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Abstract A mixture inventory system analyzed in this paper explores the problem
that the lead time and ordering cost reductions are inter-dependent in a periodic review
inventory model with back-order price discounts for protection interval demand with
the mixture of normal distributions. The objectives of this paper are twofold. First,
we want to correct and improve the recently studied model by optimizing the review
period, back-order price discount, target level and lead time simultaneously to achieve
significant savings in the total related cost andhigher service level. Second,we consider
that the demands of the different customers are not identical in the protection interval to
accommodate more practical features of the real inventory systems. For the proposed
model, a computational algorithm with the help of the software Mathematica 7 is
furnished to derive the optimal solution. Finally, we provide numerical examples to
illustrate the results.

Keywords Inventory · Periodic review · Discount · Crashing cost ·
Mixtures of distributions

Mathematics Subject Classification 90B05

1 Introduction

Inmost of the literature dealingwith inventory problems, lead time is generally viewed
as a prescribed parameter, no matter whether it is deterministic or probabilistic, and
consequently cannot be controlled (see, e.g., Naddor 1966; Silver and Peterson 1985;
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Paknejad et al. 1995; Bartoszewicz and Lesniewski 2014). In more recent years, the
issue of lead time reduction has received a lot of interest. In fact, lead time can usu-
ally be decomposed into several components (Tersine 1982) and in many practical
situations, it can be reduced at an extra-added crashing cost; in other words, it is
controllable. As a result by shortening the lead time, we can lower the safety stock,
reduce the loss caused by stock-out and improve the service level to the customers
so as to improve the competitive edge. There has been some inventory model litera-
ture in the field considering lead time reduction (see, among others, Liao and Shyu
1991; Ben-Daya and Raouf 1994; Ouyang et al. 1996; Moon and Choi 1998; Hariga
1999; Hariga and Ben-Daya 1999; Wu and Tsai 2001; Ouyang et al. 2002; Hoque
and Goyal 2004; Hayya et al. 2011; Lin 2012; Jaggi et al. 2014). In addition, Pan
and Hsiao (2001) studied the continuous review inventory model with back-order dis-
counts and variable lead time. They observed that a supplier can always offer a price
discount on the stock-out item to compensate the buyers to secure more back-orders
when shortages occur. Thus, back ordering, as well as the lead time, appears to be
negotiable and can be controlled to some extent by offering a price discount from a
supplier. So, if the reduced amount does not exceed the gross marginal profit of the
sale or is less significant than the loss of the goodwill of the supplier, then both parties
may benefit from such a stock-out discount offer; moreover, the larger the back-order
discount, the larger the back-order rate. Thus, the back-order rate is dependent on
the back-order price discounts which are offered by the supplier. Chen et al. (2001)
proposed a continuous review inventory model with ordering cost dependent on lead
time. In a recent paper, Lin (2008) analyzed the inventorymodel in which the lead time
and ordering cost reductions are inter-dependent in the continuous review inventory
model with back-order price discount. In contrast to the continuous review inventory
models, the applications of the periodic review inventory models can often be found in
managing inventory cases such as smaller retail stores, drugstores and grocery stores
[see the discussion in Taylor (1999)]. Ouyang et al. (2007) proposed a periodic review
inventory model with the controllable back-order price discount and observed that
lead time and ordering cost reductions are dependent and their functional relationship
may be as linear, logarithmic, exponential and the like. But, they assumed that the
protection interval demand is normally distributed and considered a restriction that
the target level must satisfy the following equation P(X > R) = q which implies
a service level constraint. They made a mistake by including both the service level
constraint and the shortage cost into the model in which both are being used redun-
dantly to determine the appropriate level of safety stocks. Besides, in the protection
interval, the demands of the different customers are not identical and the demand of
distribution for each customer can be adequately approximated by a distribution. The
overall demand of distribution is then a mixture (see, among others, Lee et al. 2004,
2006, 2007; Lee 2005;Wu et al. 2007, 2009; Lin 2013; we note that these papers focus
on the continuous review inventory model). Thus, we cannot use only a single distrib-
ution [such as Ouyang et al. (2007)] to describe the demand of the protection interval.
The periodic review inventory model involving protection interval demand with the
mixtures of distributions has rarely been discussed in the existing literature. Following
the above motivation, in this study, we extend and correct the Ouyang et al. (2007)
model by considering the mixture of normal distributions and allowing the target level
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as a decision variable; it is obvious that we can obtain a better solution by allowing the
target level as a decision variable. A significant amount of savings over their model
can be achieved. Furthermore, a computational algorithm with the help of the soft-
ware Mathematica 7 is furnished to find the optimal values of the decision-making
variables. Some numerical examples are given to illustrate our model.

The rest of this paper is organized as follows. InSect. 2, the notation and assumptions
are presented. In Sect. 3, we formulate a periodic review inventory model with back-
order price discounts and ordering cost dependent on lead time for protection interval
demand with the mixture of normal distributions. We solve the cases of the linear
and logarithmic relationships between lead time and ordering cost reduction and then
develop a computational algorithm to find the optimal solution. Section 4 provides
numerical examples to demonstrate the results. Finally, Sect. 5 concludes the paper.

2 Notation and assumptions

The following notation and assumptions are used throughout the paper to develop the
proposed models.

Notation

A0 Original ordering cost (before any investment is made)

A(L) Ordering cost per order, 0 < A(L) ≤ A0

D Expected demand per year

h Holding cost per unit per year

L Length of lead time (decision variable)

p The weight of the component distributions, 0 ≤ p ≤ 1

R Target level (decision variable)

T Length of a review period (decision variable)

β Fraction of the shortage during the stock-out period that will be backordered,
i.e., back-order ratio, β ∈ [0, 1) (decision variable)

β0 Upper bound of the back-order ratio

πx Back-order price discount offered by the supplier per unit (decision variable)

π0 Marginal profit (i.e., cost of lost demand) per unit

X The protection interval demand has the mixtures of cumulative distribution
function (c.d.f.) F∗ = pF1+(1− p)F2,where F1 has finitemeanμ1(T +L)

and standard deviation σ
√
T + L and F2 has finite mean μ2(T + L) and

standard deviation σ
√
T + L, μ1 − μ2 = ησ/

√
T + L, η > 0, a random

variable

E[·] Mathematical expectation
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x+ Maximum value of x and 0, i.e., x+ = max{x, 0}

Assumptions

1. The inventory level is reviewed every T units of time. A sufficient quantity is
ordered up to the target level, R, and the ordering quantity is received after L units
of time.

2. The length of the lead time L does not exceed an inventory cycle time T , so that
there is never more than a single order outstanding in any cycle, i.e., L ≤ T .

3. The target level, R = expected demand during the protection interval +
safety stock (SS), and SS = k × (standard deviation of protection interval
demand), i.e., R = μ∗(T + L) + kσ∗

√
T + L, where μ∗ = pμ1 + (1 −

p)μ2, σ∗ = √
1 + p(1 − p)η2σ, μ1 = μ∗ + (1 − p)ησ/

√
T + L, μ2 =

μ∗ − pησ/
√
T + L, and k is known as the safety factor.

4. The lead time L consists of m mutually independent components. The lth com-
ponent has a minimum duration al and normal duration bl , and the crashing cost
per unit time, cl . Furthermore, these cl are assumed to be arranged such that
c1 ≤ c2 ≤ · · · ≤ cm .

5. The components of lead time are crashed one at a time starting with the component
of least cl , and so on.

6. If we let L0 = ∑m
j=1 b j and Li be the length of lead time with components

1, 2, . . . , i crashed to their minimum duration, then Li can be expressed as
Li = ∑m

j=1 b j − ∑i
j=1 (b j − a j ), i = 1, 2, . . . , m and the lead time crashing

cost per cycle,C(L), for a given L ∈ (Li , Li−1] is given byC(L) = ci (Li−1− L)

+ ∑i−1
j=1 c j (b j − a j ).

7. The reduction of lead time L accompanies a decrease of ordering cost, A(L), and
A(L) is a strictly concave function of L , i.e., A′(L) > 0 and A′′(L) < 0.

8. During the stock-out period, the back-order ratio, β, is variable and is in proportion
to the back-order price discount offered by the supplier per unit, πx . Thus, β =
β0πx/π0, where 0 ≤ β < 1 and 0 ≤ πx ≤ π0 (Pan and Hsiao 2001).

3 Model formulation

In this section, we consider the protection interval demand, X, has a mixture of
normal distributions F∗ = pF1 + (1 − p)F2, where F1 has a normal distribu-
tion with finite mean μ1(T + L) and standard deviation σ

√
T + L and F2 has a

normal distribution with finite mean μ2(T + L) and standard deviation σ
√
T + L ,

μ1 − μ2 = ησ/
√
T + L, η > 0. Thus, the mixture of probability density function of

X is

fX (x) = p
1√

2πσ
√
T + L

e
− 1

2

(
x−μ1(T+L)

σ
√
T+L

)2

+(1−p)
1√

2πσ
√
T + L

e
− 1

2

(
x−μ2(T+L)

σ
√
T+L

)2

,

(1)
where μ1 − μ2 = ησ/

√
T + L , η > 0, x ∈ R, 0 ≤ p ≤ 1, σ > 0. Moreover, the

mixture of normal distribution is a unimodal distribution for all p if (μ1 − μ2)
2 <

27σ 2/8(T + L) (or 0 < η <
√
27/8) (Everitt and Hand 1981) and the target level

123



390 H.-J. Lin

R = μ∗(T + L) + kσ∗
√
T + L , where k, μ∗ and σ∗ are defined as above. Using

the same approach as in Montgomery et al. (1973) for the periodic review case, the
expected net inventory level at the beginning of the period is R−DL+ (1−β)E(X −
R)+, and the expected net inventory level at the end of the period is R − DL −
DT + (1 − β)E(X − R)+. Thus, the expected annual holding cost is approximately
h

[
R − DL − DT

2 + (1 − β)E(X − R)+
]
, and the expected annual stock-out cost is

[πxβ + π0(1 − β)] E(X − R)+/T , where E(X − R)+ = ∫ ∞
R (x − R)dF∗(x) is the

expected demand shortage at the end of the cycle.

E(X − R)+ =
∫ ∞

R
(x − R) fX (x)dx = σ

√
T + L�(R1, R2, p), (2)

where

�(R1, R2, p) = p {φ(R1)− R1 [1− �(R1)]} + (1− p) {φ(R2)− R2 [1− �(R2)]} ,

R1 = R − μ1(T + L)

σ
√
T + L

= k
√
1 + p(1 − p)η2 − (1 − p)η,

and R2 = R−μ2(T+L)

σ
√
T+L

= k
√
1 + p(1 − p)η2 + pη; φ and � denote the standard

normal p.d.f. and cumulative distribution function (c.d.f.), respectively. This is done
by direct calculation. Due to R = μ∗(T +L)+kσ∗

√
T + L (by assumption 3), we can

treat the safety factor, k, as a decision variable instead of target level, R, and moreover,
due to β = β0πx/π0 (by assumption 8), the back-order price discount offered by a
supplier per unit, πx , can be viewed as a decision variable instead of the back-order
ratio, β. The objective of the problem is to minimize the total expected annual cost
which is the sum of the ordering cost, inventory holding cost, stock-out cost and lead
time crashing cost. Symbolically, our problem is

Min
(T,πx ,k,L)

EAC(T, πx , k, L) = A(L) + C(L)

T

+h

[
DT

2
+ kσ

√[
1 + p(1 − p)η2

]
(T + L)

]

+
[
h(1− β0πx

π0
) + G(πx )

T

]
σ
√
T + L�(R1, R2, p),

(3)

where EAC(·) denotes the total expected annual cost and G(πx ) = π0 − β0πx +
β0π

2
x

π0
> 0. To solve this nonlinear programming problem, we take the first-order

partial derivatives of EAC(T, πx , k, L) with respect to T, πx , k and L ∈ (Li , Li−1).

We obtain

∂EAC(T, πx , k, L)

∂T

= − A(L) + C(L)

T 2 + h

[
D

2
+ kσ

√
1 + p(1 − p)η2

2
√
T + L

]
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−G(πx )σ
√
T+L�(R1, R2, p)

T 2 +
[
h(1− β0πx

π0
)+ G(πx )

T

]
σ�(R1, R2, p)

2
√
T+L

, (4)

∂EAC(T, πx , k, L)

∂πx
=

[
2β0πx

π0T
− β0

T
− hβ0

π0

]
σ
√
T + L�(R1, R2, p), (5)

∂EAC(T, πx , k, L)

∂k
= hσ

√[
1 + p(1 − p)η2

]
(T + L) +

√[
1 + p(1 − p)η2

]

×
[
h(1 − β0πx

π0
) + G(πx )

T

]
σ
√
T + L [F∗(R) − 1] , (6)

and

∂EAC(T, πx , k, L)

∂L
= A′(L) − ci

T
+ hkσ

√
1 + p(1 − p)η2

2
√
T + L

+
[
h(1 − β0πx

π0
) + G(πx )

T

]
σ�(R1, R2, p)

2
√
T + L

. (7)

Where F∗(R) = p�(R1) + (1 − p)�(R2).
By examining the second-order sufficient conditions, it can be shown that

EAC(T, πx , k, L) is not a convex function of (T, πx , k, L). However, for fixed
(T, πx , k), EAC(T, πx , k, L) is concave in L ∈ [Li , Li−1], since

∂2EAC(T, πx , k, L)

∂L2 = A′′(L)

T
− hkσ

√
1 + p(1 − p)η2

4(T + L)3/2

−
[
h(1 − β0πx

π0
) + G(πx )

T

]
σ�(R1, R2, p)

4(T + L)3/2
< 0. (8)

Thus, for fixed T, πx and k, the minimum total expected annual cost will
occur at the end points of the interval [Li , Li−1]. However, it is difficult to
solve the problem by deriving an explicit equation of the solution from the fol-
lowing equations: ∂EAC(T, πx , k, L)/∂T = 0, ∂EAC(T, πx , k, L)/∂πx = 0 and
∂EAC(T, πx , k, L)/∂k = 0. It is also hard to verify that the sufficient conditions of
optimality of the solutions are satisfied. Solving these equations for T, πx and k, we
obtain

A(L) + C(L)

T 2 + G(πx )σ
√
T + L�(R1, R2, p)

T 2

= hD

2
+ hσ

2
√
T + L

[
k
√
1 + p(1 − p)η2 +

(
1 − β0πx

π0

)
�(R1, R2, p)

]

+G(πx )σ�(R1, R2, p)

2T
√
T + L

, (9)

πx = π0 + Th

2
, (10)
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and

1 − F∗(R) = h

h(1 − β0πx
π0

) + G(πx )
T

. (11)

However, the total expected annual cost function is convex in T because

∂2EAC(T, πx , k, L)

∂T 2

= 2 [A(L) + C(L)]

T 3 − hσ

4(T + L)3/2

[
k
√
1 + p(1 − p)η2 (12)

+
(
1 − β0πx

π0

)
�(R1, R2, p)

]
+ G(πx )σ�(R1, R2, p)

×
[

− 1

T 2
√
T + L

+ 2
√
T + L

T 3 − 1

4T (T + L)3/2

]

= 2 [A(L) + C(L)]

T 3 − A(L) + C(L)

2T 2(T + L)
+ hD

4(T + L)
+ G(πx )σ�(R1, R2, p)

×
[

1

4T (T + L)3/2
−

√
T + L

2T 2(T + L)
− 1

T 2
√
T + L

+2
√
T + L

T 3 − 1

4T (T + L)3/2

]

[by Eq. (9)] (13)

= [A(L)+C(L)] (3T+4L)

2T 3(T+L)
+ hD

4(T +L)
+G(πx )σ�(R1, R2, p)

(T+4L)

2T 3
√
T+L

>0,

(14)

and it also has local minimum in k and πx , respectively, because

∂2EAC(T, πx , k, L)

∂π2
x

= 2β0σ
√
T + L�(R1, R2, p)

π0T
> 0. (15)

∂2EAC(T, πx , k, L)

∂k2

= σ
√
T + L

[
1 + p(1 − p)η2

]
[pφ(R1) + (1 − p)φ(R2)]

×
[
h

(
1 − β0πx

π0

)
+ G(πx )

T

]
> 0. (16)

Therefore, we develop the following algorithmic procedure to find the optimal
solutions. Based on the proposal, the optimal T, πx , k and L can be found by the
following algorithmic procedure.

Algorithm
Step 1. Input the values of D, A0, h, π0, σ, β0, η, p, λ, τ, al , bl , cl and l =

1, 2, 3, . . . ,m.

Step 2. Use the al , bl and cl , l = 1, 2, 3, . . . ,m, to compute Li , i = 0, 1, 2, . . . ,m.
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Step 3. For each Li , i = 0, 1, 2, . . . ,m, compute the values of Ti , πxi and ki by
iteratively solving the simultaneous Eqs. (9)–(11). Denote the solution by (Ṫi , π̇xi , k̇i ).

Step 4. Compare Ṫi with Li and π̇xi with π0, respectively.

(i) If Ṫi > Li and π̇xi < π0, then the solution found in Step 3 is optimal for the
given Li . We denote the optimal solution by (T̂i , π̂xi , k̂i ), i.e., if (T̂i , π̂xi , k̂i ) =
(Ṫi , π̇xi , k̇i ), go to Step 6.

(ii) If Ṫi ≤ Li and π̇xi < π0, then for this given Li , set Ṫi = Li and utilize Eqs.
(10) and (11) (replace Ti by Li ) to determine the new (Ṫi , π̇xi , k̇i ); the result is
denoted by (T̄i , π̄xi , k̄i ). If π̄xi < π0, then the optimal solution is obtained, i.e.,
(T̂i , π̂xi , k̂i ) = (Li , π̄xi , k̄i ), go to Step 6; otherwise, go to Step 5.

(iii) If Ṫi > Li and π̇xi ≥ π0, then for this given Li , set π̂xi = π0 and utilize Eqs.
(9) and (11) (replace πxi by π0) to determine the new (Ṫi , π̇xi , k̇i ); the result is
denoted by (T̄i , π̄xi , k̄i ). If T̄i > Li , then the optimal solution is obtained, i.e.,
(T̂i , π̂xi , k̂i ) = (T̄i , π0, k̄i ), go to Step 6; otherwise, go to Step 5.

(iv) If Ṫi ≤ Li and π̇xi ≥ π0, go to Step 5.

Step 5. For the given Li , set Ṫi = Li and π̂xi = π0, and utilize Eq. (11) to determine
the corresponding optimal solution k̂i .

Step 6. For each (T̂i , π̂xi , k̂i , Li ), i = 0, 1, 2, . . . ,m, calculate the corresponding
total expected annual cost EAC(T̂i , π̂xi , k̂i , Li ), utilizing Eq. (3).

Step 7. Find mini=0,1,...,m EAC(T̂i , π̂xi , k̂i , Li ).

IfEAC(T ∗, π∗
x , k∗, L∗)=mini=0,1,...,m EAC(T̂i , π̂xi , k̂i , Li ), then (T ∗, π∗

x , k∗, L∗)
is the optimal solution

Step 8. Stop.
Note that, once (T ∗, π∗

x , k∗, L∗) is obtained, the optimal ordering cost A∗ =
A(L∗), the optimal target level R∗ = μ∗(T ∗ + L∗) + kσ∗

√
T ∗ + L∗ and the optimal

back-order rate β∗ = β0π
∗
x /π0 follow.

4 Numerical examples

The numerical examples given below illustrate the above solution procedure. We
consider an inventory system with the following data: D = 600 units/year, A0 =
$200/order, h = $20/unit/year, π0 = $50/unit, σ = 7 units/week, and the lead time
has three components with data shown in Table 1.

Table 1 Lead time data

Lead time component,
l

Normal duration,
bl (days)

Minimum duration,
al (days)

Unit crashing cost,
cl ($/day)

1 20 6 0.4

2 20 6 1.2

3 16 9 5.0
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394 H.-J. Lin

Example 1 We assume that the lead time and ordering cost reductions act dependently
with the following relationship (Chiu 1998): (A0 − A(L))/A0 = (1/λ)(L0 − L)/L0,

which implies A(L) = a + bL , where λ > 0 is a constant scaling parameter to
describe the linear relationship between percentages of reductions in lead time and
ordering cost, a = (1 − 1/λ)A0 and b = A0/(λL0). We want to solve the cases when
η = 0.7, p = 0(0.2)1, the upper bound of the back-order ratio β0 = 0.8, and the
scaling parameter λ = 0.75, 1.00, 1.25, 2.50, 5.00. Applying the algorithm, we obtain
the optimal solutionswhich are summarized in Table 2. Further, to see the effect of lead
time reduction with interaction of ordering cost, we list the results of fixed ordering
cost model, i.e., λ = ∞, in the same table.

Using the computer software, Mathematica 7, a three-dimensional graph of EAC is
depicted in Fig. 1. The shape of the determinant function of the Hessianmatrix of EAC
is depicted in Fig. 2, which shows that the value is positive. From Figs. 1 and 2 and
Eqs. (14) and (15), the function of EAC is a convex function for fixed k and L , and a
corresponding optimal solution (T ∗, π∗

x ) existed, which minimized the total expected
annual cost.

Example 2 We use the same data as given in numerical Example 1, except that the
lead time and ordering cost reductions act dependently with the following relationship
(Ouyang et al. 2007): (A0 − A(L))/A0 = τ ln(L/L0), which implies A(L) = f +
g ln L , where τ(< 0) is a constant scaling parameter to describe the logarithmic
relationship between percentages of reductions in lead time and ordering cost, f =
A0(1 + τ ln L0) and g = −τ A0 > 0. We attempt to solve the cases when η = 0.7,
p = 0(0.2)1, the upper bound of the back-order ratio β0 = 0.8, and the scaling
parameter τ = 0.0, −0.2, −0.5, −0.8, −1.0. Applying the similar procedure as
proposed in algorithm, we obtain the optimal solutions which are summarized in
Table 3. Moreover, to see the effect of lead time reduction with interaction of ordering
cost, we list the results of fixed ordering cost model, i.e., τ = 0, in the same table.

Note that, Ouyang et al. (2007) set the service level to 70 % and consequently,
the target level has been predetermined. The comparison of computational results is
summarized in Table 4a, b. The savings range from 9.12 to 20.85 % for the lead time
and ordering cost reductions with the linear relationship and from 12.32 to 26.15 %
for the lead time and ordering cost reductions with the logarithmic relationship which
show significant savings can be achieved by simultaneously optimizing over the review
period, back-order price discount, target level and lead time. It is interesting to observe
that our procedure results in a higher service level for each case by spending lessmoney.

On the basis of the results of Tables 2 and 3, the following observations can be
made:

(1) The review period T ∗, the back-order price discount π∗
x , the target level

R∗, the ordering cost A(L∗) and the minimum total expected annual cost
EAC(T ∗, π∗

x , R∗, L∗) increase (decrease) as λ increases (τ decreases) for the
fixed p.

(2) When the value of λ is fixed, the ordering cost A(L∗) is the same for various p.
In addition, as can be seen, no matter what values of p are adopted, the ordering
cost A(L∗) is approached to the same value for the fixed τ except τ = −0.5.
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A stochastic periodic review inventory model with back-order discounts 395

Table 2 Summary of the optimal solutions of Example 1 (T ∗, L∗ in weeks and η = 0.7)

λ L∗ A(L∗) T ∗ π∗
x R∗ EAC(T ∗, π∗

x , R∗, L∗) SV(%)

p = 0.00

0.75 3 33.33 5.93 26.14 136.55 2,325.49 27.89

1.00 4 100.00 7.03 26.35 162.49 2,623.50 18.66

1.25 4 120.00 7.60 26.46 169.03 2,765.65 14.25

2.50 4 160.00 8.63 26.66 180.89 3,021.89 6.30

5.00 4 180.00 9.11 26.75 186.35 3,139.08 2.67

∞ 6 200.00 9.34 26.79 214.61 3,225.24 –

p = 0.20

0.75 3 33.33 5.92 26.13 137.87 2,365.01 27.70

1.00 4 100.00 7.02 26.35 163.31 2,665.53 18.51

1.25 4 120.00 7.59 26.46 170.43 2,807.85 14.16

2.50 4 160.00 8.62 26.65 182.27 3,064.39 6.32

5.00 4 180.00 9.10 26.75 187.72 3,181.72 2.73

∞ 6 200.00 9.34 26.79 216.17 3,271.02 –

p = 0.40

0.75 3 33.33 5.91 26.13 138.25 2,375.89 27.68

1.00 4 100.00 7.00 26.34 164.34 2,677.62 18.49

1.25 4 120.00 7.57 26.45 170.86 2,820.23 14.15

2.50 4 160.00 8.60 26.65 182.71 3,077.27 6.33

5.00 4 180.00 9.08 26.74 188.16 3,194.81 2.75

∞ 6 200.00 9.32 26.79 216.67 3,285.18 –

p = 0.60

0.75 3 33.33 5.91 26.13 138.03 2,369.16 27.73

1.00 4 100.00 7.00 26.34 164.11 2,670.70 18.53

1.25 4 120.00 7.57 26.45 170.64 2,813.40 14.18

2.50 4 160.00 8.60 26.65 182.50 3,070.59 6.33

5.00 4 180.00 9.08 26.74 187.95 3,188.20 2.74

∞ 6 200.00 9.31 26.79 216.44 3,278.12 –

p = 0.80

0.75 3 33.33 5.91 26.13 137.43 2,351.15 27.81

1.00 4 100.00 7.01 26.34 163.45 2,651.35 18.59

1.25 4 120.00 7.58 26.45 169.99 2,793.89 14.21

2.50 4 160.00 8.61 26.65 181.85 3,050.80 6.32

5.00 4 180.00 9.09 26.74 187.31 3,168.29 2.71

∞ 6 200.00 9.32 26.79 215.70 3,256.70 –

p = 1.00

0.75 3 33.33 5.93 26.14 136.55 2,325.49 27.89

1.00 4 100.00 7.03 26.35 162.49 2,623.50 18.66

1.25 4 120.00 7.60 26.46 169.03 2,765.65 14.25

2.50 4 160.00 8.63 26.66 180.89 3,021.89 6.30

5.00 4 180.00 9.11 26.75 186.35 3,139.08 2.67

∞ 6 200.00 9.34 26.79 214.61 3,225.24 –

Saving is based on the fixed ordering cost model (i.e., λ = ∞)
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πx

Fig. 1 Shape of the total expected annual cost function on (0, 20] × [0, 30] for p = 0.20, λ = 1.25,
k = 1.482 and L = 4

πx

Fig. 2 Shape of Hessian matrix function of the total expected annual cost function on (0, 20] × [0, 30] for
p = 0.20, λ = 1.25, k = 1.482 and L = 4

(3) As the value of λ and the value of τ decrease, respectively, the larger savings of
total expected annual cost are obtained (comparing the result with fixed ordering
cost model) for the fixed p.

(4) No matter what values of p are adopted, the optimal lead time L∗ is equal to a
certain value (3 weeks) for λ = 0.75 (τ = −0.8, −1.0); however, the optimal
lead time L∗ is equal to a certain value (4 weeks) for λ = 1.00, 1.25, 2.50, 5.00
(τ = −0.2) and L∗ is equal to a certain value (6 weeks) for λ = ∞ (τ = 0).

(5) The review period T ∗ and the back-order price discount π∗
x decrease and then

increase as p increases for the fixed λ while the target level R∗ and the minimum

123



A stochastic periodic review inventory model with back-order discounts 397

Table 3 Summary of the optimal solutions of Example 2 (T ∗, L∗ in weeks and η = 0.7)

τ L∗ A(L∗) T ∗ π∗
x R∗ EAC(T ∗, π∗

x , R∗, L∗) SV (%)

p = 0.00

0.0 6 200.00 9.34 26.79 214.61 3,225.25 –

−0.2 4 172.27 8.93 26.71 184.27 3,094.53 4.05

−0.5 4 130.69 7.88 26.51 172.34 2,837.42 12.02

−0.8 3 43.07 6.26 26.20 140.33 2,408.51 25.32

−1.0 3 3.83 4.84 25.93 123.71 2,040.97 36.72

p = 0.20

0.0 6 200.00 9.34 26.79 216.17 3,271.02 –

−0.2 4 172.27 8.92 26.71 185.64 3,137.12 4.09

−0.5 3 101.92 7.94 26.52 161.42 2,879.44 11.97

−0.8 3 43.07 6.25 26.20 141.64 2,448.20 25.15

−1.0 3 3.83 4.83 25.93 125.06 2,079.86 36.42

p = 0.40

0.0 6 200.00 9.32 26.79 216.67 3,285.18 –

−0.2 4 172.27 8.90 26.71 186.08 3,150.13 4.11

−0.5 3 101.92 7.93 26.52 161.82 2,891.46 11.98

−0.8 3 43.07 6.23 26.19 142.03 2,459.28 25.14

−1.0 3 3.83 4.82 25.92 125.43 2,090.03 36.38

p = 0.60

0.0 6 200.00 9.31 26.79 216.44 3,278.12 –

−0.2 4 172.27 8.89 26.71 185.88 3,143.49 4.11

−0.5 3 101.92 7.92 26.52 161.63 2,884.97 11.99

−0.8 3 43.07 6.23 26.19 141.81 2,452.59 25.18

−1.0 3 3.83 4.82 25.92 125.20 2,083.17 36.45

p = 0.80

0.0 6 200.00 9.32 26.79 215.70 3,256.70 –

−0.2 4 172.27 8.90 26.71 185.23 3,123.62 4.09

−0.5 4 130.69 7.86 26.51 173.30 2,865.85 12.00

−0.8 3 43.07 6.24 26.20 141.21 2,434.44 25.25

−1.0 3 3.83 4.82 25.92 124.58 2,065.63 36.57

p = 1.00

0.0 6 200.00 9.34 26.79 214.61 3,225.25 –

−0.2 4 172.27 8.93 26.71 184.27 3,094.53 4.05

−0.5 4 130.69 7.88 26.51 172.34 2,837.42 12.02

−0.8 3 43.07 6.26 26.20 140.33 2,408.51 25.32

−1.0 3 3.83 4.84 25.93 123.71 2,040.97 36.72

Saving is based on the fixed ordering cost model (i.e., τ = 0.0)

total expected annual cost EAC(T ∗, π∗
x , R∗, L∗) increase and then decrease as

p increases for the fixed λ. Thus, for the fixed λ, when p = 0 or 1, the model
considers only one kind of customers’ demand; when 0 < p < 1, the model
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Table 4 Comparison of the two procedures (T and L in weeks)

Ouyang et al. (2007) This model (p = 0.00)

Service level EAC(·) Service level EAC(·) Saving (%)

(a) λ

0.75 0.700 2,938.18 0.945 2,325.49 20.85

1.00 0.700 3,160.71 0.935 2,623.50 17.00

1.25 0.700 3,261.21 0.930 2,765.65 15.20

2.50 0.700 3,450.97 0.921 3,021.89 12.43

5.00 0.700 3,541.01 0.917 3,139.08 9.12

(b) τ

−0.2 0.700 3,506.58 0.918 3,094.53 12.32

−0.5 0.700 3,297.43 0.927 2,837.42 13.95

−0.8 0.700 2,992.72 0.942 2,408.51 19.52

−1.0 0.700 2,763.69 0.955 2,040.97 26.15

considers two kinds of customers’ demand. It implies that EAC(T ∗, π∗
x , R∗, L∗)

of two kinds of customers’ demand is larger than EAC(T ∗, π∗
x , R∗, L∗) of one

kind of customers’ demand. Thus, EAC(T ∗, π∗
x , R∗, L∗) increases as the distance

between p and 0 (or 1) increases for the fixed λ. On the other hand, as can be seen,
we have the same consequence for the fixed τ . Thus, if the true distribution of the
protection interval demand is the mixture of normal distributions, we use a single
distribution [such as (Ouyang et al. 2007) using a normal distribution] to substitute
the true distribution of the protection interval demand then the minimum expected
total annual cost will be underestimated.

5 Concluding remarks

In this paper, we deal with the problem that the lead time and ordering cost reduc-
tions are inter-dependent in a periodic review inventory model with back-order price
discounts for protection interval demand with the mixture of normal distributions.
The objectives of this paper are twofold. First, we correct and improve the Ouyang
et al. (2007) model by optimizing the review period, the back-order price discount,
target level and lead time simultaneously to achieve significant savings in the total
related cost and higher service level. Second, we consider that the demands of the
different customers are not identical in the protection interval to accommodate more
practical features of the tangible inventory systems. For the proposed model, we solve
the cases of the linear and logarithmic relationships between lead time and ordering
cost reduction. By analyzing the total expected annual cost function, a computational
algorithm with the help of the software Mathematica 7 is furnished to determine the
optimal solution so that the total expected annual cost incurred has the minimum
value. In addition, numerical examples are provided to demonstrate the results. For
future research, it would be interesting to study other types of functional relationships
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of lead time and ordering cost reductions. Another possible direction may be con-
ducted by considering stochastic inventory models with a service level constraint or
incorporating the defective items in the future extension of the present article.
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