
Top (2014) 22:331–342
DOI 10.1007/s11750-012-0259-3

O R I G I NA L PA P E R

On Hölder calmness of solution mappings
in parametric equilibrium problems

L.Q. Anh · A.Y. Kruger · N.H. Thao

Received: 15 December 2011 / Accepted: 5 May 2012 / Published online: 26 May 2012
© Sociedad de Estadística e Investigación Operativa 2012

Abstract We consider parametric equilibrium problems in metric spaces. Sufficient
conditions for the Hölder calmness of solutions are established. We also study the
Hölder well-posedness for equilibrium problems in metric spaces.
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1 Introduction

Optimization is one of the most fertile areas of mathematics. Its conclusions and
recommendations play a very important role in both theoretical and applied math-
ematics. Equilibrium problems were first considered in Blum and Oettli (1994)
and since then have been studied by many researchers all over the world. The
equilibrium problem model incorporates many other important problems in opti-
mization and other areas such as: variational inequalities, fixed point problems,
complementarity, etc. There have been many studies of existence of solutions to
equilibrium problems (see Sadequi and Alizadeh 2011; Bazán 2001; Bianchi and
Schaible 1996; Hai and Khanh 2007a, 2007b; Hai et al. 2009) and their stability,
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e.g., semi-continuity in the sense of Berge and Hausdorff (see Anh and Khanh 2004,
2007a, 2007b, 2010; Huang et al. 2006; Khanh and Luu 2007) or Hölder (Lips-
chitzian) continuity (see Anh and Khanh 2006, 2008b, 2009; Bianchi and Pini 2003;
Li et al. 2009; Li and Li 2011a, 2011b; Mansour and Riahi 2005).

This paper extends Anh et al. (2011) and studies (l.α)-Hölder calmness of so-
lutions to parametric equilibrium problems. When α = 1, this is a kind of calm-
ness property which is in general stronger than the property of the same name usu-
ally used in variational analysis. Calmness property of multi-valued mappings has
been examined by many authors (see Cánovas et al. 2009; Chuong et al. 2011;
Henrion et al. 2002; Ioffe and Outrata 2008; Levy 2000; Ng and Zheng 2009) in
which subdifferentials and coderivatives play the main role. As applications we in-
vestigate conditions for Hölder calmness of solutions to optimization problems and
well-posedness in the Hölder sense. The last subject is intimately related to the stabil-
ity property and plays a very important role in studying optimization and variational
problems.

The structure of the paper is as follows. Section 2 presents the equilibrium problem
model and materials used in the rest of this paper. We establish in Sect. 3 a sufficient
condition for the Hölder calmness of the solution mapping to parametric equilibrium
problems. The Hölder well-posedness of equilibrium problems is studied in Sect. 4.

Throughout the paper, if not explicitly stated otherwise, X,Λ,M are metric spaces
and R is the set of all real numbers while R+ is the set of all positive numbers. We
use d(·, ·) for all metrics.

2 Preliminaries

Given a subset K ⊆ X and a function f : X×X → R, a standard equilibrium problem
is defined as follows:

(EP) Find x̄ ∈ K such that f (x̄, y) ≥ 0 for all y ∈ K .

The set of solutions to this problem is denoted by S.
In this paper, we consider several extensions of (EP).
The constraint set K and objective function f can be perturbed by parameters

λ ∈ Λ and μ ∈ M , respectively. Given a multi-valued mapping K : Λ ⇒ X, a function
f : X × X × M → R, and a pair (λ,μ) ∈ Λ × M , one can consider a parameterized
equilibrium problem:

(EP)λ,μ Find x̄ ∈ K(λ) such that f (x̄, y,μ) ≥ 0 for all y ∈ K(λ).

The set of solutions to problem (EP)λ,μ is denoted by S(λ,μ).
The approximate version of this problem can be of interest: for each (λ,μ) ∈

Λ × M and ε > 0,

(˜EP)ε,λ,μ Find x̄ ∈ K(λ) such that f (x̄, y,μ) + ε ≥ 0 for all y ∈ K(λ).

We denote by ˜S(ε,λ,μ) the solution set of (˜EP)ε,λ,μ.

Definition 2.1 For a function f : X → R and positive numbers l, α,
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(i) f is (l.α)-Hölder continuous on a subset U ⊂ X if
∣

∣f (x1) − f (x2)
∣

∣ ≤ ldα(x1, x2) for all x1, x2 ∈ U ;
(ii) f is (l.α)-Hölder calm at x on a neighborhood U of x if

∣

∣f (x) − f (x)
∣

∣ ≤ ldα(x, x) for all x ∈ U.

We say that f satisfies a certain property on a subset A ⊆ X if it is satisfied at
every point of A.

From this definition, it is obvious that Hölder continuity is stronger than Hölder
calmness.

To define extensions of these properties for multi-valued mappings we recall the
definitions of point-to-set and set-to-set distances. For subsets A,B of X and a point
a ∈ X,

d(a,B) = inf
b∈B

d(a, b);

H ∗(A,B) = sup
a∈A

d(a,B);

H(A,B) = max
{

H ∗(A,B),H ∗(B,A)
};

ρ(A,B) = sup
a∈A,b∈B

d(a, b).

Note that H and ρ can take infinite values (if A or B is unbounded). It is also obvious
that H(A,B) ≤ ρ(A,B) for any subsets A and B , and the inequality can be strict.

Definition 2.2 For a multi-valued mapping K : Λ ⇒ X and positive numbers l, α,

(i) K is (l.α)-Hölder continuous on a subset U ⊂ X if

H
(

K(λ1),K(λ2)
) ≤ ldα(λ1, λ2) for all λ1, λ2 ∈ U ;

(ii) K is (l.α)-Hölder calm at λ on a neighborhood U of λ if

H
(

K(λ),K(λ)
) ≤ ldα(λ,λ) for all λ ∈ U. (1)

We will also consider the versions of the properties in Definition 2.2 with H re-
placed by ρ. In this case, we will talk about the corresponding properties with respect
to ρ.

Remark 2.1 The calmness in the above definition (when α = 1) is a stronger prop-
erty than the one usually considered in variational analysis. The latter corresponds
to replacing H in (1) by H ∗ (see, e.g., Rockafellar and Wets 1998). Respectively,
(l, α)-calmness is stronger than “calmness [α]” in Kummer (2009).

We next define uniform Hölder calmness as the natural counterpart of the relative
Hölder continuity in Anh and Khanh (2007b).
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Definition 2.3 For positive numbers m,β, θ , a function f : X × X × M → R is
(m.β)-Hölder calm at μ on a neighborhood V of μ, θ -uniformly over a subset S ⊆ X

if

∣

∣f (x, y,μ) − f (x, y,μ)
∣

∣ ≤ mdβ(μ,μ)dθ (x, y), ∀μ ∈ V, ∀x, y ∈ S, x 
= y.

If θ = 0, we say that f is (m.β)-Hölder calm at μ on V , uniformly over S.

We next discuss several monotonicity properties some of which are going to play
a crucial role in examining the Hölder calmness of the solution mapping of the equi-
librium problems (EP)λ,μ.

Given a function f : X × X → R, positive numbers h,β , and a subset S ⊆ X,
consider the following properties.

(M1) For all x, y ∈ S,x 
= y,

f (x, y) + f (y, x) + hdβ(x, y) ≤ 0. (2)

(M2) For all x, y ∈ S,

hdβ(x, y) ≤ d
(

f (x, y),R+
) + d

(

f (y, x),R+
)

. (3)

(M3) For all x, y ∈ S,x 
= y,

[

f (x, y) ≥ 0 ⇒ f (y, x) + hdβ(x, y) ≤ 0
]

.

(M4) For all x, y ∈ S,x 
= y,

[

f (x, y) < 0 ⇒ f (y, x) ≥ 0
]

.

If any of the above properties is fulfilled, we say that f satisfies the corresponding
condition on S with constants h and β (if applicable).

Remark 2.2 Properties (M1), (M3) and (M4) were considered in Anh and Khanh
(2006, 2007b, 2008a) where they were called Hölder strong monotonicity, Hölder
strong pseudo-monotonicity and quasi-monotonicity, respectively. Property (M2) is
a particular case of the corresponding monotonicity property introduced by Anh and
Khanh (see Anh and Khanh 2007b) for multi-valued mappings. This property has
been employed to investigate the Hölder continuity of solution mappings in many
articles (see Anh and Khanh 2008a; Li and Li 2011b; Anh et al. 2011).

The next proposition gives the relationships between these monotonicity proper-
ties.

Proposition 2.1

(i) (M1) ⇒ (M2) ⇒ (M3);
(ii) [(M3) & (M4)] ⇒ (M2).
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Proof The following simple observation is used in the proof:

d(a,R+) = max{−a,0} ≥ −a.

(M1) ⇒ (M2). If (2) holds for some x 
= y, then

hdβ(x, y) ≤ −f (x, y) − f (y, x) ≤ d
(

f (x, y),R+
) + d

(

f (y, x),R+
)

,

i.e., (3) holds. When x = y, (3) holds automatically.
(M2) ⇒ (M3). If (3) holds for some x 
= y and f (x, y) ≥ 0, then d(f (x, y),

R+) = 0 and (3) takes the form

hdβ(x, y) ≤ d
(

f (y, x),R+
)

.

It follows from the last inequality that d(f (y, x),R+) > 0 and consequently
d(f (y, x),R+) = −f (y, x). Hence, (M3) holds true.

[(M3) & (M4)] ⇒ (M2). Let (M3) and (M4) hold true. We only need to prove (3)
when x 
= y. If f (x, y) ≥ 0, then d(f (x, y),R+) = 0 and (M3) implies

0 < hdβ(x, y) ≤ −f (y, x) = d
(

f (y, x),R+
)

.

Hence, (3) is true. If f (x, y) < 0, then (M4) implies f (y, x) ≥ 0, and we can apply
(M3) again to show that

0 < hdβ(x, y) ≤ −f (x, y) = d
(

f (x, y),R+
)

.

Taking into account that d(f (y, x),R+) = 0, we conclude that (3) is true in this case
too. �

We now give examples showing that implications in Proposition 2.1 can be strict.

Example 2.1 The function f : R×R → R defined by f (x, y) = x − y satisfies (M2)

with h = β = 1. Indeed,

d
(

f (x, y),R+
) + d

(

f (y, x),R+
) = d(x − y,R+) + d(y − x,R+)

= |x − y| = d(x, y).

At the same time, f (x, y) + f (y, x) = 0 and (2) is violated for any x 
= y. f does
not satisfy (M1). It is also obvious that f satisfies both (M3) and (M4).

Example 2.2 The function f : R × R → R defined by f (x, y) = − 1
4 (|x| 1

2 + |y| 1
2 )

satisfies (M3) with h = √
2 and β = 1

2 as f (x, y) ≥ 0 if and only if x = y = 0, it
does not satisfy (M2). Indeed, for any y = −x 
= 0, we have

d
(

f (x, y),R+
) + d

(

f (y, x),R+
) = 1

2

(|x| 1
2 + |y| 1

2
) = |x| 1

2 < 2|x| 1
2 = √

2d
1
2 (x, y).

We can see that the combination of (M3) and (M4) implies (M2), but they are not
equivalent by considering the function f (x, y) = −(|x|+ |y|). This function satisfies
(M2) with h = β = 1, but breaks (M4).
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3 The Hölder calmness of the solution mapping

The next theorem gives a sufficient condition for the Hölder calmness of the solution
mapping of the problem (EP)λ,μ. It improves Theorem 2.1 in Anh et al. (2011). We
always assume that solution sets S(λ,μ) are nonempty for all (λ,μ) in a neighbor-
hood of the considered point (λ,μ).

Theorem 3.1 Consider equilibrium problem (EP)λ,μ and suppose the following con-
ditions hold.

(i) There exist neighborhoods U(λ) of λ and V (μ) of μ and positive numbers n1,
δ1 and θ such that f is (n1.δ1)-Hölder calm at μ on V (μ̄), θ -uniformly over
K(U(λ)).

(ii) There exist positive numbers n2 and δ2 such that, for all x ∈ K(U(λ)) and μ ∈
V (μ), the function f (x, ·,μ) is (n2.δ2)-Hölder continuous on K(U(λ)).

(iii) f (·, ·,μ) satisfies condition (M2) on K(U(λ̄)) with constants h > 0 and β > θ .
(iv) K is (l.α)-Hölder calm at λ on U(λ̄) with some positive l and α.

Then solutions to (EP)λ,μ satisfy the condition of Hölder calmness with respect to ρ:
there exist constants k1, k2 > 0 such that

ρ
(

S(λ,μ),S(λ,μ)
) ≤ k1d

αδ2/β(λ,λ) + k2d
δ1/(β−θ)(μ,μ),

for all (λ,μ) in a neighborhood of (λ,μ).

Proof Take λ ∈ U(λ) and μ ∈ V (μ).
Step 1. We prove that for each x(λ,μ) ∈ S(λ,μ) and x(λ,μ) ∈ S(λ,μ),

d1 := d
(

x(λ,μ), x(λ,μ)
) ≤

(

n1

h

)1/(β−θ)

dδ1/(β−θ)(μ,μ). (4)

Suppose x(λ,μ) 
= x(λ,μ) (if the equality holds, then (4) holds trivially). Because
both x(λ,μ) and x(λ,μ) belong to K(λ) and are solutions of (EP)λ,μ, one has

f
(

x(λ,μ), x(λ,μ),μ
) ≥ 0; (5)

f
(

x(λ,μ), x(λ,μ),μ
) ≥ 0. (6)

At the same time, (iii) implies

d
(

f
(

x(λ,μ), x(λ,μ),μ
)

,R+
) + d

(

f
(

x(λ,μ), x(λ,μ),μ
)

,R+
) ≥ hd

β

1 .

Combining this inequality with (5) and (6), we get

d
(

f
(

x(λ,μ), x(λ,μ),μ
)

, f
(

x(λ,μ), x(λ,μ),μ
)) ≥ hd

β

1 .

Because f is (n1.δ1)-Hölder calm at μ, θ -uniformly over K(U(λ)) by (i), the above
relationship implies

n1d
θ
1 dδ1(μ,μ) ≥ hd

β

1 .
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This is equivalent to d
β−θ

1 ≤ n1
h

dδ1(μ,μ) from which we get (4) proved.
Step 2. We prove that for each x(λ,μ) ∈ S(λ,μ) and x(λ,μ) ∈ S(λ,μ),

d2 := d
(

x(λ,μ), x(λ,μ)
) ≤

(

2n2l
δ2

h

)1/β

dαδ2/β(λ,λ). (7)

Suppose x(λ,μ) 
= x(λ,μ). (iv) implies that there exist x ∈ K(λ) and x ∈ K(λ) such
that

d
(

x(λ,μ), x
) ≤ ldα(λ,λ); (8)

d
(

x(λ,μ), x
) ≤ ldα(λ,λ). (9)

We get from the definition of (EP )λ,μ,

f
(

x(λ,μ), x,μ
) ≥ 0; (10)

f
(

x(λ,μ), x,μ
) ≥ 0. (11)

At the same time, (iii) implies

d
(

f
(

x(λ,μ), x(λ,μ),μ
)

,R+
) + d

(

f
(

x(λ,μ), x(λ,μ),μ
)

,R+
) ≥ hd

β

2 .

Combining this inequality with (10) and (11), we get

d
(

f
(

x(λ,μ), x(λ,μ),μ
)

, f
(

x(λ,μ), x,μ
))

+ d
(

f
(

x(λ,μ), x(λ,μ),μ
)

, f
(

x(λ,μ), x,μ
)) ≥ hd

β

2 .

Because f is (n2δ2)-Hölder continuous with respect to the second component in
K(U(λ)) by (ii), the last inequality implies that

n2d
δ2

(

x(λ,μ)
)

, x) + n2d
δ2

(

x(λ,μ), x
) ≥ hd

β

2 .

We combine this with (8) and (9) and get

n2l
δ2dαδ2(λ,λ) + n2l

δ2dαδ2(λ,λ) ≥ hd
β

2 ,

or equivalently d
β

2 ≤ 2n2l
δ2

h
dαδ2(λ,λ). We have (7) proved.

Step 3. For all x(λ,μ) ∈ S(λ,μ) and x(λ,μ) ∈ S(λ,μ), we always have

d
(

x(λ,μ), x(λ,μ)
) ≤ d1 + d2.

From (4) and (7), by taking k1 = ( 2n2l
δ2

h
)1/β and k2 = ( n1

h
)1/(β−θ), we get

ρ
(

S(λ,μ),S(λ,μ)
) ≤ k1d

αδ2/β(λ,λ) + k2d
δ1/(β−θ)(μ,μ).

Therefore, Theorem 3.1 has been proved. �
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By using the technique similar to the one in the proof of Theorem 2.1 in Anh and
Khanh (2007b), we can show that, under assumption (iii), the solution to (EP)λ̄,μ̄ is

unique. However, when (λ,μ) 
= (λ̄, μ̄), the solutions to (EP)λ,μ do not have to be
unique as demonstrated by the following example.

Example 3.1 Let X = R, Λ ≡ M = [0;1], K(λ) = [0;1], f (x, y,λ) = y − x + λ for
all λ ∈ Λ, and λ̄ = 0.

Then |f (x, y,λ) − f (x, y, λ̄)| = |λ|. Hence, f is (1.1)-Hölder calm at λ̄ uni-
formly over [0;1]. We have |f (x, y,λ) − f (x, z, λ)| = |y − z| for all y, z ∈ [0;1].
So f (x, ·, λ) is (1.1)-Hölder continuous on [0;1]. Therefore, assumptions (i) and (ii)
hold. It is clear that condition (iv) also holds. Assumption (iii) is fulfilled as shown in
Example 2.1. Hence, Theorem 3.1 derives the Holder calmness of S(·) at λ̄. It is not
difficult to check that S(0) = {0} and S(λ) = [0, λ] for all λ ∈ (0;1].

Normally, to receive a property of solution mappings, the problem’s hypotheses
are also required at the level corresponding to that property. We can see from the
preceding theorem that all the hypotheses are related to Hölder continuity and Hölder
calmness, except (iii), which is about monotonicity.

The next example indicates the essential role of assumption (iii) in Theorem 3.1.

Example 3.2 Take X = R, M ≡ Λ = [0;1], K(λ) = [−1;1] for all λ ∈ [0;1]. For
each λ ∈ [0;1], consider the function f defined by f (x, y,λ) = λ(x+y). Take λ̄ = 0.

We have |f (x, y,λ) − f (x, y, λ̄)| = |x + y| · |λ − λ̄| ≤ 2|λ − λ̄| for all x, y ∈
[−1;1]. So f is (2.1)-Hölder calm at λ̄ on [0;1] uniformly over [−1;1]. At the same
time, |f (x, y,λ) − f (x, z, λ)| = |λ| · |y − z| ≤ |y − z| for all y, z ∈ [−1;1]. This
means that f (x, ·, λ) is (1.1)-Hölder continuous on [−1;1]. Hence, conditions (i)
and (ii) are fulfilled.

Condition (iv) is also true straightforwardly. However, we have

S(0) = [−1;1], S(λ) = {1}, ∀λ ∈ (0;1].
So ρ(S(λ), S(0)) = 2 for any λ ∈ (0;1].

Therefore, the solution mapping S is not Hölder calm at μ = 0. The reason here is
that f breaks condition (M2). Indeed,

d
(

f (1,0,0),R+
) + d

(

f (0,1,0),R+
) = 0 < h|1 − 0|β = h, ∀h, β > 0.

Condition (M2) in Theorem 3.1 is indispensable.

Remark 3.1 It follows from Proposition 2.1 that the conclusion of Theorem 3.1 re-
mains true if condition (iii) is replaced by either condition (M1) or conditions (M3)

and (M4).

The next proposition aims to illustrate application of Theorem 3.1. For each
(λ,μ) ∈ Λ × M , we consider the minimization problem

(MP) Minimize f (x,μ) subject to x ∈ K(λ),
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where f : X ×M → R and K : Λ ⇒ X. We denote S(λ,μ) = {x ∈ K(λ) : f (x,μ) =
minx∈K(λ) f (x,μ)} and assume that S(λ,μ) 
= ∅ for all (λ,μ) near the considered
point (λ,μ).

Proposition 3.2 Consider (MP) and suppose the following conditions hold.

(i) There exist neighborhoods V (μ) of μ and U(λ) of λ and numbers n1 > 0
and δ1 > 0 such that f is (n1.δ1)-Hölder calm at μ on V (μ̄) uniformly over
K(U(λ)), i.e.,

∣

∣f (x,μ) − f (x,μ)
∣

∣ ≤ n1d
δ1(μ,μ)

for all x ∈ K(U(λ)) and μ ∈ V (μ).
(ii) There exist numbers n2 > 0 and δ2 > 0 such that f is (n2.δ2)-Hölder continuous

in x on K(U(λ)) uniformly over μ ∈ V (μ), i.e.,
∣

∣f (x,μ) − f (y,μ)
∣

∣ ≤ n2d
δ2(x, y) (12)

for all μ ∈ V (μ) and x, y ∈ K(U(λ)), and (12) holds as an equality when μ =
μ.

(iii) K is (l.α)-Hölder calm at λ on U(λ̄) with some l > 0 and α > 0.

Then the mapping S is Hölder calm with respect to ρ, i.e., there exist constants
k1, k2 > 0 such that

ρ
(

S(λ,μ),S(λ,μ)
) ≤ k1d

α(λ,λ) + k2d(μ,μ) (13)

for all (λ,μ) in a neighborhood of (λ,μ).

Proof We define the function g : X × X × M → R as follows

g(x, y,μ) = f (y,μ) − f (x,μ).

We observe that x ∈ S(λ,μ) if and only if x ∈ K(λ) and g(x, y,μ) ≥ 0,∀y ∈ K(λ).
So to prove the proposition, it suffices to check that g satisfies the conditions of
Theorem 3.1.

We first check condition (i). For every μ ∈ V (μ) and x, y ∈ K(U(λ)) we have
∣

∣g(x, y,μ) − g(x, y,μ)
∣

∣

= ∣

∣f (y,μ) − f (x,μ) − f (y,μ) + f (x,μ)
∣

∣

≤ ∣

∣f (x,μ) − f (x,μ)
∣

∣ + ∣

∣f (y,μ) − f (y,μ)
∣

∣ ≤ 2n1d
δ1(μ,μ).

This means that g is (2n1.δ1)-Hölder calm at μ on V (μ) uniformly over K(U(λ)).
We have at the same time

∣

∣g(x, y,μ) − g(x, z,μ)
∣

∣ = ∣

∣f (y,μ) − f (z,μ)
∣

∣ ≤ n2d
δ2(y, z),

i.e., g is (n2.δ2)-Hölder continuous with respect to the second component. So condi-
tions (i) and (ii) in Theorem 3.1 are fulfilled.
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We now check condition (iii) in Theorem 3.1. For all x, y ∈ K(U(λ)), we have

d
(

g(x, y,μ),R+
) + d

(

g(y, x,μ),R+
)

= d
(

f (y,μ) − f (x,μ),R+
) + d

(

f (x,μ) − f (y,μ),R+
)

= ∣

∣f (x,μ) − f (y,μ)
∣

∣ = n2d
δ2(x, y).

So g satisfies condition (M2), and (iii) in Theorem 3.1 is fulfilled. Therefore, it fol-
lows from Theorem 3.1 that (13) holds true with some k1, k2 > 0. �

4 The Hölder well-posedness of equilibrium problems

We will denote by (E P ) the family of problems {(EP)λ,μ : (λ,μ) ∈ Λ × M} and
extend the concept of Lipschitzian well-posedness for optimization problems intro-
duced in Bednarczuk (2007) to equilibrium problems.

Definition 4.1 (E P) is Hölder well-posed at (λ̄, μ̄) if ˜S(0, λ̄, μ̄) is a singleton and ˜S

is Hölder calm at (0, λ̄, μ̄) on a neighborhood of (0, λ̄, μ̄).

The next theorem gives a sufficient condition for the Hölder well-posedness
of (E P ). It improves and modifies Theorem 3.1 in Anh et al. (2011).

Theorem 4.1 Assume S(λ̄, μ̄) 
= ∅ and the following conditions hold.

(i) There exist neighborhoods U(λ) of λ and V (μ) of μ and positive numbers n1,
δ1 and θ such that f is (n1.δ1)-Hölder calm at μ on V (μ̄), θ -uniformly over
K(U(λ)).

(ii) There exist positive numbers n2 and δ2 such that, for all x ∈ K(U(λ)) and μ ∈
V (μ), the function f (x, ·,μ) is (n2.δ2)-Hölder continuous on K(U(λ)).

(iii) f (·, ·,μ) satisfies condition (M2) on K(U(λ̄)) with constants h > 0 and β > θ .
(iv) K is (l.α)-Hölder calm at λ on U(λ̄) with some positive l and α.

Then (E P ) is Hölder well-posed at (λ̄, μ̄).

Proof Take N = [0,+∞)×M . For η = (ε,μ), η′ = (ε′,μ′) ∈ N , consider a function
dN defined by

dN

(

η,η′) = max
{∣

∣ε − ε′∣
∣, d

(

μ,μ′)}.

Then, (N,dN) is a metric space. We define a function g : X ×X ×N → R as follows

g(x, y, η) = f (x, y,μ) + ε.

To prove the theorem, it suffices to check that g satisfies the conditions of Theo-
rem 3.1.

Take any neighborhood W of 0 in [0;1]. Then for all η = (ε,μ) ∈ W × V (μ̄),
η̄ = (0, μ̄), and x, y ∈ K(U(λ)), one has

∣

∣g(x, y, η) − g(x, y, η)
∣

∣ = ∣

∣f (x, y,μ) − f (x, y, μ̄) + ε
∣

∣
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≤ ε + ∣

∣f (x, y,μ) − f (x, y, μ̄)
∣

∣ ≤ ε + n1d
δ1d(μ, μ̄)

≤ εδ1 + n1d
δ1(μ, μ̄) ≤ 2 max{1, n1}dδ1

N (η, η̄)

since ε ∈ V ⊆ [0,1] and the Hölder order δ1 ≤ 1. So g is (2 max{1, n1}.δ1)-Hölder
calm at η̄ on W × V (μ̄) uniformly over K(U(λ)).

We have at the same time
∣

∣g(x, y, η) − g(x, z, η)
∣

∣ = ∣

∣f (x, y,μ) − f (x, z,μ)
∣

∣ ≤ n2d
δ2(y, z),

or g is (n2.δ2)-Hölder continuous with respect to the second component on K(U(λ)).
Conditions (i) and (ii) of Theorem 3.1 are fulfilled.

We now check condition (iii) of Theorem 3.1. For all x, y ∈ K(U(λ)), we get

d
(

g(x, y, η̄),R+
) + d

(

g(y, x, η̄),R+
)

= d
(

f (x, y, μ̄),R+
) + d

(

f (y, x, μ̄),R+
) ≥ hdβ(x, y).

This means that g satisfies condition (iii) of Theorem 3.1 and we have all its hypothe-
ses satisfied. Therefore, the mapping of solutions to (E P ) is both Hölder calm and
single-valued at (0, η̄) which combined with Definition 4.1 gives the conclusion of
the theorem. �

5 Conclusion

Assuming Hölder calmness and Hölder continuity in Hausdorff distance, we have es-
tablished the Hölder calm property of the solution mapping with respect to ρ. This
obviously implies the Hölder calm property in Hausdorff distance. We have estab-
lished a sufficient condition for the Hölder well-posedness of equilibrium problems.
These may be extended to many other classes of problems.
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