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Abstract The paper suggests a new approach to calculation of subdifferentials of
suprema of convex functions without any qualification conditions which essentially
relies on the Hirriart-Urruty–Phelps formula for subdifferentials of sums of convex
l.s.c. functions (also supplied with a simple new proof). The approach in particular
provides for a simpler way to (a certain generalization of) the most recent and so far
most general formulas of Hantoute–López–Zalinescu and López–Volle.
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1 Introduction

Let X be a locally convex space, let T be an arbitrary set, and let for any t ∈ T a
function ϕt on X be given. We are interested in calculating the subdifferential of the
function

ϕ = sup
t∈T

ϕt .

This problem has a long history starting from the Dubovitzkii–Milyutin for-
mula for the simplest case of the maximum of two continuous convex functions
(Dubovitzkii and Milyutin 1965). We refer to Hantoute et al. (2008) and Tikhomirov
(1987) for detailed description of the developments up to 2008. Suprema of infinite
families of extended-real-valued convex functions (not necessarily continuous) seems
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to be the most difficult for the analysis of subdifferentials among other major convex-
ity preserving functional operations. This fact is underscored by the notable absence
of such functions in the first study of the “unconditional” subdifferential calculus
by Hiriart-Urruty and Phelps (1993) and the subsequent survey (Hiriart-Urruty et al.
1995) and also by the lengthy calculations in the most recent studies in Hantoute et
al. (2008) and López and Volle (2010) where so far the most general results were
obtained.

Two major points relating to the results obtained in Hantoute et al. (2008) and
López and Volle (2010) should be emphasized: the first is that no restriction is im-
posed either on the nature of T or on the dependence of ϕt on t and the second is
that only subdifferentials at the reference point are taken into account. Also men-
tioned should be the generality of the classes of chosen functions: the absence of the
lower semicontinuity assumption in Hantoute et al. (2008) and even of the convex-
ity assumption in López and Volle (2010). This, however, does not seem to be very
essential: the condition that

ϕ∗∗ = sup
t∈T

ϕ∗∗
t (1)

imposed in both papers effectively reduces the situation to the case of convex lower
semicontinuous and even affine functions (see the last section of this note).

The main purpose of this note is to demonstrate that there is a simpler way to
derive the results of Hantoute et al. (2008) and López and Volle (2010) (including
the description of sets of minimizers of second conjugates given in López and Volle
2010) with the help of the formula for the of sum of two convex lower semicontinuous
functions established in Hiriart-Urruty and Phelps (1993):

∂(f + g)(x) =
⋂

ε>0

cl∗
(
∂εf (x) + ∂εg(x)

)
(2)

which itself admits a fairly simple proof (see e.g. the “second proof” of the formula
in Hiriart-Urruty et al. (1995) and even a simpler proof in Sect. 3 below).

Following the proof of the Hiriart-Urruty–Phelps formula for the subdifferential
of a sum in Sect. 3, we consider suprema of families of affine functions (Sect. 4),
then suprema of families of convex lower semicontinuous functions (Sect. 5) and of
families of still more general classes of functions in Sect. 6. The concluding result
of the paper in Sect. 6 contains and somewhat generalizes the mentioned results of
Hantoute et al. (2008) for convex but not necessarily lower semicontinuous functions,
and of López and Volle (2010) for non-convex functions. It is to be again emphasized
that the first step, involving affine functions, is the key element of the developments.

Despite its small size, the paper is basically self contained. We prove everything
except the most elementary and standard facts of infinite dimensional convex analysis
that can be found e.g. in Zalinescu (2002). And the proofs are indeed very simple. We
even do not use separation in any of the proofs, and the only facts of convex analysis
to which we refer and which do need separation are (a) that the subdifferential at
zero of a function on X which is the support function of a certain non-empty set
Q ⊂ X∗ coincides with the weak∗-closure of the convex hull of Q and (b) that (for a
convex l.s.c. f ) f ′

ε(x; ·) is the support function of ∂εf (x) (see e.g. Zalinescu 2002,
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Theorem 2.4.11). Most of the proofs seem to be new, with the exception of two nice
observations which we borrow (along with their short proofs) from Hantoute et al.
(2008) and López and Volle (2010).

2 Preliminaries

In what follows X is a locally convex topological vector space, X∗ is its topological
dual endowed with the weak∗-topology and 〈·, ·〉 is the canonical bilinear form on
X × X∗. By R+ we denote the collection of nonnegative real numbers.

We shall consider extended-real-valued functions f and denote by Γ (X) the class
of proper (everywhere greater than −∞) convex lower semicontinuous functions
on X. If f is a function on X, then f ∗ is its Fenchel conjugate and f ∗∗ is the sec-
ond conjugate. As well known f ∗ is convex and weak∗-lower semicontinuous and
f ∗∗ = f if and only if f ∈ Γ (X). Given a convex function f , we as usual denote by
domf = {x : f (x) < ∞} its effective domain.

If x ∈ domf , then ∂f (x) = {x∗ ∈ X∗ : f (x +h)−f (x) ≥ 〈x∗, h〉, ∀h ∈ X} is the
subdifferential of f at x. The set

∂εf (x) = {
x∗ ∈ X∗ : f (x + h) − f (x) ≥ 〈x∗, h〉 − ε, ∀h ∈ X

}
,

where ε > 0, is called the ε-subdifferential of f at x. Both ∂f (x) and ∂εf (x) are
convex weak∗-closed sets and the intersection of ∂εf (x) over ε > 0 coincides with
∂f (x). If f ∈ Γ (X) and x ∈ domf , then ∂εf (x) �= ∅.

A function f is called sublinear if it is convex, homogeneous (f (λx) = λf (x) if
λ > 0) and f (0) = 0. If Q ⊂ X∗, then the function sQ(x) = sup{〈x∗, h〉 : x∗ ∈ Q}
is called the support function of Q. This is a sublinear and lower semicontinuous
function. As we have mentioned in the introduction the subdifferential of sQ at zero
coincides with the weak∗-closure of convQ. We also mention that for any sublinear
function the subdifferential at zero and the ε-subdifferential at zero coincide.

If f ∈ Γ (X), then ∂f (x) = {x∗ : f ′(x;h) ≥ 〈x∗, h〉, ∀h ∈ X} and ∂εf (x) = {x∗ :
f ′

ε(x;h) ≥ 〈x∗, h〉, ∀h ∈ X}, where

f ′(x;h) = lim
λ→+0

f (x + λh) − f (x)

λ
; f ′

ε(x;h) = inf
λ>0

f (x + λh) − f (x) + ε

λ
.

Both functions (as functions of h) are sublinear. Moreover, if f ∈ Γ (X), then f ′
ε(x; ·)

is the support function of its subdifferential at zero (if ε > 0). We also note that the
ratio λ−1(f (x + λh) − f (x)) is a non-decreasing function of λ on (0,∞).

Recall also the corresponding geometric concepts. If Q ⊂ X and x ∈ Q, then
N(Q,x) = {x∗ : 〈x∗, u − x〉 ≤ 0, ∀u ∈ Q} is the normal cone to Q at x and
Nε(Q,x) = {x∗ : 〈x∗, u − x〉 ≤ ε, ∀u ∈ Q} is the collection of ε-normals. If Q is
itself a cone, then Nε(Q,0) = N(Q,0) for all ε. The normal cone to Q at x coin-
cides with the subdifferential at x of the indicator of Q which is a function iQ equal to
zero on Q and infinity outside of Q. The same relation connects the sets of ε-normals
and ε-subdifferentials.
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3 Subdifferential of a sum

The starting point of our discussions will be the formula for the subdifferential of the
sum of finitely many convex lower semicontinuous functions.

Theorem 3.1 (Hiriart-Urruty and Phelps 1993) Let fi ∈ Γ (X), i = 1, . . . , k, set f =
f1 + · · · + fk , and let x ∈ domf . Then

∂f (x) =
⋂

ε>0

cl∗
(
∂εf1(x) + · · · + ∂εfk(x)

)
.

Proof The inclusion ⊃ is a trivial consequence of definitions and the fact that
∂f (x) coincides with the intersection of ∂εf (x). Indeed, if x∗

i ∈ ∂εfi(x), then by
the definition f (x + h) − f (x) = ∑

(fi(x + h) − fi(x)) ≥ 〈∑x∗
i , h〉 − kε, so that

x∗
1 + · · · + x∗

k ∈ ∂kεf (x). Thus (as ∂εf (x) is weak∗-closed),

∂εf1(x) + · · · + ∂εfk(x) ⊂ cl∗
(
∂εf1(x) + · · · + ∂εfk(x)

) ⊂ ∂kεf (x),

whence the inclusion.
To prove the opposite inclusion, note first that limλ→+0 λ−1(f (x + λh) −

f (x) + ε) = ∞ if both x and x + h are in domf and ε > 0. Applying this for
every fi we conclude that for any h ∈ domf − x = ⋂

i (domfi − x) and any ε > 0
there is a λ̄ > 0 such that

f ′
iε(x;h) = inf

λ>0

fi(x + λh) − fi(x) + ε

λ
= inf

λ>λ̄

fi(x + λh) − fi(x) + ε

λ
.

Now let x∗ ∈ ∂εf (x). Take a δ > 0 and choose λi = λi(δ) > λ̄ to make sure that
for any i we would have f ′

iε(x;h) + δ ≥ λ−1
i (fi(x + λih) − fi(x) + ε). Then, taking

a λ < λ̄, we get

f ′(x;h) ≤ f (x + λh) − f (x)

λ
=

∑

i

fi(x + λh) − fi(x)

λ

≤
∑

i

fi(x + λih) − fi(x)

λi

≤
∑

i

fi(x + λih) − fi(x) + ε

λi

≤
∑

i

f ′
iε(x;h) + kδ.

Thus f ′(x;h) ≤ ∑
i f

′
iε(x;h) as δ can be chosen arbitrarily small. As each of

f ′
iε(x; ·) is the support function of its subdifferential at zero, their sum is the sup-

port function of the sum of the subdifferentials. So we have

∂f (x) ⊂ ∂

(
k∑

i=1

f ′
iε(x; ·)

)
(0) = cl∗

(
k∑

i=1

∂f ′
iε(x; ·)(0)

)
= cl∗

(
k∑

i=1

∂εfi(x)

)
.

This completes the proof. �
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4 The case of affine functions

Throughout the paper we fix an x ∈ domϕ and for any ε > 0 set

Tε = {
t ∈ T : ϕt (x) > ϕ(x) − ε

}
.

We begin to study subdifferentials of suprema of families (ϕt ) with the simplest case
when all functions ϕt are affine. Namely we assume that there are x∗

t ∈ X∗ and at ∈ R

such that ϕt (x) = 〈x∗
t , x〉+at . It turns out that the most essential features of the result

are already present in this simple situation and can be translated to more general
classes of functions without serious problems.

For any t ∈ T we define ft (x) = 〈x∗
t , x − x〉+ϕ(x), so that ft (x) = ϕ(x) for all t ,

and set

f ε(x) = sup
t∈Tε

ft (x), S = x + R+(domϕ − x).

We have for any t and any x

ft (x) − ϕt (x) = 〈x∗
t , x − x〉 + ϕ(x) − (〈x∗

t , x〉 + at

) = ϕ(x) − ϕt (x) ≥ 0. (3)

The following lemma is crucial for the further discussions.

Lemma 4.1 Set gε = f ε + iS . Then ∂ϕ(x) ⊂ ∂gε(x).

Proof Without loss of generality we may assume that x = 0 and ϕ(x) = 0. Then
ft (x) = 〈x∗

t , x〉 so that f ε becomes a sublinear function and so is gε as S is a cone.
Let x∗ ∈ ∂ϕ(0), that is ϕ′(0;x) ≥ 〈x∗, x〉 for all x. If (f ε)(x) ≥ ϕ′(0;x) for some x,
then

gε(x) = f ε(x) ≥ 〈x∗, x〉.
If ϕ′(0;x) = ∞, then x �∈ S and so gε(x) = ∞ as well. Thus again gε(x) ≥ 〈x∗, x〉.

Assume finally that ∞ > ϕ′(0;x) > f ε(x). This means that there is a t such that
ϕt (x) > f ε(x). Clearly, t �∈ Tε since ϕt (x) ≤ f ε(x) for t ∈ Tε as follows from the
definition of f ε and (3). For t �∈ Tε we have

ϕt (λx) ≤ λϕt (x) + (1 − λ)ϕt (0) ≤ λϕt (x) − (1 − λ)ε.

Thus, the inequality λf ε(x) = f ε(λx) < ϕt (λx) may hold only if

λ > λ̄ = ε

ϕ(x) − f ε(x) + ε
> 0

and for λ ≤ λ̄ we again have f ε(λx) ≥ ϕ(λx). This means that f ε(x) ≥ ϕ′(0;x)

contrary to our assumption. Thus gε(x) ≥ ϕ′(0;x) for all x. �

We also need the following.
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Lemma 4.2 (Hantoute et al. 2008, Lemma 1) If f is a convex function on X and
Q ⊂ X is a convex set with (riQ) ∩ domf �= ∅, then

inf
Q

f (x) = inf
clQ

f (x).

Proof Let x ∈ (clQ) ∩ domf , and let w ∈ (riQ) ∩ domf . Then (1 − λ)x + λw ∈
Q ∩ domf for λ ∈ (0,1) and f (x) ≥ limλ→+0 f ((1 − λ)x + λw). �

Combining these two lemmas with Theorem 3.1 we arrive at

Theorem 4.3 Suppose all functions ϕt are affine: ϕt (x) = 〈x∗
t , x〉+ at for some x∗

t ∈
X∗ and at ∈ R. Let further a convex set Q ⊂ S containing x be given. Then the
following two statements hold true.

(a) if Q is closed, then for any ε > 0

∂ϕ(x) ⊂ cl∗
(
conv{x∗

t : t ∈ Tε} + Nε(Q,x)
);

in particular, if the intersection of domϕ with a closed neighborhood of x is
closed, then

∂ϕ(x) ⊂ cl∗
(
conv{x∗

t : t ∈ Tε} + Nε(domϕ,x)
)
.

(b) If either riQ �= ∅ or R+(Q − x) is a closed set, then for any ε > 0

∂ϕ(x) ⊂ cl∗
(
conv{x∗

t : t ∈ Tε} + N(Q,x)
)
,

in particular if either ri(domϕ) �= ∅ or R+(domϕ − x) is a closed set, then

∂ϕ(x) ⊂ cl∗
(
conv{x∗

t : t ∈ Tε} + N(domϕ,x)
)
.

Proof As in the proof of Lemma 4.1 we may assume that x = 0 and ϕ(x) = 0. Then
x∗ ∈ ∂f ε(0) means that supt∈Tε

〈x∗
t , x〉 ≥ 〈x∗, x〉 for all x, which is the same as x∗ ∈

cl∗(conv{x∗
t : t ∈ Tε}), and as f ε is a sublinear function, ∂δf

ε(0) = ∂f ε(0) for all
δ > 0.

Furthermore, as Q ⊂ S by the assumption, f ε(x) + iQ(x) ≥ gε(x) for all x. By
Lemma 4.1 this implies that ∂ϕ(0) ⊂ ∂(f ε + iQ)(0). If Q is closed, we get (a) from
Theorem 3.1.

Likewise, if x + R+(Q − x) ⊂ S and R+(Q − x) is a closed set, we can replace
Q by x + R+(Q − x) in the above argument. As R+(Q − x) is a cone, then for any
ε > 0

Nε

(
x + R+(Q − x), x

) = Nε

(
R+(Q − x),0

) = N
(
R+(Q − x),0

) = N(Q,x).

Suppose now that riQ �= ∅. Then the same is true for the cone generated by Q:
coneQ = R+Q. Let x∗ ∈ ∂(f ε + iQ)(0) = ∂(f ε + iconeQ)(0). Then by Lemma 4.2
the lower bounds of f ε(x) − 〈x∗, x〉 on coneQ and cl(coneQ) coincide which
means that x∗ ∈ ∂(f ε + icl(coneQ)(0). Applying again Theorem 3.1, we get (b) since
Nε(coneQ,0) = N(coneQ,0) = N(Q,0). �
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5 The case of convex l.s.c. functions

Here we turn to a more general case of arbitrary ϕt ∈ Γ (X). The reduction to the
case of the supremum of a family of affine functions is simple. Let T stand for the
collection of triples τ = (t, x∗, a) ∈ T ×X∗ × R such that 〈x∗, x〉+ a ≤ ϕt (x) for all
x. For every τ = (t, x∗, a) we set ψτ (x) = 〈x∗, x〉 + a. Then supτ∈T ψτ (x) = ϕ(x)

as every ϕt is the supremum of the collection of its affine minorants. Set Tε = {τ ∈
T : ψτ (x) ≥ ϕ(x) − ε}. Then τ ∈ Tε means that 〈x∗, x〉 + a > ϕ(x) − ε ≥ ϕt (x) − ε.
Together with the fact that ϕt (x) ≥ 〈x∗, x〉 + a for all x, this shows that x∗ ∈ ∂εϕt (x)

and, as an immediate corollary of Theorem 4.3 (applied to the family (ψτ )τ∈T of
affine functions), we get

Theorem 5.1 Let ϕt ∈ Γ (X) for all t ∈ T . Let Q ⊂ x + R+(domϕ − x) be a convex
set containing x. Then

(a) if Q is closed, then for any ε > 0

∂ϕ(x) ⊂ cl∗
(

conv
⋃

t∈Tε

∂εϕt (x) + Nε(Q,x)

)
,

in particular, if the intersection of domϕ with a neighborhood of x is closed,

∂ϕ(x) ⊂ cl∗
(

conv
⋃

t∈Tε

∂εϕt (x) + Nε(domϕ,x)

)
;

(b) if either riQ �= ∅ or R+(Q − x) is a closed set, then for any ε > 0

∂ϕ(x) ⊂ cl∗
(

conv
⋃

t∈Tε

∂εϕt (x) + N(Q,x)

)
,

in particular, if ri(domϕ) �= ∅ or R+(domϕ − x) is a closed set, then

∂ϕ(x) ⊂ cl∗
(

conv
⋃

t∈Tε

∂εϕt (x) + N(domϕ,x)

)
.

6 The general case

The passage to functions which are not elements of Γ (X) is almost equally simple.
But to state the final result containing precise formulas for the subdifferential we need
the following lemma.

Lemma 6.1 Let ϕt be arbitrary functions on X. Then

⋂

ε>0
x∈domϕ

cl∗
(

conv

(⋃

t∈Tε

∂εϕt (x)

)
+ (x − x)−ε

)
⊂ ∂ϕ(x).

Here (x − x)−ε = {x∗ : 〈x∗, x − x〉 ≤ ε}.
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Proof The proof actually repeats almost word for word the proof of the first part of
Theorem 4.1 in López and Volle (2010). The first and elementary fact to be mentioned
is that ∂εϕt (x) ⊂ ∂2εϕ(x) if t ∈ Tε . If now x ∈ domϕ, u∗ ∈ ∂2εϕ(x) and v∗ ∈ (x −
x)−ε , then 〈u∗ + v∗, x − x〉 ≤ ϕ(x) − ϕ(x) + 3ε or equivalently

u∗ + v∗ ∈ Pε(x) = {
w∗ : 〈w∗, x〉 − ϕ(x) ≤ 〈w∗, x〉 − ϕ(x) + 3ε

}
.

Thus for any t ∈ Tε

∂εϕt + (x − x)−ε ⊂ ∂2εϕ(x) + (x − x)−ε ⊂ Pε(x).

We have

⋂

x∈domϕ

Pε(x) =
{
w∗ : sup

x

(〈w∗, x〉 − ϕ(x)
) ≤ 〈w∗, x〉 − ϕ(x) + 3ε

}

= {
w∗ : ϕ∗(w∗) ≤ 〈w∗, x〉 − ϕ(x) + 3ε

} = ∂3εϕ(x)

and therefore (as both Pε and ∂3εϕ(x) are weak∗-closed and convex)

⋂

x∈domϕ

cl∗
(

conv

(⋃

t∈Tε

∂εϕt (x) + (x − x)−ε
))

⊂
⋂

x∈domϕ

cl∗
(
conv

(
∂2εϕ(x) + (x − x)−ε

)) ⊂ ∂3εϕ(x).

Taking the intersection over ε > 0, we get the result. �

Now we are ready to state and prove the main result of the paper.

Theorem 6.2 Let {ϕt , t ∈ T } be a collection of functions on X satisfying (1). Let
x ∈ domϕ, and let {Qα, α ∈ A} (where A is a certain index set) be a family of
convex subsets of domϕ∗∗ such that x ∈ Qα for every α ∈ A and the union of Qα

contains domϕ.

(a) If all Qα are closed, then

∂ϕ(x) =
⋂

ε>0
α∈A

cl∗
(

conv

(⋃

t∈Tε

∂εϕt (x) + Nε(Qα,x)

))
.

In particular, if the intersection of domϕ∗∗ with a closed neighborhood of x is
closed, then

∂ϕ(x) =
⋂

ε>0

cl∗
(

conv

(⋃

t∈Tε

∂εϕt (x) + Nε(domϕ,x)

))
.
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(b) If either every Qα has nonempty relative interior or R+(Qα − x) is a closed set
for every α, then

∂ϕ(x) =
⋂

ε>0
α∈A

cl∗
(

conv

(⋃

t∈Tε

∂εϕt (x) + N(Qα,x)

))
.

In particular if either ri(domϕ∗∗) �= ∅ or R+(domϕ∗∗ − x) is a closed set, then

∂ϕ(x) =
⋂

ε>0

cl∗
(

conv

(⋃

t∈Tε

∂εϕt (x) + N(domϕ,x)

))
.

Proof The inclusions ⊃ follow from the last lemma because Nε(Qα ∩ domϕ,x) ⊂
(x − x)−ε if x ∈ Qα ∩ domϕ and, as follows from the assumption, we can find a
suitable α for every x ∈ domϕ.

To prove the opposite inclusion we fix an x∗ ∈ ∂ϕ(x), an ε > 0 and an α ∈ A. As
∂ϕ(x) �= ∅, we have

ϕ(x) = ϕ∗∗(x), ∂ϕ(x) = ∂ϕ∗∗(x). (4)

Set further T ∗∗
ε = {t ∈ T : ϕ∗∗

t (x) ≥ ϕ∗∗(x) − ε}. Then for t ∈ T ∗∗
ε

ϕt (x) ≥ ϕ∗∗
t (x) ≥ ϕ∗∗(x) − ε = ϕ(x) − ε,

that is

T ∗∗
ε ⊂ Tε. (5)

If now t ∈ T ∗∗
ε and u∗ ∈ ∂εϕ

∗∗
t (x), then for any x we have

ϕt (x) − ϕt (x) ≥ ϕ∗∗
t (x) − ϕ(x) ≥ ϕ∗∗

t (x) − ϕ∗∗
t (x) − ε ≥ 〈u∗, x − x〉 − 2ε,

that is for t ∈ T ∗∗
ε

∂εϕ
∗∗
t (x) ⊂ ∂2εϕt (x). (6)

Since (1) holds, so does Theorem 5.1 with ϕ, ϕt and Q replaced, respectively, by ϕ∗∗,
ϕ∗∗

t and Qα . Along with (4)–(6) this gives the desired result.
To prove the second part of (a) we can take A = domϕ and for x ∈ domϕ set Qx =

cl(conv(V ∩ {x})). where V is the neighborhood of x mentioned in the statement. To
prove the second part of (b) we take Qα = domϕ∗∗ with A being a one point set. �

Remark 6.3 It is possible to make some changes in the chosen sets of normals in
both parts of the theorem that will not affect the result. For instance, we can write
Nε(Qα ∩ domϕ,x) instead of Nε(Qα,x) (and the same without ε in (b)), or else
we can take Nδ(Qα,x) with δ independent of ε and add the intersection over δ > 0.
This, however, will not allow one to eliminate δ at all and to write the real normal
cone in (a).

We shall next show how the main results of Hantoute et al. (2008) and López and
Volle (2010) (for functions of Γ (X)) can be obtained from Theorem 5.1.
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Theorem 6.4 (López and Volle 2010, Theorem 4.1) Assume (1). Then

∂ϕ(x) =
⋂

ε>0
x∈domϕ

cl∗
(

conv
⋃

t∈Tε

∂εϕt (x) + (x − x)−
)

. (7)

Proof Take A = domϕ and let Qx, x ∈ A, be the line segment connecting x and x.
Then R+(Qx − x) is clearly a closed ray and Qx ⊂ x + R+(Qx − x). Apply part (b)
of Theorem 6.2 with A = domϕ. �

Theorem 6.5 (Hantoute et al. 2008, Theorem 4) Assume that ϕt are convex and (1)
holds. Let F stand for the collection of finite dimensional subspaces of X. Then for
any ε > 0

∂ϕ(x) =
⋂

ε>0
L∈F

cl∗
(

conv
⋃

t∈Tε

∂εϕt (x) + N
(
(L + x) ∩ domϕ,x

))
. (8)

Proof Take an L ∈ F and set QL = (x + L) ∩ domϕ. Then the relative interior of Q

is nonempty. Apply part (b) of Theorem 6.2 with A = F . �

Observe that in López and Volle (2010) Theorem 6.4 was obtained as a conse-
quence of a certain result about ε-minimizers of the second conjugate of a function.
We conclude the paper by showing that this (actually main) result of López and Volle
(2010) is in turn a direct consequence of Theorem 6.4 and actually of the simplest
version of the theorem, corresponding to affine ϕt .

Theorem 6.6 (López and Volle 2010, Theorem 3.3) Let Y be a locally convex topo-
logical space, and let f be a function on Y such that f ∗ is a proper function. Then

argminf ∗∗ =
⋂

ε>0
y∗∈domf ∗

cl∗
(
π(ε − argminf ) + (y∗)−

)
.

Here f ∗∗ is a function on X∗∗, the conjugate to f ∗, and π stands for the natural
embedding Y → Y ∗∗.

Proof We shall apply Theorem 6.4 with X = Y ∗, T = domf . Set x∗
y = π(y), ay =

−f (y), ϕy(x) = 〈x, y〉 + ay and x = 0. Then ϕ(x) = f ∗(x), and therefore ϕ∗(x∗) =
f ∗∗(x∗), and Tε = {y : ay ≥ ϕ(0) − ε} = {y : f (y) + f ∗(0) ≤ ε}.

We have argminϕ∗ = ∂ϕ(0). Then in view of the said, the reference to Theo-
rem 6.4 completes the proof. �

Remark 6.7 Additional information provided by Theorem main (compare to Theo-
rems 6.4 and 6.5) is that there is a huge variety of sets that can be used to calculate the
subdifferential, not just line segments or finite dimensional sections. It is not a priori
clear whether this information is particularly useful but in principle it may serve to
decrease the collection of sets involved in the intersection.
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