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Abstract In this paper we consider an unreliable single server retrial queue accept-
ing two types of customers, with negative arrivals, preemptive resume priorities and
vacations. A distinguishing feature of the model is that the rates of the Poisson ar-
rival process depends on the server state. For this model we investigate the stabil-
ity conditions and the joint queue length distribution in steady state. We also prove
that our model satisfies the stochastic decomposition property. Transient, as well as
steady state solutions for reliability measures are obtained. Finally, numerical results
demonstrate the typical features of the model under consideration.

Keywords Retrial queue · Unreliable server · Negative customers · State dependent
arrivals · Preemptive resume priority · Single vacation · Stochastic decomposition ·
Reliability
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1 Introduction

Retrial queues have been extensively studied, since they arise in various systems such
as telephone switching systems, telecommunication networks with retransmission,
call centers and computer networks.

The characteristic feature of the retrial queues is that arriving customers find the
servers unavailable, make new attempts to get service after a random time. In call
centers, there is a certain number of servers that answer customer calls. When a cus-
tomer call arrives, it will be served immediately if a server is available. If all servers
are busy with other calls, the customer will be put on hold, and will be asked to wait
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until a server becomes available. Some customers are patient enough to wait for a
server to become available, while others will hang-up or abandon after waiting for
some time or immediately. Some calls will automatically be disconnected and the
customer will be asked to call back later. A portion of these customers will redial and
try to access the call center.

For a complete survey on retrial queues we refer Artalejo (1999, 2010), Kulkarni
and Liang (1997) and the monographs by Falin and Templeton (1997) and Artalejo
and Gomez-Corral (2008). Queueing models of call centers in which the retrial phe-
nomenon is taken into consideration are given in the reviews of Koole and Mandel-
baum (2002) and in the work by Aguir et al. (2004).

The vast majority of papers on retrial queues assumes that the arrival rate remains
constant, although it may vary per class of customers (in case when more than one
type of customers arrive at the system). The model under consideration, allows the
arrival rate of each type of customer to vary depending on the server state. Besides
its mathematical interest the model under consideration have practical justification.
In practice, the proposed model provides information to the sources of the customers
at any time, about the status of the server in order to control the arrival rates that
lead to the control of congestion of the system. On the other hand, it is possible the
sources to vary the demand process due to unpredictable situations, such as failures,
happened in a service procedure (see Shogan 1979).

Several authors have studied retrial queues with priorities. High priority customers
are queued and served according to some discipline. In case of blocking, low priority
customers leave the system and retry until they find the server free. In related bibli-
ography (Choi and Chang 1999; Falin et al. 1993; Langaris and Moutzoukis 1995),
the high priority customers have either preemptive or non-preemptive priority over
the low priority customers. Moreover, in a paper by Artalejo et al. (2001) repeated
demands appeared to have preemptive priority over the waiting line. To the author’s
best knowledge, there have been a little attention on research in retrial queues with
preemptive resume priorities among two types of customers.

In the last fifteen years, several papers deal with the queueing modeling of systems
operating in the presence both of negative customers and repeated attempts. Negative
customers can be interpreted as virus in a computer networks, or generally as orders
for the customers to leave the system immediately. For a related bibliography we
refer the papers by Artalejo and Gomez-Corral (1998, 1997), Anisimov and Artalejo
(2001), Shin (2007), Wang et al. (2008). We have to state here that the vast majority of
papers on retrial queues with negative customers concerns non-priority retrial queues.

In the most of the queueing literature the server is assumed to be reliable and al-
ways available to customers, but it is clear that this assumption in real systems such
as communications and manufacturing systems where the machine may be subject to
scheduled backups and unpredictable failures, seems to be unrealistic. Retrial queues
with server’s breakdowns and repairs have been studied in several papers. As a re-
lated work we refer Kulkarni and Choi (1990), Aissani and Artalejo (1998), Aissani
(1994) and Dimitriou and Langaris (2010). Because of limited ability of repairs and
heavy influence of the breakdowns on the performance of the system, it is of essential
importance to study the reliability of retrial queues with breakdowns and repairs (see
Wang et al. 2001, 2008; Wang 2008).
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Concerning state dependent arrival rates, more literature is available for systems
consisting of only one queue, often assuming phase-type distributions for vacations
and/or service times. A system consisting of a single queue with server breakdowns
and arrival rates depending on the server status is studied by Shogan (1979). Shan-
thikumar (1988) states a stochastic decomposition result for the queue length in an
M/G/1 queue with server vacations under less restrictive assumptions than Furhmand
and Cooper (1985). One of the relaxations is that the arrival rate of customers may
be different during visit periods and vacations. Recently, a polling model with arrival
rates that vary depending on the location of the server has been studied in detail by
Boon et al. (2010).

There have been a little attention in retrial queueing literature with state dependent
parameters. Parthasarathy and Shudesh (2007) consider a Markovian single server re-
trial queue with parameters depending on the orbit length, while Gomez-Corral and
Ramalhoto (1999) study Markovian multiserver retrial queues with parameters de-
pending on the number of servers. Recently, Artalejo and Li (2010), study a discrete
time retrial queue with arrivals depend on the state of the system. To author best
knowledge the majority of retrial queues with state dependent arrivals deal with non-
priority retrial queues with Markovian character.

In this paper we consider a single server retrial queue, accepting two types of
customers with the additional features of preemptive resume priorities, breakdowns
with repairs, negative arrivals, single vacations and state dependent arrivals. Clearly,
the state of the server is not known to the customers that are in the retrial box. The
status of the server is known only to the sources of the customers.

The purpose of this paper is to generalize the main model with preemptive resume
priorities in several ways. We generalize the main model by allowing server’s failures
with repairs, introducing the impact of negative customers and mainly by integrating
the concept of state dependent arrivals. Specifically, we assume that arrival rates de-
pend both on server’s state and on the customer type. We have to state here that the
dependence on server’s state is generated by internal source and not on an external
source such as Markov modulated inputs. To author best knowledge, it is the first
time in related literature that the realistic concept of failures with repairs is integrated
in retrial queue with preemptive resume priorities among two types of customers.
Moreover interesting reliability indices of the server are also obtained and complete
the analysis. Another interesting feature which is for the first time integrated in such a
model is the presence of negative customers that deletes the customer in service. The
proposed model is high abstract and quite complex. Its complexity becomes sharper
as we allow the arrival rates to depend both on server’s state and the customer type.
To author best knowledge is the first time in the retrial queueing literature that such a
complex but flexible arrival discipline is integrated in priority retrial queues. Further-
more, we establish for the first time in related literature a stochastic decomposition
law for this priority retrial queue with varying arrival rates.

Such arrival process is useful to model many practical situations where the cus-
tomers aware when the server is available or not and provide a very important flexi-
bility. The dependence of arrival process on the server’s state have many practical ad-
vantages. Firstly, by providing, information to the customers about the server’s state,
improve the quality of service and secondly we can model several communication
systems where the traffic is able to adapt its rate according to the server condition.
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In many real-life queueing systems, e.g. in computer systems, manufacturing sys-
tems and communication systems etc., the server is subject to breakdown or gener-
ally alternates stochastically between different states, such as operational, failed and
scheduled interruptions. In such models the arrival rate of jobs may be influenced by
the status of the server.

Our retrial queue has applications in a packed-switched network. The router is
an interconnection device that attaches two or more networks in a packet-switched
network, which takes charge of receiving packets and forwarding them to the next
hop, according to the routing information found in its routing table. Two types of IP
packets (urgents and regulars) arrives at the router according to a Poisson stream (de-
pending on their type). A packet receives service immediately if the router is idle or it
will enter two buffers, according to its importance (priority), which are located inside
the router. Some maintenance activities, such as scan virus and routing information
backup can be programmed on a regular basis when the router is idle. When these
maintenance activities are finished, the router will enter the idle state again and wait
for new packets to arrive. The router may subject to breakdowns during service pe-
riod and receive repair immediately. Such a system is affected by a virus, causing the
destruction of the message in transmission (negative customers). The transmission of
a regular packet may be interrupted because of an arrival of an urgent packet, while
the interrupted packet resumes its transmission from the point of interruption. In this
scenario, buffers in the router, router retransmission policy and maintenance activities
correspond to the queue and orbit, the server, the retrial discipline, and the vacation
policy, respectively. It seems to be realistic to assume that the transmission demands
in the router are influenced by the presence of the above mentioned unpredictable
random phenomena.

Another relevant application of the proposed model is referred to the single ma-
chine production systems. In the context of this production setting, the situation with
two priority levels is oftentimes encountered in practice, where production depart-
ment have to supply both internal and external customers, the latter of which is com-
monly given a preferential treatment.

More precisely, orders from external customers are queued up and have preemp-
tive resume priority over the orders from internal customers. That is, an external order
have to be satisfied immediately upon arrival and if the department is serving an in-
ternal order at the moment of the arrival of an external order then the process for
internal order is interrupted and resumes whenever the department is free of exter-
nal orders. An order from an internal customer, if it is not fulfilled upon arrival, has
to be retransmitted (retrials) in production department. Any time the facility satisfy
all the external orders and a possibly interrupted internal order, accomplish a main-
tenance (vacation) of the machine. Moreover, mechanical parts of the machine may
fail. Then the machine is sent for repair, while the order has to be retransmitted after
random period. Furthermore, instantaneous blackouts (negative arrivals), may cause
the destruction of the item under production, and as a result the loss of the order.

Thus, it is natural the demand process to be influenced because of this uncertainty
and the unpredictable environment. On the other hand the manager of the department
must control the flow of newly arriving orders, by providing information about the
state of the facility. More precisely, he/she communicates with the customers inform-
ing them by a message (possibly on line), about the facility status in order to manage
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the demand process of the product. In such a case, the demand process (arrival pro-
cess) depends on the status of the production facility (server). An interesting case is
the one where arrival rates become zero during specific periods.

The rest of the paper is organized as follows. In Sect. 2 we describe the mathemat-
ical model, while in Sect. 3 some important preliminary results are stated. In Sect. 4
we investigate the stability condition of the model, under which the queue length dis-
tribution is investigated in Sect. 5. A stochastic decomposition result is presented in
Sect. 6, while in Sect. 7 some important performance measures are obtained. Sect. 8
relates to the reliability results obtained for this model. Finally, numerical results that
demonstrate the typical features of our model are presented in Sect. 9.

2 Model description and notations

Consider a single server queueing system accepting two types of customers Pi, i =
1,2. Assume that P1 customers have preemptive resume priority over P2 customers.
That is, if a P1 customer arrives during the service of a P2 customer, he interrupts him
and push the server to start serving P1 customers. The preempted unit remains in the
service zone and resumes service, whenever the server become available. The service
times of Pi customers follow an arbitrary distribution with distribution function (d.f.)
Bi(x), probability distribution function (p.d.f.) bi(x), Laplace–Stieltjes Transform
(LST) β∗

i (s), finite mean value b̄i and second moment about zero b̄
(2)
i .

The system under consideration suffers from breakdowns, so that the server’s life-
time is exponential distributed with parameter μ. If a failure occurs, the server is sent
immediately for repair, while the unit being served joins the retrial box from where
retries come after an exponential amount of time with parameter α, to connect with
the server. Repair times are assumed to be arbitrarily distributed with d.f. B3(x), and
p.d.f. b3(x), LST β∗

3 (s), finite mean value b̄3 and second moment about zero b̄
(2)
3 .

Whenever the server becomes free, that is, when there are no customers in the
ordinary queue or in the service zone, after a service or repair completion, departs
for a single vacation of arbitrarily distributed length with d.f. B4(x), p.d.f. b4(x),

LST β∗
4 (s), finite mean value b̄4 and second moment about zero b̄

(2)
4 . Upon returning

from the vacation, the server starts serving P1 customers (if any), or else remains idle
awaiting the first unit that request service, either from outside or from the retrial box.

Moreover, a flow of negative arrivals reduces the congestion of our system, by
deleting the customer being served. Negative customers, arrive after an exponential
amount of time with parameter ν, push out the customer being served and have no
other effect on the system.

If an arriving P1 customer finds the server idle, he occupies him and begins to be
served. If an arriving P1 customer finds the server either busy with a P1 customer, or
under repair, or on vacation, he joins an ordinary queue, waiting to be served, while
an arriving P2 customer who finds the server unavailable join the retrial box.

The feature that distinguishes the model under consideration from commonly stud-
ied retrial queues, is the arrival process. This arrival process is a standard Poisson
process, but the rate depends on the server’s state. The arrival rate of Pi customers is
λij , where j denotes the state of the server, which is either serving a specific type of



A preemptive resume priority retrial queue with state dependent arrivals 547

customer, or is under repair, or is on vacation, or is in the idle mode. Another novel
characteristic of the model is the presence of breakdowns, repairs and negative cus-
tomers, which are integrated for the first time in related literature with preemptive
resume priorities among two types of customers.

Let us denote by Ni(t), i = 1,2, to be the number of Pi customers in the ordinary
queue and in the retrial box, respectively, at time t . Denote also

ξt =

⎧
⎪⎪⎨

⎪⎪⎩

0, idle at t,

i, busy with a Pi, i = 1,2 customer at t,

3, under repair at t,

4, on vacation at t,

ut =
{

0, no P2 customer in limbo (has preempted earlier) at t,

1, a P2 customer in limbo at t.

Thus, Pi customers, i = 1,2, arrive according to Poisson process with parameter
λij , given that the server state is j, j = 0,1,2,3,4. Define also the following state
probabilities:

pi(k1, k2, x, t) dx = P
(
N1(t) = k1,N2(t) = k2, x < B̄i(t) ≤ x + dx,

ξt = i, ut = 0
)
, i = 1,3,4,

p2(k2, x, t) dx = P
(
N2(t) = k2, x < B̄2(t) ≤ x + dx, ξt = 2, ut = 0

)
,

pi1(k1, k2, x, y, t) dx dy = P
(
N1(t) = k1,N2(t) = k2, x < B̄i(t) ≤ x + dx,

y < B̄2(t) ≤ y + dy, ξ = i, ut = 1
)
, i = 1,3,

q(k2, t) = P
(
N2(t) = k2, ξt = 0, ut = 0

)
,

where X̄ the elapsed duration of the random variable X.

3 General results

In this section we are going to derive some useful results that are necessary for the
following analysis.

Denote by Si the time interval from the epoch that a Pi customer starts his service,
until the epoch the server is ready for a “new service”. In this case, a “new service”
starts either when the current service terminated successfully, or after a repair comple-
tion caused by a breakdown, or after a negative arrival. Denote by Nj(Si), i, j = 1,2,

the number of Pj customers that arrive during Si . We have

ai(k1, k2, t) dt = P
(
t < Si ≤ t + dt, Nj (Si) = kj , j = 1,2

)
, i = 1,2,

(1)

a∗
i (z1, z2, s) =

∞∑

k1=0

∞∑

k2=0

∫ ∞

0
e−st ai(k1, k2, t)z

k1
1 z

k2
2 dt.
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Then if p(n)(k1, k2, t) = e−λ1nt (λ1nt)k1

k1! e−λ2nt (λ2nt)k2

k2! , n = 0,1,2,3,4,

a1(k1, k2, t) = e−(μ+ν)p(1)(k1, k2, t)b1(t) + νe−(μ+ν)tp(1)(k1, k2, t)
(
1 − B1(t)

)

+ μe−(μ+ν)t

k1∑

i1=0

k2−1∑

j1=0

p(1)(i1, j1, t)
(
1 − B1(t)

)

∗ p(3)(k1 − i1, k2 − 1 − j1, t)b3(t),

where ∗ means convolution.
After manipulations

a∗
1(z1, z2, s) = β∗

1

(
σ1(z1, z2, s)

) + 1 − β∗
1 (σ1(z1, z2, s))

σ1(z1, z2, s)

[
ν + μz2β

∗
3

(
σ3(z1, z2, s)

)]
,

where

σi(z1, z2, s) = s + λ1i (1 − z1) + λ2i (1 − z2) + (μ + ν)δ{i=1}, i = 1,3,4,

where δ{} is Kronecker’s delta. Denote

ρ1 = ∂

∂z1
a∗

1(z1,1,0)|z1=1 = 1 − β∗
1 (μ + ν)

μ + ν
(λ11 + λ13μb̄3).

Using the above results, the following lemma is a simple extension of Takacs theorem
(Takacs 1962).

Lemma 1 For (i) |z2| < 1, Re(s) ≥ 0, or (ii) |z2| ≤ 1, Re(s) > 0, or (iii) |z2| ≤ 1,
Re(s) ≥ 0 and ρ1 > 1, the relation

z1 − a∗
1(z1, z2, s), (2)

has one and only one root, z1 = x(s, z2) say, inside the region |z1| < 1. Specifically
for s = 0 and z2 = 1, x(0,1) is the smallest positive real root of (2) with x(0,1) < 1
if ρ1 > 1 and x(0,1) = 1 for ρ1 ≤ 1.

Define also by �(i) the duration of the busy period of P1 customers, initiated by i

P1 customers and by N(�(i)) the number of the new P2 customers that arrive during
�(i). If g

(i)
m (t)dt = P(t < �(i) ≤ t + dt,N(�(i)) = m), then by following the lines

of Langaris and Katsaros (1995) or in Takacs (1962) (pp. 60–63) we obtain

g(i)(s, z2) =
∞∑

m=0

zm
2

∫ ∞

0
e−st g(i)

m (t) dt = xi(s, z2),

where x(s, z2) is defined in the lemma above.
We have to point out here that in case of a P2 customer, due to preemptive resume

priority, the current service may be interrupted many times by the arrivals of P1 cus-
tomer, and resumes each time from the interruption point after the termination of the
busy period that initiate the arrival of these P1 customers.
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By applying a similar argument as in (1) we arrive at

a∗
2(z1, z2, s) = β∗

2

(
σ2(z2, s)

) + 1 − β∗
2 (σ2(z2, s))

σ2(z2, s)

[
ν + μz2β

∗
3

(
σ3(z1, z2, s)

)]
,

where

σ2(z2, s) = s + λ12
(
1 − x(s, z2)

) + λ22(1 − z2) + μ + ν.

Let V, be the random time from the epoch the server departs for a single vacation
until the epoch is for the first time idle. Denote by N(V ) the number of new P2

customers that arrive during V. If vm(t) dt = P(t < V ≤ t + dt,N(V ) = m), then

v0(t) = p(4)(0,0, t)b4(t) +
∞∑

i=1

p(4)(i,0, t)b4(t) ∗ g
(i)
0 (t) ∗ v0(t),

(3)

vm(t) =
∞∑

i=1

m∑

j=1

p(4)(i, j, t)b4(t) ∗
m−j∑

k=0

g
(i)
k (t) ∗ vm−j−k(t).

After manipulations

v∗(s, z2) =
∞∑

m=0

zm
2

∫ ∞

0
e−st vm(t) dt

= β∗
4 (σ4(0, z2, s))

1 − β∗
4 (σ4(x(s, z2), z2, s)) + β∗

4 (σ4(0, z2, s))
.

Let us define the completion time C, of a P2 customer, as the time interval from the
epoch the server starts serving a P2 customer, until the epoch the server is ready to
depart for single vacation, and denote by N(C) the number of new P2 customers that
arrive during C. Let cm(t) dt = P(t < C ≤ t + dt,N(C) = m).

cm(t) = p(2)(0,m, t)e−(μ+ν)t
[
b2(t) + ν

(
1 − B2(t)

)]

+ μe−(μ+ν)t
m−1∑

j=0

p(2)(0, j, t)
(
1 − B2(t)

) ∗ p(3)(0,m − 1 − j, t)b3(t)

+ e−(μ+ν)t b2(t)

∞∑

i=1

m∑

j=0

p(2)(i, j, t) ∗ g
(i)
m−j (t)

+ μe−(μ+ν)t

∞∑

i1=0

m−1∑

j1=0

p(2)(i1, j1, t)
(
1 − B2(t)

)

∗
∞∑

i2=0

m−1−j1∑

j2=0

p(3)(i2, j2, t)b3(t) ∗ g
(i1+i2)
m−1−j1−j2

(t)
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+ νe−(μ+ν)t

∞∑

i=1

m∑

j=0

p(2)(i, j, t)
(
1 − B2(t)

) ∗ g
(i)
m−j (t).

After manipulations

c∗(s, z2) =
∞∑

m=0

zm
2

∫ ∞

0
e−st cm(t) dt = a∗

2

(
x(s, z2), z2, s

)
. (4)

The concepts of Generalized Busy Period (GBP) of P1 customer and the Gener-
alized Completion Time (GCT) of a P2 customer are very important for the analysis
of our model. As GBP, say W1, of a P1 customer, define the time elapsed from the
epoch a P1 customer arrives in an idle system, until the epoch the server is idle for
the first time. Clearly, from the above definitions W1 = �(1) + V . The GCT of a P2

customer is the time elapsed from the epoch a P2 customer succeeds to connect with
the server, until the epoch the server is idle for the first time. Definitely W2 = C + V .
Denote

w(i)
m (t) dt = P

(
t < Wi ≤ t + dt,N(Wi) = m

)
,

w∗
i (s, z2) =

∞∑

m=0

zm
2

∫ ∞

0
e−stw(i)

m (t) dt, i = 1,2.

Then

w∗
1(s, z2) = x(s, z2)v

∗(s, z2), w∗
2(s, z2) = c∗(s, z2)v

∗(s, z2). (5)

In the sequel we are going to obtain some useful results. Thus, by differentiating with
respect to z2 at the point z2 = 1, s = 0 the above defined relations we arrive at

∂

∂z2
x(0, z2)|z2=1 = m1 = L1

1 − ρ1

= (
1−β∗

1 (μ+ν)

μ+ν
)(λ21 + μ(1 + λ23b̄3))

1 − ρ1
,

ρ̃2 = ∂

∂z2
c∗(0, z2)|z2=1 = ρ2

1 − ρ1
,

(6)

ρ̃4 = ∂

∂z2
v∗(0, z2)|z2=1 = ρ4

1 − ρ1
=

b̄4
β∗

4 (λ14)
[λ14L1 + (1 − ρ1)λ24]

1 − ρ1
,

ρ̃d = E
(
N(W1)

) = ∂

∂z2
w∗

1(0, z2)|z2=1 = ρd

1 − ρ1
= L1 + ρ4

1 − ρ1
,

ρ̃w = E
(
N(W2)

) = ∂

∂z2
w∗

2(0, z2)|z2=1 = ρw

1 − ρ1
= ρ2 + ρ4

1 − ρ1
,
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where

ρ2 =
(

1 − β2(μ + ν)

μ + ν

)
[
L1(λ12 + λ13μb̄3) + (1 − ρ1)

(
λ22 + μ(1 + λ23b̄3)

)]
.

Moreover by differentiating (5) with respect to s in the point z2 = 1, s = 0, we
obtain the mean duration of GBP of P1 customer and the mean duration of GCT of a
P2 customer. Then

E(W1) = − ∂

∂s
w∗

1(s,1)|s=0

= [1 − β∗
1 (μ + ν)](1 + μb̄3)

(μ + ν)(1 − ρ1)

+ b̄4

β∗
4 (λ14)

(

1 + λ14(1 + μb̄3)[1 − β∗
1 (μ + ν)]

(1 − ρ1)(μ + ν)

)

,

E(W2) = − ∂

∂s
w∗

2(s,1)|s=0 (7)

= b̄4

β∗
4 (λ14)

(

1 + λ14(1 + μb̄3)[1 − β∗
1 (μ + ν)]

(1 − ρ1)(μ + ν)

)

+ [1 − β∗
2 (μ + ν)](1 + μb̄3)

(μ + ν)

×
(

1 + (λ12 + μλ13b̄3)(1 + μb̄3)[1 − β∗
1 (μ + ν)]

(1 − ρ1)(μ + ν)

)

.

Now we are ready to state the following theorem, which is important for the future
analysis.

Theorem 2 For (i) Re(s) > 0, (ii) Re(s) ≥ 0, and ρ = ρ1 +ρ2 +ρ4 > 1 the equation.

z2 − w∗
2(s, z2) = 0, (8)

has one and only one root, z2 = φ(s) say, inside the region |z2| < 1. Specifically
for s = 0, φ(0) is the smallest positive real root of (8) with φ(0) < 1 if ρ > 1 and
φ(0) = 1 for ρ ≤ 1.

Proof For the closed contour |z2| = 1 and under the assumption (i) we have always

∣
∣w∗

2(s, z2)
∣
∣ ≤ w∗

2

(
Re(s),1

)
< w∗

2(0,1) = 1 ≡ |z2|,

while for Re(s) ≥ 0, we need to consider the closed contour |z2| = 1 − ε (ε > 0 a
small number) in which case

∣
∣w∗

2(s, z2)
∣
∣ ≤ w∗

2

(
Re(s),1 − ε

)
< 1 − ε ≡ |z2|, (9)
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only if in addition

d

dε
w∗

2(0,1 − ε) |ε=0= −ρ2 + ρ4

1 − ρ1
<

d

dε
(1 − ε) |ε=0 = −1,

or we need now ρ > 1 for the relation (9) to hold. A final reference to Rouché’s
theorem completes the first part of the proof.

Moreover for s = 0 the convex function w∗
2(0, z2) is a monotonically increasing

function of z2, for 0 ≤ z2 ≤ 1, taking the values w∗
2(0,0) < 1 and w∗

2(0,1) = 1 and so
0 < φ(0) < 1 if ρ > 1, while for ρ ≤ 1, φ(0) becomes equal to 1 and this completes
the proof. �

4 Stability conditions

In order to obtain the stability conditions of our model we use results from the theory
of Semi-Regenerative processes. We prove that the stochastic process that governs
the evolution of our model is a semi-regenerative process and by discovering an em-
bedded Markov renewal process, we follow the lines of Cinlar (1975) (Theorem 6.12,
p. 347) to obtain the stability conditions.

Let

T0 = 0 < T1 < T2 < · · · ,

the time instants at which the server becomes idle for the ith time, i = 0,1, . . . . Note
that the Ti, i = 0,1, . . . , are the time instants at which either a GBP, or a GCT is
terminated and as a result, no P1 customers are waiting in the ordinary queue (the
retrial box is not necessary idle). Define N2i = N2(Ti+), i = 0,1,2, . . . , to be the
number of P2 customers just after Ti . Then Y = {N2i , i = 0,1, . . .} is an irreducible,
aperiodic Markov chain.

Theorem 3 If ρ < 1, then Y is positive recurrent.

Proof Subject to Pakes (1969) theorem:
An irreducible and aperiodic Markov chain (Yn; n ≥ 0), with state space the

nonnegative integers, is positive recurrent if |δk| < ∞ for all k = 0,1,2, . . . and
lim supk→∞δk < 0, where δk = E[Yn+1 − Yn | Yn = k].

Let us define for m = −1,0,1, . . . ,

hkm(t) dt = P
(
t < Tn+1 − Tn ≤ t + dt,N2n+1 − N2n = m|N2n = k

)
,

h∗
k(s, z) =

∞∑

k=0

zk

∫ ∞

0
e−sthkm(t) dt.

Then

hkm(t) = [
λ10e

−(λ0+kα)tw(1)
m (t) + λ20e

−(λ0+kα)tw(2)
m (t)

+ kαe−(λ0+kα)tw
(2)
m+1(t)

]
δ{m=0,1,...} + kαe−(λ0+kα)tw

(2)
0 (t)δ{m=−1},
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where λ0 = λ10 + λ20. After manipulations

h∗
k(s, z) = λ10w

∗
1(s, z) + λ20w

∗
2(s, z) + kα

z
w∗

2(s, z)

s + λ0 + kα
. (10)

Differentiating (10) with respect to z at the point z = 1, s = 0 we arrive, for k =
0,1, . . . at

δk = ∂

∂z
h∗

k(s, z)|z=1 = λ10E(N(W1)) + λ20E(N(W2)) + kα(E(N(W1)) − 1)

λ0 + kα
,

where E(N(W1)), E(N(W2)), have been found in (6).
Thus for ρ < 1 we realize that |δk| is finite for all k and also lim supk→∞δk =

E(N(W2)) − 1 = ρ2+ρ4
1−ρ1

− 1 < 0, and the theorem is satisfied. So, for ρ < 1 the
steady state probabilities qk, k = 0,1, . . . , of the Markov chain Y exists and form a
distribution. �

For a stochastic process (Y (t); t ≥ 0) we will say that it is stable, if its limiting
probabilities as t → ∞ exist and form a distribution. Consider the stochastic process

X = {(
N1(t),N2(t), ξt

)
, t ≥ 0

}
.

The following theorem gives the sufficient condition for X to be stable.

Theorem 4 For ρ < 1 the process X is stable.

Proof Consider the quantities

dk = E(T1| N20 = k).

Differentiating (10) with respect to s (at z = 1, s = 0) we obtain

dk = λ10E(W1) + λ20E(W2) + kαE(W2) + 1

λ0 + kα
.

Then

q · d =
∞∑

k=0

qkdk = E(W2) + [
1 + λ10

[
E(W1) − E(W2)

]]
∞∑

k=0

qk

λ0 + kα
. (11)

Now it is clear that there is always a finite integer k∗ such that

1

λ0 + (k∗ − 1)α
> 1 >

1

λ0 + k∗α
,

and so

∞∑

k=0

qk

λ0 + kα
=

k∗−1∑

k=0

qk

λ0 + kα
+

∞∑

k=k∗

qk

λ0 + kα
<

k∗−1∑

k=0

qk

λ0 + kα
+

∞∑

k=k∗
qk
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=
k∗−1∑

k=0

qk

λ0 + kα
+

(

1 −
k∗−1∑

k=0

qk

)

< ∞.

Substituting now (7) to (11) one can understand that q · d < ∞.

Consider finally the irreducible aperiodic and positive recurrent Markov Renewal
Process {N, T } = {(N2n, Tn): n = 0,1,2, . . .}. It is easy to see that the stochastic
process X is a Semi-Regenerative Process with embedded Markov Renewal Process
{N, T } and as, for ρ < 1, q · d < ∞ it is clear that X is, for ρ < 1, stable (Cinlar
1975, Theorem 6.12, p. 347). �

5 Steady state analysis

Let us assume that a state for statistical equilibrium exists for our model, so that
ρ < 1. Define Ni = limt→∞ Ni(t), i = 1,2, ξ = limt→∞ ξt , u = limt→∞ ut ,

σi(z1, z2) = σi(z1, z2,0), σ2(z2) = σ2(z2,0). Let also the generating functions

Pi(z1, z2, x) =
∑

k1≥0

∑

k2≥0

pi(k1, k2, x)z
k1
1 z

k2
2 dx,

P2(z2, x) =
∑

k2≥0

p2(k2, x)z
k2
2 dx,

Pi1(z1, z2, x, y) =
∑

k1≥0

∑

k2≥0

pi1(k1, k2, x, y)z
k1
1 z

k2
2 dx,

Q(z2) =
∑

k2≥0

q(k2)z
k2
2 .

By applying the supplementary variable method we obtain the following equations
that govern the dynamics of the system:

∂

∂x
pi(k1, k2, x) + pi(k1, k2, x)

[
λ1i + λ2i + ηi(x) + δ{i=1}(μ + ν)

]

= λ1ipi(k1 − 1, k2, x) + λ2ipi(k1, k2 − 1, x), i = 1,3,4,

∂

∂x
p2(k2, x) + p2(k2, x)

[
λ12 + λ22 + η2(x) + μ + ν

]
(12)

=
∫ ∞

0
p11(0, k2, y, x)η1(y) dy + ν

∫ ∞

0
p11(0, k2, y, x) dy

+ λ22p2(k2 − 1, x) +
∫ ∞

0
p31(0, k2, y, x)η3(y) dy,

∂

∂x
pi1(k1, k2, x, y) + pi1(k1, k2, x, y)

[
λ1i + λ2i + ηi(x) + δ{i=1}(μ + ν)

]

= λ1ipi1(k1 − 1, k2, x, y) + λ2ipi1(k1, k2 − 1, x, y), i = 1,3, (13)
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(λ0 + k2α)q(k2) =
∫ ∞

0
p4(0, k2, x)η4(x) dx.

The boundary conditions are given by

p11(k1, k2,0, x) = λ12p2(k2, x)δ{k1=0} +
∫ ∞

0
p11(k1 + 1, k2, y, x)η1(y) dy

+
∫ ∞

0
p31(k1 + 1, k2, y, x)η3(y) dy

(14)

+ ν

∫ ∞

0
p11(k1 + 1, k2, y, x) dy,

p31(k1, k2,0, x) = μ

∫ ∞

0
p11(k1, k2 − 1, y, x) dy.

p2(k2,0) = λ20q(k2) + α(k2 + 1)q(k2 + 1),

p3(k1, k2,0) = μ

[∫ ∞

0
p1(k1, k2 − 1, x) dx +

∫ ∞

0
p2(k2 − 1, x) dxδ{k1=0}

]

,

p4(0, k2,0) =
∫ ∞

0
p1(0, k2, x)η1(x) dx (15)

+ ν

∫ ∞

0
p1(0, k2, x) dx +

∫ ∞

0
p2(k2, x)η2(x) dx

+
∫ ∞

0
p3(0, k2, x)η3(x) dx + ν

∫ ∞

0
p2(k2, x) dx,

p1(k1, k2,0) = λ10q(k2)δ{k1=0} +
∫ ∞

0
p1(k1 + 1, k2, x)η1(x) dx

+
∫ ∞

0
p3(k1 + 1, k2, x)η3(x) dx

+ ν

∫ ∞

0
p1(k1 + 1, k2, x) dx

+
∫ ∞

0
p4(k1 + 1, k2, x)η4(x) dx, (16)

where δ{} is Kronecker’s delta. Forming the generating functions, we obtain

Pi(z1, z2, x) = Pi(z1, z2,0)
(
1 − Bi(x)

)
exp

[−σi(z1, z2)x
]
, i = 1,3,4,

Pi1(z1, z2, x, y) = Pi1(z1, z2,0, y)
(
1 − Bi(x)

)
exp

[−σi(z1, z2)x
]
, i = 1,3, (17)

λ0Q(z2) + αz2
∂

∂z2
Q(z2) = P4(0, z2,0)β∗

4

(
λ14 + λ24(1 − z2)

)
.
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From (14),

P11(z1, z2,0, x) = λ12z1P2(z2, x) − R(z2, x)

z1 − a∗
1(z1, z2,0)

, (18)

where

R(z2, x) =
∫ ∞

0
P11(0, z2, y, x)η1(y) dy +

∫ ∞

0
P31(0, z2, y, x)η3(y) dy

+ ν

∫ ∞

0
P11(0, z2, y, x) dy.

Then by substituting the only root, say x(z2) ≡ x(0, z2), in |z1| ≤ 1 of the equation
z1 − a∗

1(z1, z2,0), in the numerator of (18), we obtain

R(z2, x) = λ12x(z2)P (z2, x). (19)

Using (19), in (12), we obtain

P2(z2, x) = P2(z2,0)
(
1 − B2(x)

)
exp

(−σ2(z2)x
)
. (20)

The generating functions for the boundary conditions are given by

P11(z1, z2,0, x) = λ12(z1 − x(z2))

z1 − a∗
1(z1, z2,0)

P2(z2, x),

P2(z2,0) = λ20Q(z2) + α
∂

∂z2
Q(z2),

(21)
P3(z1, z2,0) = μz2

[
P1(z1, z2) + P2(z2)

]
,

P31(z1, z2,0, x) = μz2P11(z1, z2,0, x)
1 − β∗

1 (σ1(z1, z2))

σ1(z1, z2)
.

Moreover

P1(z1, z2,0) = {
λ10z1Q(z2) + P2(z2,0)a∗

2(z1, z2,0)

− P4(0, z2,0)
[
1 − β∗

4

(
σ4

(
z1, z2

)) + β∗
4

(
σ4(0, z2)

)]}

× {
z1 − a∗

1(z1, z2,0)
}−1

. (22)

Using the root x(z2), in |z1| ≤ 1, of the equation z1 − a∗
1(z1, z2,0) we arrive at

P4(0, z2,0) = (λ10x(z2) + λ20c
∗(0, z2))Q(z2) + α ∂

∂z2
Q(z2)c

∗(0, z2)

1 − β∗
4 (σ4(x(z2), z2)) + β∗

4 (σ4(0, z2))
. (23)

Substitute (23), in the last of (17) we obtain

α
(
z2 −w∗

2(0, z2)
) ∂

∂z2
Q(z2)+ [

λ0 −λ10w
∗
1(0, z2)−λ20w

∗
2(0, z2)

]
Q(z2) = 0. (24)
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In order to solve the differential equation (24) we have to use Theorem 2. Accord-
ing to Theorem 2, for ρ < 1 equation z2 − w∗

2(0, z2) = 0 never become zero in the
unit disk |z2| < 1. Let now,

ψ(z2) = λ0 − λ10w
∗
1(0, z2) − λ20w

∗
2(0, z2)

z2 − w∗
2(0, z2)

.

Thus, ψ(z2) is analytic function in |z2| < 1, and also a continuous one on the bound-
ary because of

lim
z2→1

ψ(z2) = −λ10ρd − λ20ρw

1 − ρ
< ∞.

As a result, (24), can be solved for |z2| ≤ 1 and

Q(z2) = Q(1) exp

{

−
∫ 1

z2

λ0 − λ10w
∗
1(0, u) − λ20w

∗
2(0, u)

α[w∗
2(0, u) − u] du

}

. (25)

By substituting (25), all above defined probability generating functions in steady
state, are completely known. Setting z2 = 1, to all probability generating functions
and asking the total probability to sum in unity we obtain

Q(1) = 1 − ρ

A
, (26)

where

A = (1 − ρ)
[
1 + λ10E(W1)

] + [
λ10ρd + λ20(1 − ρ1)

]
E(W2).

The following theorem shows that the condition ρ < 1 is also necessary for a
stable system.

Theorem 5 If the system is stable, then ρ < 1.

Proof Suppose that the system is stable and ρ > 1. Then from Theorem 2 the
equation z2 − w∗

2(0, z2) = 0 has a root strictly less than one (φ(0) < 1) and so
λ0 − λ10w

∗
1(0, φ(0)) − λ20w

∗
2(0, φ(0)) �= 0. By putting now φ(0) instead of z2 in

(24) we obtain
[
λ0 − λ10w

∗
1

(
0, φ(0)

) − λ20w
∗
2

(
0, φ(0)

)]
Q

(
φ(0)

) = 0,

and so Q(φ(0)) = ∑
q(j)φj (0) = 0 with 0 < φ(0) < 1. Thus q(j) = 0 ∀j and also

from the generating functions in (17)–(23) it is clear that all probabilities become
zero. This of course contradicts the hypothesis that the system is stable.

Suppose finally that the system is stable and ρ = 1. Differentiating (24) with re-
spect to z2 (at z2 = 1) we arrive (for ρ = 1) at

d

dz2

[
λ0 − λ10w

∗
1(0, z2) − λ20w

∗
2(0, z2)

]∣
∣
z2=1Q(1)

= −[
λ10E

(
N(W1)

) + λ20E
(
N(W2)

) + λ0E
(
N(V )

)]
Q(1) = 0,
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and so Q(1) = ∑
q(j) = 0 and this again contradicts the hypothesis that the system

is stable. �

6 Stochastic decomposition law

The stochastic decomposition property was first established by Furhmand and Cooper
(1985) for the M/G/1 queue with generalized vacations, while an analogous result for
retrial queues was presented by Falin et al. (1993). Shanthikumar (1988), generalized
the result by Furhmand and Cooper (1985) on the decomposition property in M/G/1
queue by assuming the arrival process to be different at certain random periods. In
this Section, we establish a decomposition property for our retrial model with varying
arrival rates according to server state.

Let us allow the retrial rate α → ∞. In this case, the modified model consist of
two parallel queues, one of which have preemptive resume priority over the other
one. A control on the arrivals has been made, by varying the arrival rates according
to server’s state.

When a P1customer arrives during the service of a P2 customer, he immediately
interrupts him and forces the server to start serving him. The service of the inter-
rupted P2 customer is resumed from the point of interruption as soon as the server
become available. The server departs for single vacation each time, upon finishing the
service of a P1 or a P2 customer or after a repair completion or after a negative ar-
rival, he faces an empty priority queue (the non-priority queue is not necessary idle).
The server starts serving in non-priority queue in a preemptive resume basis only
when upon returning from a vacation he finds the priority queue empty. The model is
subject to breakdowns and repairs. When a breakdown occurs, the server is sent for
repair and the customer being served joins the non-priority queue. Upon returning
from repair, the server start serving in the priority queue (if not empty). If priority
queue is empty it departs for single vacation.

Let us denote by N̂i , i = 1,2, to be the number of Pi , customers in steady state
for the modified model and by P̂i(.), i = 1,2,3,4, P̂i1, i = 1,3, the corresponding
probability generating functions. Clearly,

P̂1(z1, z2) = (1 − β∗
1 (σ1(z1, z2)))q0

σ1(z1, z2)(z1 − a∗
1(z1, z2,0))

×
{

z1 − x(z2)
1 − β∗

4 (σ4(z1, z2)) + β∗
4 (σ4(0, z2))

1 − β∗
4 (σ4(x(z2), z2)) + β∗

4 (σ4(0, z2))

}

+ λ0 − λ10w
∗
1(0, z2) − λ20z2

w∗
2(0, z2) − z2

×
[

a∗
2(z1, z2,0) − c∗(0, z2)[1 − β∗

4 (σ4(z1, z2)) + β∗
4 (σ4(0, z2))]

1 − β∗
4 (σ4(x(z2), z2)) + β∗

4 (σ4(0, z2))

]

,

P̂2(z2) = (λ0 − λ10w
∗
1(0, z2) − λ20z2)(1 − β∗

2 (σ2(z2)))

(w∗
2(0, z2) − z2)σ2(z2)

q0,
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P̂3(z1, z2) = μz2
[
P̂1(z1, z2) + P̂2(z2)

]1 − β∗
3 (σ3(z1, z2))

σ3(z1, z2)
,

P̂11(z1, z2) = λ12(z1 − x(z2))P̂2(z2)

z1 − a∗
1(z1, z2,0)

(
1 − β∗

1 (σ1(z1, z2))

σ1(z1, z2)

)

,

P̂31(z1, z2) = μz2P̂11(z1, z2)
1 − β∗

3 (σ3(z1, z2))

σ3(z1, z2)
,

P̂4(z1, z2) =
(1 − β∗

4 (σ4(z1, z2)))q0[λ10x(z2) + λ0−λ10w
∗
1(0,z2)−λ20z2

w∗
2(0,z2)−z2

c∗(0, z2)]
σ4(z1, z2)[1 − β∗

4 (σ4(x(z2), z2)) + β∗
4 (σ4(0, z2))] ,

where q0 = Q(1). Note that the probability generating functions of our retrial model
are given by

Q(z2) = q0Qα(z2), P2(z2) = P̂i(z2)Qα(z2),

Pi1(z1, z2) = P̂i1(z1, z2)Qα(z2), i = 1,3,

Pi(z1, z2) = P̂i(z1, z2)Qα(z2), i = 1,3,4,

where

Qα(z2) = exp

{

−
∫ 1

z2

λ0 − λ10w
∗
1(0, u) − λ20w

∗
2(0, u)

α[w∗
2(0, u) − u] du

}

,

the generating function of the number of customers in orbit given that the server is
idle. According to the above result our model satisfy the stochastic decomposition
property. This outcome can be summed up in the following theorem.

Theorem 6 The number of customers in priority and non-priority queue and the
server’s state (N1,N2, ξ) for the system under study can be represented as the sum
of two independent random variables, one of which is the number of customers in
priority and non-priority queue and the server’s state in the non retrial model with
failures, repairs and negative customers where arrival rates depend on the server
state (N̂1, N̂2, ξ̂ ) and the other is the number of the customers in orbit given that the
server is idle (0,Qα,0). That is (N1,N2, ξ) = (N̂1, N̂2, ξ̂ ) + (0,Qα,0).

7 Performance measures

In this sections we are going to obtain some measures that describes the evolution
of or model. Firstly, by setting z1 = z2 = 1 in the probability generating functions
(17)–(23), we derive the probabilities of server’s state. After the manipulations

P(ξ = 0) = Q(1) = 1 − ρ

A
,

P (ξ = 1, u = 0) = P1(1,1) = 1 − β∗
1 (μ + ν)

(μ + ν)A(1 − ρ1)

{

λ10(1 − ρ)

(

1 + λ14b̄4

β∗
4 (λ14)

)



560 I. Dimitriou

+ (
λ10ρd + λ20(1 − ρ1)

)

×
[
λ13μb̄3(1 − β∗

2 (μ + ν))

μ + ν
+ λ14b̄4

β∗
4 (λ14)

]}

,

P (ξ = 2) = P2(1) = λ10ρd + λ20(1 − ρ1)

A

(
1 − β∗

2 (μ + ν)

μ + ν

)

,

P (ξ = 4) = P4(1,1) =
(

λ10(1 − ρ + ρd) + λ20(1 − ρ1)

A

)
b̄4

β∗
4 (λ14)

,

P (ξ = 1, u = 1) = P11(1,1) = λ12

1 − ρ1
P2(1)

1 − β∗
1 (μ + ν)

μ + ν
,

P (ξ = 3, u = 1) = P31(1,1) = μb̄3P11(1,1),

P (ξ = 3, u = 0) = P3(1,1) = μb̄3
[
P1(1,1) + P2(1)

]
.

In the sequel we give in closed form the mean number of P2 customers in steady
state. These expressions can be derived after heavy manipulations, by differentiating
the probability generating functions (17)–(23), with respect to z2, at the point z1 =
z2 = 1. Then

E(N2; ξ = 0) = λ10ρd + λ20ρw

α(1 − ρ)
,

E(N2; ξ = 2) = (1 − β∗
2 (μ + ν))(M + λ20E(N2; ξ = 0))

μ + ν

+ P2(1)(λ12m1 + λ22)(β̇
∗
2 (μ + ν) + 1−β∗

2 (μ+ν)

μ+ν
)

1 − β∗
2 (μ + ν)

,

E(N2; ξ = 1, u = 1) = λ12P2(1)(1 − β∗
1 (μ + ν))

2L2
1(μ + ν)

S

+ λ12E(N2; ξ = 2)(1 − β∗
1 (μ + ν))

(1 − ρ1)(μ + ν)

+ λ12P2(1)λ21(β̇
∗
1 (μ + ν) + 1−β∗

1 (μ+ν)

μ+ν
)

(1 − ρ1)(μ + ν)
,

E(N2; ξ = 3, u = 1) = μb̄3E(N2; ξ = 1, u = 1) + μP11(1,1)

(

b̄3 + λ23b̄
(2)
3

2

)

,

E(N2; ξ = 4) = b̄4G + λ24b̄
(2)
4

P4(1,1)

2b̄4
,

E(N2; ξ = 1, u = 0)

= 1 − β∗
1 (μ + ν)

μ + ν

{
λ10E(N2; ξ = 0)

1 − ρ1
+ λ10Q(1)S

2L2
1

+ λ13μb̄3E(N2; ξ = 2)

1 − ρ1
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+ P2(1)

{
λ13μb̄3

1 − ρ1
+ μ[λ13m1(b̄3 + (λ13m1 + 2λ23)b̄

(2)
3 ) + λ13b̄3S

L1
]

2L1

}

+ λ14b̄4

1 − ρ1
G + P4(1)[λ14m1(λ14m1 + 2λ24)b̄

(2)
4 ) + λ14b̄4S

L1
]

2b̄4L1

}

+ λ21P1(1,1)(β̇∗
1 (μ + ν) + 1−β∗

1 (μ+ν)

μ+ν
)

1 − β∗
1 (μ + ν)

,

E(N2; ξ = 3, u = 0) = μb̄3
[
E(N2; ξ = 1, u = 0) + E(N2; ξ = 2)

]

+ μ
[
P1(1,1) + P1(1)

]
(

b3 + λ23b̄
(2)
3

2

)

,

where

S = 2m1(β̇
∗
1 (μ + ν) + 1−β∗

1 (μ+ν)

μ+ν
)(λ21 + μ(1 + λ23b̄3))(λ11m1 + λ21ρ1)

(μ + ν)(1 − ρ1)

+ λ13m
2
1(1 − β∗

1 (μ + ν))[2μb̄3 + μb̄
(2)
3 (λ13m1 + 2λ23)]

μ + ν
,

G = M + E(N2; ξ = 0)(λ0 + αρ̃2) + Q(1)(λ10m1 + λ20ρ̃2)

β∗
4 (λ14)

+
P4(1,1)

b̄4
[(λ14m1 + λ24)b̄4 + λ24β̇(λ14)]

β∗
4 (λ14)

,

M = Q(1)(1 − ρ1)[λ10ρ̃
(2)
d + λ20ρ̃

(2)
w ]

2(1 − ρ)

+ (λ10ρd + λ20ρw)[E(N2; ξ = 0) + Q(1)(1−ρ1)ρ̃
(2)
w

2(1−ρ)

1 − ρ
.

m2 = 2(λ11m1 + λ21)(β̇
∗
1 (μ + ν) + 1−β∗

1 (μ+ν)

μ+ν
)(λ21 + μ(1 + λ23b̄3))

(μ + ν)(1 − ρ1)2

+ (λ13m1 + λ23)(1 − β∗
1 (μ + ν))[2μb̄3 + μb̄

(2)
3 (λ13m1 + λ23)]

(1 − ρ1)(μ + ν)
,

ρ̃
(2)
d = m2 + 2m1ρ̃4 + ρ̃

(2)
4 , ρ̃(2)

w = ρ̃(2) + 2ρ̃2ρ̃4 + ρ̃
(2)
4 ,

ρ̃
(2)
2 = (λ12 + λ13μb̄3)(1 − β∗

2 (μ + ν))m2

μ + ν

+ (λ13m1 + λ23)(1 − β∗
2 (μ + ν))[2μb̄3 + μb̄

(2)
3 (λ13m1 + λ23)]

μ + ν
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+
{

2(λ12m1 + λ22)

(

β̇∗
2 (μ + ν) + 1 − β∗

2 (μ + ν)

μ + ν

)

× (
(λ12 + λ13μb̄3)m1 + λ21 + μ(1 + λ23b̄3)

)
}
{
(μ + ν)

}−1
,

ρ̃
(2)
4 = λ14b̄4

β∗
4 (λ14)

m2 + (λ14m1 + λ24)
2b̄

(2)
4

β∗
4 (λ14)

+ 2(λ14m1 + λ24)b̄4[(λ14m1 + λ24)b̄4 + λ24β̇
∗
4 (λ14)]

(β∗
4 (λ14))2

,

where β̇∗(.) is the first order derivative of the function β∗(.).

8 Reliability analysis

This section discusses some reliability indices of the model under consideration.
Specifically, we analyze the availability of the server, the failure frequency and the
time to first failure of the server. Let AV (t) be the availability of the server at time t ,
that is, the probability that the server is either serving a customer or is in the idle
period or during a single vacation. Define the steady state (ρ < 1) availability by
AV = limt→∞ AV (t). Then,

Theorem 7 The steady state availability of the server is AV = 1 − μb̄3[P1(1,1) +
P2(1)(1 + λ12(1−β∗

1 (μ+ν))

(1−ρ1)(μ+ν)
)].

Proof: This is readily obtained by considering that

AV = 1 − P3(1,1) − P31(1,1). (27)

Corollary 8 The steady state failure frequency of the server is F = μ[P1(1,1) +
P2(1)(1 + λ12(1−β∗

1 (μ+ν))

(1−ρ1)(μ+ν)
)].

The result follows directly by

F = μ

{∫ ∞

0

[
P1(1,1, x) + P2(1, x)

]
dx +

∫ ∞

0

∫ ∞

0
P11(1,1, x, y) dx dy

}

.

Let us assume that the system is empty at time t = 0. That is q(0,0) = 1. Denote
by τ to be the time to first failure of the server. Then the reliability function of the
server is U(t) = P(τ > t). In order to find U(t) we regard a new system where the
failure states of the server are assumed to be absorbent states. In the new system we
use the same notations as in Sect. 2. Then we can get the following set of equations:

(
∂

∂x
+ ∂

∂t
+ λ1i + λ2i + ηi(x) + δ{i=1}(μ + ν)

)

pi(k1, k2, x, t)
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= λ1ipi(k1 − 1, k2, x, t) + λ2ipi(k1, k2 − 1, x, t), i = 1,4,
(

∂

∂x
+ ∂

∂t
+ λ12 + λ22 + η2(x) + μ + ν

)

p2(k2, x, t)

= λ22p2(k2 − 1, x, t)

+
∫ ∞

0
p11(0, k2, y, x, t)η1(y) dy + ν

∫ ∞

0
p11(0, k2, y, x, t) dy, (28)

(
∂

∂x
+ ∂

∂t
+ λ11 + λ21 + η1(x) + μ + ν

)

p11(k1, k2, x, t)

= λ11p11(k1 − 1, k2, x, t) + λ21p11(k1, k2 − 1, x, t),

(
∂

∂t
+ λ0 + k2α

)

q(k2, t) =
∫ ∞

0
p4(0, k2, x, t)η4(x) dx.

p11(k1, k2,0, x, t) = λ12p2(k2, x, t)δ{k1=0} +
∫ ∞

0
p11(k1+1, k2, y, x, t)η1(y) dy

+ ν

∫ ∞

0
p11(k1 + 1, k2, y, x, t) dy,

p2(k2,0, t) = λ20q(k2, t) + α(k2 + 1)q(k2 + 1, t), (29)

p4(0, k2,0, t) =
∫ ∞

0
p1(0, k2, x, t)η1(x) dx + ν

∫ ∞

0
p1(0, k2, x, t) dx

+
∫ ∞

0
p2(k2, x, t)η2(x) dx,+ν

∫ ∞

0
p2(k2, x, t) dx,

p1(k1, k2,0, t) = λ10q(k2, t)δ{k1=0} +
∫ ∞

0
p1(k1 + 1, k2, x, t)η1(x) dx

+ ν

∫ ∞

0
p1(k1 + 1, k2, x, t) dx

+
∫ ∞

0
p4(k1 + 1, k2, x, t)η4(x) dx. (30)

Consider now the LST of the generating functions

P ∗
i (z1, z2, x, s) =

∑

k1≥0

∑

k2≥0

∫ ∞

0
e−stpi(k1, k2, x, t)z

k1
1 z

k2
2 dt,

P ∗
2 (z2, x, s) =

∑

k2≥0

∫ ∞

0
e−stp2(k2, x, t)z

k2
2 dt,

P ∗
11(z1, z2, x, y, s) =

∑

k1≥0

∑

k2≥0

∫ ∞

0
e−stp11(k1, k2, x, y, t)z

k1
1 z

k2
2 dt,
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Q∗(z2, s) =
∑

k2≥0

∫ ∞

0
e−st q(k2, t)z

k2
2 dt.

After manipulations

P ∗
i (z1, z2, s) = P ∗

i (z1, z2,0, s)
1 − β∗

i (σi(z1, z2, s))

σi(z1, z2, s)
, i = 1,4,

P ∗
11(z1, z2, s) = P ∗

11(z1, z2,0, s)
1 − β∗

1 (σ1(z1, z2, s))

σ1(z1, z2, s)
,

(31)

(s + λ0)Q
∗(z2, s) + αz2

∂

∂z2
Q∗(z2, s)

= 1 + P ∗
4 (0, z2,0, s)β∗

4

(
σ4(0, z2, s)

)
.

Moreover by the first of (29)

(
z1 − y1(z1, z2, s)

)
P ∗

11(z1, z2,0, x, s)

= λ12z1P
∗
2 (z2, x, s)

−
[∫ ∞

0
P ∗

11(0, z2, y, x, s)η1(y) dy + ν

∫ ∞

0
P ∗

11(0, z2, y, x, s) dy

]

where y1(z1, z2, s) = β∗
1 (σ1(z1, z2, s)) + ν

1−β∗
1 (σ1(z1,z2,s))

σ1(z1,z2,s)
. Similar to the derivation

in Falin and Templeton (1997) (p. 191) we can show that z1−y1(z1, z2, s) = 0 has
exactly one root, say z1 = ω1(s, z2), in the disk |z1| ≤ 1. Then after some algebra we
obtain

P ∗
11(z1, z2,0, x, s) = λ12(z1 − ω1(s, z2))

z1 − y1(z1, z2, s)
P ∗

2 (z2, x, s),

P ∗
2 (z2, s) = P ∗

2 (z2,0, s)
1 − β∗

2 (σ̂2(z2, s))

σ̂2(z2, s)
,

where σ̂2(z2, s) = s + μ + ν + λ12(1 − ω1(s, z2)) + λ22(1 − z2). Moreover

P ∗
1 (z1, z2,0, s) = {

λ10z1Q
∗(z2, s) + P ∗

2 (z2,0, s)y2(z2, s) − P ∗
4 (0, z2,0, s)

× [
1 − β∗

4

(
σ4(z1, z2, s)

) + β∗
4

(
σ4(0, z2, s)

)]}

× {
z1 − y1(z1, z2, s)

}−1
,

where y2(z2, s) = β∗
2 (σ̂2(z2, s)) + ν

1−β∗
2 (σ̂2(z2,s))

σ̂2(z2,s)
. Then,

P ∗
4 (0, z2,0, s) = (λ10ω1(s, z2) + λ20y2(z2, s))Q

∗(z2, s) + α ∂
∂z2

Q∗(z2, s)y2(z2, s)

1 − β∗
4 (σ4(ω1(s, z2), z2, s)) + β∗

4 (σ4(0, z2, s))
.

(32)
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Replacing (32) in the third of (31) yields

α
(
z2 − f̂2(z2, s)

) ∂

∂z2
Q∗(z2, s)+

[
s+λ0 −λ10f̂1(z2, s)−λ20f̂2(z2, s)

]
Q∗(z2, s) = 1,

(33)
where

f̂1(z2, s) = ω1(s, z2)v̂(s, z2), f̂2(z2, s) = y2(z2, s)v̂(s, z2),

where

v̂(s, z2) = β∗
4 (σ4(0, z2, s))

1 − β∗
4 (σ4(ω1(s, z2), z2, s)) + β∗

4 (σ4(0, z2, s))
.

It is easy to realize that the equation z2 − f̂2(z2, s) = 0 has exactly one root, say
z2 = ω2(s), in the disk |z2| ≤ 1. Then differential equation (33) can be solved and

Q∗(z2, s) =
∫ ω2(s)

z2

1

α(f̂2(y, s) − y)

× exp

{∫ z2

y

s + λ0 − λ10f̂1(x, s) − λ20f̂2(x, s)

α(f̂2(x, s) − x)
dy

}

dx,

z2 �= ω2(s),

Q∗(z2, s) = 1

s + λ0 − λ10f̂1(z2, s) − λ20f̂2(z2, s)
, z2 = ω2(s).

Using the above results we can compute the LST

U∗(s) =
∫ ∞

0
e−stU(t) dt = Q∗(1, s) + P ∗

1 (1,1, s) + P ∗
2 (1, s)

+ P ∗
11(1,1, s) + P ∗

4 (1,1, s),

while the mean time to first failure (MTFF) of the server is given by

MTFF = U∗(0).

9 Numerical results

In this section, we are going to illustrate useful numerical results that demonstrate the
features of the model under consideration. To construct the tables below, we assume
that service, repair times and vacation times follow exponential distributions with
p.d.f.’s, given by

bi(x) = 1

b̄i

e−(1/b̄i )x, i = 1,2,3,4.

Moreover, in all tables below we assume λ20 = 1.1, λ21 = 0.6, λ22 = 0.8, λ24 = 0.5.
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Table 1 Values of λ∗
11 for

λ10 = 1, λ12 = 0.8, ν = 4,
λ13 = λ23 = 0.1, λ14 = 0.6,

μ = 3, b̄4 = 0.25

b̄1 b̄2

0.2 0.5 1 2

0.2 b̄3 = 0.5 10.036 9.323 8.804 8.4097

b̄3 = 1 9.4647 8.5319 7.8338 7.2917

b̄3 = 2 8.8948 7.6167 6.595 5.759

0.5 6.8887 6.136 5.5888 5.173

6.523 5.6068 4.921 4.3886

5.7355 4.4044 3.3404 2.4705

1 5.9077 5.1599 4.6164 4.2034

5.5427 4.6318 3.9502 3.4308

4.7559 3.4316 2.3731 1.5076

2 5.4172 4.6719 4.1302 3.7185

5.0523 4.1443 3.4647 2.937

4.2661 2.9452 1.8894 1.0261

Table 2 Values of E(N2) for
λ10 = 1, ν = 4, λ11 = 0.8 =
λ12, λ13 = 0.1, λ14 =
0.6, b̄1 = 0.5, b̄2 = 0.33, b̄4 =
0.25, α = 0.8, ν = 4

λ23 b̄3

0.1 0.8 1.4 4 8

0 μ = 1 8.945 12.06 14.87 28.981 59.382

μ = 2 16.619 28.191 39.527 110.91 369.61

μ = 3 28.124 58.178 90.662 365.77 2886.9

0.1 9.0268 12.981 16.947 43.178

16.895 32.338 50.776 274.9

28.821 72.021 136.24 3154.9

0.5 9.3589 17.479 29.006

18.051 59.021 966.2

31.846 213.01 4347.7

1 9.7921 25.749

19.634 158.41

36.246 9551.8

5 14.149

41.527

142.5

Table 1 illustrates values of the maximum permitted arrival rate of P1 customers
given that the server is busy with a P1 customer, λ11, in order to maintain statistical
equilibrium (λ11 ≤ λ∗

11 for ρ < 1). Here one can observe the impact of repair times
on the maximum permitted traffic of P1 customers when the server is busy with P1

customer.
Table 2 contains values of E(N2) for increasing values of arrival rates of P2 cus-

tomers during repair times (λ23) and b̄3, when we vary the failure rate μ. Note that
even when we do not allow P2 arrivals during repair periods (λ23 = 0), E(N2) in-
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Table 3 Values of E(N2),
P(idle), E(Wi), i = 1,2, for
λ10 = 1, μ = 3, ν = 4, α = 0.8,
λ12 = 0.8, λ14 = 0.6,
λ23 = 0.8, b̄1 = 0.5,
b̄2 = b̄3 = 0.33, b̄4 = 0.25

λ11 λ13

0 1 2 3 3.5

0 E(N2) 33.194 58.637 132.41 561.74 2732.7

P(idle) 0.2417 0.2011 0.1496 0.0819 0.0395

E(W1) 0.548 0.5806 0.6226 0.6783 0.7138

E(W2) 0.5436 0.5756 0.6168 0.6717 0.7066

1.5 44.61 95.343 342.69 85838.7

0.2193 0.1684 0.1009 0.0073

0.6002 0.6483 0.7138 0.8086

0.5548 0.5959 0.652 0.733

3 68.505 215.77 5766.46

0.1887 0.1217 0.0272

0.6783 0.7565 0.8738

0.5717 0.6285 0.7138

4.5 138.28 1611.4

0.1443 0.0494

0.8086 0.9576

0.5997 0.6889

6 644.69

0.0743

1.069

0.6558

creases from 16.619 to 369.61 and from 28.124 to 2886.9 when we pass from a
system where b̄3 = 0.1 to a system where b̄3 = 8 for μ = 2 and μ = 3, respectively.
Note also that for λ23 = 1, a small increase in the repair period from b̄3 = 0.1 to
b̄3 = 0.8, E(N2) increases rapidly from 36.246 to 9551.8, when failure rate equals
μ = 3.

Table 3, shows the way E(N2), P (idle) and E(Wi), i = 1,2, are affected when
we vary the arrival rate of P1 customers during repair, λ13, for increasing values of
the arrival rate of P1 customers when the server, serves a P1 customer, λ11. Note
that if we allow no arrivals of P1 customers during the service time of P1 customers
(λ11 = 0), the mean number of P2 customers in orbit E(N2) is increased dramatically
from 33.194 to 2732.7, while P(idle) is reduced for 0.2417 to 0.0395, E(W1) and
E(W2) increases from 0.548 to 0.7138 and from 0.5436 to 0.7066, respectively, when
we pass from a system without P1 arrivals during repairs (λ13 = 0) to a system with
λ13 = 3.5. Note also that when λ11 = 4.5, if we increase λ13 from 0 to 1, E(N2)

increases from 138.28 to 1611.4, while P(idle) is reduced from 0.1443 to 0.0494.
The results from Table 2, indicates the crucial role of repair period in our systems. In
order to manage the congestion in our model, we have to keep at low level the arrivals
of P1 customers during repair period.

Table 4 demonstrates the effect of vacation period on E(N2), P (idle), E(Wi),
i = 1,2, for increasing values of arrival rate of P1 customers during that period (λ14).
Note that when λ14 = 1, an increase on the mean vacation period from b̄4 = 0.25 to
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Table 4 Values of E(N2),
P(idle), E(Wi), i = 1,2 for
λ10 = 1, ν = 4, λ11 = 0.8,

λ13 = 0.1 = λ23, b̄1 = 0.5,
b̄3 = 0.33, μ = 3

λ14 b̄4

0.25 0.4 0.6 1

0 E(N2) 17.115 29.68 68.618 1482.3

P(idle) 0.3043 0.2169 0.1313 0.0258

E(W1) 0.4969 0.6469 0.8457 1.2469

E(W2) 0.4722 0.6222 0.821 1.222

0.4 29.671 92.52 2180.9

0.2532 0.1389 0.0274

0.5491 0.7567 1.062

0.5244 0.7321 1.038

1 85.041 9087.9

0.1711 0.0166

0.6365 0.9452

0.6118 0.9204

2 7138.8

0.0228

0.8071

0.7824

b̄4 = 0.4 increase rapidly makes E(N2) go from 85.041 to 9087.9, while P(idle)
is reduced from 0.1711 to 0.0166. From the above results, we have to observe that
in order to reduce the congestion in retrial box and to increase the probability the
customers from the orbit to connect with the server, we must keep as much as we can
the rate λ14 at low level.

Definitely, in order to manage the congestion in our model we must control the
arrival rates, at time periods where the server is dealt with other activities, such as
repair and vacation period.

Table 5 contains values of E(N2) when we vary the mean interretrial time
E(retrial) = 1/α for increasing values of the arrival rate of P1 customers when the
server is idle, λ10, at specific values of arrival rate of P1 customers during vacation
period (λ14). Note that even when λ10 take small values, say λ10 = 0.5, an increase
from λ14 = 0 to λ14 = 1 causes the increase of E(N2) from 72.251 to 365.75 when
E(retrial) = 10. Here one can realize the crucial role of keeping at low levels the
arrival rate of P1 customers during vacation, mentioned here and in Table 4, on the
values of E(N2). Furthermore, if we keep at low levels the values of λ10, we can
control E(N2), especially for small values of E(retrial). In conclusion, it is easy to
observe the increase of E(N2) when E(retrial) increases. This is an increase that is
more apparent for large values of λ10.

Table 6 contains values of the steady state availability AV and the failure fre-
quency F of the server when we vary the mean repair time (b̄3) for increasing arrival
rate of P1 customers during repair period (λ13) at specific values of the failure rate μ.
We observe that when the failure rate increases from μ = 1 to μ = 3 the server avail-
ability decreases, while failure frequency increases. In addition, this change become
intense as the mean repair time and λ13 increases. Furthermore we have to note here
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Table 5 Values of E(N2), for
μ = 3, λ11 = 0.8 = λ12, ν = 4,
b̄1 = 0.5, λ13 = 0.1 = λ23,
b̄3 = 0.33 = b̄2, b4 = 0.25

λ10 E(retrial)

0.02 0.2 1 3 10

0.1 λ14 = 0 0.716 1.3866 4.367 11.931 37.897

λ14 = 0.5 1.7243 3.112 9.2778 24.927 78.648

λ14 = 1 4.2 7.7192 23.358 66.048 199.29

0.5 0.9128 2.199 7.918 22.431 72.251

2.1435 4.7516 16.343 45.76 146.74

5.141 11.645 40.551 113.91 365.75

1 1.1623 3.4968 13.873 40.205 130.6

2.6775 7.3467 28.099 80.765 261.56

6.3691 17.882 69.051 198.91 644.7

2 1.7166 7.037 30.879 91.295 297.7

3.863 14.439 61.444 180.74 590.25

9.1637 34.954 149.57 440.47 1439.1

Table 6 Values of AV , F for
λ10 = 1, λ11 = 0.8 = λ12,
ν = 4, λ14 = 0.6, λ23 = 0.1,

b̄1 = 0.5, b̄2 = 0.33, b̄4 = 0.25,
α = 0.8

λ13 b̄3

0.2 1 2 6.67

0 μ = 1 AV 0.9542 0.8208 0.6715 0.3667

F 0.2289 0.1792 0.1643 0.0945

μ = 3 AV 0.8807 0.5903 0.411 0.1502

F 0.5963 0.4097 0.2945 0.1269

0.45 0.9536 0.7938 0.6379

0.2319 0.2062 0.1811

0.8766 0.5375 0.2953

0.6168 0.4625 0.3524

1 0.9528 0.778

0.2357 0.2219

0.8712 0.4509

0.6439 0.5491

4 0.9482

0.2587

0.8108

0.9458

that decrease of AV is smoother in case where μ = 1. On the other hand, when
μ = 3, AV is reduced faster.

Finally Fig. 1 shows the way the traffic intensity ρ is affected by the presence of
negative arrivals. Clearly, negative arrival is a useful tool to reduce the congestion of
the system. For λ10 = 1, λ11 = 0.8 = λ12, λ13 = 0.1 = λ23, λ14 = 0.6, μ = 3, b̄1 =
0.5, b̄2 = 0.33 = b̄3, b̄4 = 0.25, when E(negative) = 1/ν is small, ρ remains at low
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Fig. 1 The effect of negative
arrivals on ρ

level. The increase of E(negative) causes the increase of the traffic intensity and as a
result the increase in congestion of our model.
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