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Abstract We consider nonsmooth multiobjective fractional programming on normed
spaces. Using first- and second-order approximations as generalized derivatives, first-
and second-order optimality conditions are established. Unlike the existing results, we
avoid completely convexity assumptions. Our results can be applied even in infinite-
dimensional cases, involving non-Lipschitz maps.
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1 Introduction

Fractional programming has been an intensively developed topic in optimization, see,
e.g., research papers (Borwein 1976; Schaible 1982; Singh 1981, 1986), a basic pre-
sentation in a handbook (Schaible 1995), and bibliographies (Schaible 1982; Stancu-
Minasian 2006). Along with numerous contributions to multiobjective optimization,
a very important area with significant practical applications in science, economics
and engineering, multiobjective problems of fractional programming has also become
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attractive to many researchers, see, e.g., (Bector et al. 1993; Kim et al. 2005; Kuk et
al. 2001; Liang et al. 2001; Lyall et al. 1997; Nobakhtian 2008; Reedy and Mukherjee
2001; Soleimani-Damaneh 2008; Zalmai 2006). In these papers, increasing efforts of
dealing with nonsmooth problems, relying on various generalized derivatives, can be
recognized. Severe convexity requirements, especially in sufficient optimality con-
ditions, have been gradually reduced, using relaxed convexity notions. However, we
observe that almost no contributions to problems in infinite-dimensional spaces and
that convexity assumptions have not been completely removed so far.

Inspired by these observations, we consider in this paper a nonsmooth multiobjec-
tive fractional programming problem in normed spaces. To avoid completely convexity
restrictions, we employ first- and second-order approximations as generalized deriv-
atives. This kind of derivatives proved to be effective in problems with a high level of
nonsmoothness and without convexity of the data, see Khanh and Tuan (2006, 2008,
2009, 2011, 2014).

The organization of this paper is as follows. In Sect. 2, we state our fractional
problem and recall notions needed in the sequel. Section 3 is devoted to properties
and calculus rules for first- and second-order approximations for later use. First-order
optimality conditions are discussed in Sect. 4. The last Sect. 5 deals with second-
order optimality conditions in both first-order differentiable cases and completely
nonsmooth cases.

2 Preliminaries

Throughout the paper, if not otherwise specified, let spaces under consideration like
X, Y, and Yi (for i in a given index set) be normed spaces, K ⊆ Y and C ⊆ R

m be
proper closed convex cones with nonempty interior, C being pointed. For A ⊆ X ,
intA, clA, bdA, A∞ and coneA denote its interior, closure, boundary, recession cone
(i.e., the cone {lim tnan | an ∈ A, tn ↓ 0}) and the cone generated by A (i.e., {t x | x ∈
A, t ≥ 0}), respectively (shortly, respectively). X∗ is the dual space of X , BX stands
for the closed unit ball in X , and B(x0, ε) is the open ball of center x0 and radius ε.
We consider the following multiobjective fractional programming problem

min ϕ(x) :=
(

f1(x)

g1(x)
, . . . ,

fm(x)

gm(x)

)
s.t. h(x) ∈ −K , (P)

where fi , gi : X → R, h : X → Y with gi being continuous and nonzero-valued for
i = 1, . . . , m.

Set f (x) := ( f1(x), . . . , fm(x)), g(x) := (g1(x), . . . , gm(x)) and S := {x ∈
X | h(x) ∈ −K } (the feasible set).
Definition 2.1 (e.g., Khanh and Tuan 2008)

(i) A point x0 ∈ S is called a local weak solution (local Pareto solution) of (P) if
there exists a neighborhood U of x0 such that, for every x ∈ U ∩ S,

ϕ(x) − ϕ(x0) 
∈ −intC (ϕ(x) − ϕ(x0) 
∈ −C\{0}, respectively).
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The set of all local weak (local Pareto, respectively) solutions of (P) is denoted
by LWE(ϕ, S) (LE(ϕ, S), respectively).

(ii) For k ∈ N, x0 ∈ S is called a local firm solution of order k of (P), denoted by
x0 ∈ LFE(k, ϕ, S), if there are γ > 0 and neighborhood U of x0 such that, for all
x ∈ U ∩ S\{x0},

(ϕ(x) + C) ∩ BRm (ϕ(x0), γ ‖x − x0‖k) = ∅.

Note that a firm solution is known in the literature also as an isolated solution or strict
solution. Observe that, for p ≥ m,

LFE(m, ϕ, S) ⊆ LFE(p, ϕ, S) ⊆ LE(ϕ, S) ⊆ LWE(ϕ, S).

So, necessary conditions for the right-most term hold true also for the others and
sufficient conditions for the left-most term are valid for the others as well.

Let L(X, Y ) be the space of the continuous linear mappings from X into Y
and B(X, X, Y ) that of the continuous bilinear mappings from X × X into Y .
For A ⊆ L(X, Y ) and x ∈ X (B ⊆ L(X, X, Y ) and x, z ∈ X × X ), denote
A(x) := {M(x) | M ∈ A} (B(x, z) := {N (x, z) | N ∈ B}). o(tk), for t > 0
and k ∈ N, stands for a moving point such that o(tk)/tk → 0 as t ↓ 0. For a cone
K ⊆ Y , the positive polar cone of K is

K ∗ := {y∗ ∈ Y ∗| 〈y∗, y〉 ≥ 0, ∀y ∈ K }.
Definition 2.2 (Classic) Let x0, v ∈ X and S ⊆ X .

(i) The contingent (or Bouligand) cone of S at x0 is

T (S, x0) := {v ∈ X | ∃tn ↓ 0, ∃vn → v,∀n ∈ N, x0 + tnvn ∈ S}.
(ii) The second-order contingent set of S at (x0, v) is

T 2(S, x0, v) :=
{
w ∈ X | ∃tn ↓ 0, ∃wn → w,∀n ∈ N, x0 + tnv + 1

2
t2n wn ∈ S

}
.

(iii) The asymptotic second-order tangent cone of S at (x0, v), see Penot (2000), is

T ′′(S, x0, v) :=
{
w ∈ X | ∃(tn, rn) ↓ (0, 0) : tn

rn
→ 0, ∃wn → w,

∀n ∈ N, x0 + tnv + 1

2
tnrnwn ∈ S

}
.

A subset S ⊆ X is said to be polyhedral if it is the intersection of a finite number
of closed half-spaces.

Definition 2.3 (Jourani and Thibault 1993) Let f : X → Y .

(i) A set A f (x0) ⊆ L(X, Y ) is said to be a first-order approximation of f at x0 ∈ X
if there exists a neighborhood U of x0 such that, for all x ∈ U ,
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f (x) − f (x0) ∈ A f (x0)(x − x0) + o(‖x − x0‖);

(ii) A set (A f (x0), B f (x0)) ⊆ L(X, Y )×L(X, X, Y ) is called a second-order approx-
imation of f at x0 if
(a) A f (x0) is a first-order approximation of f at x0;
(b) f (x) − f (x0) ∈ A f (x0)(x − x0) + B f (x0)(x − x0, x − x0) + o(‖x − x0‖2).
This kind of generalized derivatives contains a major part of known notions of

derivatives as special cases (see Khanh and Tuan 2006, 2008). Furthermore, it is
advantageous that even an infinitely discontinuous map may have approximations as
is shown by the following example.

Example 2.1 Let X = Y = R, x0 = 0, and

f (x) =
{− 1

x , if x > 0,
−x, if x ≤ 0.

Then, f is infinitely discontinuous at x0, but it admits A f (x0) =] − ∞, α[ with
−1 < α < 0 as an approximation. Indeed, consider x close to x0. If x ≤ 0, then
f (x) = −x = (−1)(x − 0) + o(|x |) with o(|x |) = 0 and −1 ∈ A f (x0) = (−∞, α).
Now consider x > 0. We need to show that f (x) = −1/x ∈ A f (x0)(x − 0) + o(|x |),
i.e., there exists βx ∈ A f (x0) such that o(|x |)/|x | = −1/x2 − βx . If 0 < x < δ,
then −∞ < −1/x2 < −1/δ2, and hence for δ > 0 satisfying −1/δ2 < α, one has
−1/x2 ∈ (−∞, α). Hence, for any ε > 0, there exists δ > 0 satisfying −1/δ2 < α

and βx ∈ A f (x0) = (−∞, α) such that −1/x2 − βx < ε for all x ∈ (0, δ), and we
are done.

For m ∈ N, f : X → Y is said to be m-calm at x0 if there exists L > 0 and
neighborhood U of x0 such that, for all x ∈ U ,

‖ f (x) − f (x0)‖ ≤ L‖x − x0‖m .

In this case, L is called the coefficient of calmness of f . (1-calmness is called
simply calmness). Of course, if f is m-calm at x0, then f is continuous at x0, for any
m ∈ N.

Let Mα and M be in L(X, Y ). The net {Mα} is said to pointwise converge to M , and

written as Mα
p→ M or M = p-limMα , if lim Mα(x) = M(x) for all x ∈ X . A similar

definition is adopted for Nα, N ∈ L(X, X, Y ). Note that the pointwise convergence
topology is notmetrizable. IfY = R, this topology collapses to the star-weak topology.
A subset A ⊆ L(X, Y ) (B ⊆ L(X, X, Y )) is called asymptotically pointwise compact
(shortly asymptotically p-compact) if (see Bector et al. 1993; Kim et al. 2005)

(a) each bounded net {Mα} ⊆ A (⊆ B, respectively) has a subnet {Mβ} and M ∈
L(X, Y ) (M ∈ L(X, X, Y )) such that M = p-limMβ ;

(b) for each net {Mα} ⊆ A (⊆ B, respectively) with lim ‖Mα‖ = ∞, the net
{Mα/‖Mα‖} has a subnet converging pointwise to some M ∈ L(X, Y )\{0}
(M ∈ L(X, X, Y )\{0}).
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First- and second-order optimality conditions 423

If pointwise convergence is replaced by convergence (in the norm topology), the
term “asymptotic compactness” is used. If X and Y are finite dimensional, every subset
is asymptotically p-compact and asymptotically compact. But, in infinite dimensions,
the asymptotical p-compactness is weaker than asymptotical compactness.

For A ⊆ L(X, Y ) and B ⊆ L(X, X, Y ), we adopt the notations:

p − cl A := {M ∈ L(X, Y ) | ∃{Mα} ⊆ A, M = p − lim Mα},
p − cl B := {N ∈ L(X, X, Y ) | ∃{Nα} ⊆ B, N = p − lim Nα},
A∞ := {M ∈ L(X, Y ) | ∃{Mα} ⊆ A, ∃tα ↓ 0, M = lim tα Mα},
p − A∞ := {M ∈ L(X, Y ) | ∃{Mα} ⊆ A, ∃tα ↓ 0, M = p − lim tα Mα},
p − B∞ := {N ∈ L(X, X, Y ) | ∃{Nα} ⊆ B, ∃tα ↓ 0, N = p − lim tα Nα}.

Observe that, p-clA, p-clB are the pointwise closures, A∞ is the recession cone
and p-A∞, p-B∞ are the pointwise recession cones of the given sets.

3 Properties and calculus rules of approximations

First, some properties of approximations of maps with regular characters are collected
in the following proposition.

Proposition 3.1 Let f : X → Y .

(i) Suppose ({0}, B f (x0)) is a second-order approximation of f at x0 and B f (x0)
is bounded. Then, f is 2-calm at x0.

(ii) Let Y = R. If the Fréchet derivative f ′ exists in a convex neighborhood U of x0
is calm at x0 with coefficient L, and f ′(x0) = 0, then f is 2-calm at x0 with the
same coefficient L.

(iii) If f is 2-calm at x0, then f ′(x0) = 0.

Proof (i) By the assumption, there exists L > 0 such that ‖M‖ ≤ L for all M ∈
B f (x0). Furthermore, there is a neighborhood U of x0 such that, for all x ∈ U ,
there exists
Mx ∈ B f (x0) with

‖ f (x) − f (x0)‖ = ‖Mx (x − x0, x − x0) + o(‖x − x0‖2)‖
≤ L .‖x − x0‖.‖x − x0‖ + ‖o(‖x − x0‖2)‖ ≤ (L + ε)‖x − x0‖2,

for some ε > 0. Hence, f is 2-calm at x0.
(ii) From the mean value theorem, for x ∈ U , there exists c := αx0 + (1− α)x with

α ∈ [0, 1] such that f (x) − f (x0) = f ′(c)(x − x0). Hence,

| f (x) − f (x0)| = ‖ f ′(c)‖.‖x − x0‖ = ‖ f ′(c) − f ′(x0)‖.‖x − x0‖
≤ L‖c − x0‖.‖x − x0‖
= L‖αx0 + (1 − α)x − x0‖.‖x − x0‖ = L(1 − α)‖x − x0‖2
≤ L‖x − x0‖2.
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(iii) We have

lim
x→x0

‖ f (x) − f (x0) − 0.(x − x0)‖
‖x − x0‖ = lim

x→x0

‖ f (x) − f (x0)‖
‖x − x0‖

= lim
x→x0

‖ f (x) − f (x0)‖
‖x − x0‖2 .‖x − x0‖

≤ lim
x→x0

L‖x − x0‖ = 0.

Therefore, f is Fréchet differentiable at x0 and f ′(x0) = 0. ��
In the following two propositions, some simple calculus rules, needed in establish-

ing optimality conditions for problem (P), are developed.

Proposition 3.2 Let fi : X → Yi , f := ( f1, . . . , fk) : X → Y1 × · · · × Yk and
λi ∈ R for i = 1, . . . , k. Let A fi (x0) be a first-order approximation of fi at x0. Then,
the following assertions hold.

(i)
∑k

i=1 λi A fi (x0) is a first-order approximation of
∑k

i=1 λi fi at x0.
(ii) Let f = ( f1, f2, . . . , fk) and A f1(x0), . . . , A fk (x0) be first-order approxima-

tions of f1, . . . , fk , respectively, at x0. Then, A f1(x0) × . . . × A fk (x0) is a first-
order approximation of f at that point.

(iii) Let Y be a Hilbert space, f, g : X → Y and 〈 f, g〉(x) := 〈 f (x), g(x)〉. If
A f (x0), Ag(x0) are first-order bounded approximations of f and g at x0, then
〈g(x0), A f (x0)〉+ 〈 f (x0), Ag(x0)〉 is a first-order approximation of 〈 f, g〉 at x0.

(iv) Let f : X → Y and g : Y → Z. If A f (x0), Ag( f (x0)) are bounded approx-
imations, then Ag( f (x0)) ◦ A f (x0) is a first-order approximation of g ◦ f at
x0.

Proof (i) For each i = 1, . . . , k, there exists a neighborhood Ui of x0 such that, for
all x ∈ Ui ,

fi (x) − f (x0) ∈ A fi (x0)(x − x0) + oi (‖x − x0‖).

Hence, for all x ∈ U := ⋂k
i=1 Ui ,

k∑
i=1

fi (x) −
k∑

i=1

fi (x0) ∈
k∑

i=1

A fi (x0)(x − x0) + o(‖x − x0‖),

where o(‖x − x0‖) = ∑k
i=1 oi (‖x − x0‖).

(ii) This is immediate.
(iii) There exists a neighborhood U of x0 such that, for all x ∈ U ,

〈 f, g〉(x) − 〈 f, g〉(x0)

= (〈 f (x), g(x)〉 − 〈 f (x), g(x0)〉) + (〈 f (x), g(x0)〉 − 〈 f (x0), g(x0)〉)
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First- and second-order optimality conditions 425

= 〈 f (x0), g(x) − g(x0)〉 + 〈 f (x) − f (x0), g(x) − g(x0)〉
+〈g(x0), f (x) − f (x0)〉 ∈ 〈 f (x0), Ag(x0)(x − x0)

+ o1(‖x − x0‖)〉 + 〈g(x0), A f (x0)(x − x0)

+ o2(‖x − x0‖)〉 + 〈 f (x) − f (x0), g(x) − g(x0)〉
= (〈 f (x0), Ag(x0)〉 + 〈g(x0), A f (x0)〉)(x − x0) + 〈 f (x0), o1(‖x − x0‖)〉

+ 〈g(x0), o2(‖x − x0‖)〉 + 〈 f (x) − f (x0), g(x) − g(x0)〉.

By the boundedness of A f (x0), Ag(x0), we have L1 and L2 such that, for x close
to x0, ‖ f (x)− f (x0)‖ ≤ L1‖x − x0‖ and ‖g(x)−g(x0)‖ ≤ L2‖x − x0‖. Hence,

‖〈 f (x) − f (x0), g(x) − g(x0)〉‖ ≤ ‖ f (x) − f (x0)‖.‖g(x) − g(x0)‖
≤ L1L2‖x − x0‖2.

Summarizing the above estimates we get, for some o(‖x − x0‖),

〈 f, g〉(x) − 〈 f, g〉(x0) = (〈 f (x0), Ag(x0)〉 + 〈g(x0), A f (x0)〉)(x − x0)

+ o(‖x − x0‖).

(iv) There exists a neighborhood U of x0 and V of f (x0) such that, for all x ∈
U ∩ f −1(V ),

(g ◦ f )(x) − (g ◦ f )(x0) ∈ Ag( f (x0))( f (x) − f (x0)) + o2(‖ f (x) − f (x0‖)
⊆ Ag( f (x0))[A f (x0)(x − x0) + o1(‖x − x0‖)] + o2(‖ f (x) − f (x0‖)
= [(Ag( f (x0)) ◦ A f (x0)](x − x0) + Ag( f (x0))o1(‖x − x0‖)

+ o2(‖ f (x) − f (x0‖).

Let u ∈ Ag( f (x0))o1(‖x − x0‖) + o2(‖ f (x) − f (x0‖). We need to prove that
u‖x − x0‖−1 → 0. Indeed, by the boundedness of A f (x0), Ag(x0), there exist
L1 and L2 such that ‖M‖ ≤ L1 for all M ∈ Ag( f (x0)) and, for x close to x0,
‖ f (x) − f (x0)‖ ≤ L2‖x − x0‖. Hence, with Mu ∈ Ag( f (x0)),

‖u‖
‖x − x0‖ =

∥∥∥∥Mu
o1(‖x − x0‖)

‖x − x0‖ + o2(‖ f (x) − f (x0)‖)
‖ f (x) − f (x0)‖ .

‖ f (x) − f (x0)‖
‖x − x0‖

∥∥∥∥
≤ L1

‖o1(‖x − x0‖)‖
‖x − x0‖ + L2

‖o2(‖ f (x) − f (x0)‖)‖
‖ f (x) − f (x0)‖ → 0.

��
For f, g : X → R, we define f.g and f/g as usual: ( f.g)(x) := f (x).g(x) and

( f/g)(x) := f (x).(g(x))−1 for x ∈ X .

Proposition 3.3 Let f, g : X → R and A f (x0), Ag(x0) be first-order approximations
of f and g, respectively, at x0. Then, the following assertions hold.
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(i) If g is continuous at x0 and A f (x0) is bounded, then g(x0)A f (x0)+ f (x0)Ag(x0)
is a first-order approximation of f.g at x0.

(ii) If A f (x0), Ag(x0) are bounded and g(x0) 
= 0, then [g(x0)A f (x0) − f (x0)
Ag(x0)]/g2(x0) is a first-order approximation of f/g at x0.

Proof (i) From the assumptions, there exists a neighborhood U of x0 such that, for
all x ∈ U ,

( f.g)(x) − ( f.g)(x0) = g(x)[ f (x) − f (x0)] + f (x0)[g(x) − g(x0)]
∈ g(x)[A f (x0)(x − x0) + o1(‖x − x0‖)] + f (x0)[Ag(x0)(x − x0)

+o2(‖x − x0‖)]
= [g(x0)A f (x0) + f (x0)Ag(x0)](x − x0) + (g(x) − g(x0))A f (x0)(x − x0)

+g(x)o1(‖x − x0‖) + f (x0)o2(‖x − x0‖)].

Wehave to show that, for any u in the set being the last line above, u‖x −x0‖−1 →
0 when x → x0. Indeed, there is x∗ ∈ A f (x0) (depending onx) such that

u‖x − x0‖−1 = [(g(x) − g(x0))〈x∗, x − x0〉 + g(x)o1(‖x − x0‖)
+ f (x0)o2(‖x − x0‖].‖x − x0‖−1.

Because of the boundedness of A f (x0), there exists L > 0 such that ‖x∗‖ ≤
L ,∀x∗ ∈ A f (x0). Passing to limit, one has u‖x − x0‖−1 → 0, since

lim
x→x0

|g(x) − g(x0)|. |〈x
∗, x − x0〉|
‖x − x0‖ ≤ lim

x→x0
|g(x) − g(x0)| ‖x∗‖.‖x − x‖

‖x − x0‖
≤ lim

x→x0
L .|g(x) − g(x0)| = 0.

(ii) We have

(
f

g

)
(x) −

(
f

g

)
(x0) = g(x0)( f (x) − f (x0)) − f (x0)(g(x) − g(x0))

g(x)g(x0)

∈ 1

g(x)g(x0)
[g(x0)(A f (x0)(x−x0) + o1(‖x−x0‖))

− f (x0)(Ag(x0)(x−x0) + o2(‖x − x0‖))]
= g(x0)A f (x0) − f (x0)Ag(x0)

g(x)g(x0)
(x − x0)

+ g(x0)o1(‖x − x0‖) − f (x0)o2(‖x − x0‖)
g(x)g(x0)

= g(x0)A f (x0)− f (x0)Ag(x0)

g2(x0)
(x − x0)−[(g(x0)A f (x0)

− f (x0)Ag(x0))(
g(x) − g(x0)

g(x)g2(x0)
)](x − x0)

123



First- and second-order optimality conditions 427

+ g(x0)o1(‖x − x0‖) − f (x0)o2(‖x − x0‖)
g(x)g(x0)

∈ g(x0)A f (x0)− f (x0)Ag(x0)

g2(x0)
(x − x0)−(g(x0)A f (x0)

− f (x0)Ag(x0))(x − x0)
g(x) − g(x0)

g(x)g2(x0)

+ g(x0)o1(‖x − x0‖) − f (x0)o2(‖x − x0‖)
g(x)g(x0)

.

Similarly as in (i), one gets the required conclusion, by the boundedness of
A f (x0), Ag(x0). ��

Proposition 3.4 (i) Let λ1, λ2 ∈ R, λ1 
= 0. If A1, A2 ⊆ L(X, Y ) are asymptotically
p-compact sets with A2 being bounded, then λ1A1 + λ2A2 is an asymptotically
p-compact set.

(ii) For asymptotically p-compact sets Ai ⊆ L(X, Yi ), i = 1, . . . , k,
∏k

i=1 Ai ⊆
L(X,

∏k
i=1 Yi ) is also asymptotically p-compact.

Proof (i) Let {λ1Mα + λ2Nα} be a net in λ1A1 + λ2A2. Since {Nα} is bounded, we
assume that Nα

p→ N . If {Mα} is bounded, {λ1Mα+λ2Nα} admits also a pointwise
convergent subnet. If {Mα} is unbounded, we may assume that ‖Mα‖ → ∞ and

Mα‖Mα‖−1 p→ M with M ∈ L(X, Y )\{0}. Since Nα/‖Mα‖ p→ 0, one has

λ1Mα + λ2Nα

‖λ1Mα + λ1Nα‖
p→ λ1M

‖λ1M‖ ∈ L(X, Y )\{0}.

Consequently, λ1A + λ2B is an asymptotically p-compact set.
(ii) Let {(M1

α, M2
α, . . . , Mk

α)} be a net in A1× A2×· · ·× Ak . If {Mi
α}, i = 1, . . . , k, are

bounded, then clearly {(M1
α, M2

α, . . . , Mk
α)} has a pointwise convergent subnet. If

at least one of {Mi
α}, i = 1, . . . , k, is unbounded, say all are unbounded, we may

assume that ‖Mi
α‖ → ∞, i = 1, . . . , k, and Mi

α/‖Mi
α‖ p→ Mi , i = 1, . . . , k,

with Mi ∈ L(X, Yi )\{0}. Since {‖Mi
α‖}, i = 1, . . . , k are nonnegative sequences

in R, there exist only three cases (using subsequences).
Case 1. There exists ‖Mi0

α ‖ such that ‖Mi
α‖/‖Mi0

α ‖ → 0,∀i ∈ {1, . . . , k}\{i0}.
One has

(M1
α, M2

α, . . . , Mk
α)

‖(M1
α, M2

α, . . . , Mk
α)‖ = (M1

α/‖Mi0
α ‖, . . . , Mk

α)/‖Mi0
α ‖)

‖(M1
α/‖Mi0

α ‖, . . . , Mk
α/‖Mi0

α ‖)‖
p→ (0, . . . , Mi0 , . . . , 0)

‖(0, . . . , Mi0 , . . . , 0)‖ ∈ L(X,

k∏
i=1

Yi )\{0}.

Case 2. There exists ‖Mi0
α ‖ such that ‖Mi

α‖/‖Mi0
α ‖ → ai > 0 for all i ∈

{1, . . . , k}\{i0}. Since Mi
α/‖Mi0

α ‖ p→ ai Mi , one gets
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(M1
α, M2

α, . . . , Mk
α)

‖(M1
α, M2

α, . . . , Mk
α)‖ = (M1

α/‖Mi0
α ‖, . . . , Mk

α/‖Mi0
α ‖)

‖(M1
α/‖Mi0

α ‖, . . . , Mk
α/‖Mi0

α ‖)‖
p→ (a1M1, . . . , Mi0 , . . . , ak Mk)

‖(a1M1, . . . , Mi0 , . . . , ak Mk)‖ ∈ L(X,

k∏
i=1

Yi )\{0}.

Case 3. There exists ‖Mi0
α ‖ such that ‖Mi

α‖/‖Mi0
α ‖ → 0 for all i ∈ I1, and

‖Mi
α‖/‖Mi0

α ‖ → ai > 0 for all i ∈ I2, with I1 ∪ I2 = {1, . . . , k}\{i0}, I1 ∩ I2 = ∅.
Then, there exists N ∈ L(X,

∏k
i=1 Yi )\{0} such that

(M1
α, M2

α, . . . , Mk
α)

‖(M1
α, M2

α, . . . , Mk
α)‖ = (M1

α/‖Mi0
α ‖, . . . , Mk

α/‖Mi0
α ‖)

‖(M1
α/‖Mi0

α ‖, . . . , Mk
α/‖Mi0

α ‖)‖
p→ N .

Therefore,
∏k

i=1 Ai is asymptotically p-compact. ��
Now, we pass to calculus rules for second-order approximations. In the follow-

ing proposition, when Y is a Hilbert space, y ∈ Y , A1, A2 ⊆ L(X, Y ), and
B ⊆ L(X, X, Y ), we denote 〈y, A1〉(.) := 〈y, A1(.)〉, 〈y, B〉(., .) := 〈y, B(., .)〉
and 〈A1, A2〉(., .) := 〈A1(.), A2(.)〉.
Proposition 3.5 (i) Let fi : X → Y , λi ∈ R, and (A fi (x0), B fi (x0)) be a second-

order approximation of fi at x0 for i =1, . . . , k. Then,
( ∑k

i=1 λi A fi (x0),
∑k

i=1 λi

B fi (x0)
)

is a second-order approximation of
∑k

i=1 λi fi at x0.
(ii) Let fi : X → Yi , i = 1, . . . , k, f := ( f1, f2, . . . , fk), and (A f1(x0), B f1(x0)),

. . . , (A fk (x0), B fk (x0)) be second-order approximations of f1, . . . , fk , respec-
tively, at x0. Then, (A f1(x0) × · · · × A fk (x0), B f1(x0) × · · · × B fk (x0)) is a
second-order approximation of f at that point.

(iii) Let Y be a Hilbert space and f, g : X → Y . If (A f (x0), B f (x0))
and (Ag(x0), Bg(x0)) are second-order approximations of f and g, respec-
tively, at x0 and A f (x0), Ag(x0) are bounded at x0, then (〈g(x0), A f (x0)〉 +
〈 f (x0), Ag(x0)〉, 〈g(x0), B f (x0)〉 + 〈 f (x0), Bg(x0)〉 + 〈A f (x0), Ag(x0)〉) is a
second-order approximation of 〈 f, g〉 at x0.

Proof (i) and (ii) are easy consequences of Proposition 3.2.
(iii) Also by Proposition 3.2, 〈g(x0), A f (x0)〉 + 〈 f (x0), Ag(x0)〉 is a first-order

approximation of 〈 f, g〉 at x0. Furthermore, from the boundedness of A f (x0), Ag(x0),
one gets

〈 f, g〉(x) − 〈 f, g〉(x0)

= 〈 f (x0), g(x) − g(x0)〉 + 〈g(x0), f (x) − f (x0)〉 + 〈 f (x)− f (x0), g(x)−g(x0)〉
∈ 〈 f (x0), Ag(x0)(x − x0) + Bg(x0)(x − x0, x − x0) + o1(‖x − x0‖2)〉

+〈g(x0), A f (x0)(x − x0) + B f (x0)(x − x0, x − x0) + o2(‖x − x0‖2〉
+〈A f (x0)(x − x0), Ag(x0)(x − x0)〉 + 〈A f (x0)(x − x0), o2(‖x − x0‖)〉
+〈o1(‖x − x0‖), Ag(x0)(x − x0)〉 + o3(‖x − x0‖2)
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= (〈g(x0), A f (x0)〉 + 〈 f (x0), Ag(x0)〉)(x − x0) + (〈g(x0), B f (x0)〉
+〈 f (x0), Bg(x0)〉 + 〈A f (x0), Ag(x0)〉))(x − x0, x − x0) + o(‖x − x0‖2).

By the definition of a second-order approximation, the proof is complete. ��
Proposition 3.6 Let f, g : X → R, g be 2-calm at x0, and (A f (x0), B f (x0)),
(0, Bg(x0)) be second-order approximations of f and g, respectively, at x0. Then,

(i) if A f (x0), B f (x0) are bounded, then
( f (x0)Ag(x0) + g(x0)A f (x0), g(x0)B f (x0) + f (x0)Bg(x0)) is a second-order
approximation of f.g at x0;

(ii) if A f (x0), B f (x0), Bg(x0) are bounded and g(x0) 
= 0, then

(
A f (x0)

g(x0)
,

g(x0)B f (x0) − f (x0)Bg(x0)

g2(x0)

)

is a second-order approximation of f/g at x0.

Proof (i) Proposition 3.3 implies that g(x0)A f (x0) is a first-order approximation of
f.g at x0. On the other hand,

f (x)g(x) − f (x0)g(x0) = g(x)[ f (x) − f (x0)] + f (x0)[g(x) − g(x0)]
∈ g(x)[A f (x0)(x − x0) + B f (x0)(x − x0, x − x0) + o1(‖x − x0‖2)]

+ f (x0)[Bg(x0)(x − x0, x − x0) + o2(‖x − x0‖2)]
= g(x0)A f (x0)(x − x0) + [g(x0)B f (x0) + f (x0)Bg(x0)](x − x0, x − x0)

+[(g(x) − g(x0))(A f (x0)(x − x0) + B f (x0)(x − x0, x − x0))

+g(x)o1(‖x − x0‖2) + f (x0)o2(‖x − x0‖2)].

We have to show that u‖x − x0‖−2 → 0, for all u in the set being the last term
of the last side above, when x → x0. For such a u, there are Mu ∈ A f (x0) and
Nu ∈ B f (x0) such that

u‖x − x0‖−2 = [(g(x) − g(x0))(〈Mu, x − x0〉 + Nu(x − x0, x − x0))

+ g(x)o1(‖x − x0‖2) + f (x0)o2(‖x − x0‖2)].‖x − x0‖−2.

Clearly, this element tends to 0 as x → x0, since g is 2-calm at x0 and
A f (x0), B f (x0) are bounded.

(ii) We have

(
f

g

)
(x) −

(
f

g

)
(x0) = g(x0)( f (x) − f (x0)) − f (x0)(g(x) − g(x0))

g(x)g(x0)

∈ 1

g(x)g(x0)
[g(x0)(A f (x0)(x − x0) + B f (x0)(x − x0, x − x0)

+o1(‖x − x0‖2)) − f (x0)(Bg(x0)(x − x0, x − x0) + o2(‖x − x0‖2))]
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= A f (x0)

g(x)
(x − x0) + g(x0)B f (x0) − f (x0)Bg(x0)

g(x)g(x0)
(x − x0, x − x0)

+g(x0)o1(‖x − x0‖2) − f (x0)o2(‖x − x0‖2)
g(x)g(x0)

= A f (x0)

g(x0)
(x − x0) + g(x0)A f (x0)(x − x0)

[
1

g(x)g(x0)
− 1

g2(x0)

]

+g(x0)B f (x0) − f (x0)Bg(x0)

g2(x0)
(x − x0, x − x0)

+(g(x0)B f (x0) − f (x0)Bg(x0))(x − x0, x − x0)

[
1

g(x)g(x0)
− 1

g2(x0)

]

+g(x0)o1(‖x − x0‖2) − f (x0)o2(‖x − x0‖2)
g(x)g(x0)

= A f (x0)

g(x0)
(x − x0) + g(x0)B f (x0) − f (x0)Bg(x0)

g2(x0)
(x − x0, x − x0)

+[g(x0)A f (x0)(x − x0) + (g(x0)B f (x0)

− f (x0)Bg(x0))(x − x0, x − x0)]
[

g(x0) − g(x)

g(x)g2(x0)

]

+g(x0)o1(‖x − x0‖2) − f (x0)o2(‖x − x0‖2)
g(x)g(x0)

.

It remains to prove that the last two terms of the last side above are of the form
o(‖x − x0‖2). This proof is similar to the corresponding one in (i). ��

The assumption that g is 2-calm at x0 in Proposition 3.6 (ii) cannot be dispensed
as shown by the following example.

Example 3.1 Let f, g : R → R be defined by f (x) = x3 + 1, g(x) = x + 1, and

x0 = 0. Then, ϕ(x) := (
f

g
)(x) = x2− x +1, x 
= −1.We can check that g is calm at

x0, but not 2-calm at this point. By direct calculations, we have f (x0) = 1, g(x0) = 1,
and

A f (x) = {0}, B f (x0) = {0},
Ag(x0) = {1}, Bg(x0) = {0},
Aϕ(x0) = {−1}, Bϕ(x0) = {1}.

So, {(−1, 1)} is a second-order approximation of ϕ(x) = x2 − x + 1 at x0. Hence,

(
g(x0)A f (x0) − f (x0)Ag(x0)

g2(x0)
,

g(x0)B f (x0) − f (x0)Bg(x0)

g2(x0)

)
= {(−1, 0)}

is not a second-order approximation of ϕ(x) = x2 − x + 1 at x0.
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4 First-order optimality conditions

To establish necessary optimality conditions for our fractional problem, we need
Lemma 4.1 below on such conditions for local weak solutions to the constrained
vector minimization problem (P1) below. Let X, Y and Z be normed spaces, C and
K be proper closed convex cones with nonempty interior in Z and Y , respectively
(note that, for (P1), C does not need to be pointed). Let F : X → Z and h : X → Y .
Consider the vector minimization problem

min F(x)s.t.h(x) ∈ −K . (P1)

Denote 	 := {x ∈ X | h(x) ∈ −K } (the feasible set). We recall that the cone of weak
feasible directions to S ⊆ X at x0 ∈ S is

W f (S, x0) := {u ∈ X | ∃tn ↓ 0, ∀n, x0 + tnu ∈ S}.

Lemma 4.1 Assume that AF (x0)and Ah(x0)are asymptotically p-compact first-order
approximations of F and h, respectively, at x0.

If x0 is a local weak solution of (P1), then, ∀u ∈ X, ∃P ∈ p-AF (x0), ∃Q ∈ Ah(x0),
∃(c∗, d∗) ∈ C∗ × K ∗\{(0, 0)},

〈c∗, P(u)〉 + 〈d∗, Q(u)〉 ≥ 0, 〈d∗, h(x0)〉 = 0.

Furthermore, for u satisfying 0 ∈ int(Q(u) + h(x0) + K ) for all Q ∈ Ak(x0), we
have c∗ 
= 0.

Proof Let x0 be a local weak solution of (P1). For u ∈ X , there are two cases.
Case 1. u ∈ W f (	, x0). Then, there exists P ∈ p-AF (x0) such that P(u) 
∈ −intC .

Indeed, for the sequence tn ↓ 0 associated with u (in the definition of W f (	, x0))
and n large enough, we have F(x0 + tnu) − F(x0) 
∈ −intC. Therefore, there is
Pn ∈ AF (x0) such that

Pnu + o(tn)

tn

∈ −intC. (1)

We have two possibilities. If {Pn} is bounded, we can assume that Pn
p→ P ∈

p-clAF (x0). Passing (1) to limit, we obtain Pu 
∈ −intC as required. If {Pn} is

unbounded, we can assume that Pn/‖Pn‖ p→ P ∈ p-AF (x0)∞\{0}. Dividing (1) by
‖Pn‖ and letting n → ∞, we also obtain P(u) 
∈ −intC .

Case 2. u 
∈ W f (	, x0). Then, ∀tn ↓ 0, ∃n, h(x0 + tnu) 
∈ −K . We claim the
existence of Q ∈ Ah(x0) such that Q(u) 
∈ −intK − h(x0). Indeed, suppose to the
contrary that Ah(x0)(u) ⊆ −intK − h(x0). Then, for n large enough,

h

(
x0 + 1

n
u

)
− h(x0) ∈ 1

n
Ah(x0)(u) + o

(
1

n
‖u‖

)
∈ 1

n
Ah(x0)(u) + rn BZ ,
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where rnn → 0, and BZ is the closed unit ball of Z . Hence,

h

(
x0 + 1

n
u

)
∈

(
1 − 1

n

)
h(x0) + 1

n
(h(x0) + Ak(x0)(u) + rnnBZ ).

By the contradiction assumption that Ah(x0)(u) ⊆ −intK − h(x0), one gets h(x0) +
Ah(x0)(u)+rnnBZ ⊆ −K , for n large enough. Hence, h(x0 + 1

n u) ∈ −K . This leads
to a contradiction with the assumption that u 
∈ W f (	, x0).

Now, in both cases, one has some P ∈ p-clAF (x0) and Q ∈ Ah(x0) with
(P(u), Q(u)) 
∈ −int[C × (K + h(x0))]. According to a classic separation theo-
rem from convex analysis, we have (c∗, d∗) ∈ C∗ × K ∗\{(0, 0)} such that, for all
u ∈ X ,

〈c∗, P(u)〉 + 〈d∗, Q(u)〉 ≥ 0, 〈d∗, h(x0)〉 = 0.

Now let u satisfy 0 ∈ int(Q(u) + h(x0) + K ) for all Q ∈ Ah(x0), and suppose to
the contrary that c∗ = 0. Then, the separation result collapses to

〈d∗, Q(u)〉 ≥ 0, 〈d∗, h(x0)〉 = 0.

This implies that d∗(Q(u) + h(x0) + d) ≥ 0 for all d ∈ K . So, 0 
∈ int(Q(u) +
h(x0) + K ), contradicting the assumption. ��

Note that, Lemma 4.1 sharpens Theorem 3.1 of Khanh and Tuan (2009), by remov-
ing the assumed boundedness of Ah(x0) and adding the case c∗ 
= 0. This removal
is important, since a map with a bounded first-order approximation at a point must
be continuous (even calm) at this point. Now, we pass to our fractional programming.
Denote

Aϕ(x0) :=
m∏

i=1

gi (x0)A fi (x0) − fi (x0)Agi (x0)

g2
i (x0)

.

Theorem 4.1 (Necessary condition) For problem (P), let A fi (x0), Agi (x0), Ah(x0)
be asymptotically p-compact first-order approximations of fi , gi and h, respectively,
at x0, with A fi (x0), Agi (x0) being bounded, for i = 1, . . . , m. If x0 is a local weak
solution of (P), then, ∀u ∈ X, ∃P ∈ p-clAϕ(x0) ∪ (p-Aϕ(x0)∞\{0}), ∃Q ∈ clAh(x0),
∃(c∗, d∗) ∈ C∗ × K ∗\{(0, 0)},

〈c∗, Pu〉 + 〈d∗, Qu〉 ≥ 0, 〈d∗, h(x0)〉 = 0.

Furthermore, for u satisfying 0 ∈ int(Q(u) + h(x0) + K ) for all Q ∈ Ah(x0), we
have c∗ 
= 0.

Proof Since Agi (x0), i = 1, . . . , m, are bounded, all gi are calm at x0. ByPropositions
3.2 and 3.3, Aϕ(x0) is a first-order approximation of ϕ at x0. As A fi (x0), Agi (x0) are
bounded and gi (x0) 
= 0, i = 1, . . . , m, from Proposition 3.4, we see that Aϕ(x0) is
asymptotically p-compact. To complete the proof, invoke Lemma 4.1 for F = ϕ. ��
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Note that in most of the known optimality conditions for fractional problems, X is
assumed to be finite dimensional. Furthermore, when applied to the finite-dimensional
case, Theorem 4.1 is also advantageous, since f is not required to be Lipschitz contin-
uous. In the following example, the results for cases with assumed Lipschitz continuity
in (Kim et al. 2005; Kuk et al. 2001; Nobakhtian 2008; Reedy and Mukherjee 2001;
Soleimani-Damaneh 2008; Bao et al. 2007; Chinchuluun et al. 2007; Liu and Feng
2007) or with continuous differentiability in Singh (1981); Liang et al. (2001); Zal-
mai (2006); Mishra (1997); Cambini et al. (2005); Husain and Jabeen (2005) are not
applicable, while Theorem 4.1 works well.

Example 4.1 Let X = R, m = 1, Y = R, C = K = R+, x0 = 0,

f (x) =
{−x(|sin(1/x)| + 1), if x 
= 0,
0, if x = 0,

g(x) = x2 + 1, and h(x) = − 3
√

x + x2. We can take approximations Ag(x0) = {0}
and Ah(x0) =]−∞, β[with β < 0 being arbitrary and fixed. Since f is not Lipschitz
at x0 = 0, the mentioned known results [e.g., Theorem 2.1 of Kim et al. (2005),
Theorem 4.2 of Bao et al. (2007)] are not in use. Since g(x0) = 1, f (x0) = 0
and A f (x0) = [−2,−1], one has Aϕ(x0) = A f (x0), clAϕ(x0) ∪ (Aϕ(x0)∞\{0}) =
[−2,−1]. For u = 1, we see that, ∀P ∈ clAϕ(x0) ∪ (Aϕ(x0)∞\{0}), ∀Q ∈ clAh(x0),
∀(c∗, d∗) ∈ C∗ × K ∗\{(0, 0)} = R

2+\{(0, 0)} with 〈d∗, h(x0)〉 = 0,

〈c∗, Pu〉 + 〈d∗, Qu〉 = c∗ P + βd∗ < 0.

According to Theorem 4.1, x0 is not a local weak solution of (P).

Theorem 4.2 (Sufficient condition) Let X = R
n and x0 ∈ h−1(−K ). Assume that,

for i = 1, . . . , m, A fi (x0), Agi (x0), Ah(x0) are asymptotically p-compact first-order
approximations of fi , gi and h, respectively, at x0, with all A fi (x0), Agi (x0) being
bounded. Suppose that, for all u ∈ T (h−1(K ), x0) with norm one, P ∈ clAϕ(x0) ∪
(Aϕ(x0)∞\{0}) and Q ∈ p-cl Ah(x0)∪ (p- Ah(x0)∞\{0}), there exists (y∗, z∗) ∈
C∗ × K ∗\{(0, 0)} such that

〈y∗, Pu〉 + 〈z∗, Qu〉 > 0, 〈z∗, h(x0)〉 = 0.

Then, x0 is a local firm solution of order 1 of (P).

Proof Since Agi (x0) is bounded, gi is calm at x0 for i = 1, . . . , m. By Propositions
3.2 and 3.3, Aϕ(x0) is a first-order approximation of ϕ at x0. Since Aϕ(x0) is finite
dimensional, it is asymptotically p-compact. Now, apply Theorem 3.3 of Khanh and
Tuan (2009) to complete the proof. ��
Example 4.2 Let n = 1, m = 2, Y = R, C = R

2+, K = R+, x0 = 0, f (x) =
(x, f1(x)),

f1(x) =
{

x(| sin(1/x)| + 1), if x 
= 0,
0, if x = 0,
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g(x) = (e−x , 1), and h(x) = x2−2x . Then, T (h−1(−K ), x0) = [0,∞[, and f, g and
h admit first-order approximations A f (x0) = {(1, α) ∈ R

2| α ∈ [1, 2]}, Ag(x0) =
{(−1, 0)}, and Ah(x0) = {−2}, respectively, for any fixed α > 0. Hence,

Aϕ(x0) = A f (x0), clAϕ(x0) = Aϕ(x0) , Aϕ(x0)∞ = {(0, 0)}.

Choosing (y∗, z∗) = ((0, 1), 0) ∈ C∗ × K ∗\{(0, 0)}, one sees that, for all u ∈
T (h−1(K ), x0)with norm one, P ∈ clAϕ(x0)∪ (Aϕ(x0)∞\{0}), and Q ∈ clAh(x0)∪
(Ah(x0)∞\{0}),

〈y∗, Pu〉 + 〈z∗, Qu〉 > 0, 〈z∗, h(x0)〉 = 0.

In view of Theorem 4.2, x0 is a local firm solution of order 1 of (P).
Now, we check directly, with γ = 1 and an arbitrary neighborhood U of x0 = 0,

that, for all x ∈ U ∩ S\{x0},

(ϕ(x) + C) ∩ BR2(ϕ(x0), |x − x0|) = ∅.

Indeed, since the feasible set is S = [0, 2], then x > 0 for all x ∈ U ∩ S\{x0}, and we
have

‖ϕ(x) − ϕ(x0)‖ = ‖(xex , x(| sin(1/x)| + 1)‖
=

√
x2(e2x + (| sin(1/x)| + 1)2) > |x − x0|.

Hence, for all x ∈ U ∩ S\{x0},

(ϕ(x) + C) ∩ BR2(ϕ(x0), γ |x − x0|) = ∅.

5 Second-order optimality conditions

By the calculus rules obtained in Sect. 3, we can apply easily second-order optimality
conditions in Khanh and Tuan (2009, 2011) for vector optimization to multiobjective
fractional programming.Hence, the deriving of the results here is immediate.However,
since these optimality conditions have advantages in applications, we present them
and illustrate applications for the sake of completeness. For necessary conditions, we
admit the following notation for problem (P), with z∗ ∈ K ∗,

H(z∗) := {x ∈ X | h(x) ∈ −K , 〈z∗, h(x)〉 = 0}.

5.1 The case f and h are first-order differentiable

In this subsection, assume that fi and h are Fréchet differentiable at x0 for i =
1, . . . , m, and set
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Aϕ(x0) :=
m∏

i=1

f ′
i (x0)

gi (x0)
, Bϕ(x0) :=

m∏
i=1

gi (x0)B fi (x0) − fi (x0)Bgi (x0)

g2
i (x0)

.

Theorem 5.1 (Necessary condition) Assume that C is polyhedral, gi are 2-calm
at x0 for i = 1, . . . , m, and z∗ ∈ K ∗ with 〈z∗, h(x0)〉 = 0. Impose further
that ( f ′

i (x0), B fi (x0)), (0, Bgi (x0)) and (h′(x0), Bh(x0)) are bounded asymptoti-
cally p-compact second-order approximations of fi , gi and h, respectively, at x0,
for i = 1, . . . , m.

If x0 is a local weak solution of (P), then, for any v ∈ T (H(z∗), x0), there exists y∗ ∈
B, where B is finite and cone(coB) = C∗, such that 〈y∗, Aϕ(x0)v〉+〈z∗, h′(x0)v〉 ≥ 0.

If, furthermore, y∗ ◦ Aϕ(x0)+ z∗ ◦h′(x0) = 0, we have either M ∈ p-clBϕ(x0) and
N ∈ p-clBh(x0) such that 〈y∗, M(v, v)〉+〈z∗, N (v, v)〉 ≥ 0, or M ∈ p-Bϕ(x0)∞\{0}
such that 〈y∗, M(v, v)〉 ≥ 0.

Proof By Propositions 3.1, 3.5 and 3.6, (Aϕ(x0), Bϕ(x0)) is a second-order approx-
imation of ϕ at x0. Furthermore, since ( f ′

i (x0), B fi (x0)), (0, Bgi (x0)) are asymptot-
ically p-compact, gi (x0) 
= 0, and B fi (x0), Bgi (x0) are bounded, for i = 1, . . . , m,
Proposition 3.4 implies that (Aϕ(x0), Bϕ(x0)) is asymptotically p-compact. Now,
applying Theorem 4.1 of Khanh and Tuan (2009, 2011) ends the proof. ��

Note that in this statement and Theorem 5.2 below, the assumptions imposed on gi

are restrictive. However, in applications we can always rewrite the fractions involved
in the problem, with new fi and gi , so that the new gi satisfy these assumptions. We
illustrate Theorem 5.1 by the following example.

Example 5.1 Let X = l2, m = 1, Y = R, C = D = R+, B = {1}, and x0 = 0. Let
f (x) = −‖x‖2 = −∑∞

i=1 x2i , g(x) = ‖x‖4/3 + 1 = (∑∞
i=1 x2i

)2/3 + 1, h(x) =
x21 − x1. Then, g(x0) = 1 
= 0, g′(x0) = 0, i.e., g is Fréchet differentiable at x0 but
g is not 2-calm at x0, and Bg(x0) = {Nλ ∈ B(l2, l2,R) | λ > 1}, where Nλ(x, y) =
λ

∑∞
i=1 xi yi for x, y ∈ l2. We have f (x0) = 0, f ′(x0) = 0, B f (x0) = {−1}, h′(x0) =

{(−1, 0, 0, . . .)}, and Bh(x0) = {N ∈ B(l2, l2,R) | N (x, y) = x1.y1}. Therefore,
Aϕ(x0) = A f (x0) and Bϕ(x0) = B f (x0), and (Aϕ(x0), Bϕ(x0)) is an asymptotically
p-compact second-order approximation of ϕ at x0. We have p-clBϕ(x0) = {−1} and
p-Bϕ(x0)∞ = {0}. Choose z∗ = 0 ∈ K ∗ = R+ and

v = (1, 0, 0, . . .) ∈ T (H(z∗), x0) = {x = (x1, x2, ...) ∈ l2 | x1 ≥ 0}.

Then, for any y∗ ∈ B, i.e., y∗ = 1, we have y∗ ◦ Aϕ(x0) + z∗ ◦ h′(x0) = 0 and

〈y∗, M(v, v)〉 + 〈z∗, N (v, v)〉 = −1 < 0

for all M ∈ p-clBϕ(x0). Due to Theorem 5.1, x0 is not a local weak solution of problem
(P). But, since X = l2 is infinite dimensional, Theorem 4.1 of Reedy and Mukherjee
(2001) cannot be applied.
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Theorem 5.2 (Sufficient condition) Assume that X is finite dimensional, x0 ∈
h−1(−K ), gi is 2-calm at x0 and ( f ′

i (x0), B fi (x0)), (0, Bgi (x0)), and (h′(x0), Bh(x0))
are bounded asymptotically p-compact second-order approximations of fi , gi and h,
respectively, at x0, for i = 1, . . . , m. Set

C∗
0 × K ∗

0 := {(y∗, z∗) ∈ C∗ × K ∗\{(0, 0)} | y∗ ◦ A1(x0)

+z∗ ◦ h′(x0) = 0, 〈z∗, h(x0)〉 = 0}.

Impose further the existence of (y∗, z∗) ∈ C∗
0 × K ∗

0 such that, for all v ∈
T (h−1(−K ), x0) with ‖v‖ = 1 and 〈y∗, Aϕ(x0)v〉 = 〈z∗, h′(x0)〉 = 0, one has

(i) for each M ∈ clBϕ(x0) and N ∈ p-clBh(x0), 〈y∗, M(v, v)〉+ 〈z∗, N (v, v)〉 > 0;
(ii) for each M ∈ p-Bϕ(x0)∞\{0}, 〈y∗, M(v, v)〉 > 0.

Then, x0 is a local firm solution of order 2.

Proof Propositions 3.1, 3.5 and 3.6 together imply that the finite dimensional set
(Aϕ(x0), Bϕ(x0)) is an asymptotically p-compact second-order approximation of ϕ at
x0. Applying Theorem 4.5 of Khanh and Tuan (2009), the conclusion is obtained. ��
Example 5.2 Let n = 1, m = 2, Y = R

2, C = R
2+, K = R+, x0 = 0, f (x) =

( f1(x), x2) with

f1(x) =
{∫ x

0 t2 sin(1/t2), if x 
= 0,
0, if x = 0,

g(x) = (−x2 + 1, cos2 x), and h(x) = −x + x2. Then, we have g(x0) =
(1, 1), g′(x0) = (0, 0), Bg(x0) = {(−1,−1)} (g is 2-calm at x0), f (x0) = 0,
f ′(x0) = (0, 0), h′(x0) = −1,
B f (x0) = {(0, 1)}, Bh(x0) = {1}, h−1(−K ) = [0, 1], and T (h−1(−K ), x0) =
[0,∞[. Hence, Aϕ(x0) = {(0, 0)}, Bϕ(x0) = clBϕ(x0) = {(0, 1)}, Bϕ(x0)∞ =
{(0, 0)}, and C∗

0 × K ∗
0 = {(y∗, 0) | y∗ ∈ R

2+\{0}}.
Choose (y∗, z∗) = ((1, 0), 0) ∈ C∗

0 × K ∗
0 . Then, for all v ∈ T (h−1(−K ), x0) with

norm one, i.e., v = 1, we see that, for each M ∈ clBϕ(x0) and N ∈ clBh(x0),

〈y∗, M(v, v)〉 + 〈z∗, N (v, v)〉 = 1 > 0.

According to Theorem 5.2, x0 is a local firm solution order 2 of (P).

5.2 The case f and h are not differentiable

In this general case, we set

Aϕ(x0) :=
m∏

i=1

gi (x0)A fi (x0) − fi (x0)Agi (x0)

g2
i (x0)

,
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Bϕ(x0) :=
m∏

i=1

gi (x0)B fi (x0) − fi (x0)Bgi (x0)

g2
i (x0)

,

P(x0, y∗, z∗) := {v ∈ X |〈y∗, Pv〉 + 〈z∗, Qv〉 = 0,∀P ∈ A1(x0),∀Q ∈ Ah(x0)}.

Theorem 5.3 (Necessary condition) Let C be polyhedral, gi be 2-calm at x0 for
i = 1, . . . , m, and z∗ ∈ K ∗ with 〈z∗, h(x0)〉 = 0. Suppose (A fi (x0), B fi (x0)),
(Agi (x0), Bgi (x0)), and (Ah(x0), Bh(x0)) are bounded asymptotically p-compact
second-order approximations of fi , gi , i = 1, . . . , m, and h, respectively, at x0.

If x0 is a local weak solution of (P), then, for any v ∈ T (H(z∗), x0),

(i) for all w ∈ T 2(H(z∗), x0, v), there exist y∗ ∈ B with B being finite and
cone(coB) = C∗, P ∈ p-clAϕ(x0), and Q ∈ p-clAh(x0) such that 〈y∗, Pv〉 +
〈z∗, Qv〉 ≥ 0.
If, in addition, v ∈ P(x0, y∗, z∗), then either there are P ∈ p-clAϕ(x0),
Q ∈ p-clAh(x0), M ∈ p-clBϕ(x0), and N ∈ p-clBh(x0) such that

〈y∗, Pw〉 + 〈z∗, Qw〉 + 2〈y∗, M(v, v)〉 + 2〈N (v, v)〉 ≥ 0,

or there exists M ∈ p-Bϕ(x0)∞\{0} with 〈y∗, M(v, v)〉 ≥ 0;
(ii) for all w ∈ T ′′(G(z∗), x0, v), there exist P ∈ p-clAϕ(x0) and Q ∈ p-clAh(x0)

such that 〈y∗, Pv〉 + 〈z∗, Qv〉 ≥ 0.
If, in addition, v ∈ P(x0, y∗, z∗), then either P ∈ p-clAϕ(x0), Q ∈ p-clAh(x0),
and M ∈ p-clBϕ(x0)∞ exist such that

〈y∗, Pw〉 + 〈z∗, Qw〉 + 2〈y∗, M(v, v)〉 ≥ 0,

or some M ∈ p-Bϕ(x0)∞\{0} exists with 〈y∗, M(v, v)〉 ≥ 0.

Proof The proof is similar to that of Theorem 5.1, but now we apply Theorem 4.7 of
Khanh and Tuan (2009, 2011) and we do not need Proposition 3.1. ��

Theorem 5.3 rejects a candidate for a weak solution in the following illustrative
example.

Example 5.3 Let X = R
2, Y = R, m = 2, C = R

2+, B = {y∗
1 = (1, 0), y∗

2 =
(0, 1)}, K = {0}, x0 = (0, 0), f (x, y) = (−y, x + |y|), g(x, y) = (x2 + 1, y2 +
1), and h(x, y) = −x3 + y2. Then, we have g(x0) = (1, 1), Ag(x0) = {0}, and
Bg(x0) =

{(
1 0 0 0
0 0 0 1

)}
. So, g is 2-calm at x0. We have the following approx-

imations

A f (x0) =
{(

0 −1
1 ±1

)}
, B f (x0) = {0},

Ah(x0) = {0}, Bh(x0) =
{(

0 0
0 1

)}
.
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Therefore, Aϕ(x0) = A f (x0), Bϕ(x0) = {0}. Let z∗ = 0. Then, H(z∗) = {(x, y) ∈
R
2| −x3 + y2 = 0}, T (H(z∗), x0) = R+ × {0}.
Choosing v = (1, 0) ∈ T (H(z∗), x0), we have

T 2(H(z∗), x0, v) = ∅, T ′′(H(z∗), x0, v) = R
2.

Now, let w = (0, 1) ∈ T ′′(H(z∗), x0, v). For y∗
1 = (1, 0) ∈ B, ∀P ∈ clA1(x0),

∀Q ∈ clAh(x0), one gets 〈y∗
1 , Pv〉 + 〈z∗, Qv〉 ≥ 0, and v ∈ P(x0, y∗

1 , z∗) =
{(v1, v2) ∈ R

2|v2 = 0}. Hence, for all P ∈ clAϕ(x0), Q ∈ clAh(x0) and
M ∈ Bϕ(x0)∞, one has

〈y∗
1 , Pw〉 + 〈z∗, Qw〉 + 〈y∗

1 , M(v, v)〉 = −1 < 0.

For y∗
2 = (0, 1) ∈ B, and for all P ∈ clAϕ(x0), all Q ∈ clAh(x0), one obtains

〈y∗
1 , Pv〉 + 〈z∗, Qv〉 = 1 > 0, and v 
∈ P(x0, y∗

2 , z∗).
Taking into account Theorem 5.3, one sees that x0 is not a local weak solution of

(P).

We pass finally to sufficient conditions.

Theorem 5.4 (Sufficient condition) Let X = R
n, x0 ∈ h−1(−K ), gi be 2-calm at x0,

(y∗, z∗) ∈ C∗ × K ∗ with 〈z∗, g(x0)〉 = 0 and (A fi (x0), B fi (x0)), (Agi (x0), Bgi (x0)),
(Ah(x0), Bh(x0)) be bounded asymptotically p-compact second-order approximations
of fi , gi , and h, respectively, at x0, for i = 1, . . . , m. Then, x0 is a local firm solution
of order 2 of (P), if the following conditions hold

(i) for all v ∈ T (h−1(−K ), x0), P ∈ A1(x0), and Q ∈ Ah(x0), one has 〈y∗, Pv〉 +
〈z∗, Qv〉 = 0;

(ii) ∀w ∈ T 2(h−1(−K ), x0, v) : ‖w‖ = 1, ∃P ∈ clAϕ(x0) : Pw ∈
−C, ∃Q ∈ p-clBh(x0) : Qw ∈ −K (h(x0)), and ∀M ∈ Bϕ(x0)∞\{0}, one
has 〈y∗, M(v, v)〉 > 0;
(ii1) for all w ∈ T 2(h−1(−K ), x0, v) ∩ v⊥, P ∈ clAϕ(x0), Q ∈ clAh(x0),
M ∈ clBϕ(x0), and N ∈ p-clBh(x0), one has

〈y∗, Pw〉 + 〈z∗, Qw〉 + 2〈y∗, M(v, v)〉 + 2〈N (v, v)〉 > 0;

(ii2) for all w ∈ T ′′(h−1(−K ), x0, v) ∩ v⊥\{0}, P ∈ clAϕ(x0), Q ∈ p-clAh(x0),
and M ∈ p-clBϕ(x0), one has

〈y∗, Pw〉 + 〈z∗, Qw〉 + 〈y∗, M(w,w)〉 > 0.

Proof By Propositions 3.5 and 3.6, we can apply Theorem 4.9 of Khanh and Tuan
(2009) to complete the proof. ��
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6 Conclusion

Multiobjective fractional programming on finite dimensional spaces has been inten-
sively investigated recently. In this paper, we consider this problem with nonsmooth
data, in infinite-dimensional normed spaces. We develop first and second-order opti-
mality conditions in terms of generalized derivatives called approximations. Then,
unlike the existing papers on fractional programming which could only weaken con-
vexity assumptions, we can avoid completely such conditions. Furthermore, the maps
in our problem may not be Lipschitz, a condition imposed usually in earlier existing
results. Our necessary optimality conditions are established for local weak solutions
and sufficient conditions are for local firm solutions. The obtained conditions of orders
1 and 2 are expressed in terms of approximations of orders 1 and 2, respectively. We
provide also a number of examples to illustrate in detail the results.
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