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Abstract On current electricity markets the electrical utilities are faced with very so-
phisticated decision making problems under uncertainty. Moreover, when focusing in
the short-term management, generation companies must include some medium-term
products that directly influence their short-term strategies. In this work, the bilat-
eral and physical futures contracts are included into the day-ahead market bid fol-
lowing MIBEL rules and a stochastic quadratic mixed-integer programming model
is presented. The complexity of this stochastic programming problem makes un-
practical the resolution of large-scale instances with general-purpose optimization
codes. Therefore, in order to gain efficiency, a polyhedral outer approximation of the
quadratic objective function obtained by means of perspective cuts (PC) is proposed.
A set of instances of the problem has been defined with real data and solved with the
PC methodology. The numerical results obtained show the efficiency of this method-
ology compared with standard mixed quadratic optimization solvers.

Keywords Liberalized electricity market · Optimal bid · Stochastic programming ·
Perspective cuts

Mathematics Subject Classification (2000) 97M40 · 90C15 · 90C11 · 90C20

C. Corchero · F.-J. Heredia (�)
Department of Statistics and Operations Research, Universitat Politècnica de Catalunya,
Campus Nord, C5, Jordi Girona 1-3, 08034 Barcelona, Spain
e-mail: f.javier.heredia@upc.edu

C. Corchero
e-mail: cristina.corchero@upc.edu

E. Mijangos
Department of Applied Mathematics and Statistics and Operations Research,
University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
e-mail: eugenio.mijangos@ehu.es

mailto:f.javier.heredia@upc.edu
mailto:cristina.corchero@upc.edu
mailto:eugenio.mijangos@ehu.es


A new optimal electricity market bid model 85

Fig. 1 MIBEL’s market
mechanisms

1 Introduction

In current electricity markets, the generation companies (GenCo) have to lead with
different situations coming from the various available short- and medium-term market
mechanisms. One of the main changes produced by the liberalization of the electricity
markets it that the price of electricity has become a significant risk factor because it
is unknown in the moment when the GenCo has to take the operational decisions.
Some medium-term products are used for hedging against this market-price risk, as,
for instance, the futures or the bilateral contracts.

This work is applied to the Iberian Electricity Market (MIBEL), which includes
the Spanish and Portuguese electricity systems. This market has been recently im-
proved with the creation of the Derivatives Market and the introduction of new kind
of bilateral contracts beside the classical ones. Nowadays, the MIBEL includes in the
short term: the day-ahead market (DAM) and a set of balancing, reserve and adjust-
ment markets (intraday markets); these markets are complemented with the medium-
and long-term mechanisms: a derivatives market and different kinds of bilateral con-
tracts (see Fig. 1). This structure is similar to other European electricity markets.
Generation companies can no longer optimize their short-term generation planning
decisions, i.e. their bidding strategies, without considering the relationship between
the short-term bid and the medium-term physical products. The MIBEL’s rules ex-
plain how to include some of this medium-term mechanisms into the DAM bid. In
this work, the medium-term mechanisms included are the national bilateral contracts
(BC) and the futures physical contracts (FC) matched at the derivatives market.

An FC is an exchange-traded derivative that represents agreements to buy/sell
some underlying asset in the future at a specified price (Hull 2002). The main char-
acteristics of an FC are the asset, the contract size, the delivery arrangements and
period, and the characteristics of the price. As it has been mentioned, MIBEL’s rules
(BOE 2006b) force the GenCo to include into the DAM bid process the settlement of
the energy from the derivative market products. The DAM’s operator demands every
GenCo to commit the quantity designed to each FC through the DAM bidding of a
given set of generation units. This commitment is done through the so-called price
acceptant offer, that is, a sale offer with a bid price of 0 €/MWh. Due to the algo-
rithm, the market operator uses to clear the DAM, all instrumental price offers will
be matched (i.e. accepted) in the clearing process, that is, this energy shall be pro-
duced and will be remunerated at the DAM spot price. BC, as defined in the MIBEL,
are agreements between a generation company and a qualified consumer to provide a
given amount of electrical energy at a stipulated price along a delivering period. The
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characteristics of the bilateral contracts (energy, price, delivering period) are negoti-
ated before the DAM and the energy that is destined to the BC cannot be included in
the DAM bid. Moreover, the MIBEL rules (BOE 2006a) force the DAM bid of each
unit to include the whole available energy not allocated to the BC contracts. Thus,
the GenCo has to take into account all these FC and BC obligations when finding the
optimal unit commitment and DAM bid.

In order to participate in the DAM, the GenCo must build an hourly bid com-
posed by pairs of energy and price. One of the main objectives of this work is to find
an analytical expression for this bid. There are some previous works that deal with
this problem. For instance, Conejo et al. (2002) propose an optimal stepwise bidding
strategy for a price-taker GenCo based on the units characteristics, the expected spot
price, and the optimal generation. Furthermore, Gountis and Bakirtzis (2004) con-
sider the approximation of stepwise bid curves by linear bid functions based on the
marginal costs and the optimal generation quantity. Also, Ni et al. (2004) use the con-
cept of price-power function, which is similar to the matched energy function used
in our work, to derive the optimal bid curves of a hydrothermal system. Nowak et
al. (2005) and Fleten and Kristoffersen (2007) also distinguish between the variables
representing the bid energy and those corresponding to the matched energy in the
case of a price-taker GenCo. Moreover, general considerations about optimal bidding
construction in electricity markets can be obtained in Anderson and Philpott (2002)
and Anderson and Xu (2002).

The second important objective is to include in the DAM bidding strategy the fu-
tures physical and the bilateral contracts. Some different approaches to the inclusion
of FC in the management of a GenCo can be found in the electricity market litera-
ture. Most of the works described forward contracts as the contracts with physical
settlement and futures contracts as the contracts with financial settlement. In the case
of BC, it is a classic topic that has been tackled from very different points of view
and there are numerous works that analyze their characteristics, their definition and
the behavior that a GenCo must have in front of them. For example, Dahlgren et
al. (2003) provide a state of the art on the analysis of different risk-hedging mech-
anisms, among them BCs. Bjorgan et al. (1999) describe in a theoretical framework
the integration of physical futures contracts into the risk management of a GenCo.
Also, Chen et al. (2004) analyze specifically the impact of physical and financial
contracts on the bidding strategies of a GenCo. They demonstrate that the GenCo
optimal bidding strategy will be affected differently, depending on which medium-
term product is considered. The relation between the optimal day-ahead bid and the
bilateral contracts was explicitly modeled by Heredia et al. (2010, 2011) through a
set of additional variables and linear constraints. Furthermore, Conejo et al. (2008)
optimize the forward physical contracts portfolio up to one year, taking into account
the day-ahead bidding. Moreover, on a medium-term horizon, Guan et al. (2008) op-
timize the generation asset allocation between different derivatives products and the
spot market, taking into account short-term operating constraints. Finally, Corchero
and Heredia (2011) present a model for the inclusion of the MIBEL futures physical
contract in the DAM bid which is solved with commercial MIQP solvers.

As stated above, we are dealing with a new situation, due to the MIBEL rules
for the inclusion of physical futures and bilateral contracts. Thus the main difference
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from the previous commented works is the definition of the optimal bid function
together with the coordination between day-ahead bidding strategies and physical
futures and bilateral contracts settlement. The optimization model presented in this
work improves the one presented by Corchero and Heredia (2011) in two ways. First,
the modelization of the electricity market are extended, with the consideration of the
bilateral contracts, both into the stochastic programming model and in the analytical
expression of the optimal bid. Second, contrary to the work of Corchero and Heredia
(2011) where commercial solvers were used, the optimization problems arising from
the new electricity market model are solved here with specialized algorithms.

The utility would need to predict the unknown price in order to design its bidding
strategies and to maximize its profits. Therefore, as the market price is a random vari-
able whose realization is only known once the market has been cleared, the programs
presented are based on stochastic techniques and the unknown market-price is mod-
eled by means of a scenario set of forecasted prices. The set of scenarios is used to
feed a two-stage stochastic optimization model that finds the optimal day-ahead bid
of a price-taker GenCo (an electrical utility without influence over the market prices)
operating in the MIBEL and holding bilateral and physical futures contracts.

On the other hand, the deterministic equivalent of this stochastic optimization
problem will be a mixed-integer quadratic programming problem (MIQP), which is
difficult to solve efficiently, particularly for large-scale instances. Hence, in order to
improve the efficiency in the solution of this kind of problems, the quadratic objec-
tive function of this problem will be approximated by a polyhedral outer approxima-
tion by means of perspective cuts (PC) as was suggested by Frangioni and Gentile
(2006), so that we can exploit the efficiency of general-purpose solvers for mixed-
integer linear problems (MILP); in this case we use CPLEX 12.1. An alternative to
the perspective cuts methodology is the Second-Order Cone Program reformulation
(SOCP; Tawarmalani and Sahinidis 2001), but for quadratic problems the perspective
cuts reformulation was reported to be more efficient (Frangioni and Gentile 2009). Fi-
nally, Branch-and-Fix Coordination (BFC) methods has also been used successfully
to solve two-stage stochastic mixed-integer linear problems (Escudero et al. 2009).
However, the BFC methods, together with their extension to quadratic problems, re-
quire a more complex implementation compared with the PC formulation, as this last
can be easily integrated within the CPLEX 12.1 branch and cut framework with the
help of the cutcallback procedure.

The main contributions of this paper are as follows:

– A new quadratic mixed-integer stochastic programming model for the inclusion of
the bilateral and physical futures contracts into the day-ahead bid that maximizes
the generation companies benefits.

– The derivation of the analytical expression of the optimal bid function that ensures
the maximization of the expected benefits of the GenCo considering both the BC
and FC obligations.

– A efficient numerical solution for this kind of electricity market problems applying
perspective cuts.

From the point of view of the GenCo, the business benefits of the proposed
methodology are twofold: first, the stochastic programming model and the derived
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optimal bid function provide the GenCos with a tool to maximize their long-run ex-
pected profits; second, the perspective cuts methodology reduces the running time in
such a way that real-life instances of the problem can be solved several times within
a working day, which is crucial for the applicability of the method.

The remainder of the paper is organized as follows. Section 2 presents the math-
ematical formulation of our day-ahead bid model. Section 3 includes the definition
of the optimal bid function for a price-taker GenCo with bilateral and physical fu-
tures contracts obligations. Section 4 puts forward the perspective cut methodology
and how it is applied to our model in order to be solved as a MILP. Finally, Sect. 5
shows the numerical results when solving the proposed models and Sect. 6 offers the
conclusions.

2 Day-ahead electricity market bid with futures and bilateral contracts model
(DAMB-FBC)

In this section the model (DAMB-FBC) is presented. It is a two-stage stochastic pro-
gramming problem that allows a price-taker generation company to optimally decide
the unit commitment of its thermal units, the economic dispatch of the bilateral and
futures contracts between the thermal units, and the optimal generation bid of the
committed units to the MIBEL’s day-ahead market.

The objective function of the model represents the expected profits of the GenCo
obtained with the participation in the day-ahead market. The constraints assure that
the MIBEL’s rules for the included market mechanisms are defined and that all the
operational restrictions of the units are respected. The main decision variables are
the ones that model the start-up and shut-down of the units, the quantity that will be
bid at instrumental price and the scheduled energy committed to the bilateral and the
futures contracts settlement.

2.1 Parameters

The (DAMB-FBC) model is built for a price-taker GenCo owning a set of thermal
generation units I that bid to the t ∈ T = {1,2, . . . ,24} hourly auctions of the
DAM.

The parameters for the ith thermal unit are:

– cb
i , cl

i and c
q
i , generation costs with constant, linear and quadratic coefficients (€,

€/MWh and €/MWh2, respectively);
– P i and P i , upper and lower bounds on the hourly generation (MWh);
– con

i and coff
i , start-up and shut-down costs (€);

– ton
i and toff

i , minimum operation and minimum idle time (h).

A base load physical futures contract j ∈ F is defined by:

– Uj , the set of generation units allowed to cover the FC j ;

– LF
j , the amount of energy (MWh) to be procured each interval of the delivery

period by the set Uj of generation units to cover contract j ;
– λF

j , the price of contract j (€/MWh).
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A base load bilateral contract k ∈ B is defined by:

– LB
k , the amount of energy (MWh) to be procured at each interval of the delivery

period by the set of available generation units to cover the BCs;
– λB

k , the price of the contract k (€/MWh).

The random variable λD
t , the clearing price of the t th hourly auction of the DAM, is

represented in the two-stage stochastic model by a set of scenarios s ∈ S , each one
with its associated clearing price for each DAM auction t ∈ T :

– λ
D,s
t clearing price for auction t at scenario s (€/MWh);

– P s probability of scenario s.

2.2 Variables

Those decision variables that do not depend on the scenarios are called first-stage (or
here-and-now) variables and in our formulation are, for each t ∈ T and i ∈ I :

– uti , the unit commitment (binary);
– cu

ti , cd
ti , the start-up/shut-down costs variables;

– qti , the instrumental price offer bid;
– ftij, the scheduled energy for FC j ∈ F ;
– bti , the scheduled energy for the pool of BCs.

Decision variables that can adopt different values depending on the scenario are
called second-stage variables and in our formulation are, for each t ∈ T , i ∈ I and
scenario s ∈ S :

– gs
ti , the total generation;

– ps
ti , the matched energy in the day-ahead market.

2.3 Constraints

2.3.1 Bilateral and futures contracts constraints

The coverage of both the physical futures contracts and the bilateral contracts must
be guaranteed. The constraints for each futures contract are:

∑

i∈Uj

ftij = LF
j t ∈ T , j ∈ F (1)

ftij ≥ 0 t ∈ T , j ∈ F , i ∈ I (2)

and the bilateral contract constraints are:
∑

i∈I

bti =
∑

k∈B

LB
k t ∈ T (3)

0 ≤ bti ≤ P iuti i ∈ I , t ∈ T (4)

where LB
k is the energy that has to be settled for contract k ∈ B.
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2.3.2 Day-ahead market and total generation constraints

As we have introduced, we will use the value of the matched energy in our formula-
tion. The matched energy is the accepted energy in the clearing process, that is, the
energy generated that will be rewarded at the clearing price. This matched energy is
uniquely determined by the sale bid and the clearing price and it will play a central
role in the presented model. See Sect. 3 for a formal definition of the bid function and
the matched energy function.

The MIBEL’s rules affecting the day-ahead market establish the relation between
the variables representing the matched energy ps

ti, the energy of the bilateral con-
tracts bti, the energy of the futures contracts ftij, the instrumental price offer bid qti,
and the commitment binary variables uti . The energies LF

j and LB
k must be integrated

in the MIBEL’s DAM bid observing the two following rules:

1. If generator i contributes with ftij MWh at period t to the coverage of the FC j ,
then the energy ftij must be offered to the pool for free (instrumental price bid).

2. If generator i contributes with bti MWh at period t to the coverage of any of the
BCs, then the remaining production capacity P i − bti must be bid to the DAM.

These rules can be included in the model by means of the following set of constraints:

ps
ti ≥ qti i ∈ I , t ∈ T , s ∈ S (5)

ps
ti ≤ P iuti − bti i ∈ I , t ∈ T , s ∈ S (6)

qti ≥ P iuti − bti i ∈ I , t ∈ T , s ∈ S (7)

qti ≥
∑

j |i∈Uj

ftij i ∈ I , t ∈ T , s ∈ S (8)

where:

• (5) and (6) ensure respectively that the matched energy ps
ti will be greater than the

instrumental price bid qti and less than the total available energy not allocated to
BC.

• (7) and (8) guarantee respectively that the instrumental price bid will be greater
than the minimum generation output of the unit and greater than the contribution
of the unit to the FC coverage.

Please note that (2) together with (8) assures that qti will be always non-negative. The
total generation level of a given unit i, gs

ti, is defined as the addition of the allocated
energy to the BC plus the matched energy of the DAM:

gs
ti = bti + ps

ti i ∈ I , t ∈ T , s ∈ S (9)

Contraints (1)–(9) assure that gs
ti will be always either zero or gs

ti ∈ [P i,P i], i.e.:

P iuti ≤ gs
ti ≤ P iuti i ∈ I , t ∈ T , s ∈ S (10)
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2.3.3 Unit commitment constraints

This section includes the formulation for the unit commitment of the thermal units
(Carrión and Arroyo 2006). The first two sets of constraints model the start-up and
shut-down costs and the next ones control minimum operation and idle time for each
unit. First, the start-up and shut-down costs are modeled:

cu
ti ≥ con

i [uti − u(t−1)i] i ∈ I , t ∈ T \ {1} (11)

cd
ti ≥ coff

i [u(t−1)i − uti] i ∈ I , t ∈ T \ {1} (12)

cu
ti, c

d
ti ≥ 0 i ∈ I , t ∈ T (13)

uti ∈ {0,1} i ∈ I , t ∈ T (14)

The initial state of each thermal unit i can be taken into account through the param-
eters Gi and Hi that represent, respectively, the number of the initial time periods
along which the thermal unit must remain on (Gi ) or off (Hi ). These conditions are
imposed by the following set of constraints:

Gi∑

j=1

(1 − uji) = 0 i ∈ I (15)

Hi∑

j=1

uji = 0 i ∈ I (16)

Finally, the minimum up and down time, ton
i and toff

i , are imposed, up to the periods
|T | − (ton

i − 1) and |T | − (toff
i − 1), through the following set of constraints:

t+ton
i −1∑

n=t

uin ≥ ton
i [uti − u(t−1)i] t = Gi + 1, . . . , |T | − ton

i + 1, i ∈ I (17)

t+toff
i −1∑

n=t

(1 − uni) ≥ toff
i [u(t−1)i − uti] t = Hi + 1, . . . , |T | − toff

i + 1, i ∈ I (18)

and for the last ton
i − 1 and toff

i − 1 time periods:

|T |∑

n=t

(
uni − [uti − u(t−1)i]

) ≥ 0 t = |T | − ton
i + 2, . . . , |T |, i ∈ I (19)

|T |∑

n=t

(
1 − uni − [u(t−1)i − uti]

) ≥ 0 t = |T | − toff
i + 2, . . . , |T |, i ∈ I (20)
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2.4 Objective function

The quadratic function associated to the expected profits of the GenCo after the par-
ticipation in the DAM is:

min EλD

[
C

(
u, cu, cd, g,p;λD

)]

=
∑

t∈T

∑

i∈I

(
cu

ti + cd
ti + cb

i uti (21a)

+
∑

s∈S

P s
[(

cl
ig

s
ti + c

q
i

(
gs

ti

)2) − λ
D,s
t ps

ti

])
(21b)

where

• (21a) is the on/off fixed cost of the unit commitment of the thermal units, deter-
ministic and independent of the realization of the random variable λ

D,s
t , and

• (21b) represents the expected value of the benefits from the DAM. The term be-
tween parentheses corresponds to the expression of the quadratic generation costs
associated with the total generation of the unit gs

ti while the last term, λ
D,s
t ps

ti,
computes the incomes from the DAM due to a value ps

ti of the matched energy.

Please note that the constant incomes from the BC and FC,

∑

k∈B

λBC
k LBC

k

and
∑

t∈T , j∈J

(
λFC

j − λ̄D
t

)
LFC

j

have been dropped from the objective function.

2.5 Model (DAMB-FBC)

The model defined so far can be represented as:

(DAMB-FBC)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min EλD [C(u, cu, cd, g,p;λD)]
s.t.

Equations (1)–(4) BC and FC constraints
Equations (5)–(9) DAM and total gen. constraints
Equations (11)–(20) Unit commitment constraints

Model (DAMB-FBC) is the optimization problem associated with the two-stage
stochastic programming problem with a set S of scenarios for the spot price λD

t ,
where t ∈ T . This optimization problem is a convex MIQP with a well defined global
optimal solution.
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3 Optimal bid

The (DAMB-FBC) model developed so far does not include an explicit representa-
tion of the bid function to be submitted to the day-ahead market. Instead of this, the
expression of the optimal bid function, that is, the bid function that must be submitted
by the GenCo in order to ensure the long-run optimal expected profits found by the
(DAMB-FBC) model, can be derived from the optimality conditions of this problem.
With this objective in mind, let us first introduce the formal definition of three basic
concepts: the bid function, the matched energy function and the optimal bid function.

Definition 1 (Bid function) A bid function for the thermal unit i is a non-decreasing
function defined over the interval [0,P i] that gives, for any feasible value of the bid
energy pb

ti, the asked price per MWh from the day-ahead market:

λb
ti : [0,P i] −→ �+ ∪ 0

pb
ti �−→ λb

ti(p
b
ti)

Subsequently, for a given bid function λb
ti, the matched energy associated with the

clearing price λD
t , pm

ti is defined through the matched energy function:

Definition 2 (Matched energy function) The matched energy associated with the bid
function λb

ti is defined as the maximum bid energy with an asked price not greater
than the clearing price λD

t , and is represented by the function:

pM
ti

(
λD

t

) = max
{
pb

ti ∈ [0,P i] | λb
ti

(
pb

ti

) ≤ λD
t

}
(22)

Definition 3 (Bid function’s optimality conditions) Let x∗ be an optimal solution of
the (DAMB-FBC) problem. The bid function λb∗

ti of a thermal unit i committed at
period t (i.e. uti = 1) is said to be optimal if

ps∗
ti = pM

ti

(
λ

D,s
t

)
s ∈ S (23)

that is, if the matched energy function (22), associated with every scenario’s clear-
ing price λ

D,s
t , coincides with ps∗

ti , the optimal value of the matched energy in the
solution of model (DAMB-FBC).

It is straightforward to note that if a GenCo submits a bid function satisfying (23)
systematically to the DAM, in the long run, the expected profit of the GenCo will be
maximized according to the (DAMB-FBC) problem. The objective of this section is
to prove the existence of such an optimal bid function λb∗

ti and to obtain its analytical
expression. In order to do so, the properties of the optimal solutions of the problem
(DAMB-FBC) will be studied in the next section and used to derive the expression
of the optimal matched energy ps∗

ti in terms of the optimal values of the instrumental
energy bid q∗

ti and the committed energy b∗
ti of the bilateral contracts.



94 C. Corchero et al.

3.1 Optimal matched energy

Let x∗′ = [u∗, cu∗, cd∗, g∗,p∗, q∗, f ∗, b∗]′ represent the optimal solution of the
(DAMB-FBC) problem. Fixing the unit commitment variables u∗, cu∗ and cd∗ to its
optimal value in the formulation of the (DAMB-FBC) problem, we get the following
continuous convex quadratic problem:

(DAMB-FBC∗):
min

∑

∀t∈T

∑

∀i∈I∗
ont

∑

s∈S

P s
[(

cl
i − λ

D,s
t

)
gs

ti + c
q
i

(
gs

ti

)2]

s.t.
∑

i|i∈Ij ∩I∗
ont

ftij = LF
j ∀t ∈ T , ∀j ∈ F

qti ≥
∑

j∈Fi

ftij ∀t ∈ T , ∀i ∈ I ∗
ont

∑

i|i∈I∗
ont

bti =
∑

j∈B

LB
j ∀t ∈ T

gs
ti = bti + ps

ti ∀t ∈ T , ∀i ∈ I ∗
ont

, ∀s ∈ S

ps
ti ≤ P i − bti ∀t ∈ T , ∀i ∈ I ∗

ont
, ∀s ∈ S

ps
ti ≥ qti ∀t ∈ T , ∀i ∈ I ∗

ont
, ∀s ∈ S

qti ≥ P i − bti ∀t ∈ T , ∀i ∈ I ∗
ont

bti ≤ P i ∀t ∈ T , ∀i ∈ I ∗
ont

bti ≥ 0 ∀t ∈ T , ∀i ∈ I ∗
ont

ftij ≥ 0 ∀t ∈ T , ∀i ∈ I ∗
ont

, ∀j ∈ F

with I ∗
ont

:= {i ∈ I | u∗
ti = 1}, i.e., the set of thermal units committed at time t . Of

course, the optimal solution of this continuous problem coincides with the optimal
value of the continuous variables of the original (DAMB-FBC) problem, g∗, p∗, q∗,
b∗ and f ∗. The (DAMB-FBC∗) problem is separable by intervals, being the problem
associated with the t th time interval, in standard form (Luenberger 2004):

(DAMB-FBC∗
t ):

min
∑

∀i∈I∗
ont

∑

s∈S

P s
[(

cl
i − λ

D,s
t

)
gs

ti + c
q
i

(
gs

ti

)2]

s.t.
∑

i|i∈Ij ∩I∗
ont

ftij − LF
j = 0 ∀j ∈ F

(
π1

tj

)
(24)

∑

j∈Fi

ftij − qti ≤ 0 ∀i ∈ I ∗
ont

(
μ1

ti

)
(25)
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∑

i|i∈I∗
ont

bti −
∑

j∈B

LB
j = 0

(
π2

t

)
(26)

gs
ti − bti − ps

ti = 0 ∀i ∈ I ∗
ont

, ∀s ∈ S
(
π

3,s
tj

)
(27)

ps
ti − P i + bti ≤ 0 ∀i ∈ I ∗

ont
, ∀s ∈ S

(
μ

2,s
ti

)
(28)

qti − ps
ti ≤ 0 ∀i ∈ I ∗

ont
, ∀s ∈ S

(
μ

3,s
ti

)
(29)

P i − bti − qti ≤ 0 ∀i ∈ I ∗
ont

(
μ4

ti

)
(30)

− qti ≤ 0 ∀i ∈ I ∗
ont

(
μ5

ti

)
(31)

bti − P i ≤ 0 ∀i ∈ I ∗
ont

(
μ6

ti

)
(32)

− bti ≤ 0 ∀i ∈ I ∗
ont

(
μ7

ti

)
(33)

− ftij ≤ 0 ∀i ∈ I ∗
ont

, ∀j ∈ F
(
μ8

tij

)
(34)

where π1, π2, μ1, π3, μ2, μ3, μ4, μ5, μ6, μ7 and μ8 are the Lagrange multipliers
associated with each constraint. The Karush–Kuhn–Tucker (KKT) conditions of the
(DAMB-FBC∗

t ) problem can be expressed as:

gs∗
ti = −

(
π

2,s
ti

2c
q
i P s

)
−

(
cl
i

2c
q
i

)
∀i ∈ I ∗

ont
, ∀s ∈ S (35)

π
2,s
ti = μ

2,s
ti − μ4

ti − P sλ
D,s
t ∀i ∈ I ∗

ont
, ∀s ∈ S (36)

μ
3,s
ti = μ1

ti + μ4
ti + μ5

ti ∀i ∈ I ∗
ont

, ∀s ∈ S (37)

μ8
tij =

∑

j∈F |i∈I∗
ont

π1
j +

∑

i∈I∗
ont

|j∈Fi

μ1
ti ∀i ∈ I ∗

ont
, ∀j ∈ F (38)

∑

s∈S

(
μ

2,s
ti − π

3,s
ti

) + ∣∣I ∗
ont

∣∣π2
ti + μ4

ti + μ6
ti − μ7

ti = 0 ∀i ∈ I ∗
ont

(39)

μ1
ti

(
∑

j∈Fi

f ∗
tij − q∗

ti

)
= 0 ∀i ∈ I ∗

ont
(40)

μ
2,s
ti

(
ps∗

ti + b∗
ti − P i

) = 0 ∀i ∈ I ∗
ont

, ∀s ∈ S (41)

μ
3,s
ti

(
q∗

ti − ps
ti

) = 0 ∀i ∈ I ∗
ont

, ∀s ∈ S (42)

μ4
ti

(
P i − b∗

ti − q∗
ti

) = 0 ∀i ∈ I ∗
ont

(43)

μ5
tiq

∗
ti = 0 ∀i ∈ I ∗

ont
(44)

μ6
ti

(
b∗

ti − P i

) = 0 ∀i ∈ I ∗
ont

(45)

μ7
tib

∗
ti = 0 ∀i ∈ I ∗

ont
(46)
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μ8
tijf

∗
tij = 0 ∀i ∈ I ∗

ont
, ∀j ∈ F (47)

μ1
ti,μ

4
ti,μ

5
ti,μ

6
ti,μ

7
ti ≥ 0 ∀i ∈ I ∗

ont
(48)

μ
2,s
ti ,μ

3,s
ti ≥ 0 ∀i ∈ I ∗

ont
, ∀s ∈ S (49)

μ8
tij ≥ 0 ∀i ∈ I ∗

ont
, ∀j ∈ F (50)

The next proposition comes directly from the KKT conditions and the convexity of
problem (DAMB-FBC).

Proposition 1 Let x∗′ = [u∗, cu∗, cd∗, g∗,p∗, q∗, f ∗, b∗]′ be an optimal solution of
the (DAMB-FBC) problem. Then, for any x∗ there exist Lagrange multipliers π1, π2,
π3, μ1, μ2, μ3, μ4, μ5, μ6, μ7 and μ8 such that the values of variables g∗, p∗,
q∗, f ∗ and b∗ satisfy the KKT system (35)–(50). Conversely, for any solution g∗, p∗,
q∗, f ∗ and b∗ of the KKT system (35)–(50) associated with I ∗

ont
, the correspondent

solution x∗ is optimal for the (DAMB-FBC) problem.

The fact that any solution of the (DAMB-FBC) problem must satisfy the system
(35)–(50) will be exploited to derive the expressions of the optimal matched energy
in next lemma.

Lemma 1 (Optimal matched energy, quadratic costs) Let x∗ be an optimal solution
of the (DAMB-FBC) problem. Then, for any unit i with quadratic convex genera-
tion costs (i.e. c

q
i > 0) committed at period t (i.e. i ∈ I ∗

ont
), the optimal value of the

matched energy ps∗
ti can be expressed as:

ps∗
ti = max

{
q∗

ti, ρ
s
ti

}
(51)

where ρs
ti is defined as:

ρs
ti =

⎧
⎪⎪⎨

⎪⎪⎩

[P i − b∗
ti]+ if θs

ti ≤ [P i − b∗
ti]+

θs
ti if [P i − b∗

ti]+ < θs
ti < (P i − b∗

ti)

(P i − b∗
ti) if θs

ti ≥ (P i − b∗
ti)

(52)

with

θs
ti = (λ

D,s
t − cl

i)

2c
q
i

− b∗
ti (53)

and
[
P i − b∗

ti

]+ = max
{
0,P i − b∗

ti

}

Proof As Proposition 1 establishes, any optimal solution of the (DAMB-FBC) prob-
lem must satisfy the KKT system (35)–(50). Additionally, (27)–(29) establish that
any optimal solution x∗ of the (DAMB-FBC) problem must satisfy:

P i − bti ≤ q∗
ti ≤ ps∗

ti ≤ P i − bti (54)
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As we want to see that the optimal value of the matched energy ps∗
ti is equivalent to

expression (51), we need to distinguish whether [P i − bti]+ is equal to (P i − bti)

or 0, i.e., whether bti < P i or not. Thus, to derive the relationship (51), the solution
of the KKT system will be analyzed in these two situations. For each one, we will
analyze five cases among which any optimal solution of the (DAMB-FBC) problem
could be classified according to (54):

(a) bti < P i ⇒ [P i − bti]+ = (P i − bti)

(a.1) (P i − bti) < q∗
ti = ps∗

ti = (P i − bti): This is a trivial case, because, by
definition (52), ρs

ti ≤ (P i − bit ) and ps∗
ti = max{q∗

ti = (P i − bti), ρ
s
ti ≤

(P i − bti)} = (P i − bti).
(a.2) (P i − bti) ≤ q∗

ti < ps∗
ti = (P i − bti): Condition (42) gives μ

3,s
ti = 0 that,

together with (37) and the non-negativity of the lagrange multipliers μ,
gives μ1

ti = μ4
ti = μ5

ti = 0 and then (36) gives π
2,s
ti = μ

2,s
ti − P sλ

D,s
t . This

result, combined with the definition gs∗
ti = ps∗

ti + b∗
ti and together with (35),

gives:

ps∗
ti =

[
λ

D,s
t − cl

i

2c
q
i

− b∗
ti

]
− μ

2,s
ti

2c
q
i P s

≤ θs
ti.

Then, as it is assumed that ps∗
ti = (P i − bti) and we have concluded that

θs
ti ≥ ps∗

ti , by definition (52), ρs
ti = (P i − bti). So, ps∗

ti = max{q∗
ti < (P i −

bti), ρ
s
ti = (P i − bti)} = (P i − bti).

(a.3) (P i − bti) ≤ q∗
ti < ps∗

ti < (P i − bti): On the one hand, conditions (37), (42)

and the non-negativity of the lagrange multipliers give μ
3,s
ti = μ1

ti = μ4
ti =

μ5
ti = 0. On the other hand, it is assumed that ps∗

ti < (P i − bti) and thus

condition (41) gives μ
2,s
ti = 0. These two results, combined with condition

(36), give π
2,s
ti = −P sλ

D,s
t , which together with (35) and (27) give:

ps∗
ti =

[
λ

D,s
t − cl

i

2c
q
i

− b∗
ti

]
= θs

ti.

Then, as it is assumed that (P i − bti) < ps∗
ti < (P i − bti), so is θs

ti and, by
definition (52), ρs

ti = θs
ti . Therefore ps∗

ti = max{q∗
ti < θs

ti, ρ
s
ti = θs

ti} = θs
ti .

(a.4) (P i − bti) < q∗
ti = ps∗

ti < (P i − bti): In this case the assumptions, together

with (36), (41) and (43), force μ
2,s
ti = μ4

ti = 0 and π
2,s
ti = −P sλ

D,s
t . Anal-

ogously to case (a.3), ps∗
ti = θs

ti = ρs
ti and, as it is assumed that q∗

ti = ps∗
ti ,

then ps∗
ti = max{q∗

ti = θs
ti, ρ

s
ti = θs

ti} = θs
ti .

(a.5) (P i − bti) = q∗
ti = ps∗

ti < (P i − bti): Condition (41) sets μ
2,s
ti = 0 which, by

taking into account condition (36), provides π
2,s
ti = −μ

4,s
ti − P sλ

D,s
t . This

result, combined with the definition gs∗
ti = ps∗

ti +b∗
ti, and together with (35),

gives:

ps∗
ti =

[(
λ

D,s
t − cl

i

2c
q
i

− b∗
ti

)
+ μ

4,s
ti

2c
q
i P s

]
≥ θs

ti.



98 C. Corchero et al.

Then, as it is assumed that ps∗
ti = (P i − bti) and then θs

ti ≤ (P i − bti), by
definition (52), ρs

ti = (P i −bti). So, ps∗
ti = max{q∗

ti = (P i −bti), ρ
s
ti = (P i −

bti)} = (P i − bti).
(b) bti ≥ P i ⇒ [P i − bti]+ = 0

(b.1) 0 < q∗
ti = ps∗

ti = (P i −bti): In this case, assumptions qti > 0 and qti > (P i −
bti), together with conditions (43) and (44), force μ4

ti = μ5
ti = 0. Then, (36)

gives π
2,s
ti = μ

2,s
ti − P sλ

D,s
t that, analogously to case (a.2), gives θs

ti ≥ ps∗,
and then θs

ti ≥ (P i − bti). Therefore, by definition (52), ρs
ti = (P i − bti) and

ps∗ = max{q∗
ti = (P i − bti), ρ

s
ti = (P i − bti)} = (P i − bti).

(b.2) 0 ≤ q∗
ti < ps∗

ti = (P i − bti): This case is equivalent to (a.2) because the key
is the assumption q∗

ti < ps∗
ti = (P i − bti). Consequently, ps∗

ti = max{q∗
ti <

(P i − bti), ρ
s
ti = (P i − bti)} = (P i − bti).

(b.3) 0 ≤ q∗
ti < ps∗

ti < (P i −bti): The reasoning for this case is equivalent to (a.3)
until the result ps∗

ti = θs
ti . Then as it is assumed that 0 < ps∗

ti < (P i − bti),
so is 0 < θs

ti < (P i − bti) and then, by definition (52), ρs
ti = θs

ti . Therefore,
ps∗

ti = max{q∗
ti < θs

ti, ρ
s
ti = θs

ti} = θs
ti .

(b.4) 0 < q∗
ti = ps∗

ti < (P i − bti): Analogously to (a.4), it is concluded that ps∗
ti =

θs
ti and, as it is assumed that 0 < ps∗

ti < (P i −bti), the situation is analogous
to case (b.3) and therefore ps∗

ti = max{q∗
ti < θs

ti, ρ
s
ti = θs

ti} = θs
ti .

(b.5) 0 = q∗
ti = ps∗

ti < (P i − bti): In this case, the assumption ps∗
ti < (P i − bti),

together with condition (41), gives that μ
2,s
ti = 0 and then condition (36)

gives π
2,s
ti = −μ

4,s
ti − P sλ

D,s
t . Following the same reasoning as in (a.5),

this result, combined with the definition gs∗
ti = ps∗

ti + b∗
ti and expression

(35), gives that ps∗
ti ≥ θs

ti . Then θs
ti ≤ 0 and, by definition (52), ρs

ti = 0.
Therefore, ps∗

ti = max{qti = 0, ρs
ti = 0} = 0.

�

Lemma 2 (Optimal matched energy, linear costs) Let x∗ be an optimal solution of
the (DAMB-FBC) problem. Then, for any unit i with linear generation costs (i.e.
c
q
i = 0) committed at period t (i.e. i ∈ I ∗

ont
), the optimal value of the matched energy

ps∗
ti can be expressed as:

ps∗
ti =

{
q∗

ti if λ
D,s
t ≤ cl

i

P i − b∗
ti if λ

D,s
t > cl

i

(55)

As in Lemma 1, the proof of Lemma 2 is based on the fact that any optimal solution
of the (DAMB-FBC) problem must satisfy the KKT system (35)–(50).

3.2 Optimal bid function

The next theorem develops the expression of the optimal bid function associated with
the (DAMB-FBC) problem, that is, the bid function satisfying the optimality condi-
tion (23).
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Fig. 2 Optimal bid function λb∗
ti (pb

ti) when (a) b∗
ti < Pi , (b) b∗

ti > Pi

Theorem 1 (Optimal bid function) Let x∗′ = [u∗, cu∗, cd∗, g∗,p∗, q∗, f ∗, b∗]′ be an
optimal solution of the (DAMB-FBC) problem and i be any thermal unit committed
in period t of the optimal solution (i.e. i ∈ I ∗

ont
). Then, for a unit i with quadratic

convex generation costs, the bid function:

λb∗
ti

(
pb

ti

) =
{

0 if pb
ti ≤ q∗

ti

2c
q
i (pb

ti + b∗
ti) + cl

i if q∗
ti < pb

ti ≤ (P i − b∗
ti)

(56)

is optimal, i.e., it satisfies ps∗
ti = pM

ti (λ
D,s
t ), s ∈ S .

Proof First, we consider the case where c
q
i > 0. To illustrate this proof, the expres-

sion (56) has been represented graphically in Fig. 2 for two cases: the first one, when
b∗

ti < P i (Fig. 2(a)) and therefore q∗
ti ≥ P i − b∗

ti; and the second one, when b∗
ti > P i

(Fig. 2(b)) and therefore q∗
ti ≥ 0. It is easy to see that the matched energy function

associated with the bid function λb∗
ti at scenario s (i.e. λD

t = λ
D,s
t ) is for both cases

(Fig. 3):

pM∗
ti

(
λ

D,s
t

) =

⎧
⎪⎪⎨

⎪⎪⎩

q∗
ti if λ

D,s
t ≤ λti

θs
ti if λti < λ

D,s
t ≤ λti

P i − b∗
ti if λ

D,s
t > λti

(57)

where the threshold prices λti and λti are defined as:

λti = 2c
q
i

(
q∗

ti + b∗
ti

) + cl
i; λti = 2c

q
i P i + cl

i (58)

and θs
ti is the parameter defined in (53). Thus, to demonstrate the optimality of bid

function (57), it is sufficient to prove that pM∗
ti (λ

D,s
t ) = ps∗

ti = max{q∗
ti, ρ

s
ti}. We verify

this equivalence for the three cases of expression (57) (Fig. 3):

(a) If, for some k ∈ S , λ
D,k
t ≤ λti then θk

ti ≤ q∗
ti ≤ P i − bti and, by definition (52),

ρk
ti = max{θk

ti , [P i − b∗
ti]+}, which will always be less than or equal to q∗

ti . Then,
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Fig. 3 Associated matched
energy function p

M,s∗
ti

we can write that pk∗
ti = max{q∗

ti, ρ
k
ti} = q∗

ti and, as expression (57) gives pM∗
ti =

q∗
ti , we can conclude that pM∗

ti (λ
D,k
t ) = pk∗

ti .

(b) If, for some l ∈ S , λti < λ
D,l
t ≤ λti then [P i − bti]+ ≤ q∗

ti < θl
ti ≤ (P i − b∗

ti)

and, by definition (52) ρl
ti = θ l

ti. Then, pl∗
ti = max{q∗

ti, ρ
b,l
ti = θ l

ti ≥ q∗
ti} = θ l

ti. As

expression (57) gives pM∗
ti (λ

D,l
t ) = θ l

ti, we can conclude that pM∗
ti (λ

D,l
t ) = pl∗

ti .

(c) If, for some r ∈ S , λ
D,r
t > λti then θr

ti > (P i − b∗
ti) which, together with defini-

tion (52), sets ρr
ti = (P i − b∗

ti) and thus pr∗
ti = max{q∗

ti, ρ
r
ti = (P i − b∗

ti) > q∗
ti} =

(P i − b∗
ti). As expression (57) gives pM∗

ti (λ
D,r
t ) = (P i − b∗

ti), we can conclude

that pM∗
ti (λ

D,r
t ) = pr∗

ti .

Note that if c
q
i = 0 (i.e., a thermal unit with linear generations costs), the bid func-

tion (56) reduces to:

λb∗
ti

(
pb

ti

) =
{

0 if pb
ti ≤ q∗

ti

cl
i if q∗

ti < pb
ti ≤ (P i − b∗

ti)

and the optimal matched energy function associated with this optimal bid function is:

pM∗
ti

(
λD

t

) =
{

q∗
ti if λD

t ≤ cl
i

P i − b∗
ti if λD

t > cl
i

(59)

It is straightforward to see that this expression (59) is equivalent to expression (55)
and then in this case pM∗

ti (λ
D,s
t ) ≡ ps∗

ti also applies. �
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4 Efficient solution of the (DAMB-FBC) problem: the perspective cuts
formulation

As stated in Sect. 2, problem (DAMB-FBC) is a mixed-integer quadratic program-
ming problem. These kinds of optimization problems can be solved with the help of
commercial optimization software (i.e. CPLEX 2009) through the use of nonlinear
branch and cut algorithms, at the expense of high computational execution times.
The perspective cut formulation is an alternative to the nonlinear branch and cut that
was successfully applied in the past (Frangioni and Gentile 2006) to solve some unit
commitment problems. Perspective cuts, a method specially conceived to deal with
quadratic objective function over semi-continuous domains, is a sort of outer approx-
imation to the quadratic objective function built through special supporting hyper-
planes related with the perspective function, the so-called perspective cuts. To see
how this outer approximation is developed, let us consider the objective function
(21a)–(21b) that, taken into account that the sum of the probabilities P s is one, can
be expressed in the following way:

EλD

[
C

(
u, cu, cd, g,p;λD

)] =
∑

t∈T

∑

i∈I

(
cu

ti + cd
ti +

∑

s∈S

P s
[
f

(
gs

ti, uti
) − λ

D,s
t ps

ti

]
)

(60)
with:

f
(
gs

ti, uti
) = c

q
i

(
gs

ti

)2 + cl
ig

s
ti + cb

i uti,

In the rest of the section we drop the indices for notational simplicity. An approach
to properly linearize the quadratic function

f (g,u) = cqg2 + clg + cbu (61)

is to use the outer approximation based on ideas developed by Frangioni and Gentile
(2006). Note that the domain of the function (61), defined by (10) and the binary
nature of variable u, can be expressed as D = (0,0) ∪ ([P ,P ] × 1), and that, conse-
quently, function f (g,u) can be rewritten as (see Fig. 4):

f (g,u) =
{

0, if u = 0

f (g) = cqg2 + clg + cb, if u = 1.

Moreover, when we use the branch and cut methods in order to find lower bounds
for the optimal value, we solve continuous relaxations of the mixed-integer linear
problem, i.e. with u ∈ [0,1]. Therefore, a natural question is whether we can obtain
a convex function with a tighter epigraph for f (g,u), which can be used to calculate
those lower bounds. This leads us to take into account the convex envelope of f (g,u)

over the disconnected domain D . This is the convex function with an epigraph equal
to the convex envelope of the epigraph of f (g,u), which corresponds to the cone
generated by epi(f (g,1)) and (0,0,0)) (see Fig. 4). As is shown in Frangioni and
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Fig. 4 Graphic of the function
h(g,u), together with the
perspective cut over (ĝ,1)

Gentile (2006), this convex envelope is:

h(g,u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if (g,u) = (0,0)

cqg2

u
+ clg + cbu,

{
if uP ≤ g ≤ uP ,

for u ∈ (0,1]

}

+∞, otherwise.

(62)

This function is the perspective-function f̆ (g,u) = uf (g/u) of f (g), for u limited
to be in (0,1], which is convex if f (g) is convex, see Hiriart-Urruty and Lemaréchal
(1993). In addition, to show that h is a tighter objective function than f for the con-
tinuous relaxation, it is enough to compare (61) and (62) for 0 < u ≤ 1. Note that
the definition of h(0,0) is redundant, as if P is the domain of h, i.e. the pyramid
having a base [P ,P ] × {1} and vertex [0,0], then for all sequences {gk,uk} ⊂ P
that converge to [0,0], we have

0 ≤ ukf

(
gk

uk

)
≤ uk

(
cb + cq

(
gk

uk

)2

+ cl

(
gk

uk

))
≤ uk

(
sup

g∈[P ,P ]
f (g)

)

and, therefore, limk→∞ ukf (gk/uk) = 0, as f is convex and finite on the com-
pact [P ,P ].

Also, for g ∈ [P ,P ] and u ∈ [0,1] it can be shown that the maximum value

of h(g,u) − f (g,u) over the domain P of both functions is cqP
2
/4, attained at

(P /2,1/2), i.e. h penalizes the highest non-integrality in the domain. Nevertheless,
due to the strong nonlinearity and the non-differentiability of h(g,u) at (0,0), it is not
practical to use it as the objective function instead of f (g,u). A way of overcoming
this difficulty is to replace h(g,u) with the pointwise supremum of affine functions,
which is possible because of the convexity of h.

The subgradient inequality for h over (ĝ, û) is given by

h(g,u) ≥ h(ĝ, û) + (s1, s2)
(
(g,u) − (ĝ, û)

)
, (63)

where (s1, s2) ∈ ∂h(ĝ, û). Then, all (v, g,u) in the epigraph of h must verify this
inequality for all (ĝ, û) ∈ P . In order to characterize the epigraph of h, we notice,



A new optimal electricity market bid model 103

first, that every element (g,u) in P belongs to the line g = ĝu for a given ĝ ∈ [P ,P ]
and, second, that the subgradient (s1, s2) is constant along this line, and equal to
(s1, s2) = (2cq ĝ + cl, cb − cq ĝ2), making only necessary to consider the subgradient
inequality (63) over the points (ĝ,1). Therefore, the epigraph of h is defined by the
subset of:

{
(v, g,u) | uP ≤ g ≤ uP and 0 ≤ u ≤ 1

}

that is the solution of the infinite linear-inequality system:

v ≥ (
2cq ĝ + cl

)
g + (

cb − cq ĝ2)u, taking ĝ ∈ [P ,P ] (64)

For each ĝ ∈ [P ,P ] we have an inequality so-called a perspective cut (PC), which
is the unique supporting hyperplane to the epigraph of the function passing by (0,0)

and (ĝ,1) (see Fig. 2).

4.1 PCF formulation of problem (DAMB-FBC)

PC formulation (PCF) consists of using the perspective cuts (64) to construct an
objective function that is the pointwise maximum of the linear functions of these
hyperplanes, i.e. it is a polyhedral outer approximation of the function h over the
domain P . A more detailed explanation can be found in Frangioni and Gentile
(2006). In this section we will outline how this PCF is used to solve efficiently
problem (DAMB-FBC). In the PCF of problem (DAMB-FBC) the quadratic func-
tion f (gs

ti, uti) in (60) is replaced by its perspective cut approximation vs
ti:

min EλD

[
Ĉ

(
u, cu, cd, g,p, v;λD

)]

=
∑

t∈T

∑

i∈I

(
cu

ti + cd
ti +

∑

s∈S

P s
[
vs

ti − λ
D,s
t ps

ti

]
)

(65)

where, for each t , i, and s, vs
ti must satisfy a finite subset of the inequality (64) defined

over the elements of a given finite discrete domain C s
ti ⊂ [P i,P i], that is:

vs
ti ≥ (

2c
q
i ĝ + cl

i

)
gs

ti +
(
cb
i − c

q
i ĝ2)uti ĝ ∈ C s

ti , i ∈ I , t ∈ T , s ∈ S (66)

As a result of this formulation, the problem to be solved in the PCF of model (DAMB-
FBC) is:

(DAMB-FBC-PCF)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min EλD [Ĉ(u, cu, cd, g,p, v;λD)]
s.t.

Equations (1)–(4) BC and FC constraints
Equations (5)–(9) DAM and total gen. constraints
Equations (11)–(20) Unit commitment constraints
Equation (66) Perspective cuts

which is a MILP that can be solved with a branch and cut algorithm. The set of
constraints (66) (or, equivalently, the elements in C s

ti ) are defined dynamically as the
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branch and cut algorithm proceeds, in the following manner. At the first iteration of
the algorithm, the constraints (66) include, for each s, i and t , just the two inequalities
defined over the extreme values of the interval [P i,P i], that is C s,1

ti = {P i,P i}. At
every subsequent iteration k, once a solution (v∗, g∗, u∗) to the relaxed subproblem
is found, if u∗

ti > 0 then new inequalities (64) are generated over ĝ = g
s,∗
ti /u∗

ti and, if
violated by the current solution (v

s,∗
ti , g

s,∗
ti , u∗

ti), they are added to the set of constraints

(66), i.e. C s,k+1
ti := C s,k

ti ∪ {ĝ}.

5 Numerical tests

In this section we present some results of the numerical tests done in order to evalu-
ate the computational advantages of these optimization techniques for the presented
model. Table 1 shows the main characteristics of the set of instances of the (DAMB-
FBC) problem used to evaluate the performance of the perspective cuts method.
These instances are defined based on real data of a GenCo operating in the MIBEL.
These instances have a pool of bilateral contracts with 300 MWh committed for each
interval, a set of 3 futures contracts with 700 MWh committed, 9 thermal units (see
Table 2 for the units’ operational characteristics) and 24 hourly intervals. The differ-
ence between the set of problems presented is the scenario prices and probabilities
used: they are generated with different statistical methods. In Table 1, |F |, |S |, |I |
and |T | are the cardinality of the corresponding sets. |B| means the number of bilat-
eral contracts, # var is the number of variables in problem (DAMB-FBC), # varPCF is
the number of variables in problem (DAMB-FBC) for the PC formulation, # bin is the
number of binary variables and # constr represents the number of constraints in prob-
lem (DAMB-FBC). Note that, if we use the PC formulation, the number of variables
increases in m = |T | · |I | · |S |, due to the addition of variables v. Moreover, the
number of constraints also increases due to the presence of the perspective cuts (66):
initially there are 2 · m extra constraints and, at the termination of the branch and cut
algorithm, there is a variable number of perspective cuts dynamically added, which
is stated in column # PC.

In our numerical tests we have used CPLEX 12.1, which allows to input directly
the (DAMB-FBC) problem as a mixed-integer linearly constrained quadratic pro-
gram and solve it. Moreover, for PCF the dynamic generation of PCs can be easily
implemented by means of the cutcallback procedure. Thus, apart from the basic
formulation, the same sophisticated tools (valid inequalities, branching rules, etc.) are
used for both formulations: MIQP and PCF. In both cases we have set the default gap
(0.01%) and have used only one CPU thread.

A few differences remain: e.g. the need for invoking the callback functions dis-
ables the more efficient dynamic search of CPLEX 12.1 for adding cuts, whereas
this skill is used when the (DAMB-FBC) problem is solved by CPLEX as a MIQP.
Apart from these, the same tools are used with both formulations, allowing a fair
comparison.

The tests have been performed on HP with Intel(R) Core(TM)2 Quad CPU Q8300
2.50 GHz 4 CPU under SUSE Linux Enterprise Desktop 11 (x86_64).

In Table 1, tMIQP points out the CPU-times (in seconds) used by CPLEX to solve
these problems by MIQP techniques; under tPCF we have the time used by CPLEX
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Table 1 Test problems, CPU times and number of PC

Prob. |S | # var # varPCF # constr # PC tMIQP tPCF effi

A5 5 4320 5520 9396 4797 7.19 2.59 2.78

A6 6 4800 6240 10596 6189 16.94 3.56 4.76

A8 8 5760 7680 12996 9613 38.38 7.60 5.06

A10 10 6720 9120 15396 11212 52.83 9.30 5.68

A12 12 7680 10560 17796 22956 99.59 23.47 4.24

A14 14 8640 12000 20196 27359 142.76 32.26 4.43

A16 16 9600 13440 22596 15471 210.82 22.61 9.32

A18 18 10560 14880 24996 17920 239.14 30.76 7.77

A20 20 11520 16320 27396 20055 369.15 36.96 9.99

B10 10 6720 9120 15396 8548 333.80 7.45 44.81

B20 20 11520 16320 27396 16700 786.99 26.04 30.22

B30 30 16320 23520 39396 24184 1290.93 57.01 22.64

B40 40 21120 30720 51396 60185 2280.04 257.54 8.85

B50 50 25920 37920 63396 50196 3362.26 249.64 13.47

B61 61 31200 45840 76596 58309 3659.10 334.55 10.94

C75 75 37920 55920 93396 68276 6651.98 544.83 12.21

C100 100 49920 73920 123396 117437 11577.5 2046.25 5.66

C125 125 61920 91920 153396 144800 11336.8 3358.92 3.32

Notes: |F | = |B| = 3, |I | = 10, |T | = 24, # bin = 240

Table 2 Operational characteristics of the thermal units used in the study

i cb
i

€
cl
i

€/MWh

c
q
i

€/MWh2
P i
MWh

P i

MWh
con
i

€
coff
i

€
t
on/off
i

h

1 151.08 40.37 0.015 160.0 350.0 412.80 412.80 3

2 554.21 36.50 0.023 250.0 563.2 803.75 803.75 3

3 97.56 43.88 0.000 80.0 284.2 244.80 244.80 3

4 327.02 28.85 0.036 160.0 370.7 438.40 438.40 3

5 64.97 45.80 0.000 30.0 65.0 100.20 100.20 3

6 366.08 −13.72 0.274 60.0 166.4 188.40 188.40 3

7 197.93 36.91 0.020 160.0 364.1 419.20 419.20 3

8 66.46 55.74 0.000 110.0 313.6 1298.88 1298.88 3

9 372.14 105.08 0.000 90.0 350.0 1315.44 1315.44 3

with PC formulation and MILP techniques; effi = tMIQP/tPCF gives us the PCF effi-
ciency with regard to MIQP. As can be observed, in the solution of these (DAMB-
FBC) problems CPLEX with PCF has been significantly more efficient than without
it, as is suggested in Frangioni and Gentile (2006), in fact the average of the efficiency
without the extreme values is 9.91 and the maximum efficiency, 44.81, is obtained for
the problem “B10”. Moreover, PCF not only converges faster than the MIQP coun-
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Fig. 5 Bidding curve for (a) unit 1 at interval 23 and (b) unit 6 at interval 18

terpart, but also gives the optimal solution to the original quadratic problem (DAMB-
FBC): the relative discrepancy between the actual quadratic objective function (60)
computed over the PCF-MILP and the MIQP solutions is around 10−8 in all the cases
shown in Table 1, which is absolutely negligible. In summary, the PCF formulation
has been able to find the optimal solution of all the (DAMB-FBC) instances in 1/10
of the execution times of the MIQP formulation, on the average. This reduction of the
execution time which, for the largest case C125 means the change from more than
3 hours to less than 1 hour on a standard personal computer, is of special value for the
electrical utilities because this problem usually has to be solved several times within
the same working day.

Let us now illustrate different situations concerning the bid strategy. We use the
problem C75 and we represent some optimal bid curves (Fig. 5). In Fig. 5(a), the
optimal bid curve is shown for thermal unit 1 at interval 23. It can be seen that, in this
case, b∗

23,1 = 80 is lower than the minimum capacity. Thus, the instrumental price
bid must be at least the minimum capacity minus this quantity that is committed
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to BCs. In this case, the instrumental price bid quantity q∗
23,1 = 179. In the other

case, Fig. 5(b), the optimal bid curve of unit 6 at interval 18 is represented. Contrary
to the previous case, the quantity committed to bilateral contracts is greater than
the minimum capacity (b∗

18,6 = 86); therefore, the instrumental price bid quantity
is forced, by the coverage of the FCs, to be greater than 0.

6 Conclusion

In this work we have presented a mixed-integer quadratic stochastic programming
model for the integration of the physical futures and classical bilateral contracts into
the day-ahead bidding problem of a GenCo operating in the MIBEL. The rules for
the integration of the BCs and FCs in the DAM process have been described and
the analytical expression of the optimal bid function that maximizes the expected
long-run benefits of the GenCo was obtained. The optimal solution of our model
determines not only the optimal bid to the DAM but also the optimal operation of
the units (unit commitment), and the optimal way to procure both the futures and
bilateral contracts.

There also has been studied and presented an implementation of the perspective
cut methodology in the solution of decision problems under uncertainty. We have
applied this methodology to the model for day-ahead market bid with bilateral and
futures contracts. The computational experience shows that if we use a commercial
software as CPLEX together with these techniques to solve (DAMB-FBC) problems,
an average speed-up factor of ten is obtained with respect to the running time of stan-
dard MIQP branch and cut methods. Therefore, these results show that appropriate
formulations of (DAMB-FBC) problems can be used to find good-quality solutions
in relatively short time by using general-purpose optimization software. The com-
putational tests were performed using real data on the thermal units of a price-taker
producer operating in the MIBEL.
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