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Abstract In this paper, a multi-period logistics network redesign problem arising in
the context of strategic supply chain planning is studied. Several aspects of practical
relevance are captured, namely, multiple echelons with different types of facilities,
product flows between facilities in the same echelon, direct shipments to customers,
and facility relocation. A two-phase heuristic approach is proposed to obtain high-
quality feasible solutions to the problem, which is initially modeled as a large-scale
mixed-integer linear program. In the first phase of the heuristic, a linear programming
rounding strategy is applied to find initial values for the binary location variables. The
second phase of the heuristic uses local search to correct the initial variable choices
when a feasible solution is not identified, or to improve the initial feasible solution
when its quality does not meet given criteria. The results of a computational study are
reported for randomly generated instances comprising a variety of logistics networks.
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1 Introduction

Over the past decades, real-world production and distribution networks have become
increasingly complex logistics systems comprising multiple facilities linked by trans-
portation channels. Strategic logistics network design is concerned with long-term de-
cisions regarding the configuration of the supply chain network. Typically, it involves
selecting sites for the location of new facilities, deciding on their number and size,
and choosing distribution channels as well as transportation modes to meet customer
demands. Clearly, these decisions have a major impact on the long-term profitabil-
ity and competitive advantage of a company. Determinant elements include customer
service levels, flexibility to deal with potential pitfalls (e.g., equipment breakdown)
and shipment reliability. According to Harrison (2004), up to 80% of the total cost
of a product is driven by decisions made during the design phase of the logistics
network.

Network design decisions are mostly triggered by changing market conditions
rather than by the need to create a new supply chain from scratch (see Simchi-Levi
et al. 2005). Therefore, in practice a company considers changing the structure of its
distribution network from time to time. Due to the globalization of the economy and
advances in information technology, redesign processes have become more frequent
and their efficiency more important. This has been experienced, for example, by many
European companies as a result of the economic transition that started in Eastern Eu-
rope during the last decade and the successive enlargement of the European Union.
The impact of these changes has been noticed, for example, on markets, freight rates,
transport infrastructures, and road networks. Expansion opportunities to new markets
have appeared, thereby giving rise to the need to redesign existing supply chains.
Usually, expansion plans take the form of opening new facilities in new geographical
areas either because of the lack of room for capacity increase at the present locations
or to be closer to new markets. In other cases, fierce competition has forced compa-
nies to relocate their facilities to areas with more favorable economic conditions (e.g.,
lower labor costs). Finally, mergers, acquisitions, and strategic alliances often moti-
vate network design studies for supply chain consolidation. Hammami et al. (2008)
provide a detailed discussion of the factors leading to supply chain reconfiguration,
in particular in a delocalization context.

The contribution of this paper is to propose an efficient heuristic approach to solve
a comprehensive network redesign problem. Given a supply chain network with the
general structure depicted in Fig. 1, a multi-echelon, capacitated facility relocation
problem is considered. It is assumed that a number of customer zones have known
demands for multiple commodities over a multi-period horizon. In addition, several
potential sites are available for establishing new facilities. The operation of the latter
is triggered by moving capacity from existing facilities to new sites over the planning
horizon. This enables modeling real-world situations in which the operating activity
of a new facility gradually increases until it reaches a desired level. At the same time,
the activity level of an existing facility progressively decreases until the facility is
eventually removed from service. Capacity transfers lead thus to facility relocation
and are financed by a limited budget, which also pays for establishing new facilities
and closing existing facilities.
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Fig. 1 A generic supply chain network

The main strategic decisions to be taken are outlined as follows: (i) Which existing
facilities should have their capacities partially or totally transferred and in which
periods should relocation take place? (ii) Which potential facility sites should be
selected to receive the transferred capacities and when should they start operating?
(iii) How should commodities flow through the network and, in particular, from which
facilities should customer demands be satisfied in each period? (iv) Which facilities
should hold stock? How large should stock levels be in each period? (v) How should
the available budget be invested? How much money should be retained in each period
to gain interest and be used in future investments?

The objective is to redesign the distribution network so as to minimize the sum
of variable and fixed costs associated with the above location and supply chain deci-
sions.

Melo et al. (2006) presented a comprehensive modeling framework for this prob-
lem and showed that medium-sized instances can be solved to optimality with com-
mercial, off-the-shelf (COTS) optimization software within a reasonable time limit.
Nevertheless, it is clear that this approach fails when supply chain redesign prob-
lems of realistic size need to be solved. Furthermore, most companies need an
optimization-based decision support tool able to tackle the complexity and the dy-
namic nature of their supply chains. At the same time, such tools should allow
rapid prototyping and the evaluation of alternative network configurations. In other
words, companies need analytical tools with re-optimization capabilities for perform-
ing “what-if” analyses in a reasonable amount of computing time. This calls for the
development of heuristic methods with a good trade-off between solution quality and
computational effort.

The main contribution of this paper is to propose a new heuristic approach that
explores the structure of one of the mixed-integer linear programming (MILP) for-
mulations in Melo et al. (2006) to obtain high-quality feasible solutions. The new
approach consists of two distinct phases. In the first phase, a linear programming
rounding procedure is applied to obtain an initial solution to the problem, which may
be infeasible. The second phase is a repair and improvement procedure for correcting
infeasibilities (in case they exist) and to improve the initial solution.
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The general principle behind a rounding approach is rather simple. However, of-
ten, the application of a basic principle to a concrete problem is far from being
straightforward, as it is the case with the problem addressed in this paper. Our con-
tribution aims at showing how a rounding procedure can be successfully applied to
a problem comprising the complex features we consider in this paper. Additionally,
a rounding procedure is not always likely to be successful. Since it is important to
understand when such an approach can be effectively applied, we pay special at-
tention to this issue. A third significant aspect that we consider is the usefulness of
allowing the search path to include infeasible solutions and the ability to repair them.
One important feature of our methodology is precisely the repair mechanism whose
efficiency in removing infeasibilities is supported by the computational experiments
performed. Finally, the heuristic procedure we propose is modular in the sense that
the construction phase or the repair/improvement phase can be replaced by some
other appropriate procedure.

The remainder of the paper is organized as follows. Section 2 provides a critical
review of multi-period network design models in a supply chain management (SCM)
context. For the sake of completeness, Sect. 3 presents one of the MILP formula-
tions introduced in Melo et al. (2006) that renders the general setting for the heuristic
development. Section 4 is dedicated to the new solution methodology which com-
bines a linear programming rounding based strategy with local search. The results of
our computational study are reported in Sect. 5. Finally, in Sect. 6 conclusions and
directions for further research are given.

2 Literature review

In the last few years, the interaction between facility location and supply chain de-
sign has received increasing attention as shown by the extensive survey by Melo et
al. (2009a). Driven by the need to model real-world problems, researchers have at-
tempted to go beyond the classic facility location setting by considering key features
to SCM such as supplier selection, production planning, inventory management, dis-
tribution, routing and other logistics activities (see Daskin et al. 2005). Moreover,
globalization trends have also strongly impacted the development of new facility lo-
cation models as described by Goetschalckx et al. (2002) and Meixell and Gargeya
(2005).

Facility location decisions are inherently strategic and long-term in nature due to
the large capital outlays that are involved. Consequently, the timing of facility loca-
tions, expansions and relocations over an extended time horizon is of major impor-
tance to decision-makers. In contrast to the static case, significantly fewer papers have
been published on dynamic (i.e., multi-period) facility location problems. Within this
problem class, the focus has been mostly given to rather simple networks comprising
a single echelon of facilities and a single product, thus disregarding the supply chain
context (see the recent review by Melo et al. 2009a and references therein). However,
many real-world supply chain networks exhibit a multi-layer structure with at least
two facility echelons, in addition to the customer layer. Moreover, the flow of multi-
ple commodities through the network is often conveyed by an elaborated distribution
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system, linking facilities belonging to the same layer as well as to different layers
(see Fig. 1).

A few contributions have appeared in the last decade that capture relevant as-
pects of supply chain network design in a multi-period context. Hinojosa et al. (2000,
2008) address a two-echelon multi-commodity network redesign problem. An initial
network configuration is considered that gradually changes over a multi-period hori-
zon through opening new facilities and closing existing ones. A lower bound on the
number of facilities operating in each location layer is imposed both in the first and
the last period of the planning horizon. The initial model developed in Hinojosa et al.
(2000) was later extended in Hinojosa et al. (2008) through the integration of strate-
gic inventory decisions. Canel et al. (2001) partly capture this supply chain feature
in a two-echelon, capacitated, multi-commodity facility location model by allowing
customers to be directly delivered from manufacturing plants as well as from inter-
mediate level facilities. Location decisions are confined to the latter facilities which
may be opened and closed more than once during the planning horizon. This feature
is more suited to new facilities that are rented instead of being built, since in that
case lower fixed setup costs are incurred. Ambrosino and Scutellà (2005) broaden the
scope of the previous models (Canel et al. 2001; Hinojosa et al. 2000, 2008) through a
three-echelon model that integrates strategic and operational decisions. Location and
inventory decisions concern intermediate echelons comprising central and regional
depots, while the operational aspect involves the design of vehicle routes to service
customer demands.

In the context of reverse logistics, Srivastava (2008) addresses the problem of
locating new collection and rework centers for product recovery over a given time
horizon. Ko and Evans (2007) also study the problem of expanding an existing multi-
commodity network through the location of new warehouses and repair centers. The
former facilities receive end products from manufacturing plants and distribute them
to end users, while the latter facilities distribute products returned by customers to
the plants. In contrast to Srivastava (2008), location and supply chain decisions are
integrated in a single model. Moreover, a nonlinear cost minimization objective for
network reconfiguration is considered. This is a feature that has received little at-
tention in the literature since it adds further complexity. The setup of new facilities
is phased during the time horizon by allowing their operating activity to gradually
increase through capacity expansion, which is a feature that is seldom considered
by classic location models (see also the critical review by Julka et al. 2007). Thanh
et al. (2008a) incorporate this and other relevant supply chain features in a multi-
period model. In addition to the usual facility location and transportation decisions,
the authors include decisions regarding supplier selection, multi-stage production
planning, inventory management, and capacity operating levels. Furthermore, in a
three-echelon network, materials flow downstream not only between adjacent layers
but also across facilities in different layers.

The models developed by Vila et al. (2006) and Wilhelm et al. (2005) have a
broader scope than the one in Thanh et al. (2008a) due to the integration of multi-
ple features relevant to international supply chains. In particular, they include trans-
fer prices and various financial rates (currency exchange, import duties, and income
taxes) in different countries. A global after-tax profit maximization objective function



An efficient heuristic approach for a multi-period logistics network 85

is considered in contrast to the frequently used cost minimization objective. Multi-
stage production, inventory and distribution decisions may change over time while
location decisions are implemented at the beginning of the planning horizon. In Vila
et al. (2006), the capacity of a facility may be expanded and later removed to deal
with demand fluctuations. The model is applied to a real-case from the Canadian
softwood lumber industry. The application context of the mathematical model devel-
oped by Troncoso and Garrido (2005) is also the forest industry. The objective is to
select the optimal location and size of a new saw-mill in Chile. Although a single
commodity is modeled, it may flow between any pair of facilities in the network, in-
cluding between facilities within the same layer. This feature is also present in Vila et
al. (2006). In addition to location and transportation decisions, capacity decisions are
addressed by allowing the initially installed production capacity to increase during
the planning horizon.

The literature reviewed so far has several features in common, namely a network
topology with at least two facility echelons and transportation channels that go be-
yond links between adjacent layers. Furthermore, location and supply chain decisions
are often integrated in a multi-period, multi-commodity model. In particular, location
planning is not confined to fixing the time periods for opening and closing facilities.
Capacity expansion decisions are also modeled. The framework developed by Melo
et al. (2006) takes all these features into account and even extends the scope of the
existing models by explicitly considering facility relocation through gradual capacity
transfers from existing locations to new sites over time. Following the seminal arti-
cle by Ballou (1968), this aspect remained overlooked until recently. Melachrinoudis
and Min (2000) consider a simple network structure with a single facility layer and
a single commodity. A limited budget is available for facility relocation which is a
feature rarely captured by network design models (see Melo et al. 2009a). Hammami
et al. (2008) identify the key features that impact the redesign of a supply chain in
a delocalization context and criticize the lack of mathematical models that incorpo-
rate all relevant decisions. The large scope and complexity of the problem along with
difficulties in data collection account for this gap. Finally, Wolf and Merz (2007) de-
veloped a simple evolutionary algorithm to solve one of the problems addressed by
Melo et al. (2006) heuristically.

3 Mathematical formulation

In this section, we first introduce the notation that will be used throughout the paper.
As the new heuristic solution method that will be presented in Sect. 4 relies upon one
of the MILP formulations developed by Melo et al. (2006), we will briefly describe it.
Details regarding the motivating assumptions and the underlying supply chain context
can be found in Melo et al. (2006).

The network topology shown in Fig. 1 is the starting point for our logistics net-
work redesign model. It comprises different types of operating facilities (any number
of facility layers may be considered as well as any system of transportation channels).
In addition, a finite set of candidate sites for locating new facilities has been identi-
fied. Over the planning horizon, facility relocation takes place by gradually moving
capacity from existing facilities to the selected new sites.
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Table 1 Index sets
Symbol Description

L Set of all facilities

Sc Set of existing facilities that can be closed

So Set of potential sites for establishing new facilities

S Set of selectable facilities; S = Sc ∪ So, S ⊂ L

L \ S Set of non-selectable facilities

P Set of product families

T Set of periods; |T | = n

Table 2 Costs

Symbol Description

PCt
i,p

Variable cost of producing or purchasing (from an external supplier) one unit of product p ∈ P

by facility i ∈ L in period t ∈ T

TCt
i,j,p

Variable cost of shipping one unit of product p ∈ P from facility i ∈ L to facility j ∈ L (i �= j )
in period t ∈ T

ICt
i,p

Variable inventory carrying cost per unit on hand of product p ∈ P in facility i ∈ L at the end
of period t ∈ T

MCt
i,j

Variable cost of moving one unit of capacity at the beginning of period t ∈ T \ {1} from the
existing facility i ∈ Sc to a new facility established at site j ∈ So

OCt
i

Fixed cost of operating facility i ∈ L in period t ∈ T

FCt
i

Fixed setup cost charged in period t ∈ T \ {n} when a new facility established at site i ∈ So

starts its operation at the beginning of period t + 1

SCt
i

Fixed cost charged in period t ∈ T \ {1} for closing the existing facility i ∈ Sc at the end of
period t − 1

Table 1 describes the index sets. Non-selectable facilities refer to facilities that are
not subject to capacity relocation. Such facilities may include plants and warehouses
that must operate throughout the planning horizon. Moreover, customer locations
always belong to this class.

Table 2 summarizes all costs. Since the establishment of a new facility is often a
time-consuming process, it is assumed that it takes place in the period immediately
preceding the start-up of operations. On the other hand, when an existing facility
ceases operating, the corresponding fixed closing costs are charged in the following
period. Relocation costs due to capacity shifts depend on the amount moved from an
existing facility to a new site, and account, for example, for workforce and equipment
transfers. Capacities moved to new sites cannot be withdrawn in later periods.

Table 3 introduces additional input parameters. The capacity of each existing fa-
cility is assumed to be nonincreasing over the planning horizon. Similarly, potential
new facilities have nondecreasing capacities throughout the time horizon.

Table 4 describes the decision variables. Existing facilities may have an initial
positive inventory level which in that case fixes the values of the inventory variables
y0
i,p for every i ∈ L\So and p ∈ P . Clearly, potential sites do not hold initial stock so

that y0
j,p = 0 for every j ∈ So and p ∈ P . The statuses of the facilities over the time
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Table 3 Other input parameters

Symbol Description

K
t
i Maximum capacity of facility i ∈ L in period t ∈ T

Kt
i

Minimum required throughput at facility i ∈ S in period t ∈ T

μi,p Amount of capacity required by one unit of product p ∈ P at facility i ∈ L

Dt
i,p

Demand of customer/facility i ∈ L for product p ∈ P in period t ∈ T

Bt Available budget in period t ∈ T

αt Unit return factor on capital not invested in period t ∈ T \ {n}
ε Sufficiently small positive number

Table 4 Decision variables

Symbol Description

bt
i,p

Amount of product p ∈ P produced/purchased by facility i ∈ L in period t ∈ T

xt
i,j,p

Amount of product p ∈ P shipped from facility i ∈ L to facility j ∈ L (i �= j ) in period t ∈ T

yt
i,p

Amount of product p ∈ P held in stock in facility i ∈ L at the end of period t ∈ T ∪ {0}; y0
i,p

denotes the initial inventory level

zt
i,j

Amount of capacity shifted at the beginning of period t ∈ T from the existing facility i ∈ Sc to
a newly established facility at site j ∈ So

ξ t Amount of capital not invested in period t ∈ T

ηt
i

= 1 if the selectable facility i ∈ S changes its status in period t ∈ T ; 0 otherwise

horizon are ruled by the binary variables ηt
i . If an existing facility i ∈ Sc ceases to

operate at the end of period t then ηt
i = 1. Similarly, if a new facility starts to operate

in site j ∈ So at the beginning of period t then ηt
j = 1. Observe that a new facility

can never operate in the first period since that would incur a setup cost prior to the
beginning of the planning horizon. Analogously, an existing facility cannot be closed
at the end of the last period since the fixed closing cost would be charged in a period
beyond the time horizon. Hence, z1

i,j = 0 for every i ∈ Sc and j ∈ So. Moreover,

η1
i = 0 for every i ∈ So and ηn

j = 0 for every j ∈ Sc .
Melo et al. (2006) proposed two alternative MILP formulations for the above prob-

lem. The model presented next is the basis for the development of the heuristic proce-
dure to be described in Sect. 4. Note that model (P ) captures several features identi-
fied by Hammami et al. (2008) that are associated with realistic relocation scenarios:

(P ) MIN
∑

t∈T

∑

i∈L

∑

p∈P

PCt
i,p bt

i,p +
∑

t∈T

∑

i∈L

∑

j∈L\{i}

∑

p∈P

TCt
i,j,p xt

i,j,p

+
∑

t∈T

∑

i∈L

∑

p∈P

ICt
i,p yt

i,p +
∑

t∈T

∑

i∈Sc

OCt
i

(
1 −

t−1∑

τ=1

ητ
i

)

+
∑

t∈T

∑

i∈So

OCt
i

t∑

τ=1

ητ
i +

∑

t∈T

∑

i∈L\S
OCt

i (1)
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s.t.

bt
i,p +

∑

j∈L\{i}
xt
j,i,p + yt−1

i,p = Dt
i,p +

∑

j∈L\{i}
xt
i,j,p + yt

i,p,

i ∈ L,p ∈ P, t ∈ T , (2)

K
1
i −

t∑

τ=1

∑

j∈So

zτ
i,j ≤ K

t

i

(
1 −

t−1∑

τ=1

ητ
i

)
, i ∈ Sc, t ∈ T , (3)

t∑

τ=1

∑

i∈Sc

zτ
i,j ≤ K

t

j

t∑

τ=1

ητ
j , j ∈ So, t ∈ T , (4)

t∑

τ=1

∑

j∈So

zτ
i,j + ε

(
1 −

t−1∑

τ=1

ητ
i

)
≤ K

1
i , i ∈ Sc, t ∈ T , (5)

∑

p∈P

μi,p

(
bt
i,p +

∑

j∈L\{i}
xt
j,i,p + yt−1

i,p

)
≤ K

1
i −

t∑

τ=1

∑

j∈So

zτ
i,j ,

i ∈ Sc, t ∈ T , (6)

∑

p∈P

μi,p

(
bt
i,p +

∑

j∈L\{i}
xt
j,i,p + yt−1

i,p

)
≤

t∑

τ=1

∑

j∈Sc

zτ
j,i ,

i ∈ So, t ∈ T , (7)
∑

p∈P

μi,p

(
bt
i,p +

∑

j∈L\{i}
xt
j,i,p + yt−1

i,p

)
≤ K

t

i, i ∈ L \ S, t ∈ T , (8)

∑

p∈P

μi,p

(
bt
i,p +

∑

j∈L\{i}
xt
j,i,p + yt−1

i,p

)
≥ Kt

i

(
1 −

t−1∑

τ=1

ητ
i

)
,

i ∈ Sc, t ∈ T , (9)

∑

p∈P

μi,p

(
bt
i,p +

∑

j∈L\{i}
xt
j,i,p + yt−1

i,p

)
≥ Kt

i

t∑

τ=1

ητ
i ,

j ∈ So, t ∈ T , (10)
∑

t∈T

ηt
i ≤ 1, i ∈ S, (11)

∑

i∈So

FC1
i

(
2∑

τ=1

ητ
i

)
+ ξ1 = B1, (12)

∑

i∈Sc

∑

j∈So

MCt
i,j z

t
i,j +

∑

i∈Sc

SCt
iη

t−1
i +

∑

j∈So

FCt
j η

t+1
j + ξ t

= Bt + αt−1ξ t−1, t ∈ T \ {1, n}, (13)
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∑

i∈Sc

∑

j∈So

MCn
i,j zn

i,j +
∑

i∈Sc

SCn
i η

n−1
i + ξn = Bn + αn−1ξn−1, (14)

bt
i,p ≥ 0, yt

i,p ≥ 0, xt
i,j,p ≥ 0, ξ t ≥ 0,

i ∈ L, j ∈ L \ {i},p ∈ P, t ∈ T , (15)

zt
i,j ≥ 0, i ∈ Sc, j ∈ So, t ∈ T , (16)

ηt
i ∈ {0,1}, i ∈ S, t ∈ T . (17)

The objective function (1) minimizes total supply chain costs which comprise
variable supply, transportation, and inventory holding costs as well as fixed facility
operating costs. Constraints (2) are the usual flow conservation conditions and also
ensure the satisfaction of customer demands. Inequalities (3) guarantee that only op-
erating existing facilities can have their capacities transferred to new facilities. Con-
straints (4) state that a new facility can only start receiving capacity after its setup,
while constraints (5) ensure that an existing facility is closed after complete removal

of its capacity. In fact, note that when the first sum equals K
1
i (i.e., the initial capacity

of the facility has been completely transferred) then the second term on the left-hand
side will become zero, which means that the facility is removed. Capacity constraints
are imposed by inequalities (6)–(8). Constraints (9)–(10) guarantee that a selectable
facility operates with at least a given throughput. Constraints (11) allow the status of
each selectable facility to change at most once over the time horizon. This means that
a facility that is removed cannot be re-opened; and once open, a new facility cannot
be closed. Conditions (12)–(14) guarantee that the available budget is invested in ca-
pacity transfers, the setup of new facilities and the removal of existing facilities upon
complete relocation. The amount of capital not used in a given period earns interest
and can later be invested. Finally, constraints (15)–(17) represent non-negativity and
binary conditions.

4 Heuristic approach

The MILP model (P ) contains two types of inherently different decisions: on the one
hand, the yes/no-decisions to change the operating status of facilities (variables ηt

i )
and, on the other hand, a large number of strategic and tactical supply chain decisions
modeled by non-negative continuous variables. Once the binary choice for facility op-
eration has been made, the resulting problem is linear and thus much simpler to solve.
Hence, the design of solution procedures that decouple the binary decisions variables
from the continuous variables is a natural approach to overcome the computational
hurdle resulting from model (P ) being NP-hard, and therefore, being in general ex-
tremely difficult to solve to optimality (particularly for real-size instances). Wolf and
Merz (2007) use variable decoupling in their evolutionary algorithm for solving (P ).
To reduce the search space, several mechanisms are proposed for filtering out infeasi-
ble solutions. Unfortunately, no information is conveyed with respect to the running
time and the quality of the solution obtained for a small number of test instances.

Approximation algorithms based on linear programming (LP) have been used ex-
tensively to obtain near-optimal solutions for many classes of discrete optimization
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problems (see, e.g., Gonzalez 2007 and Vazirani 2001 for some applications). A basic
technique is to solve the linear relaxation of the integer program and then convert the
fractional solution into an integer solution, trying to ensure that in the process the ob-
jective value does not deteriorate much. A variety of facility location problems have
been solved efficiently by LP-rounding techniques (see, e.g., Chudak and Shmoys
2004 and Shmoys 2004). In contrast, this algorithmic approach has been scarcely
applied to facility location problems in an SCM context due to the real challenges
presented by this class of difficult problems. Recently, Thanh et al. (2008b) proposed
an LP-rounding heuristic for a large-scale multi-period network design problem. Un-
fortunately, large running times are reported while solving medium-sized instances.

Our motivation for designing an LP-rounding heuristic stems not only from this
being a natural approach to explore the structure of our problem, but also from the
tight lower bound provided by the linear relaxation of model (P ). For medium-sized
instances, Melo et al. (2006) observed that on average the LP bound is within 2% of
the corresponding optimal solution.

Our solution approach consists of a fast construction phase where four rounding
strategies are applied to iteratively replace the fractional location variables in the
LP relaxation by binary values. If during this process infeasibility arises, the incum-
bent solution will be repaired in the second phase. Otherwise, local search is used in
an attempt to improve the quality of the feasible solution delivered by the construction
phase.

4.1 Construction phase

The aim of the construction phase is to identify an initial feasible solution. Table 5
introduces the required notation.

The steps performed during this phase are summarized in Algorithm 1. The pro-
cedure starts by solving the linear relaxation of the original problem (Step 0). It is
widely known that simply rounding all fractional facility status variables to their
nearest integer values frequently causes constraint violation. Hence, we devised four
variable fixing strategies (VFS1–VFS4) to gradually assign binary values to the loca-
tion variables ηt

i , i ∈ S, t ∈ T . The procedure ends when all facility status variables
are binary (Step 4).

The algorithm relies on a careful selection of variables to be made binary. Priority
is given to rounding fractional values to zero as this decision usually has little impact
on the network configuration. The variable fixing strategies VFS1 and VFS3 comprise
selection mechanisms for rounding to zero. In contrast, fixing a facility status variable
at one triggers a sequence of changes in the network configuration that in the worst
case may violate several constraints. If it is decided to round some variable ηt

i with
i ∈ Sc to one then the corresponding existing facility i will cease to operate at the end
of period t . This decision can only be performed if capacity and budget conditions
allow moving the entire capacity of facility i to new sites until period t . On the other
hand, the selection of some variable ηt

i with i ∈ So to be fixed at one leads to opening
a new facility in site i at the beginning of period t . This action is mainly limited by
the available budget in period t −1 to cover the setup of the new facility. The variable
fixing strategies VFS2 and VFS4 were devised to perform rounding to one.
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Table 5 Notation used in Algorithm 1

Symbol Description

H0 Set of pairs (i, t) with i ∈ S and t ∈ T such that ηt
i
= 0

H1 Set of pairs (i, t) with i ∈ S and t ∈ T such that ηt
i
= 1

H Union of sets H0 and H1; the elements of set H correspond to facility status variables ηt
i

that take binary values

H Set of pairs (i, t) with i ∈ S and t ∈ T such that (i, t) /∈ H ; the elements of set H refer to

facility status variables ηt
i

that take fractional values

LPH Linear relaxation of problem (P ) with the facility status variables associated with set H

taking the values 0 or 1 depending on whether they refer to H0 or H1

SolLP 0–1 flag indicating whether LPH is feasible (value 1) or infeasible (value 0)

PH Problem (P ) when all facility status variables ηt
i

have given fixed binary values

ΔH Gap between the upper bound v(PH ) provided by the solution of PH and the lower bound

v(LP) given by the linear relaxation of (P ); ΔH = (v(PH ) − v(LP))/v(LP)

η Threshold for variable fixing at zero

η Threshold for variable fixing at one

η̃ Threshold for variable fixing at zero or one

imax Maximum number of fractional facility status variables that are rounded to zero

Steps 1–3, which form the first part of Algorithm 1, focus on iteratively rounding
fractional variables using pre-specified lower and upper thresholds (see the descrip-
tion of VFS1 and VFS2 below). Each time one or several variables {ηt

i }(i,t)∈H become
integer, a new LP relaxation with the remaining location variables being allowed to
take values in the interval [0,1], is solved. If variable fixing leads to an infeasible
LP problem then we proceed to the second part of the algorithm, where all variables
that are still fractional are made binary according to two additional strategies (VFS3
and VFS4). In particular, the parameter imax limits the number of variables to be
rounded to zero before exploring the possibility of fixing a location variable at one.

An alternative outcome of the first part of Algorithm 1 is a feasible fractional
solution for which further rounding is not possible as the non-binary facility status
variables take values within the lower and upper thresholds. In this case, we continue
with the second part (Steps 5–8) by first selecting a fractional variable to be rounded
to zero. The impact of this choice is evaluated by solving the remaining linear pro-
gram (Step 7). If the LP relaxation is feasible then we try to round one more variable
to one (Step 8). When this measure proves to be successful the variable fixing process
is restarted by returning to the first part of the algorithm.

In the following sections, we describe in detail the strategies that were imple-
mented.

4.1.1 Initialization

In view of the assumptions made in Sect. 3 with respect to the periods in which the
fixed setup cost of a new facility and the fixed closing cost of an existing facility may
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Algorithm 1: Construction phase

Step 0: Initialize sets H0 and H1, solve LPH , set SolLP = 1 and k = 0
Step 1: Apply VFS1

If unsuccessful then go to Step 3
Step 2: Solve LPH

If LPH infeasible then set SolLP = 0 and go to Step 4
Step 3: Apply VFS2

If VFS1 or VFS2 successful then return to Step 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Step 4: If H = ∅ then calculate ΔH and STOP
Step 5: If k ≤ imax then

Set k = k + 1 and apply VFS3
If successful then

If SolLP = 1 then go to Step 7 else return to Step 4
Step 6: Set k = 0 and apply VFS4

If SolLP = 0 then return to Step 4
Step 7: Solve LPH

If LPH infeasible then set SolLP = 0 and return to Step 4
Step 8: Apply VFS2

If successful then return to Step 1
else

Apply VFS1
If successful then return to Step 2 else return to Step 4

be incurred, it is natural to solve the linear relaxation to problem (P ) with an already
fixed set of variables. Hence, H = H0 ∪ H1 with H0 = {(i,1) : i ∈ So} ∪ {(i, n) : i ∈
Sc} and H1 = ∅.

4.1.2 Variable fixing strategies

Each of the following procedures aims at rounding one or several fractional variables
{ηt

i }(i,t)∈H to one or zero.

VFS1 All facility status variables with fractional values not exceeding a user-
defined lower threshold η are assumed to remain unchanged and therefore have their
values rounded to zero:

Set ηt
i = 0 for every (i, t) ∈ H such that ηt

i ≤ η.

If rounding occurs then sets H0 and H are updated accordingly.

VFS2 All facility status variables with fractional values above a given upper thresh-
old η are potential candidates to be rounded to one, that is, ηt

i ≥ η with (i, t) ∈ H .
Since the resulting linear relaxation is very sensitive to variable fixing at one, at

most one of these variables will be selected. Among the candidate variables for which
feasibility of the corresponding LP relaxation is retained, the one yielding the highest
objective value is chosen. If such a variable can be found, let us denote it by ητ

j . It
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Table 6 Notation used in Algorithms 2a and 2b

Symbol Description

h� �th element of set H1 (in case H1 �= ∅)

i(h�) First component of h� representing a facility

t (h�) Second component of h� representing a time period

	 Gap threshold

�max Maximum number of facility status variables to be investigated

jmax Maximum number of facility status variables that have their binary values changed from 1 to 0

kmax Maximum number of visited solutions starting from a given solution

follows that the pair (j, τ ) is transferred from set H to set H1. Furthermore, due to
constraints (11), set H0 is extended with pairs (j, t) for every t ∈ T \ {τ }. Finally,
set H includes those pairs (i, t) for which ηt

i take fractional values in the feasible
solution to the retained LP relaxation.

VFS3 The aim of this strategy is to round to zero a fractional variable corresponding
to an existing facility. To this end, among the pairs (i, t) ∈ H with i ∈ Sc , the facility
status variable ηt

i with lowest fractional value is identified and fixed at zero. If such
variable can be found then sets H0 and H are updated accordingly.

VFS4 This strategy aims at setting a fractional variable corresponding to a potential
new facility to a binary value. Let ηt

j denote the status variable with current largest

fractional value such that (j, t) ∈ H and j ∈ So. If ηt
j ≥ η̃, with η̃ a user-defined

threshold, then ηt
j = 1, otherwise ηt

j = 0. Depending on the action implemented, one
of the sets H1 or H0 is updated.

4.2 Repair and improvement phase

Three solution outcomes are possible at the end of the construction phase:

1. Problem PH is infeasible, and therefore 	H = +∞.
2. Problem PH is feasible and 	H > 	.
3. Problem PH is feasible and 	H ≤ 	.

The parameter 	 denotes a pre-specified solution quality criterion. In the first case,
a repair mechanism is needed to transform the initial infeasible solution into a feasible
one. In the second case, although a feasible solution has been identified, its quality
is unsatisfactory and thus an improvement scheme is required. In the third case, no
further steps are applied since a feasible solution to the original problem (P ) with a
good LP gap is already available.

The aim of the second phase is to handle cases 1 and 2 simultaneously. Table 6
introduces the required notation. The algorithm is divided into two parts—2a and
2b—that are outlined below.

In the first part of the algorithm (Algorithm 2a), a non-exhaustive search of a
simple neighborhood is performed. For the sake of simplicity, let us assume that the
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Algorithm 2a: First part of repair and improvement phase

If 	H > 	 then
For � = 1, . . . , �max do

Set t = 1
If |H1| > 0 then

Move h� from H1 to H0
Set t = t (h�)

For k = 1, . . . , kmax do
Select at random facility i ∈ S such that i �= i(h�)

If (i, t) ∈ H0 then move (i, t) from H0 to H1
Check for new incumbent best solution and update 	H if necessary
Restore H0 and H1

Algorithm 2b: Second part of repair and improvement phase

for j = 2, . . . , jmax do
If 	H > 	 and |H1| �= 1 then

Set t1 = · · · = tj = 1
For k = 1, . . . , kmax do

If |H1| ≥ j then
Select at random j different elements h1, . . . , hj ∈ H1
Move h1, . . . , hj from H1 to H0
Set t1 = t (h1), . . . , tj = t (hj )

Select at random j different facilities i1, . . . , ij ∈ S such that i� �= i(h�)

for at least one � (1 ≤ � ≤ j )
For � = 1, . . . , j do

If (i�, t�) ∈ H0 then move (i�, t�) from H0 to H1
Check for new incumbent best solution and update 	H if necessary
Restore H0 and H1

current solution includes a non-empty set of facility status variables fixed at one,
i.e., {ηt

i }(i,t)∈H1 �= ∅. In other words, set H1 corresponds to facilities whose statuses
change over the planning horizon. The neighborhood of this solution is defined by
the following two types of exchanges:

M1. Undo the status change of some facility i in period t such that (i, t) ∈ H1.
M2. Perform move M1 and at the same time enable another facility to have its status

be changed in the same period t .

A move of type M2 corresponds in fact to a swap of two variables. The variable to
be switched from zero to one is randomly selected from the set H0. This procedure is
repeated for each element of the set H1. In case this set is empty, variable swapping
is not possible; and therefore, only the second part of a move of type M2 can be per-
formed for t = 1. In addition, a user-defined parameter (kmax) controls the number of
times this procedure is repeated. Whenever a new best feasible solution is identified,
it becomes incumbent.

In the second part of the algorithm (Algorithm 2b), the neighborhood search is
enlarged if the quality of the incumbent solution is still not satisfactory. This en-
compasses mutually exchanging the values of more than two facility status variables.
Hence, k-swaps involve randomly selecting k/2 pairs from set H1 and k/2 pairs from
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set H0. Observe that similar to moves of type M1 in Algorithm 2a, it is possible to
restrict the number of variables to be changed to one, and thus avoid drastic modifi-
cations of the network configuration which may cause constraint violation.

Algorithms 1 and 2a, 2b rely on a number of user-defined parameters whose values
are dynamically modified during the whole procedure. As it is typical in heuristic
development, the tuning of these parameters is a critical issue. Based on a number of
empirical computational experiments, we present in Sect. 5.2 the parameter settings
that best contributed to a good performance of our heuristic procedure.

5 Computational experiments

In this section, we examine the performance of the new heuristic based on consider-
able computational testing carried out on three sets of randomly generated instances.
Although the heuristic procedure developed by Wolf and Merz (2007) also applies to
model (P ), a direct comparison to our heuristic is not possible as many details of the
method are omitted. In addition, the nine test instances considered in Wolf and Merz
(2007) are only briefly described, and so it is also not possible to reproduce them.

In the next section, we introduce the test problems. The parameter settings used by
our heuristic are presented in Sect. 5.2, while the computational results are discussed
in Sect. 5.3.

5.1 Test problems

We randomly generated three sets of instances varying in size, type of associated
supply chain network, cost structure, and arc densities. The intervals for the random
generation of input parameter values were selected with the purpose of obtaining a
wide variety of instances close to real-life problems.

The first group includes 45 instances, denoted by P1–P45, and corresponds to sim-
ple networks comprising DCs and customers. The second set consists of 25 instances,
denoted by P46–P70, and refers to two-echelon networks with plants and DCs. These
two sets coincide with classes 1 and 2 used by Melo et al. (2006) and were generated
following the procedure described by Melo et al. (2003).

Melo et al. (2006) also studied a third group of test problems associated with
three-echelon networks comprising plants, central and regional DCs. However, since
only a few instances of small size were considered, we decided to strengthen this
group by generating 47 new test problems capturing realistic characteristics. Details
about the random generation of these instances are given in Melo et al. (2009b). The
parameters defining these new instances as well as their sizes can be found in Table 12
in the Appendix.

In all instances facility relocation decisions concern the DC layer(s). Furthermore,
all costs follow a nondecreasing pattern over the time horizon since in our view this
reflects real-life situations better, as supply chain networks are often redesigned to
cope with rising costs driven by an expanding global economy. Moreover, a distinc-
tive feature of the new set 3 is the magnitude of the facility closing costs compared
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Table 7 Arc density used to
generate three-echelon networks
(set 3)

Source Destination Arc density (%)

Plants Central DCs 70

Central DCs Regional DCs 40

Central DCs Central DCs 100

Central DCs Customers 5

Regional DCs Customers 50

Regional DCs Regional DCs 40

Table 8 Parameter values for
Algorithms 1, 2a, and 2b Parameter Value

η 0.01 in the first iteration of Algorithm 1; 0.1 otherwise

η 0.9

η̃ 0.5

imax 2

�max 2 if |H1| = ∅; |H1| otherwise

jmax 3

kmax 20 in Algorithm 2a; 30 in Algorithm 2b

to facility opening costs. The former are significantly lower and may even take nega-
tive values to account for revenues due to the termination of leasing contracts or the
selling of property.

The arc density in the generated networks varies according to different criteria.
Table 7 shows the baseline values for three-echelon networks (set 3). Simpler net-
work structures (sets 1 and 2) are obtained by successively removing facility layers
from this base case. Observe that in addition to inter-layer flows, products may also
be shipped directly to customers as well as distributed among facilities belonging to
the same layer. Finally, 70–80% of the commodities can actually be shipped over
each generated arc. This limits the product flow through the network and thus mimics
real-world situations. Observe that this feature results in a more tightly constrained
problem (P ) as the number of transportation channels available for product distribu-
tion is reduced. As a result, finding feasible solutions is an even more difficult task.

5.2 Parameter settings

To fine-tune the parameters used by the heuristic described in Sect. 4, we initially
conducted a large number of empirical experiments. Table 8 presents the numerical
values that best contributed to a good performance of our heuristic procedure.

In addition, the improvement phase (Algorithm 2a) is triggered by a feasible solu-
tion with an objective value that deviates more than 2.5% (i.e., 	 = 0.025) from the
lower bound of the linear relaxation. The choice of this value stems from the com-
putational experience of Melo et al. (2006) which indicates that for small instances
the linear relaxation of (P ) is very strong. On average the LP bound is within 2% of
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Fig. 2 Outcome of phases 1
and 2 of the heuristic procedure

the corresponding optimal solution. The gap threshold 	 is halved in Algorithm 2b
when the neighborhood size is enlarged in an attempt to find a better solution.

Finally, due to the random nature of the second phase of the heuristic, during
which facility status variables are randomly chosen to have their values exchanged,
10 runs are performed for every instance.

5.3 Summary of results

In this section, we evaluate the performance of the new heuristic using the 117 in-
stances described above. All experiments were conducted on a Pentium IV with a
3.2 GHz processor and 1 GB RAM. The heuristic algorithm was coded in C++. The
linear relaxations LPH associated with setting some of the facility status variables
to given binary values were coded using ILOG Concert Technology 2.0 (2003) and
solved with CPLEX 10.2 (ILOG CPLEX User’s Manual 2007).

Figure 2 depicts the outcome of each phase of the heuristic procedure. Feasible so-
lutions are found during the first phase for 63 of the 117 instances. Over 54% (34 out
of 63) of these solutions satisfy the pre-defined quality criterion of 2.5% with respect
to the deviation to the linear relaxation bound. For the remaining 54 instances, no
feasible solutions were identified during the first phase. Nevertheless, the subsequent
phase succeeded in delivering a feasible solution for each of these instances. In total,
only 10 feasible solutions could not be further improved in the second phase of the
heuristic.

Figure 3 displays the quality of the feasible solutions identified by the new heuris-
tic. The relative percentage deviation (“LP-gap”) between the objective value of these
solutions and the lower bound produced by the linear relaxation of (P ) is analyzed
by grouping the results into four categories. The information is given separately for
instances P1–P70 (sets 1 and 2) and P71–P117 (set 3) because there is an indication
that the heuristic performs consistently better in the latter group. In 76.6% of the in-
stances in set 3 (36 out of 47), the feasible solution is within 1% of the LP bound.
In contrast, such high-quality solutions are only delivered to 57.1% of the instances
(40 out of 70) belonging to the other two sets. Recall that instances P71–P117 refer
to larger and more complex network structures whose generation was motivated by



98 M.T. Melo et al.

Fig. 3 Deviation of the feasible solutions identified with the new heuristic from the corresponding
LP bounds

the need to capture practical features of strategic supply chain planning. The num-
ber of feasible network configurations over the time horizon is usually much larger
compared to sets 1 and 2 (P1–P70), thus offering diversity of choice to our heuristic
procedure. In contrast, the single-echelon and two-echelon networks associated with
P1–P70 comprise a limited number of feasible configurations, which seems to hinder
the progress of the heuristic towards feasibility, particularly during the first phase.

Tables 9, 10, and 11 contain the detailed results obtained with the new heuristic
approach. In addition, we also report our computational experience with CPLEX.
In fact, over the past years, the effort invested in the development of commercial
optimization engines such as CPLEX has significantly increased the possibility of
tackling many complex problems. Even when an optimal solution cannot be found
within acceptable computational time, it is often possible to identify a high-quality
feasible solution. To verify if this also applies to our problem, we ran CPLEX with
two stopping criteria: a time limit of 5 hours and a target gap. For the latter, the de-
viation between the best solution and the best lower bound delivered by CPLEX is
at most 1%. Thus, we use CPLEX as an alternative heuristic method. Our choice is
supported by Cordeau et al. (2006) who argue that solving a real-life problem to op-
timality is usually not meaningful due to errors contained in the data estimates. Since
the error margin tends to be larger than 1%, these authors claim that it is adequate
to run the optimization solver until a feasible solution within 1% optimality is iden-
tified. Ambrosino and Scutellà (2005) and Melkote and Daskin (2001) also use an
optimization solver heuristically. Hence, for the best feasible solution that the solver
produces there is a guarantee of the maximum deviation from optimality.

The first column of Tables 9–11 indicates the test instance. The columns under
the heading Heuristic report the results delivered by the two-phase heuristic. The
symbol * in column 2 highlights those instances in which the construction phase
succeeded in identifying a feasible solution. When this does not occur, the repair
mechanism of phase 2 is employed and repeated 10 times. In this case, the number
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of runs of phase 2 in which a feasible solution has been identified is reported in
column 2. Column 3 presents the value of (UBH −LB)/LB ·100% with UBH denoting
the objective value of the identified feasible solution and LB the optimal LP value.
Recall that since 10 runs of phase 2 are performed, the displayed values correspond
to the average over the runs yielding a feasible solution. The CPU times (in seconds)
required in phase 1 and phase 2 of the heuristic are reported in columns 4 and 5,
respectively. If during the construction phase a solution is identified within 2.5% of
the LP value then the improvement scheme in phase 2 is not performed. In this case,
the symbol “–” appears in column 5. The total CPU time (in seconds) is given in
column 6.

The columns under the heading CPLEX describe the results obtained with this
optimization solver. Column 7 (opt. gap) presents the gap reported by CPLEX at the
time of termination. Note that the values shown in this column may overestimate
the true integrality gaps due to stopping the search as soon as a feasible solution
within 1% optimality is identified. Column 8 shows the value of (UB − LB)/LB ·
100% with UB denoting the objective value of the best feasible solution and LB the
optimal LP value. The total CPU time (in seconds) required by CPLEX is reported in
column 9.

Finally, the columns under the heading Heuristic/CPLEX present a comparison
between the two solution procedures. Column 10 displays the values of UBH /UB,
while column 11 indicates the ratios between the CPU times required by the heuristic
and CPLEX.

A close examination of Tables 9–11 reveals that the heuristic delivers solutions
within acceptable time. For single and two-echelon networks, a good feasible solution
is obtained in less than one minute. Instances associated with three-echelon networks
require, as expected, larger CPU time, but on average not more than seven minutes.
These results support our view that the heuristic is suitable to be used when network
re-optimization associated with “what-if” analyses needs to be performed. Note that
in 4% of the instances the prescribed time limit of 5 hours is reached by CPLEX.
These instances (P77, P90, P91, P98, and P99) belong to the problem set comprising
three-echelon networks.

A further observation concerns the large LP gaps that the solutions obtained by
the new heuristic approach exhibit in five instances (P26, P28, P77, P98, and P99).
It seems that the effectiveness of the construction phase to find good initial solutions
declines when the linear relaxation bound is poor. Another possible explanation is that
the linear relaxation solution has variables very close to “1” or “0” while their optimal
integer values are exactly the opposite. Although unlikely, this case may occur and is
evidenced by instances P26 and P28. Instances P98 and P99, which have 10 products
and a longer planning horizon of 8 periods in common, proved to be very hard to
solve. The results obtained contrast significantly with all other instances belonging
to set 3. Not only are the LP gaps of the feasible solutions identified by the heuristic
above 100%, but also CPLEX reaches the prescribed time limit of 5 hours with very
large MIP gaps (50.52%, resp. 43.17%). A careful examination of the branch-and-
cut tree produced by CPLEX reveals that the optimization progress is hindered by
the poor quality of the lower bounds obtained during the search. Nevertheless, it is
interesting to see that the feasible solution identified by the heuristic for P99 is better
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Table 9 Results obtained for instances in set 1 (single-echelon networks); all gaps in % and all CPU times
in seconds

Instance Heuristic CPLEX Heuristic/CPLEX

# sol. LP gap CPU 1 CPU 2 Total CPU opt. gap LP gap CPU sol. ratio CPU ratio

P1 10 2.51 0.56 6.54 7.11 0.74 1.60 6.36 1.01 1.12

P2 * 3.96 0.55 7.90 8.45 0.98 3.15 8.94 1.01 0.95

P3 * 6.73 1.00 2.82 3.82 0.99 3.61 8.81 1.03 0.43

P4 * 4.33 0.83 25.35 26.18 0.33 3.31 9.36 1.01 2.80

P5 10 6.86 0.84 4.83 5.68 0.97 3.47 19.34 1.03 0.29

P6 10 8.59 1.38 9.21 10.59 0.99 5.33 121.17 1.03 0.09

P7 * 5.37 1.73 16.15 17.89 0.95 3.79 13.81 1.02 1.29

P8 10 13.38 0.77 4.74 5.50 0.21 0.46 10.88 1.13 0.51

P9 * 1.82 2.06 0.00 2.06 0.83 1.68 14.22 1.00 0.15

P10 10 0.07 0.53 1.10 1.63 0.03 0.05 6.36 1.00 0.26

P11 * 0.20 3.39 − 3.39 0.30 0.33 7.59 1.00 0.45

P12 10 0.63 1.83 3.43 5.25 0.74 0.02 8.56 1.00 0.61

P13 * 6.07 3.55 34.38 37.92 0.99 0.01 156.94 1.02 0.24

P14 * 1.46 4.15 − 4.15 0.74 0.01 42.33 1.00 0.10

P15 * 2.87 3.80 49.17 52.97 0.99 0.12 45.17 1.00 1.17

P16 * 0.28 5.30 7.45 12.75 0.49 0.49 9.83 1.00 1.30

P17 * 0.27 6.59 − 6.59 0.32 0.41 17.84 1.00 0.37

P18 * 2.17 6.22 34.48 40.70 0.60 1.47 63.31 1.01 0.64

P19 10 0.17 4.64 4.56 9.20 0.07 0.13 44.33 1.00 0.21

P20 * 2.50 6.77 30.30 37.07 0.69 1.54 71.88 1.01 0.52

P21 * 0.34 1.64 − 1.64 0.38 0.56 8.69 1.00 0.19

P22 * 2.24 2.67 15.19 17.87 0.93 1.58 15.89 1.01 1.12

P23 * 1.82 2.31 0.00 2.31 0.45 1.24 14.28 1.01 0.16

P24 * 0.45 1.61 − 1.61 0.48 0.56 4.20 1.00 0.38

P25 * 2.27 3.12 0.00 3.12 0.60 1.82 19.97 1.00 0.16

P26 9 78.09 3.20 10.52 13.72 0.95 1.85 19.14 1.75 0.72

P27 * 1.72 3.42 0.00 3.42 0.70 1.55 22.44 1.00 0.15

P28 * 34.86 3.25 7.65 10.90 0.91 0.47 12.45 1.33 0.88

P29 * 4.88 2.30 27.39 29.69 0.52 0.02 12.31 1.02 2.41

P30 * 0.01 0.69 − 0.69 0.04 0.02 4.34 1.00 0.16

P31 * 0.02 0.67 − 0.67 0.04 <0.01 4.34 1.00 0.15

P32 * 0.02 0.80 − 0.80 0.02 0.02 6.88 1.00 0.12

P33 * 0.01 0.49 − 0.49 0.02 0.01 3.94 1.00 0.12

P34 10 0.02 0.42 1.14 1.56 0.03 0.01 2.91 1.00 0.54

P35 * 0.41 2.69 3.36 6.05 0.47 0.12 21.03 1.00 0.29

P36 10 0.59 1.97 6.59 8.56 0.94 0.95 10.73 1.00 0.80

P37 10 6.60 4.80 25.17 29.97 0.87 4.67 124.33 1.02 0.24

P38 10 1.02 2.47 8.03 10.50 0.91 1.13 13.20 1.00 0.80

P39 * 6.84 6.30 29.69 35.99 1.00 4.81 352.31 1.02 0.10

P40 * 0.02 2.16 − 2.16 0.05 0.05 9.09 1.00 0.24
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Table 9 (Continued)

Instance Heuristic CPLEX Heuristic/CPLEX

# sol. LP gap CPU 1 CPU 2 Total CPU opt. gap LP gap CPU sol. ratio CPU ratio

P41 * 0.01 2.22 − 2.22 0.01 0.01 26.14 1.00 0.08

P44 * 0.03 1.97 − 1.97 0.09 0.09 9.70 1.00 0.20

P43 10 0.03 2.12 2.76 4.88 0.03 0.03 9.33 1.00 0.52

P44 * 0.07 3.44 − 3.44 0.06 0.06 9.00 1.00 0.38

P45 * 0.80 0.14 − 0.14 0.79 0.80 1.31 1.00 0.11

Average 4.74 2.52 8.44 10.96 0.54 1.19 31.67 – –

Min. 0.01 0.14 0.00 0.14 0.01 0.00 1.31 – –

Max. 78.09 6.77 49.17 52.97 1.00 5.33 352.31 – –

Fig. 4 Comparison between the feasible solutions identified by the heuristic and by CPLEX

than that delivered by CPLEX. Moreover, the heuristic requires significantly less time
than CPLEX to find feasible solutions to these hard problems, P98 and P99 (see also
Fig. 4).

In order to gain a better insight on how the results of the new methodology com-
pare with those obtained with an optimization solver, Fig. 4 depicts the values pre-
sented in the last two columns of Tables 9–11. Recall that CPLEX is used as an
alternative heuristic method. The horizontal axis of Fig. 4 represents the ratios be-
tween the objective values of the solutions identified by the heuristic (“UB heuris-
tic”) and those delivered by CPLEX. The vertical axis displays the ratios between
the CPU times of the heuristic and those of CPLEX. Since phase 2 of the heuristic
is performed 10 times, the average upper bound and the average CPU time obtained
in this phase are considered. Moreover, note that a ratio lower than one indicates that
the heuristic outperforms CPLEX.

Regarding the solution quality, Fig. 4 reveals that the performance of the heuristic
and of CPLEX are comparable except for a few instances. Since CPLEX identifies a
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Table 10 Results obtained for instances in set 2 (two-echelon networks), all gaps in % and all CPU times
in seconds

Instance Heuristic CPLEX Heuristic/CPLEX

# sol. LP gap CPU 1 CPU 2 Total CPU opt. gap LP gap CPU sol. ratio CPU ratio

P46 * 0.01 1.53 − 1.53 0.02 0.02 5.91 1.00 0.26

P47 * 0.01 2.38 − 2.38 0.02 0.02 6.53 1.00 0.36

P48 9 0.02 0.70 2.62 3.33 0.47 0.47 12.02 1.00 0.28

P49 10 0.02 0.91 1.97 2.87 0.02 0.02 6.25 1.00 0.46

P50 10 0.01 1.70 1.84 3.55 0.02 0.02 6.00 1.00 0.59

P51 * <0.01 1.22 − 1.22 0.00 <0.01 8.39 1.00 0.15

P52 10 0.01 1.08 2.88 3.95 0.01 0.02 9.11 1.00 0.43

P53 9 0.01 0.58 3.06 3.64 0.01 0.01 7.83 9.05 0.46

P54 10 0.09 1.08 1.75 2.83 0.01 0.01 5.48 1.00 0.52

P55 * 1.27 0.28 − 0.28 0.00 0.12 12.39 1.01 0.02

P56 10 <0.01 0.42 1.51 1.93 0.00 <0.01 4.56 1.00 0.42

P57 * <0.01 1.30 − 1.30 0.00 <0.01 9.09 1.00 0.14

P58 10 <0.01 0.52 2.42 2.94 0.00 <0.01 9.28 1.00 0.32

P59 * <0.01 1.22 − 1.22 0.00 <0.01 8.58 1.00 0.14

P60 10 <0.01 0.73 1.96 2.69 0.00 <0.01 9.24 1.00 0.29

P61 10 6.12 3.55 19.80 23.35 0.16 0.26 26.73 1.06 0.87

P62 * 1.40 3.17 − 3.17 0.88 1.52 24.28 1.00 0.13

P63 * 1.59 4.38 0.00 4.38 0.80 1.58 35.30 1.00 0.12

P64 * 1.31 4.99 12.95 17.93 0.55 1.11 31.84 1.00 0.56

P65 * 2.12 5.52 0.00 5.52 0.76 1.66 46.97 1.00 0.12

P66 10 0.01 2.50 5.40 7.90 0.01 0.01 13.16 1.00 0.60

P67 10 0.02 4.82 5.21 10.02 0.02 0.03 17.17 1.00 0.58

P68 10 0.02 2.34 4.31 6.65 0.03 0.03 14.80 1.00 0.45

P69 * 0.01 4.55 − 4.55 0.01 0.02 16.41 1.00 0.28

P70 * 0.01 4.51 − 4.51 0.00 0.01 17.17 1.00 0.26

Average 0.56 2.24 2.71 4.95 0.15 0.28 14.58 – –

Min. <0.01 0.28 0.00 0.28 0.00 0.00 4.56 – –

Max. 6.12 5.52 19.80 23.35 0.88 1.66 46.97 – –

feasible solution within 1% of optimality in 95.7% of the test problems, we realize
that the new heuristic provides solutions within an acceptable optimality range. With
respect to the CPU times, Fig. 4 indicates that the new methodology is significantly
faster than CPLEX. In fact, the results reported in Tables 9–11 show that in each
problem set, the CPU times are reduced by a factor of 3 when the heuristic is used.
Although seven instances in set 1 (i.e., associated with single-echelon networks) ex-
hibit CPU ratios above 1.0, the heuristic required less than one minute in each one
of them. For the more complex networks (set 3), a single instance (P116) consumed
more CPU time with the heuristic than with CPLEX. Nevertheless, a good solution
was identified in this case within two minutes.
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Table 11 Results obtained for instances in set 3 (three-echelon networks); all gaps in % and all CPU times
in seconds

Instance Heuristic CPLEX Heuristic/CPLEX

# sol. LP gap CPU 1 CPU 2 Total CPU opt. gap LP gap CPU sol. ratio CPU ratio

P71 * 0.02 3.14 − 3.14 0.77 0.79 21.89 0.99 0.14

P72 * 0.25 12.59 − 12.59 0.64 0.66 46.81 1.00 0.27

P73 * 0.03 70.68 − 70.68 0.03 0.03 640.42 1.00 0.11

P74 * 0.03 323.77 − 323.77 0.27 0.28 432.88 1.00 0.75

P75 * 5.81 1.56 17.02 18.58 0.95 4.72 48.11 1.01 0.39

P76 * 0.11 4.45 − 4.45 0.10 0.13 150.84 1.00 0.03

P77 * 66.02 22.88 115.06 137.93 3.16 7.29 18000.13 1.55 0.01

P78 * 2.06 48.14 0.00 48.14 0.75 0.78 2344.24 1.01 0.02

P79 * 0.01 7.33 − 7.33 0.00 0.01 65.66 1.00 0.11

P80 7 0.01 17.98 36.50 54.48 0.01 0.01 148.33 1.00 0.37

P81 10 0.97 25.77 68.37 94.13 0.84 0.85 269.28 1.00 0.35

P82 7 0.25 196.37 63.25 259.62 0.01 0.01 1332.89 3.91 0.19

P83 3 0.02 4.20 15.24 19.45 0.01 0.02 36.91 1.00 0.53

P84 * 0.02 13.77 − 13.77 0.01 0.02 48.28 1.00 0.29

P85 10 0.06 51.98 10.94 62.92 0.02 0.03 236.22 1.00 0.22

P86 10 6.28 2.31 7.58 9.90 1.00 5.19 704.20 1.01 0.00

P87 10 6.30 2.36 7.67 10.03 1.00 5.19 707.25 1.01 0.01

P88 * 9.42 9.05 29.81 38.85 1.00 6.98 11376.80 1.02 0.00

P89 * 8.98 26.92 372.41 399.33 5.52 8.08 18001.03 1.01 0.02

P90 6 9.79 145.31 5683.02 5828.34 6.72 9.15 18001.08 1.01 0.32

P91 7 <0.01 8.97 7.74 16.71 0.00 <0.01 21.56 1.00 0.78

P92 4 <0.01 13.22 50.20 63.42 0.00 <0.01 80.45 1.00 0.79

P93 5 0.01 41.09 74.27 115.36 0.00 <0.01 128.23 1.00 0.90

P94 10 0.09 8.16 6.68 14.83 0.00 <0.01 97.34 1.00 0.15

P95 9 0.21 23.59 14.15 37.74 0.00 <0.01 348.17 1.00 0.11

P96 * 0.02 8.83 − 8.83 0.01 0.02 50.25 1.00 0.18

P97 * 6.95 30.26 135.48 165.74 0.99 2.38 490.53 1.04 0.34

P98 * 109.67 2278.66 4559.75 6838.41 50.52 127.66 18001.05 0.92 0.38

P99 * 160.05 933.99 2443.33 3377.32 43.17 97.54 18000.42 1.32 0.19

P100 10 0.05 4.70 6.99 11.69 0.00 <0.01 113.03 1.00 0.10

P101 10 <0.01 15.91 21.50 37.41 0.00 <0.01 204.98 1.00 0.18

P102 4 <0.01 9.74 17.32 27.05 0.00 <0.01 71.84 1.00 0.38

P103 * <0.01 14.09 − 14.09 0.00 <0.01 116.24 1.00 0.12

P104 * 0.01 6.80 − 6.80 0.01 0.01 45.25 1.00 0.15

P105 9 0.01 18.78 28.50 47.28 0.01 0.01 84.27 1.00 0.56

P106 2 <0.01 14.05 30.70 44.75 0.00 <0.01 68.13 1.00 0.66

P107 4 <0.01 24.19 75.65 99.84 0.00 <0.01 278.53 1.00 0.36

P108 2 0.55 15.23 55.62 70.85 0.00 <0.01 174.53 1.01 0.41

P109 10 <0.01 42.20 16.57 58.77 0.00 <0.01 377.98 1.00 0.16

P110 * <0.01 21.17 − 21.17 0.00 <0.01 161.67 1.00 0.13
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Table 11 (Continued)

Instance Heuristic CPLEX Heuristic/CPLEX

# sol. LP gap CPU 1 CPU 2 Total CPU opt. gap LP gap CPU sol. ratio CPU ratio

P111 9 0.33 49.29 40.86 90.15 0.00 <0.01 469.17 1.00 0.19

P112 6 <0.01 19.91 40.57 60.48 0.00 <0.01 103.44 1.00 0.58

P113 1 <0.01 73.16 155.21 228.37 0.00 <0.01 296.59 1.00 0.77

P114 6 <0.01 21.69 22.35 44.04 0.00 <0.01 91.19 1.00 0.48

P115 4 <0.01 55.70 79.50 135.21 0.00 <0.01 403.91 1.00 0.33

P116 1 <0.01 41.00 75.02 116.01 0.00 <0.01 70.11 1.00 1.65

P117 1 <0.01 55.55 115.76 171.31 0.00 <0.01 353.44 1.00 0.48

Average 8.39 102.99 414.30 411.12 2.50 5.91 2410.97 – –

Min. 0.01 1.56 0.00 2.31 0.00 0.00 21.56 – –

Max. 160.05 2278.66 5683.02 6838.41 50.52 127.66 18001.08 – –

6 Conclusions

In this paper, we proposed an LP-based heuristic approach for a multi-period logis-
tics network redesign problem. The underlying model captures key features relevant
to strategic supply chain planning. Our results suggest that the new heuristic approach
is able to solve realistically sized problem instances within acceptable computational
time. In particular, an effective repair mechanism is employed when a feasible solu-
tion is not identified during the construction phase. Moreover, a local improvement
step is able to deliver good-quality solutions.

A clear advantage of the new heuristic procedure is its flexibility to handle model
extensions related to changing capacity requirements over the planning horizon.
When growing future demand is anticipated, additional network restructuring mea-
sures need to be adopted. The latter may result in extending the capacity of existing
facilities and/or establishing additional facilities. Observe that in our model the over-
all capacity of the network does not change over the time periods. Although capacity
shifts from existing to new locations are modeled, capacity expansion scenarios are
not addressed by formulation (P ). Melo et al. (2006) propose an extension to (P ) to
deal with this case. The opposite occurs when markets face declining demand, e.g.,
due to economic downturns or because products reach their end of life. Melo et al.
(2006) also extend model (P ) to handle the network capacity reduction case. In some
applications, capacity transfer sizes are restricted to discrete amounts as opposed to
the continuous case addressed in (P ). Modular capacity shifts are also a natural ex-
tension to model (P ) and are briefly discussed in Melo et al. (2006).

Finally, the inclusion of uncertainty in the problem data, namely, in the costs,
demands and interest rates, is a relevant research topic that deserves further investi-
gation. Within the context of facility location problems in SCM, several papers can
be found in the literature that propose exact approaches (e.g., Ahmed et al. 2003;
Alonso-Ayuso et al. 2003; Mitra et al. 2006; Santoso et al. 2005; Schütz et al. 2009).
Ahmed and Sahinidis (2003) developed a linear programming based scheme for a ca-
pacity expansion problem, although no location decisions were explicitly addressed.
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The possibility of considering such a type of approach for a stochastic version of the
problem addressed in this paper is still an open issue.
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Appendix: Characteristics of the instances

Table 12 describes the characteristics and sizes of the new instances (set 3).

Table 12 Characteristics and sizes of instances associated with three-echelon networks with 5 plants

Instance Customers Selectable facilities Periods Products Size

|C| Existing DCs New DCs |T | |P | # Variables

Central Regional Central Regional Cont. Integer # Constraints

|Sc
c | |Sc

r | |So
c | |So

r |

P71 100 4 10 8 20 3 5 28960 126 2985

P72 100 4 10 8 20 4 5 38613 168 3966

P73 100 4 10 8 20 6 5 57919 252 5928

P74 100 4 10 8 20 8 5 77225 336 7890

P75 50 4 10 8 20 3 5 19273 126 2085

P76 50 4 10 8 20 4 5 25697 168 2766

P77 50 4 10 8 20 6 5 38545 252 4128

P78 50 4 10 8 20 8 5 51393 336 5490

P79 200 4 10 8 20 3 5 48343 126 4785

P80 200 4 10 8 20 4 5 64457 168 6366

P81 200 4 10 8 20 6 5 96685 252 9528

P82 200 4 10 8 20 8 5 128913 336 12690

P83 100 8 20 12 30 3 5 55294 210 3727

P84 100 8 20 12 30 4 5 73725 280 4946

P85 100 8 20 12 30 6 5 110587 420 7384

P86 50 8 20 12 30 3 5 40147 210 2827

P87 50 8 20 12 30 3 5 40147 210 2827

P88 50 8 20 12 30 4 5 53529 280 3746

P89 50 8 20 12 30 6 5 80293 420 5584

P90 50 8 20 12 30 8 5 107057 560 7422

P91 200 8 20 12 30 3 5 85597 210 5527

P92 200 8 20 12 30 4 5 114129 280 7346

P93 200 8 20 12 30 6 5 171193 420 10984

P94 100 4 10 8 20 3 10 56743 126 5190
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Table 12 (Continued)

Instance Customers Selectable facilities Periods Products Size

|C| Existing DCs New DCs |T | |P | # Variables

Central Regional Central Regional Cont. Integer # Constraints

|Sc
c | |Sc

r | |So
c | |So

r |

P95 100 4 10 8 20 4 10 75657 168 6906

P96 50 4 10 8 20 3 10 37366 126 3540

P97 50 4 10 8 20 4 10 49821 168 4706

P98 50 4 10 8 20 8 10 99641 336 9370

P99 100 4 10 8 20 8 10 151313 336 13770

P100 200 4 10 8 20 3 10 95506 126 8490

P101 200 4 10 8 20 4 10 127341 168 11306

P102 100 8 20 12 30 3 10 107059 210 6352

P103 100 8 20 12 30 4 10 142745 280 8446

P104 50 8 20 12 30 3 10 76762 210 4702

P105 50 8 20 12 30 4 10 102349 280 6246

P106 200 8 20 12 30 3 10 167662 210 9652

P107 200 8 20 12 30 4 10 223549 280 12846

P108 100 4 10 8 20 3 20 112309 126 9600

P109 100 4 10 8 20 4 20 149745 168 12786

P110 50 4 10 8 20 3 20 73552 126 6450

P111 50 4 10 8 20 4 20 98069 168 8586

P112 100 8 20 12 30 3 20 210589 210 11602

P113 100 8 20 12 30 4 20 280785 280 15446

P114 50 8 20 12 30 3 20 149992 210 8452

P115 50 8 20 12 30 4 20 199989 280 11246

P116 200 8 20 12 30 3 20 331792 210 17902

P117 50 8 20 12 30 3 50 369682 210 19702
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