎧⎨
⎩r(i, φ, ψ) +

n−1∑
j=0

qi j (φ,ψ)(V α( j) − V α(n))

⎫⎬
⎭

+ C
wδ(i)

wδ−2(n + 1)

+
⎛
⎝Lri + 2Mw(n)

n−1∑
j=0

Lqi j

⎞
⎠ · (ε + dH (A(i), An(i))).

But ε > 0 being arbitrary and recalling our hypothesis on dH (A(i), An(i)), we derive
that

αV α(i) ≤ sup
φ∈An(i)

inf
ψ∈Bn(i)

⎧⎨
⎩r(i, φ, ψ) +

n−1∑
j=0

qi j (φ,ψ)(V α( j) − V α(n))

⎫⎬
⎭

+ (C + D)wδ(i)

wδ−2(n + 1)
.

= sup
φ∈An(i)

inf
ψ∈Bn(i)

⎧⎨
⎩rn(i, φ, ψ) +

∑
j∈Sn

qni j (φ,ψ)V α( j)

⎫⎬
⎭+ (C + D)wδ(i)

wδ−2(n + 1)
,

where the last equality is derived from the definition of the reward and transition rates
of Gn .

123



828 T. Prieto-Rumeau, J. M. Lorenzo

Using a symmetric argument, we can show that

αV α(i) ≥ inf
ψ∈Bn(i)

sup
φ∈An(i)

⎧⎨
⎩rn(i, φ, ψ) +

∑
j∈Sn

qni j (φ,ψ)V α( j)

⎫⎬
⎭− (C + D)wδ(i)

wδ−2(n + 1)
.

As in the proof of Theorem 4.1, we can show that the inequality in Assumption
4.2(ii) is satisfied by the transition rates of Gn with the same constants cδ and dδ .
Therefore, by Lemma 4.4, we conclude that, for every i ∈ Sn ,

|V α
n (i) − V α(i)| ≤ (C + D)wδ(i)

(α − cδ)wδ−2(n + 1)
+ (C + D)dδ

α(α − cδ)wδ−2(n + 1)
.

Recalling the definition of the constants C and M, and letting

c = (2M(α + d1)(|cδ| + dδ + 1) + Dα(α − c1))(dδ + α)

α2(α − c1)(α − cδ)

we have

|V α
n (i) − V α(i)| ≤ c

wδ(i)

wδ−2(n + 1)

for all n ≥ 1 and i ∈ Sn . ��

The above theorem shows that, if a Lyapunov condition holds for the function wδ

(with δ > 2) then, by making a suitable choice of the finite sets of actions An(i) and
Bn(i), the error when approximating V α(i) with V α

n (i) is of order 1/wδ−2(n + 1).
Moreover, we have an explicit expression for themultiplicative constant c that depends
on the initial data (and related constants) of the game model G.
Solving a finite state and action game. Consider the finite state and actions game Gn
defined in the beginning of Sect. 4. Let qn > 0 be such that

qn > −qnii (a, b) for all (i, a, b) ∈ Kn (4.10)

(it suffices to let qn > w(n)). For u = {u(i)}i∈Sn ∈ R
n+1 define the operator Tnu ∈

R
n+1 as

Tnu(i) = max
φ∈An(i)

min
ψ∈Bn(i)

⎧⎨
⎩rn(i, φ, ψ) +

∑
j∈Sn

qni j (φ,ψ)u( j)

⎫⎬
⎭

= min
ψ∈Bn(i)

max
φ∈An(i)

⎧⎨
⎩rn(i, φ, ψ) +

∑
j∈Sn

qni j (φ,ψ)u( j)

⎫⎬
⎭
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for i ∈ Sn . Define also T̃nu ∈ R
n+1 as

T̃nu(i) = max
φ∈An(i)

min
ψ∈Bn(i)

{rn(i, φ, ψ)

α + qn
+ qn

α + qn

∑
j∈Sn

(qni j (φ,ψ)

qn
+ δi j

)
u( j)

}

(4.11)

= min
ψ∈Bn(i)

max
φ∈An(i)

{rn(i, φ, ψ)

α + qn
+ qn

α + qn

∑
j∈Sn

(qni j (φ,ψ)

qn
+ δi j

)
u( j)

}

(4.12)

for i ∈ Sn (cf. Section 8 in Guo and Hernández-Lerma 2005). It is easily seen that
the equation αu = Tnu is equivalent to the fixed point equation u = T̃nu. Therefore,
as a consequence of Theorem 2.11, the value V α

n of the game Gn is the unique fixed
point of the operator T̃n . Moreover, by a standard calculation, it follows that T̃n is a
contraction operator on R

n+1 with modulus qn/(α + qn) < 1 when considering the
supremum norm; that is,

‖T̃nu − T̃nv‖ ≤ qn

α + qn
‖u − v‖ for all u, v ∈ R

n+1.

Hence, the iterative procedure (which is a sort of value iteration algorithm):

1. Fix arbitrary u0 ∈ R
n+1,

2. For k ≥ 1, let uk = T̃nuk−1,

converges geometrically to V α
n in the supremum norm. Concerning the computation

of T̃nu for a given u ∈ R
n+1, we can apply our next lemma, which uses the following

notation. Given a positive integer N , define �N as the set of nonnegative λ1, . . . , λN

such that λ1 + . . . + λN = 1.

Lemma 4.6 Given the real-valued matrix C = {Cs,t }1≤s≤I,1≤t≤J , define

V ∗ = max
λ∈�I

min
1≤t≤J

∑
1≤s≤I

λsCs,t = min
μ∈�J

max
1≤s≤I

∑
1≤t≤J

μtCs,t .

Let c ≥ 0 be such that all the elements of the matrix D, with Ds,t = Cs,t + c, are
strictly positive. Consider the linear programming problem

min 1′x subject to D′x ≥ 1, x ≥ 0,

and let x∗ ∈ R
I be an optimal solution. Then, V ∗ = 1

1′x∗ − c.

Proof We have

V ∗ + c = max
λ∈�I

min
1≤t≤J

∑
1≤s≤I

λs Ds,t =: Ṽ
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and suppose that Ds,t ≥ ε > 0 for all s and t . Observe that Ṽ equals the optimum of
the linear programming problem: maximize v subject to

v ≤
∑

1≤s≤I

λs Ds,t for all 1 ≤ t ≤ J,

with v ≥ ε and λ ∈ �I . Letting xs = λs/v for s = 1, . . . , I , it follows that 1/Ṽ
equals the optimum of:

min 1′x subject to D′x ≥ 1, x ≥ 0, 1′x ≤ 1/ε,

where the last constraint is redundant. ��
Therefore, once uk−1 is known, we can effectively compute uk by solving the

linear programming problem described in Lemma 4.6. Namely, given i ∈ Sn and for
all as ∈ An(i) with 1 ≤ s ≤ I , and all bt ∈ Bn(i) with 1 ≤ t ≤ J , define

Cs,t = rn(i, as, bt )

α + qn
+ qn

α + qn

∑
j∈Sn

(qni j (as, bt )
qn

+ δi j

)
uk−1( j)

and then use Lemma 4.6 to determine uk .
Regarding a stopping criterion for the above algorithm,we have the following result.

In the next lemma, the norm || · || refers to the supremum norm on R
n+1.

Lemma 4.7 Given the finite state and actions game model Gn, consider the sequence
of iterates {uk}k≥0, where u0 ∈ R

n+1 is arbitrary and, for k ≥ 1, uk = T̃nuk−1. Fix
ε > 0 and let k ≥ 1 be such that ||uk−1 − uk || ≤ εα/qn. The following statements
hold.

(i) ||uk − V α
n || ≤ ε.

(ii) The strategy π1∗ ∈ �
1,s
n such that, for all i ∈ Sn, π1∗ (·|i) attains the maximum in

(4.11) for the iteration uk+1 = T̃nuk is 2ε-optimal for player 1, meaning that

V α
n (i) − 2ε ≤ inf

π2∈�2
n

V α
n (i, π1∗ , π2) for all i ∈ Sn .

(iii) The strategy π2∗ ∈ �
2,s
n such that, for all i ∈ Sn, π2∗ (·|i) attains the minimum in

(4.12) for the iteration uk+1 = T̃nuk is 2ε-optimal for player 2, meaning that

V α
n (i) + 2ε ≥ sup

π1∈�1
n

V α
n (i, π1, π2∗ ) for all i ∈ Sn .

Proof (i) We have

||uk − V α
n || ≤ ||uk − uk+1|| + ||uk+1 − V α

n ||
≤ qn

α + qn

(
||uk−1 − uk || + ||uk − V α

n ||
)
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because V α
n is the fixed point of T̃n , and so

||uk − V α
n || ≤ qn

α
||uk−1 − uk || ≤ ε.

(ii) For u : Sn → R, consider the operator

Ũu(i) = min
b∈Bn(i)

⎧⎨
⎩
rn(i, π1∗ (·|i), b)

α + qn
+ qn

α + qn

∑
j∈Sn

(
qni j (π

1∗ (·|i), b)
qn

+ δi j

)
u( j)

⎫⎬
⎭

for i ∈ Sn,

which is a contraction on R
n+1 with modulus qn

α+qn
, and let W be its unique fixed

point. The fixed point equation

W (i) = min
b∈Bn(i)

⎧⎨
⎩
rn(i, π1∗ (·|i), b)

α + qn
+ qn

α + qn

∑
j∈Sn

(
qni j (π

1∗ (·|i), b)
qn

+ δi j

)
W ( j)

⎫⎬
⎭

for i ∈ Sn,

corresponds to the discounted cost optimality equation of a continuous-time control
problem (for player 2) when the strategy of player 1 is π1∗ ; see (Prieto-Rumeau and
Hernández-Lerma 2012, Section 3.3). Therefore,W (i) = infπ2∈�2

n
V α
n (i, π1∗ , π2) for

all i ∈ Sn .
Observe now that

||W − V α
n || ≤ ||W − uk || + ||uk − V α

n ||. (4.13)

Now, on the one hand,

||W − uk || ≤ ||W − T̃nuk || + ||T̃nuk − uk ||
= ||ŨW − Ũuk || + ||T̃nuk − uk ||
≤ qn

α + qn
(||W − uk || + ||uk−1 − uk ||)

because T̃nuk = Ũuk , and so

||W − uk || ≤ qn

α
||uk−1 − uk ||.

On the other hand, as established in part (i), ||uk − V α
n || ≤ qn

α
||uk−1 − uk ||. From

(4.13), we obtain

||W − V α
n || ≤ 2qn

α
||uk−1 − uk || ≤ 2ε,

and the result follows. The proof of (iii) is similar. ��
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As a consequence of this lemma, we can explicitly obtain an approximation of the
value and nearly optimal strategies for both players for the game model Gn .

5 Numerical application

In this section, we describe a Markov game G on a population system and make a
numerical application of our approximation techniques.

A population system is managed by players 1 and 2. The natural birth and death
rates per individual are λ > 0 and μ > 0, respectively. Player 1 is interested in the
system having a large population and, to this end, player 1 can decrease the mortality
rate (for instance, using a suitable medical policy). On the other hand, the goal of
player 2 is to have a small number of individuals; player 2 can choose policies that
decrease the birth rate of the system (e.g., discouraging immigration).

We consider the following game model.

• The state space, standing for the number of individuals in the population, is S =
{0, 1, 2, . . .}.

• The action sets of the players are A = B = [−1, 1], while A(i) = B(i) = [−1, 1]
for all i ∈ S.

• The system’s transition rates qi j (a, b) satisfy qi j (a, b) = 0 when |i − j | > 1.
When |i − j | ≤ 1 we let

q01(a, b) = −q00(a, b) = λ − Cb|b|,

and, for i ≥ 1,

qi,i−1(a, b) = μi − Ca |a|√i, qi,i+1(a, b) = λi − Cb|b|i,

with qii (a, b) = −(qi,i−1(a, b) + qi,i+1(a, b)), for some constants 0 < Ca < μ

and 0 < Cb < λ, and all (a, b) ∈ A × B.
• The payoff rate (interpreted as a reward for player 1 and a cost for player 2) is
given by

r(i, a, b) = p i + Cr |ab|
√
i for i ∈ S and −1 ≤ a, b ≤ 1,

for some constants p > 0 and Cr > 0.

In the above definitions, the term
√
i models the fact that the payoff has a concave

behavior with respect to the population size, while the term |ab| in the payoff rate
captures the “saddle-point interplay” between the actions of the players. Note that
when the players take the actions a = 0 and b = 0 then they do not act on the dynamic
system. In this case, the corresponding Markov process (referred to as the natural
population system) is recurrent when λ ≤ μ and transient when λ > μ.

We consider the Lyapunov function w given by w(i) = (λ + μ + 1) · (i + 1) for
i ∈ S.
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Proposition 5.1 Consider the population model G defined above. If the discount rate
α > 0 satisfies λ − μ < α then Assumption 2.2 holds. If, in addition, we have
2(λ − μ) < α then Assumption 4.2 is satisfied.

Proof Fix an integer k ≥ 1 and consider the Lyapunov function i �→ wk(i). Given a
state i ≥ 1, we have

∑
j∈S

qi j (a, b)wk(i) = (wk(i − 1) − wk(i))(μi − Ca |a|√i)

+ (wk(i + 1) − wk(i))(λi − Cb|b|i).

Noting that

(i + 2)k − (i + 1)k = k(i + 1)k−1 + O(i k−2) and

i k − (i + 1)k = −k(i + 1)k−1 + O(i k−2),

some elementary calculations give

∑
j∈S

qi j (a, b)wk(i) = k(λ − μ − Cb|b|)wk(i) + O
(
i k−

1
2

)

≤ k(λ − μ)wk(i) + O
(
i k−

1
2

)
.

Therefore, given an integer k ≥ 1 and a constant ck > k(λ − μ), there exists dk ≥ 0
such that ∑

j∈S
qi j (a, b)wk(i) ≤ ckw

k(i) + dk for all (i, a, b) ∈ K. (5.1)

If λ − μ < α then choose λ − μ < c1 < α, and so Assumption 2.2(i) holds. In
particular, note also that −qii (a, b) ≤ w(i) for all (i, a, b) ∈ K. Regarding the other
statements of Assumption 2.2, item (ii) holds by letting M = p + Cr , part (iii) is
straightforward, and (iv) holds as a consequence of (5.1).

It should be clear that Assumption 4.2(i) is satisfied. If 2(λ − μ) < α, then choose
δ > 2 and cδ such that

δ(λ − μ) < cδ < α,

and so Assumption 4.2(ii) holds. ��
For eachn ≥ 1, consider now thefinite state and actions gamemodelGn as described

in Sect. 4. As a consequence of Theorems 3.4, 4.1, and 4.5, we obtain the following
results.

(i) Case λ ≤ μ (the natural population system is recurrent). Given arbitrary discount
rate α > 0 we have

lim
n→∞ V α

n (i) = V α(i) for all i ∈ S.
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Given arbitrary k > 0, by suitably choosing the action sets An(i) and Bn(i) we
have

|V α
n (i) − V α(i)| = O(n−k) for each i ∈ S.

(ii) Case λ > μ (the natural population system is transient). Given a discount rate
λ − μ < α we have

lim
n→∞ V α

n (i) = V α(i) for all i ∈ S.

If the discount rate is such that 2(λ − μ) < α then for each 0 < k < α
λ−μ

− 2 we
can choose the finite sets An(i) and Bn(i) such that

|V α
n (i) − V α(i)| = O(n−k) for each i ∈ S.

Numerical experimentation. We choose the following values of the parameters:

λ = 2.6, μ = 2.5, α = 1.2, Ca = Cb = Cr = 0.2, and p = 3.

For each n ≥ 1, we consider the truncated game model Gn with state space
{0, 1, . . . , n}. The action sets An(i) ≡ An and Bn(i) ≡ Bn consist of the n + 1
points 2k

n − 1 for k = 0, 1, . . . , n.
For n = 1, . . . , 30, we solve the finite game model Gn using the value iteration

procedure described in the previous section: we start from the initial value u0 = 0 and
we let qn = max(i,a,b)∈Kn {−qnii (a, b)}+ 0.1; recall (4.10). As a stopping criterion for
the value iteration algorithm, we let ε = 5 × 10−5 and we stop at the iterate k when

||uk − uk−1|| ≤ εα/qn,

which ensures that ‖uk − V α
n || ≤ ε (this refers to the supremum norm in Rn+1).

In Fig. 1, we display the values V α
n (i) for i = 0, 1, 2, 3 and 1 ≤ n ≤ 30. We

observe that the values of the games Gn become stable for relatively small values of
the truncation size n, say for n ≥ 20. We obtain the approximations

V α(0) � 2.6179, V α(1) � 3.9269, V α(2) � 5.8948, V α(3) � 8.0524.

By Lemma 4.7, the approximation error (with respect to the value V α
30 of the game

model G30) is less than 5× 10−5. Empirically, we observe that convergence seems to
occur faster than at the convergence rate given in Theorem 4.5. This is because the
bounds used to derive the convergence rate are very conservative.

Concerning the approximation of optimal strategies, for n = 30 we show in Table
1 the randomized strategies π1∗ (·|i) and π2∗ (·|i) for i = 0 and i = 1 as described
in Lemma 4.7. Table 1 displays the corresponding probability distributions on the
discretized sets of actions A30 = B30. These are 10−4-optimal strategies. Empirically,
this suggests that the optimal strategy for player 1 in the game model G will be to
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Fig. 1 Value of the games V α
n (i) for n = 1, . . . , 30

Table 1 Optimal strategies in A30 and B30 for G30
Actions in A30 and B30

−1.000 −0.933 −0.867 . . . 0.867 0.933 1.000

Player 1 i = 0 0.033 0.033 0.033 . . . 0.033 0.033 0.000

i = 1 0.499 <10−4 <10−4 . . . <10−4 0.499 0.000

Player 2 i = 0 0.499 <10−4 <10−4 . . . <10−4 0.499 0.000

i = 1 0.499 <10−4 <10−4 . . . <10−4 0.499 0.000

choose his actions uniformly on [−1, 1] in state i = 0, and to randomize between
actions −1 and 1, with probabilities 1/2, in state i = 1. For player 2, the estimation
of an optimal strategy is to randomize between actions −1 and 1, with probabilities
1/2, in both states i = 0 and i = 1.
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