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Abstract Normal intuitionistic fuzzy numbers (NIFNs), which use normal fuzzy
numbers to express their membership and non-membership functions, can reflect the
evaluation information exactly in different dimensions. In this paper, we are commit-
ted to apply NIFNs to multi-criteria decision-making (MCDM) problems, and mean-
while some new aggregation operators are proposed, including normal intuitionistic
fuzzy weighted arithmetic averaging operator, normal intuitionistic fuzzy weighted
geometric averaging operator, normal intuitionistic fuzzy-induced ordered weighted
averaging operator, normal intuitionistic fuzzy-induced ordered weighted geomet-
ric averaging operator and normal intuitionistic fuzzy-induced generalized ordered
weighted averaging operator (NIFIGOWA). Based on the NIFIGOWA operator, an
approach is introduced to solve MCDM problems where the criteria values are NIFNs
and the criteria weight information is fixed. Finally, the proposed method is compared
to the existing methods by virtue of a numerical example to verify its feasibility and
rationality.

Keywords Multi-criteria decision-making · Normal intuitionistic fuzzy number ·
Normal intuitionistic fuzzy aggregation operator · Normal intuitionistic fuzzy-induced
generalized aggregation operator

Mathematics Subject Classification 90B50

1 Introduction

Ever since the fuzzy set theory was first proposed by Zadeh (1965), fuzzy sets (FSs),
especially triangular fuzzy numbers (TFN) and trapezoidal fuzzy numbers (TrFN) have
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been widely studied, developed, and applied to various fields, such as multi-criteria
decision-making (MCDM), logic programming and pattern recognition. With regard
to an arbitrary fuzzy set A, the degree of membership of the element x in a universe X is
a single value, which mixes the evidence for x ∈ Xwith that against x ∈ X . Therefore,
the FS theory cannot tackle the cases of incomplete information referring to a fuzzy
concept, i.e., the sum of the degrees of membership and non-membership is less than
one. Atanassov’ intuitionistic fuzzy sets (AIFSs), which were introduced by Atanassov
(1986) and widely studied by many researchers (Atanassov 2000, 2007; Burillo et al.
1994), use two characteristic functions to express the degree of membership and non-
membership respectively. With the supplement of non-membership function, AIFSs
can deal with the presence of vagueness and hesitancy originating from imprecise
knowledge or information.

The talent of AIFSs in describing fuzziness makes it popular with researchers
quickly, and quite a lot of work has already been done in MCDM problems (Kavita
2011) and optimization problem (Angelov 1997). Atanassov and Gargov (1989) intro-
duced the concept of interval-valued Atanassov’ intuitionistic fuzzy sets (IVAIFSs),
in which the membership and non-membership both took the form of interval num-
bers. Liu and Yuan (2007) brought the definition of fuzzy number AIFSs (FNAIFSs),
and introduced the corresponding operations. Angelov (1995) introduced some def-
initions of crispification, which was an analog to the basic operations of AIFSs—
defuzzification, and many scholars proposed a lot of relative decision-making methods
based on these concepts. Liu and Li (2009) defined some fuzzy number amelioration
operators to optimize Atanassov’ intuitionistic fuzzy numbers. Boran et al. (2009)
proposed a TOPSIS method combined with AIFSs to select an appropriate supplier
in group decision-making environment. Li (2010a) developed a method based on the
extended generalized ordered weighted averaging (GOWA) operators to solve MCDM
problems with AIFSs. Zhao et al. (2010) introduced some generalized Atanassov’ intu-
itionistic fuzzy aggregation operators to deal with Atanassov’ intuitionistic fuzzy and
interval-valued Atanassov’ intuitionistic fuzzy information. Xu (2010) used the Cho-
quet integral to propose some Atanassov’ intuitionistic fuzzy aggregation operators
that could reflect the correlations among the elements. Wei (2010) introduced some
induced geometric aggregation operators with Atanassov’ intuitionistic fuzzy infor-
mation, and then applied them to group decision-making problems. Park et al. (2010)
extended the VIKOR method for dynamic intuitionistic fuzzy MCDM problems. Feng
and Qian (2010) presented a method of grey-related analysis for handling MCDM
problems based on AIFSs. Chen et al. (2011) proposed an approach to deal with
the multi-criteria group decision-making (MCGDM) problem based on the interval-
valued Atanassov’ intuitionistic fuzzy preference relation. Yadav and Kumar (2009)
extended the TOPSIS method to solve supplier selection problems with IVAIFSs. Tan
(2011) investigated an MCDM technique with IVAIFSs based on an extension of the
TOPSIS method in group decision-making environment, where the inter-dependent or
interactive characteristics were taken into account. Ye (2011) studied the fuzzy cross-
entropy of IVAIFSs to deal with MCDM problems. Xu and Xia (2011) applied the
Choquet integral and Dempster–Shafer evidence theory to aggregate inuitionistic fuzzy
information. Li (2011) developed a methodology for solving MCDM problems with
AIFSs.
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With the increasing development of AIFS theory, quite a few extensions of
Atanassov’ intuitionistic fuzzy numbers (AIFNs) such as triangular Atanassov’ intu-
itionistic fuzzy numbers (TAIFNs) (Shu et al. 2006), trapezoid Atanassov’ intuition-
istic fuzzy numbers (TrAIFNs) (Wang 2008) and Atanassov’ intuitionistic linguistic
numbers (AILNs) have been proposed (Wang and Li 2010). Shu et al. (2006) dis-
cussed the definition of TAIFNs and their operations, and then applied them to the
fault-tree analysis. Wang and Li (2010) gave a definition of AILNs as well as the
aggregation operators, and then applied them to MCDM problems with AILNs. Some
trapezoid Atanassov’ intuitionistic fuzzy aggregation operators were defined to deal
with MCDM problems with TrAIFNs (Wang and Zhang 2009a,b; Wan and Dong
2010; Wan 2013a; Wang and Nie 2012). Wang et al. (2013) introduced the opera-
tors of TAIFNs and applied them in the system fault analysis. With considerations
of inter-dependent or interactive characteristics among criteria, Wang and Nie (2011)
proposed an Atanassov’ intuitionistic triangle fuzzy MCDM method. Wan also did
a lot of work on TAIFNs, such as the properties of TAIFNs (Wan et al. 2013a), the
extended VIKOR method for MCGDM with TAIFNs (Wan et al. 2013b), and the
MCDM method based on possibility variance coefficient of TAIFNs (Wan 2013b). In
addition, Wan (2010) made a comprehensive survey on Atanassov’ intuitionistic fuzzy
MCDM approach according to the forms of AIFSs, such as AIFSs, IVAIFSs, TAIFNs
and TrAIFNs. It is worthwhile to note that the domains of AIFSs and IVAIFSs are
discrete sets, they are the extensions of fuzzy sets. TAIFNs and TrAIFNs extend the
domain of AIFSs from discrete sets to continuous sets, and they are the extensions of
fuzzy numbers. Compared to AIFSs, TAIFNs and TrAIFNs express their membership
and non-membership functions using TFNs and TrFNs, and make the membership
degree and the non-membership degree no longer relative to a fuzzy concept “Excel-
lent” or “Good”, but relative to TFNs or TrFNs. Thus, the information of decision
makers can be exactly reflected and expressed in different dimensions (Wan 2013a).
Hence, TAIFNs and TrAIFNs can better reflect the information of decision problems
than IFSs.

The normal intuitionistic fuzzy numbers (NIFNs) which express the membership
and non-membership functions by normal fuzzy numbers (NFNs) have much more
realistic sense than TAIFNs or TrAIFNs. The definition of NIFNs was first proposed
by Wang and Li (2012, 2013), together with the corresponding operations, the score
function and the stability factor. In reality, a large number of natural phenomena
and social phenomena belong to the normal distribution, and NFNs defined by Yang
and Ko (1996) can well express these phenomena. Li and Liu (2004) pointed out
that, compared to other fuzzy numbers such as TFNs and TrFNs, NFNs has several
advantages. First, the normal distribution widely exists in natural phenomena, social
phenomena and production activities. Second, the higher derivative of the normal
membership function is continuous. Third, the fuzzy concepts characterized by the
normal membership function are much closer to human mind. Consequently, NIFNs
are superior than other Atanassov’ intuitionistic fuzzy numbers.

Due to the talent of NIFNs in reflecting uncertain information, especially in reflect-
ing the inherent fuzziness of uncertain information, NIFNs have wide applications in
MCDM problems just as TIFNs or TrIFNs. As the aggregation operators of NIFNs are
important tools of information fusion in MCDM problems with normal intuitionistic
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fuzzy information, some aggregation operators of NIFNs will be introduced in this
paper. The rest of this paper is organized as follows. The definition of NIFNs as well
as their operations is reviewed in Sect. 2 to make you have a better understanding
of this paper. In Sect. 3, some normal intuitionistic fuzzy aggregation operators and
their properties are presented. Then in Sect. 4, a normal intuitionistic fuzzy MCDM
approach based on normal intuitionistic fuzzy-induced generalized aggregation oper-
ator is proposed. In Sect. 5, an illustrative example and the comparison analysis are
given to show the feasibility and validity of the approach. In Sect. 6, some conclusions
are drawn.

2 NIFNs and the related concepts

For the purpose of making this paper smoother and easier to understand, some basic
concepts are here to review.

Definition 1 (Yang and Ko 1996) Let R be a real number set and Ã = (a, σ ) be an
NFN if its membership function satisfies:

Ã(x) = e−( x−a
σ )

2

(σ > 0).

Here, the set of NFNs is denoted by Ñ .

Definition 2 (Xu and Li 2001) Let Ã, B̃ ∈ Ñ and Ã = (a, σ ), B̃ = (b, τ ), and then
two operations between Ã and B̃ can be defined as follows:

(1) t Ã = t (a, σ ) = (ta, tσ)(t > 0);
(2) Ã + B̃ = (a, σ ) + (b, τ ) = (a + b, σ + τ).

Definition 3 (Li 2008) Let Ã, B̃ ∈ Ñ and Ã = (a, σ ), B̃ = (b, τ ), and then the
distance between Ã and B̃ is

d2( Ã, B̃) = (a − b)2 + 1

2
(σ − τ)2. (1)

Definition 4 (Wang and Li 2012, 2013) Let X be an ordinary finite non-empty set and
(a, σ ) ∈ Ñ , A = 〈(a, σ ), μA, vA〉 is an NIFN if its membership function satisfies:

μA(x) = μAe−( x−a
σ )

2

, x ∈ X, (2)

and its non-membership function satisfies:

vA(x) = 1 − (1 − vA)e−( x−a
σ )

2

, x ∈ X. (3)

where 0 ≤ μA ≤ 1, 0 ≤ vA ≤ 1, μA + vA ≤ 1. When μA = 1 and νA = 0,
the NIFN will be an NFN. Compared to NFNs, NIFNs add the non-membership
function that expresses the degree of alternatives not belonging to (a, σ ). In addition,
πA(x) = 1 − μA(x) − vA(x) expresses the degree of hesitance.

The set of NIFNs is denoted by NIFNS.

123



MCDM method based on normal intuitionistic fuzzy-induced generalized aggregation operato 1107

Definition 5 (Wang and Li 2012, 2013) Let A = 〈(a, σA), μA, vA〉 and B =
〈(b, σB), μB, vB〉 be two NIFNs, and some operations between A and B can be defined
as follows.

(1) A + B =
〈
(a + b, σA + σB),

|a|μA+|b|μB|a|+|b| ,
|a|vA+|b|vB|a|+|b|

〉
;

(2) A − B =
〈
(a − b, σA + σB),

|a|μA+|b|μB|a|+|b| ,
|a|vA+|b|vB|a|+|b|

〉
.

When |a| = 0 and |b| = 0, μA+B = μA−B = μA+μB
2 , and νA+B = vA−B =

νA+νB
2 .

(3) λA = 〈(λa, λσA), μA, vA〉.
(4) 1

A =
〈(

1
a , σA

a2

)
, μA, vA

〉
, a �= 0.

(5) AB =
〈(

ab, ab

√
σ 2

A
a2 + σ 2

B
b2

)
, μAμB, vA + vB − vAvB

〉
.

(6) Aλ =
〈(

aλ, λ
1
2 aλ−1σA

)
, μλ

A, 1 − (1 − ν A)λ
〉
(λ ≥ 0).

Example 1 Let A = 〈(6, 0.5), 0.4, 0.2〉, B = 〈(4, 0.3), 0.6, 0.1〉 and λ = 2. Then,
the followings are true:

(1) A + B =
〈
(6 + 4, 0.5 + 0.3),

|6|0.4+|4|0.6
|6|+|4| ,

|6|0.2+|4|0.1
|6|+|4|

〉
= 〈(10, 0.8), 0.48, 0.16〉;

(2) A − B =
〈
(6 − 4, 0.5 + 0.3),

|6|0.4+|4|0.6
|6|+|4| ,

|6|0.2+|4|0.1
|6|+|4|

〉
= 〈(2, 0.8), 0.48, 0.16〉;

(3) 2A = 〈(2 × 6, 2 × 0.5), 0.4, 0.2〉 = 〈(12, 1), 0.4, 0.2〉;
(4) 1

A =
〈(

1
6 , 0.5

62

)
, 0.4, 0.2

〉
= 〈( 1

6 , 1
72

)
, 0.4, 0.2

〉 ;
(5) AB=

〈(
6 × 4, 6 × 4

√
0.52

62 + 0.32

42

)
, 0.4 × 0.6, 0.2 + 0.1 − 0.2 × 0.1

〉

= 〈(24, 2.69), 0.24, 28〉;
(6) A2 =

〈(
62, 2

1
2 × 62−1 × 0.5

)
, 0.52, 1−(1 − 0.2)2

〉
= 〈(36, 4.24), 0.25, 0.36〉.

Proposition 1 Let A = 〈(a, σA), μA, vA〉, B = 〈(b, σB), μB , vB〉 and C =
〈(c, σC ), μC , vC 〉 be three NINFs, and ab ≥ 0, bc ≥ 0, ac ≥ 0. The following
equations are true:

(1) A + B = B + A;
(2) (A + B) + C = A + (B + C);
(3) AB = B A;
(4) (AB)C = A(BC);
(5) λ1 A + λ2 A = (λ1 + λ2)A, λ1, λ2 ≥ 0;
(6) λ(A + B) = λA + λB, λ ≥ 0.

Remark 1 NIFNs introduced in this paper are similar to TIFNs or TrIFNs, but the
operations are not analogs of TIFNs’ or TrIFNs’ operations. However, TrIFNs’ oper-
ations are similar to TIFNs’, we just take the additive and multiplicative operations of
TIFNs for example.

Given two TIFNs, A = 〈(a1, a2, a3), μa, νa〉 and B = 〈(b1, b2, b3), μb, νb〉, the
additive and multiplicative operations between A and B are defined as follows (Li
2008):
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(1) A + B = 〈(a1 + b1, a2 + b2, a3 + b3), min{μa, μb}, max{νa, νb}〉;
(2) AB = 〈(a1b1, a2b2, a3b3), min{μa, μb}, max{νa, νb}〉.

Obviously, there are some deficiencies for the operations above. For example, when
A = 〈(a1, a2, a3), 0, 1〉 and B = 〈(a1, a2, a3), 1, 0〉, A + B = 〈(2a1, 2a2, 2a3), 0, 1〉
and AB = 〈(a2

1 , a2
2 , a2

3), 0, 1〉. Intuitively, if one team unanimously approved an
alternative while another unanimously opposed it, then the overall approval rating of
this alternative should not be zero, so the additive operation of TIFNs is not reasonable
enough. Meanwhile, the TIFNs’ multiplicative operation is exclusive to the case of
a1, a2, a3, b1, b2, b3 > 0. For two NIFNs A = 〈(a, σ ), 0, 1〉 and B = 〈(a, σ ), 1, 0〉,
if the additive and multiplicative operations of NIFNs are applied to them, there will
be A + B = 〈(2a, 2σ), 1

2 , 1
2 〉 and AB = 〈(a2,

√
2σ 2), 0, 1〉. Here, the deficiencies of

TIFNs’ operations are not inherited in NIFNs’ operations.

Definition 6 (Wang and Li 2012, 2013) Let A = 〈(a, σA), μA, vA〉 be an NIFN, then
its score function is

s1(A) = a(μA − vA), s2(A) = σA(μA − vA), (4)

and its accuracy function is

h1(A) = a(μA + vA), h2(A) = σA(μA + vA). (5)

Definition 7 (Wang and Li 2012, 2013) Let A = 〈(a, σA), μA, vA〉 and B =
〈(b, σB), μB, vB〉 be two NIFNs, the score functions of A and B be s1(A), s2(A)

and s1(B), s2(B), and the accuracy functions of A and B be h1(A), h2(A) and
h1(B), h2(B), respectively. Then, there will be:

(1) when s1(A) > s1(B), A > B;
(2) when s1(A) = s1(B) and h1(A) > h1(B), A > B;
(3) when s1(A) = s1(B) and h1(A) = h1(B);
(a) when s2(A) < s2(B), A > B;
(b) when s2(A) = s2(B) and h2(A) < h2(B), A > B;
(c) when s2(A) = s2(B) and h2(A) = h2(B), A = B.

Example 2 If A = 〈(6, 0.5), 0.4, 0.2〉 and B = 〈(4, 0.3), 0.6, 0.1〉, then s1(A) =
6(0.4 − 0.2) = 1.2, s2(A) = 0.5(0.4 − 0.2) = 0.1, s1(B) = 4(0.6 − 0.1) = 2, and
s2(B) = 0.3(0.6 − 0.1) = 0.15, so s1(A) < s1(B) and A < B.

Definition 8 (Wang and Li 2012) Let A = 〈(a, σA), μA, vA〉 be an NIFN, and its
stability factor is

Ci = σi

ai
. (6)
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3 Normal Intuitionistic fuzzy aggregation operators

As we have mentioned, NIFNs can better reflect the evaluation information and offer
wonderful solutions to MCDM problems. However, solving MCDM problems on the
basis of NIFNs is not an easy task. After decision makers give the criterion values
for each alternative in the form of NIFNs, an aggregation step must be performed
for a collective overall evaluation. Here, some normal intuitionistic fuzzy aggregation
operators are proposed for the information fusion.

Definition 9 Let Ai = 〈(ai , σi ), μi , vi 〉(i = 1, 2, . . . , n) be a set of NIFNs, and
NIFWAA : NIFNSn → NIFNS be a mapping:

NIFWAA(A1, A2, . . . , An) =
n∑

i=1

ωi Ai , (7)

where ω = (ω1, ω2, . . . ωn) is the weight vector of Ai (i = 1, 2, . . . , n), satisfying
ωi ∈ [0, 1] (i = 1, 2, . . . , n) and

∑n
i=1 ωi = 1. Then, NIFWAA is called normal

intuitionistic fuzzy weighted arithmetic averaging operator. Particularly, when ω =
(1/n, 1/n, . . . , 1/n), the NIFWAA operator will degenerate into normal intuitionistic
fuzzy arithmetic averaging (NIFAA) operator:

NIFAA(A1, A2, . . . , An) = 1

n

n∑
i=1

Ai . (8)

Theorem 1 Let Ai = 〈(ai , σi ), μi , vi 〉(i = 1, 2, . . . , n) be a set of NIFNs, and ω =
(ω1, ω2, . . . ωn) be the weight vector of Ai (i = 1, 2, . . . , n) satisfying ωi ∈ [0, 1](i =
1, 2, . . . , n) and

∑n
i=1 ωi = 1. Then the result obtained using Eq. (7) is still an NIFN

and

NIFWAA(A1, A2, . . . , An)

=
〈⎛
⎝

n∑
i=1

ωi ai ,

n∑
j=1

ωiσi

⎞
⎠ ,

∑n
i=1 ωi |ai |μi∑n

i=1 ωi |ai | ,

∑n
i=1 ωi |ai |νi∑n

i=1 ωi |ai |

〉
. (9)

Theorem 1 can be demonstrated by the mathematical induction.

Example 3 If A1 = 〈(4, 0.2), 0.7, 0.2〉, A2 = 〈(3, 0.5), 0.5, 0.4〉, A3 = 〈(6, 0.4),

0.6, 0.1〉 and ω = (0.4, 0.2, 0.4), then

NIFWAA(A1, A2, A3)

=
〈
(4 × 0.4 + 3 × 0.2 + 6 × 0.4, 0.2 × 0.4 + 0.5 × 0.2 + 0.4 × 0.4),

4 × 0.4 × 0.7 + 3 × 0.2 × 0.5 + 6 × 0.4 × 0.6

4 × 0.4 + 3 × 0.2 + 6 × 0.4
,

4 × 0.4 × 0.2 + 3 × 0.2 × 0.4 + 6 × 0.4 × 0.1

4 × 0.4 + 3 × 0.2 + 6 × 0.4

〉

= 〈(4.6, 0.34), 0.6, 0.174〉.
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Furthermore, it can be easily proved that the NIFWAA operator is idempotent,
monotonic and bounded, and these are presented as below.

Proposition 2 (Idempotency) Let Ai = 〈(ai , σi ), μi , vi 〉(i = 1, 2, . . . , n) be a set of
NIFNs. If Ai = A0 (i = 1, 2, . . . , n), then

NIFWAA(A1, A2, . . . , An) = A0. (10)

Proposition 3 (Monotonicity) Let (A1, A2, . . . , An) and (B1, B2, . . . , Bn) be two
sets of NIFNs satisfying Ai > Bi (i = 1, 2, . . . n), then

NIFWAA(A1, A2, . . . , An) > NIFWAA(B1, B2, . . . , Bn). (11)

Proposition 4 (Boundedness) Let Ai = 〈(ai , σi ), μi , vi 〉(i = 1, 2, . . . , n) be a set of
NIFNs, A∗ = max(Ai ), and A∗ = min(Ai ), and then

A∗ ≤ NIFWAA(A1, A2, . . . , An) ≤ A∗. (12)

Definition 10 Let Ai = 〈(ai , σi ), μi , vi 〉(i = 1, 2, . . . , n) be a set of NIFNs, and
NIFWGA : NIFNSn → NIFNS be a mapping:

NIFWGA(A1, A2, . . . , An) =
n∏

i=1

Aωi
i , (13)

where ω = (ω1, ω2, . . . ωn) is the weight vector of Ai (i = 1, 2, . . . , n), satisfying
ωi ∈ [0, 1] (i = 1, 2, . . . , n) and

∑n
i=1 ωi = 1. Then, NIFWGA is called normal

intuitionistic fuzzy weighted geometric averaging operator. Particularly, when ω =
(1/n, . . . , 1/n), the NIFWGA operator will degenerate into normal intuitionistic fuzzy
geometric averaging (NIFGA) operator:

NIFGA(A1, A2, . . . , An) =
n∏

i=1

A1/n
i . (14)

Theorem 2 Let Ai = 〈(ai , σi ), μi , vi 〉(i = 1, 2, . . . , n) be a set of NIFNs, and ω =
(ω1, ω2, . . . ωn) be the weight vector of Ai (i = 1, 2, . . . , n) satisfying ωi ∈ [0, 1](i =
1, 2, . . . , n) and

∑n
i=1 ωi = 1. Then the result obtained using Eq. (13) is still an NIFN

and

NIFWGA(A1, A2, . . . , An)

=
〈(

n∏
i=1

aωi
i ,

n∏
i=1

aωi
i

√∑n

i=1

ωiσ
2
i

a2
i

)
,

n∏
i=1

μ
ωi
i , 1 −

n∏
i=1

(1 − vi )
ωi

〉
. (15)

Example 4 If A1 = 〈(4, 0.2), 0.7, 0.2〉, A2 = 〈(3, 0.5), 0.5, 0.4〉, A3 = 〈(6, 0.4),

0.6, 0.1〉 and ω = (0.4, 0.2, 0.4), then
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NIFWGA(A1, A2, A3)

=
〈⎛
⎝40.4 × 30.2 × 60.4, 40.4 × 30.2 × 60.4

√
0.4 × 0.22

42 + 0.2 × 0.52

32 + 0.4 × 0.42

62

⎞
⎠ ,

0.70.4 × 0.50.2 × 0.60.4, 1 − (1 − 0.2)0.4 × (1 − 0.4)0.2 × (1 − 0.1)0.4

〉

= 〈(4.4412, 0.0294), 0.6153, 0.2083〉.

Similarly, it can be easily proved that the NIFWGA operator is idempotent,
monotonic and bounded.

Definition 11 Let Ai = 〈(ai , σi ), μi , vi 〉(i = 1, 2, . . . , n) be a set of NIFNs, and
NIFIOWA : NIFNSn → NIFNS be a mapping:

NIFIOWA ((C1, A1), (C2, A2), . . . , (Cn, An)) =
n∑

i=1

ωiβi , (16)

where ω = (ω1, ω2, . . . ωn) is the weight vector correlative with theNIFIOWA oper-
ator satisfying ωi ∈ [0, 1](i = 1, 2, . . . , n) and

∑n
i=1 ωi = 1; βi is the value of Ai

in the pair (Ci , Ai ) having the i-th smallest Ci , and Ci in (Ci , Ai ) is the order induc-
ing variable. Then, NIFIOWA is called normal intuitionistic fuzzy-induced ordered
weighted averaging operator.

Theorem 3 Let Ai = 〈(ai , σi ), μi , vi 〉(i = 1, 2, . . . , n) be a set of NIFNs, ω =
(ω1, ω2, . . . ωn) be the weight vector correlative with the NIFIOWA operator satisfying
ωi ∈ [0, 1](i = 1, 2, . . . , n) and

∑n
i=1 ωi = 1, βi = 〈(a′

i , σ
′
i ), μ

′
i , v

′
i 〉 be the value

of Ai in the pair (Ci , Ai ) having the i-th smallest Ci , and Ci in (Ci , Ai ) be the order
inducing variable. Then, the result obtained using Eq. (16) is still an NIFN and

NIFIOWA((C1, A1), (C2, A2), . . . , (Cn, An))

=
〈

n∑
i=1

ωi a
′
i ,

n∑
j=1

ωiσ
′
i ,

∑n
i=1 ωi |a′

i |μ′
i∑n

i=1 ωi |a′
i |

,

∑n
i=1 ωi |a′

i |ν′
i∑n

i=1 ωi |a′
i |

〉
. (17)

Example 5 If A1 = 〈(4, 0.2), 0.7, 0.2〉, A2 = 〈(3, 0.5), 0.5, 0.4〉, A3 = 〈(6, 0.4),

0.6, 0.1〉 and ω = (0.4, 0.2, 0.4), then

C1 = 0.05, C2 = 0.1667, C3 = 0.0667, C1 < C3 < C2,

NIFIOWA(A1, A2, A3)

=
〈
(4 × 0.4 + 6 × 0.2 + 3 × 0.4, 0.2 × 0.4 + 0.4 × 0.2 + 0.5 × 0.4),

4 × 0.4 × 0.7 + 6 × 0.2 × 0.6 + 3 × 0.4 × 0.5

4 × 0.4 + 6 × 0.2 + 3 × 0.4
,
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4 × 0.4 × 0.2 + 6 × 0.2 × 0.1 + 3 × 0.4 × 0.4

4 × 0.4 + 6 × 0.2 + 3 × 0.4

〉

= 〈(4, 0.36), 0.61, 0.23〉.

Furthermore, it can be easily proved that the NIFIOWA operator is idempotent,
monotonic and bounded. Meanwhile, the NIFIOWA operator is commutative.

Proposition 5 (Commutativity) Let Ai = 〈(ai , σi ), μi , vi 〉(i = 1, 2, . . . , n) be a set
of NIFNs. If (A′

1, A′
2, . . . , A′

n) is any permutation of (A1, A2, . . . , An), then

NIFIOWA((C1, A1), (C2, A2), . . . , (Cn, An))

= NIFIOWA((C1, A′
1), (C2, A′

2), . . . , (Cn, A′
n)). (18)

Definition 12 Let Ai = 〈(ai , σi ), μi , vi 〉(i = 1, 2, . . . , n) be a set of NIFNs, and
NIFIOWGA : NIFNSn → NIFNS be a mapping:

NIFIOWGA((C1, A1), (C2, A2), . . . , (Cn, An)) =
n∑

i=1

β
ωi
i , (19)

where ω = (ω1, ω2, . . . ωn) is the weight vector correlative with the NIFIOWGA
operator satisfying ωi ∈ [0, 1](i = 1, 2, . . . , n) and

∑n
i=1 ωi = 1, βi is the value

of Ai in the pair (Ci , Ai ) having the i-th smallest Ci , and Ci in (Ci , Ai ) is the order
inducing variable. Then, NIFIOWGA is called normal intuitionistic fuzzy-induced
ordered weighted geometric averaging operator.

Theorem 4 Let Ai = 〈(ai , σi ), μi , vi 〉(i = 1, 2, . . . , n) be a set of NIFNs, ω =
(ω1, ω2, . . . ωn) be the weight vector correlative with the NIFIOWGA operator satis-
fying ωi ∈ [0, 1](i = 1, 2, . . . , n) and

∑n
i=1 ωi = 1, βi = 〈(a′

i , σ
′
i ), μ

′
i , v

′
i 〉 be the

value of Ai in the pair (Ci , Ai ) having the i-th smallest Ci , and Ci in (Ci , Ai ) be the
order inducing variable. Then, the result obtained using Eq. (19) is still an NIFN and

NIFIOWGA((C1, A1), (C2, A2), . . . , (Cn, An))

=
〈(

n∏
i=1

a′ωi
i ,

n∏
i=1

a′ωi
i

√∑n

i=1

ωiσ
′2
i

a′2
i

)
,

n∏
i=1

μ
′ωi
i , 1 −

n∏
i=1

(1 − v′
i )

ωi

〉
. (20)

Example 6 If A1 = 〈(4, 0.2), 0.7, 0.2〉, A2 = 〈(3, 0.5), 0.5, 0.4〉, A3 = 〈(6, 0.4),

0.6, 0.1〉 and ω = (0.4, 0.2, 0.4), then

C1 = 0.05, C2 = 0.1667, C3 = 0.0667, C1 < C3 < C2,

NIFIOWGA(A1, A2, A3)

=
〈⎛
⎝40.4 × 60.2 × 30.4, 40.4 × 60.2 × 30.4

√
0.4 × 0.22

42 + 0.2 × 0.42

62 + 0.4 × 0.52

32

⎞
⎠ ,
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0.70.4 × 0.60.2 × 0.50.4, 1 − (1 − 0.2)0.4 × (1 − 0.1)0.2 × (1 − 0.4)0.4〉

= 〈(3.8663, 0.0378), 0.5933, 0.2700〉.

Furthermore, it can be easily proved that the NIFIOWGA operator is commutative,
monotonic, bounded, and idempotent.

Definition 13 Let Ai = 〈(ai , σi ), μi , vi 〉(i = 1, 2, . . . , n) be a set of NIFNs, and
NIFIGOWA : NIFNSn → NIFNS be a mapping:

NIFIGOWA((C1, A1), (C2, A2), . . . , (Cn, An)) =
(

n∑
i=1

ωiβ
λ
i

)1/λ

, (21)

where ω = (ω1, ω2, . . . ωn) is the weight vector correlative with the NIFIGOWA
operator satisfying ωi ∈ [0, 1](i = 1, 2, . . . , n) and

∑n
i=1 ωi = 1, βi is the value of

Ai in the pair (Ci , Ai ) having the i-th smallest Ci , Ci in (Ci , Ai ) is the order inducing
variable, and λ ∈ (0,+∞) is determined according to the characteristics needed in
real-life situations. Then, NIFIGOWAis called normal intuitionistic fuzzy-induced
generalized ordered weighted averaging operator.

Theorem 5 Let Ai = 〈(ai , σi ), μi , vi 〉(i = 1, 2, . . . , n) be a set of NIFNs, ω =
(ω1, ω2, . . . ωn) be the weight vector correlative with the NIFIGOWA operator sat-
isfying ωi ∈ [0, 1](i = 1, 2, . . . , n) and

∑n
i=1 ωi = 1, βi = (a′

i , σ
′
i ), μ

′
i , v

′
i 〉 be the

value of Ai in the pair (Ci , Ai ) having the i-th smallest Ci , and Ci in (Ci , Ai ) be the
order inducing variable. Then, the result obtained using Eq. (21) is still an NIFN and

NIFIGOWAω((C1, A1), (C2, A2), . . . , (Cn, An))

=
⎧
⎨
⎩

〈
n∑

i=1

ωi a
′λ
i , λ1/2

⎛
⎝

n∑
j=1

ωi a
′λ−1
i σ ′λ

i

⎞
⎠ ,

∑n
i=1 ωi |a′

i |λμ′λ
i∑n

i=1 ωi |a′
i |λ

,

∑n
i=1 ωi |a′

i |λ[1 − (1 − ν′
i )

λ]∑n
i=1 ωi |a′

i |λ
〉}1/λ

=
〈(

n∑
i=1

ωi a
′λ
i

)1/λ

, λ1/(2λ)

⎛
⎝

n∑
j=1

ωi a
λ−1
i σ ′λ

i

⎞
⎠

1/λ

,

(∑n
i=1 ωi |a′

i |λμ′λ
i∑n

i=1 ωi |a′
i |λ

)1/λ

,

1 −
(

1 −
∑n

i=1 ωi |a′
i |λ[1 − (1 − ν′

i )
λ]∑n

i=1 ωi |a′
i |λ

)1/λ〉
. (22)

Obviously, there are some properties for the NIFIGOWA operator as follows.

(1) When λ → 0, NIFIGOWA ((C1, A1), (C2, A2), . . . , (Cn, An)) = (
∑n

i=1 ωi

βλ
i )1/λ = ∏n

i=1 β
ωi
i , and the NIFIGOWA operator is reduced to the NIFIOWGA

operator.
(2) Whenλ=1, NIFIGOWA ((C1, A1), (C2, A2), . . . , (Cn, An))=(

∑n
i=1 ωiβ

λ
i )1/λ =∑n

i=1 ωiβi , and the NIFIGOWA operator is reduced to the NIFIOWA operator.
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Therefore, the NIFIOWGA operator and the NIFIOWA operator are two particular
cases of the NIFIGOWA operator, and the NIFIGOWA operator is the generalized
form of the NIFIOWGA operator and the NIFIOWA operator.

4 Multi-criteria decision-making approach based on normal intuitionistic
fuzzy-induced generalized aggregation operator

Atanassov et al. (2005) have studied the intuitionistic fuzzy interpretations of multi-
person MCDM method and the multi-measurement tool MCDM method, where the
experts’ weights and the measurement tools’ weights are corresponded to their own
reliability scores, and have presented the way to get the experts’ and measurement
tools’ reliability scores. This paper is committed to studying a one-person one-
measurement MCDM method. It is a very partial case of the study done by Atanassov
et al. (2005), both the experts’ weights and the measurement tools’ weights are out of
considerations and the weight vector of criteria is known completely and in the form
of real numbers. The problem is described as follows.

For an MCDM selecting or ranking problem, let A = {a1, a2, . . . , am} be a set of
alternatives, C = {c1, c2, . . . , cl} be a set of criteria, and ω = (ω1, ω2, . . . , ωl) be a
set of fixed criteria weights satisfying ω j ∈ [0, 1] and

∑l
j=1 ω j = 1. Suppose the

criteria are independent of each other, and that the evaluation of the alternative ai with
respect to the criterion c j is an NIFN represented by ri j = 〈(ai j , σi j ), μi j , vi j 〉.

To obtain the best alternative(s), the decision-making procedure is given as follows.

Step 1 The normalization of the decision matrix
By virtue of the following formulae, the decision matrix D = (ri j )m×l

can be changed into the standardized decision matrix D̄ = (r̄i j )m×l(r̄i j =
〈(āi j , σ̄i j ), μ̄i j , v̄i j 〉).

For benefit criteria: āi j = ai j

maxi (ai j )
, σ̄i j = σi j

maxi (σi j )

σi j

ai j
, μ̄i j = ui j , v̄i j = vi j .

(23)

For cost criteria: āi j = mini (ai j )

ai j
, σ̄i j = σi j

maxi (σi j )

σi j

ai j
, μ̄i j = ui j , v̄i j = vi j .

(24)

Step 2 Aggregate the criteria values of each alternative.
By applying Eq. (22), we can obtain the comprehensive evaluation for the alter-
natives:

Ri = 〈(ai , σi ), μi , vi 〉 (i = 1, 2, . . . , l).

Step 3 Determine the ranking of the alternatives.
By virtue of Definitions 6 and 7, we can get the ranking of all alternatives.
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5 Numerical example

An engine part manufacturing company wants to select a supplier, and there are four
suppliers as alternatives to choose, denoted by a1, a2, a3, a4. The suppliers include
the following four criteria that influence the choice of the company: (1) c1 expresses
supply capacity; (2) c2 pertains to delivery capability; (3) c3 denotes quality of service;
(4) c4 represents research strength. It is easy to know that the four criteria above are all
benefit criteria. The criteria are independent of each other and their weights comprise a
vector of ω = (0.15, 0.25, 0.32, 0.28). The four considered alternatives are evaluated
according to the normal intuitionistic fuzzy information by the expert using the criteria
mentioned above, and the evaluation outcomes are presented in Table 1.

5.1 Procedures of decision-making based on the NIFIGOWA operator

Step 1 The normalization of the decision matrix
The four criteria are all the benefit-type criteria, and by applying Eq. (23), we can
obtain the standardized decision matrix D̄ as shown in Table 2.
Step 2 Calculate the comprehensive evaluations for the alternatives
By applying Eq. (22), the comprehensive evaluation for four alternatives can be
shown in Table 3.
Step 3 Determine the ranking of alternatives
By applying Definitions 6 and 7, we can obtain the ranking of all alternatives as
shown in Table 4.
From Tables 3 and 4, it is obvious that when the value of λ changes, the rankings are
different, and the corresponding best alternatives are also different. Furthermore,
if Eq. (9) or (15) is used in Step 2, the ranking of the alternatives is a4  a2 
a1  a3, and the best alternative is a4.

Table 1 The expert’s evaluations for the alternatives

c1 c2 c3 c4

a1 〈(3, 0.4), 0.7, 0.2〉 〈(7, 0.6), 0.6, 0.3〉 〈(5, 0.4), 0.6, 0.2〉 〈(7, 0.6), 0.6, 0.3〉
a2 〈(4, 0.2), 0.6, 0.3〉 〈(8, 0.4), 0.8, 0.1〉 〈(6, 0.7), 0.8, 0.2〉 〈(5, 0.3), 0.7, 0.3〉
a3 〈(3.5, 0.3), 0.6, 0.4〉 〈(6, 0.2), 0.6, 0.3〉 〈(5.5, 0.6), 0.5, 0.5〉 〈(6, 0.4), 0.8, 0.1〉
a4 〈(5, 0.5), 0.8, 0.2〉 〈(7, 0.5), 0.6, 0.2〉 〈(4.5, 0.5), 0.8, 0.2〉 〈(7, 0.2), 0.7, 0.1〉

Table 2 The standardized decision matrix D̄

c1 c2 c3 c4

a1 〈(0.6, 0.1067), 0.7, 0.2〉 〈(0.875, 0.0857), 0.6, 0.3〉 〈(0.8333, 0.0457), 0.6, 0.2〉 〈(1, 0.08571), 0.6, 0.3〉
a2 〈(0.8, 0.02), 0.6, 0.3〉 〈(1, 0.0333), 0.8, 0.1〉 〈(1, 0.1167), 0.8, 0.2〉 〈(0.7143, 0.03), 0.7, 0.3〉
a3 〈(0.7, 0.1371), 0.6, 0.4〉 〈(0.75, 0.0111), 0.6, 0.3〉 〈(0.9167, 0.0935), 0.5, 0.5〉 〈(0.8571, 0.0444), 0.8, 0.1〉
a4 〈(1, 0.1), 0.8, 0.2〉 〈(0.875, 0.0595), 0.6, 0.2〉 〈(0.75, 0.0794), 0.8, 0.2〉 〈(1, 0.0095), 0.7, 0.1〉
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Table 4 The ranking of all
alternatives

λ Ranking The best alternative(s)

0 a4  a2  a1  a3 a4

1 a4  a2  a1  a3 a4

2 a4  a2  a3  a1 a4

5 a2  a4  a3  a1 a2

10 a2  a4  a3  a1 a2

20 a2  a4  a3  a1 a2

50 a2  a4  a3  a1 a2

Table 5 The expert’s evaluations for alternatives expressed by TIFNs

c1 c2 c3 c4

a1 〈(1.8, 3, 4.2), 0.7, 0.2〉 〈(5.2, 7, 8.8), 0.6, 0.3〉 〈(3.8, 5, 6.2), 0.6, 0.2〉 〈(5.2, 7, 8.8), 0.6, 0.3〉
a2 〈(3.4, 4, 4.6), 0.6, 0.3〉 〈(6.8, 8, 9.2), 0.8, 0.1〉 〈(3.9, 6, 8.1), 0.8, 0.2〉 〈(4.1, 5, 5.9), 0.7, 0.3〉
a3 〈(2.6, 3.5, 4.4), 0.6, 0.4〉 〈(5.4, 6, 6.6), 0.6, 0.3〉 〈(3.7, 5.5, 7.3), 0.5, 0.5〉 〈(4.8, 6, 7.2), 0.8, 0.1〉
a4 〈(3.5, 5, 6.5), 0.8, 0.2〉 〈(5.5, 7, 8.5), 0.6, 0.2〉 〈(3, 4.5, 6), 0.8, 0.2〉 〈(6.4, 7, 7.6), 0.7, 0.1〉

5.2 Comparison analysis and discussion

To verify the feasibility of the proposed method based on normal intuitionistic fuzzy-
induced generalized aggregation operator, a comparison study is conducted between
the proposed method and the method based on triangular intuitionistic fuzzy aggre-
gation operator (Li 2010b) and the extended VIKOR method of TIFNs (Wan et al.
2013b).

(a) The criterion values in the example above are transformed from NIFNs into
TIFNs, and the decision-making problem is solved by the MCDM method based on
triangular intuitionistic fuzzy aggregation operator.

Given an NIFN A = 〈(a, σ ), μ, v〉, it can be transformed into a TIFN denoted by
Ã = 〈(ã, b̃, c̃), μ̃, ν̃〉, where b̃ = a, ã = a − 3σ , c̃ = a + 3σ , μ̃ = μ and ν̃ = ν.
According to this, the expert’s evaluations for alternatives in Table 1 can be transformed
into TIFNs denoted by r̂i j = 〈(âi j , b̂i j , ĉi j ), μ̂i j , ν̂i j 〉, as shown in Table 5.

Here, the procedures of the MCDM method based on triangular intuitionistic fuzzy
aggregation operator (Li 2010b) are shown as follows.

(1) Normalize the TIFN decision matrix.
The normalized decision matrix is denoted by R̃ = (r̃i j )m×l , where r̃i j =
〈(ãi j , b̃i j , c̃i j ), μ̃i j , ν̃i j 〉 = 〈( âi j

ĉ+
j
,

b̂i j

ĉ+
j
,

ĉi j

ĉ+
j
), μ̂i j , ν̂i j 〉(i = 1, 2, . . . , m) for ben-

efit criteria. Here, ĉ+
j = max{ĉi j |i = 1, 2, . . . , m} ( j = 1, 2, . . . , l).

By applying the formula above, the normalized decision matrix R̃ can be obtained
and shown in Table 6.
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.7
,0

.3
〉

a 3
〈(0

.4
0,

0.
54

,0
.6

8)
,0

.6
,0

.4
〉

〈(0
.5

9,
0.

65
,0

.7
2)

,0
.6

,0
.3

〉
〈(0

.4
6,

0.
68

,0
.9

0)
,0

.5
,0

.5
〉

〈(0
.5

5,
0.

68
,0

.8
2)

,0
.8

,0
.1

〉
a 4

〈(0
.5

4,
0.

77
,1

.0
0)

,0
.8

,0
.2

〉
〈(0

.6
0,

0.
76

,0
.9

2)
,0

.6
,0

.2
〉

〈(0
.3

7,
0.

56
,0

.7
4)

,0
.8

,0
.2

〉
〈(0

.7
3,

0.
80

,0
.8

6)
,0

.7
,0

.1
〉
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(2) Calculate the weighted comprehensive values S̃i for the alternative ai .

S̃i =
l∑

j=1

ω j r̃i j =
〈⎛
⎝

l∑
j=1

ω j ãi j ,

l∑
j=1

ω j b̃i j ,

l∑
j=1

ω j c̃i j

⎞
⎠ , min j {μ̃i j }, max j {ν̃i j }

〉

= 〈(ãi , b̃i , c̃i ), μ̃i , ν̃i 〉.

Thus, the weighted comprehensive values of ai (i = 1, 2, 3, 4) are:

S̃1 = 〈(0.50, 0.68, 0.86), 0.6, 0.3〉; S̃2 = 〈(0.55, 0.71, 0.86), 0.6, 0.3〉;
S̃3 = 〈(0.51, 0.65, 0.80), 0.5, 0.5〉; S̃4 = 〈(0.55, 0.71, 0.86), 0.6, 0.2〉.

(3) Rank all alternatives.

Let Z(S̃i , λ) = V (S̃i ,λ)

1+A(S̃i ,λ)
, where λ ∈ [0, 1] is a weight representing the

decision maker’s preference information. If λ ∈ [0, 1
2 ), it indicates the deci-

sion maker prefers uncertainty or negative feeling; if λ ∈ ( 1
2 , 1], the decision

maker prefers certainty or positive feeling; if λ = 1
2 , the decision maker is

indifferent between positive feeling and negative feeling. Besides, V (S̃i , λ) =
Vμ(S̃i ) + λ(Vν(S̃i ) − Vμ(S̃i )) and A(S̃i , λ) = Aν(S̃i ) − λ(Aν(S̃i ) − Aμ(S̃i )),

where Vμ(S̃i ) = (ãi +4b̃i +c̃i )μ̃i
6 , Vν(S̃i ) = (ãi +4b̃i +c̃i )(1−ν̃i )

6 , Aμ(S̃i ) = (c̃i −ãi )μ̃i
3

and Aν(S̃i ) = (c̃i −ãi )(1−ν̃i )
3 .

Here, there is no indication of the decision maker’s preference, so we assume
λ = 1

2 .
Calculate the values of Z(S̃i ,

1
2 ), and then we can obtain the weighted compre-

hensive values of the alternatives as follows:

Z(S̃1,
1

2
) = 0.416, Z(S̃2,

1

2
) = 0.432, Z(S̃3,

1

2
) = 0.311, Z(S̃4,

1

2
) = 0.462.

Rank the TIFNs S̃i according to non-increasing order of the values of Z(S̃i ,
1
2 ),

and the maximum TIFN is the one with the largest ratio, i.e., S̃4  S̃2  S̃1  S̃3.
Hence, the ranking of the four alternatives should be: a4  a2  a1  a3.

(b) After converting the NIFNs into the TIFNs and normalizing the TIFNs, a nor-
malized decision-making matrix R̃ can be obtained (seen in Table 6), and then we
apply the extended VIKOR method of TIFNs (Wan et al. 2013b) to the normalized
decision matrix. The results are shown in Table 7.

The alternatives are ranked in accordance with the increasing order of Q(ai ), where
Q(ai ) = λ

S(ai )−S+
S−−S+ + (1 − λ)

R(ai )−R+
R−−R+ (S+ = Mini {S(ai )}, S− = Maxi {S(ai )},

R+ = Mini {R(ai )}, and R− = Maxi {R(ai )}). With the variation of λ, the rankings
of the alternatives change, as shown in Table 8.

From the analysis above, we conclude that both the results of triangular intuition-
istic fuzzy aggregation operator method and the extended VIKOR method are consis-
tent with the proposed method, which fully illustrates the feasibility of the proposed
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Table 7 The results of the
extended VIKOR method

Values of S(ai ) Values of R(ai )

a1 0.413 0.141

a2 0.284 0.126

a3 0.428 0.151

a4 0.307 0.104

Table 8 The results of the
extended VIKOR method with
TIFNs

λ Ranking The best alternative(s)

0 a4  a2  a1  a3 a4

0.1 a4  a2  a1  a3 a4

0.2 a4  a2  a1  a3 a4

0.3 a4  a2  a1  a3 a4

0.4 a4  a2  a1  a3 a4

0.5 a4  a2  a1  a3 a4

0.6 a4  a2  a1  a3 a4

0.7 a4  a2  a1  a3 a4

0.8 a2  a4  a1  a3 a2

0.9 a2  a4  a1  a3 a2

1.0 a2  a4  a1  a3 a2

method. However, the benefits of the normal intuitionistic fuzzy MCDM method pro-
posed in this paper are far more than that. From the perspective of the definition
of NIFNs, it has been well known that the normal distribution is the most important
probability distribution to address the approximation of large numbers of random phe-
nomena (Li et al. 2009), and certainly, NIFNs are of much more realistic senses than
TIFNs. From the perspective of the aggregation operators, the induced generalized
aggregation operator allows the value of λ to be a variable rather than a fixed number,
which makes the decision-making more flexible and reliable.

6 Conclusions

Normal distribution phenomena widely exist in practical life, and NIFNs can bet-
ter express normal distribution phenomena than other intuitionistic fuzzy numbers.
Applying NIFNs to MCDM problems can not only complete the fuzzy MCDM the-
oretic system, but also render the MCDM methods much closer to reality. In this
paper, some new aggregation operators of NIFNs are studied, which lay the founda-
tion for the proposed MCDM method with normal intuitionistic fuzzy information.
Particularly, the NIFIGOWA operator is used to aggregate the evaluation information
of alternatives, so that the decision makers can properly select the desirable alterna-
tive according to their interest and the actual need by changing the value of λ, which
makes the decision-making results of the proposed method more flexible and reliable.
Future research may extend the proposed approach to evaluating other practical cases
of MCDM problems in the uncertain environment.
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