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Abstract We establish a new sufficient condition for avoiding a generalized
Anscombe’s paradox. In a situation where votes describe positions regarding finitely
many yes-or-no issues, the Anscombe’s α-paradox holds if more than α% of the vot-
ers disagree on a majority of issues with the outcome of issue-wise majority voting.
We define the level of unanimity of a set of votes as the number of issues minus the
maximal Hamming distance between two votes. We compute for the case of large
electorates the exact level of unanimity above which the Anscombe’s α-paradox
never holds, whatever the distribution of individuals among votes.

Keywords Anscombe · Voting paradox · Majority rule · Unanimity · Issue-wise
voting
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1 Introduction

We consider situations of multiple referenda, where an electorate faces finitely many
dichotomous issues, or proposals. The Anscombe’s paradox (Anscombe 1976) states
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Table 1 The Anscombe’s
paradox x1 x2 x3 x4, x5

1 1 1 0 0

2 1 0 1 0

3 0 1 1 0

that issue-wise majority voting may put a majority of the voters on the losing side on
a majority of the issues. Table 1 illustrates the Anscombe’s paradox in the case of 3
alternatives and 5 voters.

Issues c = 1,2,3 appear in rows, and columns describe the five ballots xj =
(x1

j , x2
j , x3

j ), j = 1, . . . ,5, where xc
j = 1 (resp., 0) means that voter j agrees (resp.,

disagrees) with proposal c. Voting issue-wise according to the majority rule results in
choosing 0 for each issue. Hence, the first 3 voters disagree with the outcome on two
thirds of the issues.

The Anscombe’s paradox is discussed in Nurmi (1999), and Saari (2001). Further-
more, Wagner (1983) shows that the paradox never holds when at least three-fourths
of the voters agree on average with the final decision on each of the issues. Hence, vot-
ing situations where proposals are adopted or rejected, on average, by a sufficiently
strong consensus cannot face the paradox. Put differently, if, on average, voters are
not too far from issue-wise unanimity, then the Anscombe’s paradox cannot hold.

The ‘Rule of Three-Fourths’1 is extended in Wagner (1984) to the ‘Rule of
(1 − α

2 )’: given a number J of voters, call coalition on some issue c the subset of
agents agreeing with the decision regarding c; the rule states that when the prevailing
coalitions, across all issues, comprise on average (1 − α

2 )J voters, the set of voters
who disagree with more than half of the issues cannot exceed αJ ’. The rule of (1− α

2 )

relates to the Anscombe’s α-paradox: the proportion of voters who disagree with the
majority outcome on more than half of the issues exceeds α.

We investigate in this paper another condition sufficient for avoiding the Anscom-
be’s α-paradox, which relates to an alternative measure of the level of unanimity
among voters’ opinions. Instead of referring to the average proportion of issue-wise
agreements, we define the unanimity level of an electorate by considering a distance
between potentially cast ballots.

To be more precise, we define a preference as a type of ballot, that is, a potential
ballot which may be cast by one or several voters.2 Furthermore, the level of una-
nimity in a set of preferences is defined as the maximal number of issues any two
preferences agree on. Alternatively, the level of unanimity is the number of issues
minus the maximal Hamming distance between two elements of this set (that is, the
number of issues which they disagree on). The larger this distance, the lower the
level of unanimity that prevails among voters. Contrarily to the rule of three-fourths,

1‘If N individuals cast yes-or-no votes on K proposals then, whatever the decision method employed to
determine the outcomes of the votes on these proposals, if the average fraction of voters, across all pro-
posals, comprising the prevailing coalitions is at least three-fourths, then the set of voters who disagree
with a majority of the outcomes cannot comprise a majority’ (Wagner 1983, pp. 305–306).
2Table 1 above describes a case with 4 preferences, and 5 votes.
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this measure of unanimity allows for results that hold at any vote profile, that is, any
distribution of votes among preferences.

We compute for large electorates, and for any value of α in ]0,1[, the exact value
of the maximal distance between preferences under which the Anscombe’s α-paradox
holds at no vote profile. Moreover, we show that the value of this maximal distance
provides an upper bound for the number of γ -controversial issues, defined as those
for which the prevailing coalition comprises less than γ % of the voters.

The paper is organized as follows. Section 2 provides some notations and defini-
tions. We present in Sect. 3 already known conditions for avoiding the Anscombe’s
paradox, and show that the distance between preferences matters for the Anscombe’s
paradox to occur. Results are presented in Sect. 4. We conclude with several com-
ments about our results and possible routes to further research.

2 The Anscombe’s paradox

Given any two natural numbers J and C, where J is odd, we consider a set of in-
dividuals J = {1, . . . , J } facing a set C of C distinct dichotomous, or yes-no, is-
sues. A vote is a vector x = (x1, . . . , xC) ∈ {0,1}C , where xc = 1 (resp., 0) means
that issue c is approved (resp., disapproved). For any vote x, we define −x by: ∀c,
−xc = 1 ⇔ xc = 0. A vote domain is a subset Δ of {0,1}C . Each element x ∈ Δ de-
scribing a vote that is potentially cast, a vote domain Δ is a list of potential opinions
that can be a priori defended within the society. Given a vote domain Δ, a vote pro-
file is an element XΔ = (x1, . . . , xJ ) of {0,1}CJ , where xj = (x1

j , . . . , xC
j ) ∈ {0,1}C

is the vote of individual j ∈ J , and where xj ∈ Δ for all j .3 In order to lighten
notations, we will write X instead of XΔ whenever no confusion is possible. Vote
profiles will be represented by matrices [xc

j ]c=1,...,C
j=1,...,J , where columns refer to individ-

ual votes xj . Vote domains are also represented by matrices [xc
h]c=1,...,C

h=1,...,H , where H is
a natural number, and where xh �= xh′ for all h �= h′ in {1, . . . ,H }.

The issue-wise majority rule (hereafter majority rule) is the mapping μ from
{0,1}CJ to {0,1}C defined by μ(X) = (μc(X))c∈C , where ∀c ∈ C , μc(X) = 1 ⇔∑

j xc
j > J

2 . Hence, an issue is approved if and only if it receives more approvals
than disapprovals.

The Anscombe’s paradox holds at X if |{j : |{c ∈ C : xc
j �= μc(X)}| > C

2 }| > J
2 :

more than one half of the voters disagree with the outcome of the majority rule on
more than one half of the issues. The Anscombe’s paradox can equivalently be de-
fined as follows. The Hamming distance between any two outcomes y and z in {0,1}C
is defined by d(y, z) = ∑

c∈C |yc − zc|. Hence, the Anscombe’s paradox holds at X

if |{j : d(xj ,μ(X)) > C
2 }| > J

2 .
Given any ballot x, the Hamming preference from x is the complete preorder R(x)

over {0,1}C defined by: ∀y, z ∈ {0,1}C , (y, z) ∈ R(x) if d(y, x) < d(z, x), that is, a
voter having cast x prefers the outcome y than z if x disagrees with y on fewer issues

3A possible interpretation is that a vote domain Δ describes a political culture, whereas a vote profile XΔ

describes a specific electorate whose members belong to the same culture.
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than with z. It is straightforward to check that R(x) is represented by the utility
function Ux defined on {0,1}C by Ux(y) = C − d(y, x). For any y, z ∈ {0,1}C , we
say that y defeats z in the vote profile X = (x1, . . . , xJ ) if |{j : Uxj

(y) ≥ Uxj
(z)}| >

|{j : Uxj
(y) ≤ Uxj

(z)}|.

Proposition 1 The Anscombe’s paradox holds at vote profile X if and only if −μ(X)

defeats μ(X) in X.

Proof Let X = (x1, . . . , xJ ) be such that (−w(X)) defeats w(X)). Since for any
y ∈ {0,1}C , Uxj

(y) ≥ C
2 ⇔ Uxj

(y) ≥ Uxj
(−y), then |{j : Uxj

(−μ(X)) ≥ C
2 }| > J

2 .

Hence, |{j : Uxj
(μ(X)) ≥ C

2 }| < J
2 , so that |{j : d(xj ,μ(X)) > C

2 }| > J
2 , and

the Anscombe’s paradox holds at X. Conversely, if the paradox holds at X, then
|{j : d(xj ,μ(X)) > C

2 }| = |{j : d(xj ,−μ(X)) < C
2 }| > J

2 . which implies that |{j :
Uxj

(−μ(X)) ≥ C
2 }| = |{j : Uxj

(−μ(X)) ≥ Uxj
(μ(X))}| > J

2 . This ensures that
(−μ(X)) defeats μ(X)) in X. �

We consider a more general formulation of the Anscombe’s paradox. Given α ∈
]0,1[, the Anscombe’s α-paradox holds at X when |{j : d(xj ,μ(X)) > C

2 }| > αJ :
a proportion α of the voters disagree with the majority outcome on a majority of
issues.

What the Anscombe’s α-paradox states is that issue-wise majority voting may
provide a poor compromise between diverging votes, where ‘poor’ relates to the value
of α: the higher the α, the higher the proportion of voters likely to complain, by
forming a coalition in favor of the opposite of the majority rule outcome.

3 Does preference closedness matter?

We briefly review two conditions sufficient for avoid the Anscombe’s paradox.
The first, called single-switchness, relates to vote domains. Given a vote domain
Δ = {x1, . . . , xH } and a subset D ⊆ C of issues, a D-relabeling of Δ is obtained
by reversing approvals and disapprovals regarding issues in D in each element of Δ.
Furthermore, for any permutation σ of C , a σ -permutation of Δ is the vote domain
obtained by reshuffling the set of issues (i.e., columns of Δ) without modifying the
voting positions regarding each of them.4

Two vote domains Δ and Δ′ are equivalent if there exist a subset D ⊆ C of issues
and a permutation σ of C , such that Δ′ is obtained from Δ through the combina-
tion of a D-relabeling with a σ -permutation of Δ. Furthermore, Δ = {x1, . . . , xH }
has a single-switch representation if in each vote xh there exists at most one issue
1 ≤ c(h) ≤ C − 1 such that x

c(h)
h �= x

c(h)+1
h , and Δ is said to be single-switch if it

4The D-relabeling of Δ = [xc
h
]h=1,...,H
c=1,...,C

is the domain ΔD = [yc
h
]h=1,...,H
c=1,...,C

defined by: ∀c ∈ D, ∀h,

xc
h

= 1 ⇔ yc
h

= 0, and ∀c /∈ D, ∀h, xc
h

= yc
h

. The σ -permutation of Δ is the vote domain Δσ =
[xσc

h
]h=1,...,H
c=1,...,C

defined by: ∀c, ∀h, xσc
h

= x
σ−1(c)
h

.
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is equivalent to a vote domain having a single-switch representation.5 It is showed
in Laffond and Lainé (2006) that, at any vote profile XΔ built from a single-switch
domain Δ, no outcome is more preferred by a majority of voters than μ(XΔ). Using
Proposition 1, one thus have

Proposition 2 (Laffond and Lainé 2006) No vote profile built from a single-switch
vote domain can face the Anscombe’s paradox.

Single-switchness is a strong restriction. It relates to some inter-vote consistency:
indeed, a vote domain Δ is single-switch if and only if, for any two votes x and y

in Δ, the set of issues approved in x either contains the set of those approved by y,
or contains the set of those disapproved by y.

The second condition, called the rule of (1 − α
2 ), deals with the average level of

consensus that prevails issue-wise in a vote profile. Given a vote profile X and an
issue c, we call agreement level on c the number ac(X) = |{j : xc

j = μc(X)|, that
is, the number of individuals who agree with the majority will about c. Let a(X) =
1
C

∑
c∈C ac(X) be the average level of agreement across issues.

Proposition 3 (Wagner 1984) Consider any α ∈]0,1[. If X is a vote profile such that
a(X) ≥ (1 − α

2 )J , then X does not face the Anscombe’s α-paradox.6

Hence, if the average size of majority among issues is at least (1 − α
2 ), no more

than α voters disagree with the majority outcome on no more than half of the issues.
In particular, the rule of three-fourths (Wagner 1983) states that the paradox never
holds at a vote profile where, on average, at least 75% of the voters agree on each of
the issues.

We suggest here an alternative measure of unanimity, related to vote domains,
which is based on the maximum number of issues about which two potential
votes disagree on. We denote by rΔ = max{ d(xh,xh′ )

C
, h,h′ = 1, . . . ,H } (resp. rX =

max{ d(xj ,xj ′ )
C

, j, j ′ = 1, . . . , J }) the maximal relative Hamming distance between

5For instance, the following vote domain Δ

x1 x2 x3 x4

1 1 1 0 0
2 0 1 1 0
3 1 1 1 0
4 0 0 1 1

is single-switch. To see why, the

{1}-relabeling of Δ gives

x1 x2 x3 x4

1 0 0 1 1
2 0 1 1 0
3 1 1 1 0
4 0 0 1 1

, while

x1 x2 x3 x4

4 0 0 1 1
1 0 0 1 1
2 0 1 1 0
3 1 1 1 0

has a single-switch

representation.
6Wagner (1984) proves in fact the following more general result: let α, β ∈]0,1[. If X is such that a(X) ≥
(1 − αβ)J , then the proportion of voters who disagree with μ(X) on more than β% of the issues will be
less than α.
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Table 2 Paradox with
distance 0.5 1 2 · · · k − 1 k k + 1, . . . ,2k − 1

1 1 0 · · · 0 0 0

2 0 1 · · · 0 0 0

· · · · · · · · · · · · · · · · · · · · ·
k − 1 0 0 · · · 1 0 0

k 0 0 · · · 0 1 0

k + 1 0 1 · · · 1 1 0

k + 2 1 0 · · · 1 1 0

· · · · · · · · · · · · · · · · · · · · ·
2k − 1 1 1 · · · 0 1 0

2k 1 1 · · · 1 0 0

2k + 1 1 1 · · · 1 0 0

two votes in the vote domain Δ (resp. in the vote profile X). We first claim that
the paradox may hold at a vote profile where votes differ on one half of the issues.

Proposition 4 For any ε > 0, there exists a vote profile X such that rX < 1
2 + ε and

the Anscombe’s paradox holds at X.

Proof Pick up an integer k > 0, and consider the vote profile X defined in Table 2,
where C = 2k + 1 and J = 2k − 1:

It is obviously seen that μ(X) = (0, . . . ,0). Moreover, ∀j,h ≤ k,
d(xj , xh) = 4, ∀j < k and ∀h > k, d(xj , xh) = k + 1, ∀h > k, d(xk, xh) = k, and
∀j,h > k, d(xj , xh) = 0. Thus, rX = k+1

2k+1 . Furthermore, ∀j ≤ k, Uj (μ(X)) = k,
while Uj (−μ(X)) = k + 1. Hence, the paradox prevails. The conclusion follows
from the fact that limk→∞ k+1

2k+1 = 1
2 . �

However, the paradox never holds at a vote profile involving votes that mutually
differ on less than a third of the issues.

Proposition 5 Let X be any vote profile such that rX ≤ 1
3 . Then the Anscombe’s

paradox does not hold at X.

Proof Note first that, through an appropriate relabeling of issues, one can assume
that μ(X) = (0, . . . ,0). For any voter j , let δj = ∑

c xc
j . From the definition of rX ,

one gets that ∀j ∈ J ,
∑

h�=j d(xj , xh) ≤ rXC(J − 1).
Furthermore, it is well-known that, given any vote profile X, μ(X) maximizes∑
j∈J Uxj

in the set {0,1}C of all possible outcomes (see, e.g., Brams et al. (2007)
for a formal proof). Hence, one gets that

∑
j d(xj ,μ(X)) ≤ rXC(J − 1). Moreover,

it follows from the definition of μ(X) that

∀j ∈ J , d
(
xj ,μ(X)

) = δj (1)
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and thus
∑

j

δj ≤ rXC(J − 1). (2)

Now, suppose that the paradox holds at X. Let A = {j : δj > C
2 }. It follows that

|A| > J
2 . For any j , let 1(j) = {c : xc

j = 1} and 0(j) = C − 1(j). Furthermore, con-
sider any two voters j and j ′. Since d(xj , xj ′) ≤ rXC, then |0(j) ∩ 1(j ′)| + |1(j) ∩
0(j ′)| ≤ rXC. This immediately implies that

δj − rXC ≤ δj ′ ≤ δj + rXC,

δj ′ − rXC ≤ δj ≤ δj ′ + rXC.

Since δj > C
2 for all j ∈ A, it follows from the two inequalities above that

∀j /∈ A, δj ≥ C

2
− rXC. (3)

Combining (1), (2) and (3) leads to

C

2

J

2
+ J

2

(
C

2
− rXC

)

≤
∑

j

δj < rXCJ.

Thus, CJ 1−rX
2 < rXCJ , which proves that rX > 1

3 . �

Propositions 4 and 5 confirm the intuition: if votes are mutually close enough
(differ on less than a third of the issues), the outcome of majority rule cannot be less
preferred than its opposite by a majority of voters. And if votes are distant enough
(one half of the issues), the Anscombe’s paradox may prevail. We are left with a range
of possible distance values. Our main result consists in computing the exact bound
of the maximal distance between two elements of a vote domain under which the
α-paradox holds at no profile built from this domain.

The maximal relative distance between votes in some vote profile X clearly im-
plies nothing about the average agreement level in X. For instance, consider the pro-
file described in Table 3.

Then, rX = 1
3 , and thus there is no paradox. Furthermore, the average level of

issue-wise consensus is low, since a(X) = 0.55. However, we show below the exis-
tence of a relationship between rX and the number of issues for which a given level
of consensus prevails.

4 Results

Given a vote profile X, define mX = |{j ∈ J : Uj (−μ(X)) > Uj (μ(X))}| and
pX = mX

J
. Hence, mX (resp., pX) is the number (resp., proportion) of voters who

less prefer the majority outcome than its opposite. Moreover, let nX = (J − mX) the
number of voters having the reverse opinion. A vote profile X is said to be large if
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Table 3 Average agreement vs
maximal distance x1 x2 x3 x4

1 1 0 1

1 0 1 1

1 1 1 1

1 1 1 1

1 1 1 0

0 1 1 1

0 0 0 1

0 1 0 0

0 0 0 0

both mX and nX are large enough to approximate both n−1
n

and m−1
m

by 1. We address
the following question: what is the maximal value r(α) of the maximal distance be-
tween two votes under which no large vote profile faces the α-paradox? Equivalently,
we solve the following problem:

Let α ∈]0,1[. Find the minimal value r(α) of r ∈ [0,1] for which there exists a
large profile X such that rX = r and pX > α.

It follows from Propositions 4 and 5 that r( 1
2 ) ∈ [ 1

3 , 1
2 ]. Our first theorem (proven

in Appendix B) specifies the function r(α).

Theorem 1 r(α) = 1
4(1−α)

if α ≤ 1
4 , and r(α) =

√
α−α

1−α
if 1

4 ≤ α ≤ 1.

Figure 1 in Appendix A depicts the function r(α), where the values of α appear on
the x-axis. The Anscombe paradox occurs for all values of α above 1

2 . Since r( 1
2 ) ≈

0.414, the Anscombe’s paradox cannot hold when the relative distance between any
two votes is less than 41.4%. Furthermore, the Anscombe’s (0.2)-paradox never holds
if no two ballots differ on more than 31.25% of the issues: in such a case, always
fewer than 20% of the voters are put on the losing side on more than half of the
issues. Similarly, if any two votes disagree on less than 47.21% of the issues, always
less than 80% of the electorate will disagree with the majority outcome on more than
half of the issues.

Theorem 1 is very different in spirit from the rule of (1 − α
2 ). Indeed, the crite-

rion of the maximal distance applies to vote domain, and thus is independent from
the distribution of votes. Put differently, consider any vote domain Δ = {x1, . . . , xH }
such that the distance between any two votes is less that r(α). Then, Theorem 1 states
that, whatever the number of voters casting each of the xh in Δ, that is, whatever the
vote profile XΔ built from Δ, XΔ cannot face the Anscombe’s α-paradox. We inter-
preted above vote domains as sets of admissible opinions that can be defended in the
society, independently from the actual distribution of opinions. Hence, the maximal
distance criterion should be seen as an ex-ante measure of unanimity. Such is not the
case for the rule of (1 − α

2 ), which explicitly relates to the distribution of votes: if, on
average, all issues show a sufficient level of agreement among the actual votes, then
the paradox is impossible.
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Despite this important difference, there is still a link between our measure of una-
nimity and the number of issues which do not reach a high level of agreement. Given a
vote profile X and an issue c, let m1

c(X) (resp., m0
c(X)) stand for the number of voters

who approve (resp., disapprove) c. We define s(X, c) = |m1
c (X)−m0

c(X,c)|
J

= |2ac(X)−J |
J

,
that is, the relative majority margin for c. If s(X, c) is close to 1, then almost all voters
share the same opinion on c, so that c does not appear as controversial: opinions are
close to the unanimity about c. Similarly, if s(X, c) is close to 0, then there an almost
tie between the two opinions. Hence, s(X, c) is to be interpreted as a measure of the
level of unanimity regarding issue c. Let γ ∈ [0,1]. An issue c is γ -controversial in
X if s(X, c) ≤ γ . Given a vote profile X, The proportion of γ -controversial issues is
denoted by J (γ,X).

Theorem 2, proven in the Appendix C, confirms the intuition that the closer the
ballots, the fewer controversial candidates.

Theorem 2 Let Δ be a vote domain such that d(x, y) ≤ r for all x, y ∈ Δ. Then, in
any large vote profile XΔ, J (γ,X) ≤ 2r

1−γ 2 .

As an illustration, assume that γ = 0.2. Thus, an issue is controversial when reach-
ing a relative majority margin of at most 40%, that is, the level of agreement of 60%.
Then, if no two votes disagree on more than 20% of the issues, at most 41.6% of
them are controversial. Similarly, if an issue is controversial if it does not reach an
agreement of 75% among voters (γ = 0.5), then less than 53.33% of the issues are
controversial.

5 Discussion

We establish in this paper the exact relationship r(α) which links the level of unanim-
ity in preferences, defined as the maximal distance between ballots, and the existence
of a generalized Anscombe’s paradox, called the Anscombe’s α-paradox, where more
than a given proportion α of the voters disagree on a majority of issues with the out-
come of issue-wise majority voting. As already shown by the three-fourths rule, the
relationship between the occurrence of the paradox and closedness of preferences
is quite intuitive. Our main contribution is to give an exact answer to the question of
such relationship, based on a specific measure of consensus, or unanimity, within a set
of potential votes (rather than a set of actual votes). This approach is along the lines
of preference domain restriction that have been extensively studied by Social Choice
Theory. A potential vote is a ballot that is admissible from a cultural or political view-
point, a vote profile being a specific distribution of votes among admissible ballots.
This distinction between a vote domain, defined as a set of potential votes, and a vote
profile allows for deriving properties that hold for any profile, that is, any distribu-
tion of votes. In particular, the function r(α) relates to vote domains, and contrasts
with the three-fourths rule, which is a property of vote profiles. Hence, the measure
of unanimity in a vote domain should not depend on the distribution of votes. As a
distance-based criterion, the maximal distance follows a very conservative approach,
by implicitly assuming that any vote distribution is possible, including the one that
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implements a highly polarized political landscape, where the electorate equally splits
between two ballots that are the most distant to each other.7 Considering alternative
measures of closedness within a vote domain calls for further research. Furthermore,
a complementary worthwhile analysis would focus on unanimity measures in vote
profiles, along the lines drawn in the studies on consensus measures in preference
profiles (see, e.g., Hays (1960), Kendall (1962), Kemeny and Snell (1962), Cook and
Seiford (1978, 1982), Bosch (2006), Garcia-Lapresta and Perez-Roman (2008, 2010),
Alcalde-Unzu and Vorsatz (2010a, 2010b)). However, note that the framework of
multiple referendum does not consider preferences in the usual sense (that is, defined
as linear or weak orders), but judgment sets on mutually independent propositions.8

The function r(α) shows that escaping from the α-paradox in all vote profiles
requires drastically restricting the set of possible votes. For instance, we know that
avoiding the Anscombe’s paradox (α = 0.5) with 5 issues imposes a maximal dis-
tance 2 between any two votes. It is easily seen that the maximal number of possible
votes under this constraint is 5 out of 32 possible votes. Finding the maximal cardi-
nality of domains with C issues and a maximal distance r is left as an open question.9

An alternative way to illustrate the level of restriction brought by the function r(α)

is to count the maximal number of possible votes sharing a common structure. For
example, suppose that all issues can be ordered along a commonly perceived left-
right political spectrum (say 1 ≺ 2 ≺ · · · ≺ C). A vote x is single-plateaued if there
exist two issues c1(x), c2(x) such that xc = 1 ⇔ c ∈ {c1(x), . . . , c2(x)}. Assume that
all votes are single-plateaued, and that c2(x) − c1(x) is the same for all votes. If r

denotes the maximal possible distance between two votes, one can allow for at most
r
2 + 1 if r is even, and r−1

2 + 1 if r is odd.
We excluded the case where α = 1 from the analysis (where all voters are on

the losing side on a majority of issues). Indeed, as already mentioned in the proof of
Proposition 5, we have that, given any vote profile X = (x1, . . . , xJ ) ∈ {0,1}CJ , μ(X)

minimizes
∑J

j=1 d(x, xj ) on {0,1}C . This implies that issue-wise majority voting is
efficient for Hamming preferences. Hence, efficiency holds whatever the unanimity
level within the vote profile.10

The α-paradox implicitly assumes that voters are dissatisfied with an outcome that
differs from their ballots on a majority of issues. A natural question is to investigate
how the function r(α) evolves for alternative measures of dissatisfaction. This leads
to the following problem: say that a voter is δ-dissatisfied with the outcome x if the
relative Hamming distance between x and her ballot is at least δ ∈]0,1]; let α ∈ [0,1]

7Designing alternative unanimity measures would require a probability model for vote profiles, along the
lines drawn in Gehrlein and Lepelley (2011).
8To our knowledge, distance-based measures of consensus among judgment sets remain to be studied.
An interesting step is offered by Duddy and Piggins (2010), who characterize a distance between two
judgment sets that differs from the Hamming distance. See List and Puppe (2009) for a recent survey on
the aggregation of judgment sets.
9Note that this question relates to finding the maximal clique in the non-oriented graph G defined on

{0,1}C by: ∀x, y ∈ {0,1}C , (x, y) ∈ G ⇔ d(x, y) ≤ r . This combinatorial optimization problem is NP-
hard for non-restricted graphs (see Bomze et al. (1999)).
10The reader will find in Cuhadaroglu and Lainé (2010) a study of the efficiency of majority voting in
multiple referendum under alternative distance-based preferences.
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and find the minimal value r(α, δ) of r ∈ [0,1] for which there exists a vote profile
X where the maximal distance between two votes is r and α% of the voters are
δ-dissatisfied.

Finally, our results can be offered an alternative dual interpretation.11 Define the
parameter α as a measure of social acceptability of the referendum outcome. Then
the function r(α) provides the level of consensus that must a priori prevail within
the society in order for issue-wise majority voting to always reach a socially accept-
able outcome. Following this approach in more general collective choice situations
may allow comparing different voting rules according to the level of consensus they
require for their outcome to share some properties defining social acceptability.

Acknowledgements The authors are indebted to two anonymous reviewers for helpful comments and
suggestions.

Appendix A

Fig. 1 Graph of the
function r(α)

Appendix B: Proof of Theorem 1

B.1 Preliminaries

Let X ∈ {0,1}CJ be such that ∀j,h ∈ J ,
d(xj ,xh)

C
≤ r . Let N(X) = {j ∈ J ,

d(xj ,μ(X))

C
< 1/2} (with cardinality n = n(X)) be the set of voters who prefer the

outcome of the majority rule than its opposite and M(X) = J −N(X) (m = m(X) =
J − n).

The proof is organized in several steps. The first one provides a useful technical
tool for studying vote profiles. The purpose here is to show that one can build from
X another vote profile X′ = (x′

1, . . . , x
′
J ) ∈ {0,1}C′J where

• The distances between votes does not exceed r : ∀j,h ∈ J ,
d(x′

j ,x′
h)

C′ ≤ r .

11We thank one of the reviewers for having suggested this route for further research.
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• N(X′) = N(X) = N and M(X′) = M(X) = M : the way voters compare the ma-
jority outcome and its opposite does not change from X to X′.

• All distances between two votes cast by individuals who prefer the majority out-
come μ(X′) are the same: ∀j,h, j ′, h′ ∈ M , d(x′

j , x
′
h) = d(x′

j ′ , x′
h′).

• All distances between two votes cast by individuals who prefer the opposite of the
majority outcome −μ(X′) are the same: ∀j,h, j ′, h′ ∈ N , d(x′

j , x
′
h) = d(x′

j ′ , x′
h′).

• All distances between two votes cast by individuals who disagree when comparing
μ(X′) and −μ(X′) are the same: ∀j,h ∈ M , ∀j ′, h′ ∈ N , d(x′

j , x
′
j ′) = d(x′

h, x
′
h′).

B.2 Block (k, l)-matrices

We first introduce the notion of a block matrix. A matrix with 0 and 1 entries in-
volving J columns is a block matrix if defined as follows: given a partition of the
J columns into two sets M and N with respective sizes m and n, all rows contain
k (resp., l) entries equal to 1 when restricted to M (resp., to N ); and the number of
rows is equal to the number of possible joint permutations of both sets M and N .
Formally, let 0 ≤ k ≤ m, 0 ≤ l ≤ n. The cardinality of the set

Zk,l =
{

z ∈ {0,1}J ,
∑

j∈M

zj = k,
∑

j∈N

zj = l

}

is
(

k
m

)(
l
n

)
.

A block (k, l)-matrix a is matrix Z(k, l) = (z1, . . . , zJ ) with J columns and
(

k
m

)(
l
n

)

rows, and whose rows are all the elements of Zk,l . One easily computes the distances
between any two of columns of Z(k, l):

1. If j,h ∈ M , d(zj , zh) = 2
(

k−1
m−2

)(
l
n

)
.

2. If j,h ∈ N , d(zj , zh) = 2
(

k
m

)(
l−1
n−2

)
.

3. If h ∈ M , j ∈ N , d(zh, zj ) = (
k−1
m−1

)(
l

n−1

) + (
k

m−1

)(
l−1
n−1

)
.

4. If j ∈ M , d(zj ,μ(Z)) =
{(

k
m−1

)(
l
n

)
if k + l > J/2,

(
k−1
m−1

)(
l
n

)
if k + l < J/2.

5. If j ∈ N , d(zj ,μ(Z)) =
{(

k
m

)(
l

n−1

)
if k + l > J/2,

(
k
m

)(
l−1
n−1

)
if k + l < J/2.

B.3 Composition of matrices

Define
∑

1 = {σ1, . . . , σm!n!} as the set of permutations of J such that σ(M) = M

and σ(N) = N . Given σ ∈ ∑
1, the matrix X(σ) ∈ {0,1}CJ is defined by: ∀c, j ,

X(σ)cj = Xc
σ(j). The number of such matrices is thus m!n!.

The composition φ of two matrices is defined in the following way: let A,B,C be
three matrices whose elements are {0,1}, with J columns and with a, b, and a + b

rows, respectively. We say that C = φ(A,B) if Ck
j = Ak

j when k ≤ a, and Ck
j = Bk−a

j

when k ≥ a. This simply means that C is obtained by ‘putting A over B’.

Notice that if
d(Aj ,Ah)

a
≤ r and

d(Bj ,Bh)

b
≤ r , then

d(Cj ,Ch)

a+b
≤ r .
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Then we can define X1 = X(σ1), X2 = φ(X1,X(σ2)), and, for every 3 ≤ h ≤
m!n!, Xh = φ(Xh−1,X(σh)).

This construction leads to the matrix X′ = (x′
1, . . . , x

′
J ), which involves J columns

and m!n!C rows. We claim that X′ shares the 5 properties above.

First, we have ∀j,h ∈ J ,
d(x′

j ,x′
h)

m!n!C ≤ r : indeed, this property is stable under com-

position. Second, we have N(X′) = {j ∈ J : d(x′
j ,μ(X′))
m!n!C < 1/2} = N(X), since N(X)

is stable under any permutation σ ∈ ∑
1. Thus X and X′ share the same properties

relative to r .
Consider a row xc in X. Since xc generates one new specific row in each matrix

X(σ), xc generates m!n! rows in X′, each being a permutation of xc. Furthermore, if
xc contains k entries equal to 1 in M and l entries equal to 1 in N , then X′ contains(

k
m

)(
l
n

)
different rows induced by x1, which define a block (k, l)-matrix. It follows

from symmetry that xc generates m!n!
(k
m)(l

n)
block (k, l)-matrices contained in X′. Let

c(k, l) be the number of rows xc in X such that k = ∑
j∈M xc

j , l = ∑
j∈N xc

j . One

gets that X′ is a collection of m!n!
(k
m)(l

n)
c(k, l) block (k, l)-matrices.

Using the above expressions of the distance between columns in some block (k, l)-
matrix Z, the contribution of all block (k, l)-matrices to the distance between any two
votes (i.e., columns of X′), as well the distance between each vote and the majority
outcome is given by:

1. If j,h ∈ M , d(x′
j , x

′
h) = 2m!n!(k−1

m−2)(
l
n)

(k
m)(l

n)
c(k, l).

2. If j,h ∈ N , d(x′
j , x

′
h) = 2m!n!(k

m)(l−1
n−2)

(k
m)(l

n)
c(k, l).

3. If h ∈ M and j ∈ N , d(x′
j , x

′
h) = [(

k−1
m−1

)(
l

n−1

) + (
k

m−1

)(
l−1
n−1

)]
m!n!

(k
m)(l

n)
c(k, l).

4. If j ∈ M,d(x′
j ,μ(X′)) =

⎧
⎪⎪⎨

⎪⎪⎩

m!n!( k
m−1)(

l
n)

(k
m)(l

n)
c(k, l) if k + l > J/2,

m!n!(k−1
m−1)(

l
n)

(k
m)(l

n)
c(k, l) if k + l < J/2.

5. If j ∈ N,d(x′
j ,μ(X′)) =

⎧
⎪⎪⎨

⎪⎪⎩

m!n!(k
m)( l

n−1)

(k
m)(l

n)
c(k, l) if k + l > J/2,

m!n!(k
m)(l−1

n−1)

(k
m)(l

n)
c(k, l) if k + l < J/2.

These can be simplified to

1. If j,h ∈ M , d(x′
j , x

′
h) = 2 k(m−k)

m(m−1)
m!n!c(k, l).

2. If j,h ∈ N , d(x′
j , x

′
h) = 2 l(n−l)

n(n−1)
m!n!c(k, l).

3. If h ∈ M , j ∈ N , d(x′
j , x

′
h) = (m−k)l+k(n−l)

mn
m!n!c(k, l).

4. If j ∈ M , d(x′
j ,μ(X′)) =

{
m−k
m

m!n!c(k, l) if k + l > J/2,

k
m

m!n!c(k, l) if k + l < J/2.

5. If j ∈ N , d(x′
j ,μ(X′)) =

{
n−l
n

m!n!c(k, l) if k + l > J/2,

l
n
m!n!c(k, l) if k + l < J/2.
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Hence, since this contribution is the same across voters, X′ has all the properties
mentioned above.

We are now ready to set the optimization program to be solved in a tractable form.

B.4 The optimization program

In the sequel, and without loss of generality, we restrict our analysis to the case of
where X is a composition of block matrices, and where Y is the initial matrix contain-
ing C′ rows. Hence, X contains C = m!n!C′ rows. Let I = {i = (ki, li ) : 0 ≤ ki ≤ m,
0 ≤ li ≤ n} be the set of blocks (k, l)-matrices composed by X. For each i, let c(ki, li)

be the number of rows in Y which generate a block (ki, li )-matrix, and let θi = c(ki ,li )
C′

be the proportion of those rows in Y .
It appears that all distances between votes, as well as the way voters compare μ(X)

and its opposite, can be written by means of weighted averages, where the weights
are given by the θi , i ∈ I .

For each i ∈ I , let ui = ki

m
− 1

2 and vi = li
n

− 1
2 . With these notations, the different

distances become:

1. If j,h ∈ M ,
d(xj ,xh)

C
= 2

∑
i

m
m−1 ( 1

4 − u2
i )θi ≤ r.

2. If j,h ∈ N ,
d(xj ,xh)

C
= 2

∑
i

n
n−1 ( 1

4 − v2
i )θi ≤ r.

3. If j ∈ M , h ∈ N ,
d(xj ,xh)

C
= 2

∑
i (

1
4 − uivi)θi ≤ r.

Through an appropriate relabeling of the issues, we can assume that 0 is the issue-
wise majority will for each of the issues. Thus, for any block (ki, li) ∈ I , we have
ki + li < J/2, and the distances between votes and the majority outcome are given
by:

4. If j ∈ M,
d(xj ,μ(X))

C
= ∑

i (
1
2 + ui)θi ≥ 1

2 .

5. If j ∈ N,
d(xj ,μ(X))

C
= ∑

i (
1
2 + vi)θi ≤ 1

2 .

Moreover, since 0 is the majority will for each issue,

6. mui + nvi ≤ 0.

Hence, the problem to be solved is finding the weights θi of the different blocks
(ui, vi) in order to minimize r under the five preceding constraints. In other words,
the problem can be written as:

minimize r

(S)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1. θi ≥ 0,− 1
2 ≤ ui ≤ 1

2 ,− 1
2 ≤ vi ≤ 1

2 ,
∑

i θi = 1;
2. 2

∑
i u

2
i θi ≥ 1

2 − m−1
m

r;
3. 2

∑
i v

2
i θi ≥ 1

2 − n−1
n

r;
4. 2

∑
i uiviθi ≥ 1

2 − r;
5. mui + nvi ≤ 0;
6.

∑
i uiθi ≥ 0;

7.
∑

i viθi ≤ 0.
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We can exploit the convexity properties of this non-linear program in order to
reduce its dimension.

B.5 Reducing the dimension of (S)

Constraint 5 implies that one cannot have ui > 0 and vi > 0. In fact, if {(ui, vi, θi),

i = 1, . . . , I } solves (S), then we can find another set of parameters values
{(u′i , v′

i , θ
′
i ), i = 1, . . . , I } which also solves (S), and where v′

i ≤ 0 for any i. In-
deed, take {(ui, vi, θi), i = 1, . . . , I } that solves (S) and, for any i, define u′

i = ui ,
v′
i = −|vi |, and θ ′

i = θi . Every constraint but constraint 4 remains satisfied with the
new values of the parameters. If ui ≤ 0, then u′

iv
′
i ≥ uivi . If ui > 0, then v′

i = vi and
u′

iv
′
i = uivi . It follows that 2

∑
i u

′
iv

′
iθi ≥ 2

∑
i uiviθi ≥ 1

2 − r .
This allows deleting constraint 7 and transforming constraint 1 into:

1′. θi ≥ 0, − 1
2 ≤ ui ≤ 1

2 , − 1
2 ≤ vi ≤ 0,

∑
i θi = 1.

All the constraints but constraints 2 and 3 are linear in ui and linear in vi.

By a repeated use of the inequality (αx + (1 − α)y)2 ≤ αx2 + (1 − α)y2, with
0 ≤ α ≤ 1, the dimension of the problem (S) is lowered by showing that its solu-
tion(s) belong to a specific subset of the frontier of the admissible domain defined
by the constraints. Indeed, we represent below the set of the (ui, vi) values satisfying
constraints 1′ and 5: in both Figs. 2 and 3, constraint 1′ requires that all (u, v) must
be such that v < 0, whereas constraint 5 restricts the (u, v) below the segment 0D;
when m < n, then D lies above C (Fig. 2), while D is at the left of C when m > n

(Fig. 3).
{(ui, vi, θi), i = 1, . . . , I } is such that (S) is true, and, for example u1 < 0 and

v1 < 0. Then we can substitute to the point (u1, v1, θ1) two points

{
(0, v1, θ

0
1 ),

(−1/2, v1, θ
1
1 ),

Fig. 2 Case m < n
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Fig. 3 Case m > n

where θ0
1 and θ1

1 are such that
⎧
⎪⎪⎨

⎪⎪⎩

θ0
1 + θ1

1 = θ1,

θ0
1 (0) + θ1

1

(

−1

2

)

= θ1u1.

We just have to check whether constraint 2 is satisfied with this new set of pa-
rameter values. And this is easily done since we know from the result above that
θ0

1 (0)2 + θ1
1 (− 1

2 )2 ≥ θ1u
2
1. Hence, the solution of (S) must be belong to “the frontier

of the admissible domain”. We then have to address the two following cases:

B.5.1 Case 1: m < n

In this case, we know (see Fig. 2, where the admissible domain is unshadowed)
that the solution(s) belong to the set containing the three points A(− 1

2 ,0, θA),
B(− 1

2 ,− 1
2 , θB), C( 1

2 ,− 1
2 , θC), and some of the points between E and D

((ui,−m
n
ui, θi), 1 ≤ i ≤ I with 0 ≤ ui ≤ 1

2 ).
The constraints are rewritten:

1. θA + θB + θC + ∑
i θi = 1,0 ≤ ui ≤ 1

2 .

2. 1
2 (θA + θB + θC) + 2

∑
i u

2
i θi ≥ 1

2 − m−1
m

r .

3. 1
2 (θB + θC) + 2(m

n
)2 ∑

i u
2
i θi ≥ 1

2 − n−1
n

r .

4. 1
2 (θB − θC) − 2m

n

∑
i u

2
i θi ≥ 1

2 − r .

6. 1
2 (−θA − θB + θc) + ∑

i uiθi ≥ 0.

If we replace in these inequalities θA and θB by θ ′
A = 0 and θ ′

B = θA + θB , respec-
tively, they will remain true. Hence, we assume below that θA = 0.

Consider the sign of the constraints. One checks that constraint 4 implies both
constraints 2 and 3, except for the ratios m−1

m
and n−1

n
. However, when

∑
i u

2
i θi is
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strictly positive and both m and n are large enough, both constraints 2 and 3 are
fulfilled if constraint 4 holds. Thus, the problem reduces to:

minimize r

1. θB + θC + ∑
i θi = 1,0 ≤ ui ≤ 1

2 .

4. 1
2 (θB − θC) − 2m

n

∑
i u

2
i θi ≥ 1

2 − r.

6. 1
2 (−θB + θc) + ∑

i uiθi ≥ 0

and we will check at the end that
∑

i u
2
i θi > 0.

Since 1∑
i θi

∑
i u

2
i θi ≥ ( 1∑

i θi

∑
i θiui)

2, we can substitute in constraint 4 all the

(ui, θi) by their mean (u, θu) with θu = ∑
i θi . Finally, the problem is to find 4 num-

bers θB, θC, θu,u which minimize r under the constraints:

1. θB, θC, θu ≥ 0, θB + θC + θu = 1,0 ≤ u ≤ 1
2 .

4. 1
2 (θB − θC) − 2m

n
u2θu ≥ 1

2 − r.

6. 1
2 (−θB + θc)+ θuu ≥ 0.

B.5.2 Case 2: m > n

In this case, we know (see Fig. 3, where the admissible domain is unshadowed)
that the solution(s) belong to the set containing the two points A(− 1

2 ,0, θA),
B(− 1

2 ,− 1
2 , θB), and some of the points between C and D ((− n

m
vi, vi, θi), 1 ≤ i ≤ I

with − 1
2 ≤ vi ≤ 0).

The constraints are rewritten as:

1. θA + θB + ∑
i θi = 1,− 1

2 ≤ vi ≤ 0.

2. 1
2 (θA + θB) + 2( n

m
)2 ∑

i v
2
i θi ≥ 1

2 − m−1
m

r.

3. 1
2θB + 2

∑
i v

2
i θi ≥ 1

2 − n−1
n

r.

4. 1
2θB − 2 n

m

∑
i v

2
i θi ≥ 1

2 − r.

6. 1
2 (−θA − θB) − n

m

∑
i viθi ≥ 0.

Again, if we substitute in these inequalities θA and θB by θ ′
A = 0 and θ ′

B =
θA + θB, respectively, they will remain true. Hence in the following, we assume that
θA = 0.

As in the previous case, using
∑

i v
2
i θi > 0, when m and n are large enough, both

constraints 2 and 3 are fulfilled if constraint 4 holds. Thus the problem reduces to:
minimize r

1. θB + ∑
i θi = 1,− 1

2 ≤ vi ≤ 0.

4. 1
2θB − 2 n

m

∑
i v

2
i θi ≥ 1

2 − r .

6. − 1
2θB − n

m

∑
i viθi ≥ 0.

Since
∑

i v2
i θi∑

i θi
≥ (

∑
i θivi∑
i θi

)2, we can substitute in constraint 4 all the (vi, θi) by their

mean (v, θv), where θv = ∑
i θi . Finally, the problem is to find 3 numbers θB, θv, v

such that they minimize r under the constraints:
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1. θB, θv ≥ 0, θB + θv = 1, − 1
2 ≤ v ≤ 0.

4. 1
2θB − 2 n

m
v2θv ≥ 1

2 − r.

6. − 1
2θB − n

m
vθv ≥ 0.

B.6 The solution in the case m < n

We must find θA, θB, θC, θu which minimize r under the constraints:

1. θB, θC, θu ≥ 0, θB + θC + θu = 1, 0 ≤ u ≤ 1
2 .

4. 1
2 (θB − θC) − 2m

n
u2θu ≥ 1

2 − r .

6. 1
2 (−θB + θc) + θuu ≥ 0.

These constraints may be equivalently written as:

4. r ≥ 1
2 − 1

2 (θB − θC) + 2m
n
u2θu.

6. θuu ≥ 1
2 (θB − θc).

The solution requires that constraint 4 is an equality. If θB = θC = 1
2 and θu = 0, we

find that r = 1
2 . The minimal value of r is smaller or equal to 1

2 . Hence the optimal
value of (θB − θC) is positive or equal to 0. Since r is an increasing function of u, it
appears that the minimal value of r is obtained when constraint 6 is an equality.

Define p = m
n

, and x = θB − θC. We must find x,u, θ = θu which minimize r ,
where

(i) r = 1
2 − 1

2x + 2pu2θ .
(ii) u = x

2θ
.

(iii) 0 ≤ u ≤ 1
2 , 0 ≤ θ ≤ 1, 0 ≤ x ≤ (1 − θ).

We can substitute x
2θ

by u in (i) if 0 ≤ x
2θ

≤ 1
2 , that is, if x ≤ θ . The problem then

reduces to minimizing r under the constraints:

r = 1

2
p

x2

θ
− 1

2
x + 1

2
, 0 ≤ θ ≤ 1,0 ≤ x ≤ min(θ,1 − θ).

If θ is fixed, the non-constrained minimum of r is obtained when x = x̂ = θ
2p

.
But this value does not always coincide with the optimal value x∗.

Several cases are to be investigated:

Case 1: (a) x̂ ≤ θ and (b) x̂ ≤ (1 − θ).

Equivalent conditions are (a) p ≥ 1
2 and (b) θ ≤ 2p

2p+1 . In this case, x∗ = x̂, and

r = 1
2 − 1

8p
θ. The value of r is decreasing with θ and reaches its minimum when

θ = 2p
2p+1 .

Case 2: (a) x̂ ≤ θ and (b′) x̂ ≥ (1 − θ).

Equivalent conditions are (a) p ≥ 1
2 and (b′) 2p

2p+1 ≤ θ ≤ 1. In this case, x∗ =
(1 − θ), r = 1

2θ − p + 1
2pθ + 1

2
p
θ

and ∂r
∂θ

= (p+1)2

2θ2 (θ2 − p
p+1 ).
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The value of r is minimized when θ =
√

p
p+1 , and we have 2p

2p+1 ≤
√

p
p+1 ≤ 1.

It appears from both cases 1 and 2 that if p ≥ 1
2 then the optimal values are

⎧
⎪⎪⎨

⎪⎪⎩

θ =
√

p
p+1 ,

x = 1 − θ,

r = √
p(p + 1) − p.

Case 3: (a′) x̂ ≥ θ and (b) x̂ ≤ (1 − θ).

Equivalent conditions are (a′) p ≤ 1
2 and (b) θ ≤ 2p

2p+1 . In this case, x∗ = θ and

r = 1
2 − 1

2θ(1 − p). The value of r is decreasing with θ and reaches its minimum

when θ = 2p
2p+1 .

Case 4: (a′) x̂ ≥ θ and (b′) x̂ ≥ (1 − θ).

Equivalent conditions are (a′) p ≤ 1
2 and (b′) 2p

2p+1 ≤ θ ≤ 1. This time x̂ is not the
optimal value of x. We distinguish two sub-cases.

• If 2p
2p+1 ≤ θ ≤ 1

2 , the optimal value of x is x∗ = θ . This situation is similar to

case 3: the optimal value of θ is θ = 1
2 .

• If 1
2 ≤ θ ≤ 1, the optimal value of x is x∗ = 1 − θ . This case is similar to case 2:

the unconstrained optimal value of θ is θ =
√

p
p+1 . The optimal value of θ is thus

θ =
√

p
p+1 if

√
p

p+1 ≥ 1
2 , and θ = 1

2 if
√

p
p+1 ≤ 1

2 . That is, the optimal value of θ

is θ =
√

p
p+1 if 1

3 ≤ p ≤ 1
2 , and θ = 1

2 if 0 ≤ p ≤ 1
3 .

To summarize the case where m < n, we find that, with α = m
m+n

,

If 1
4 ≤ α ≤ 1

2 , then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ =
√

m
n

m
n

+ 1
,

r =
√

m

n

(
m

n
+ 1

)

− m

n
,

r =
√

α − α

1 − α
.

If α ≤ 1
4 , then

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

θ = 1

2
,

r = 1

4

m

n
+ 1

4
,

r = 1

4(1 − α)
.

B.7 The solution in the case m > n

Defining q = n
m

, one looks for θ = θv ∈ [0,1] and 0 ≤ v ≤ 1
2 which minimize r under

the constraints:
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4. 1
2 (1 − θ) − 2qv2θ ≥ 1

2 − r.

6. − 1
2 (1 − θ) + qvθ ≥ 0.

These constraints can be rewritten as:

4. r ≥ 1
2θ + 2qθv2.

6. v ≥ 1
2

1
q
( 1−θ

θ
).

The solution is such that constraint 4 is an equality: r is thus an increasing function
of v which is minimized when constraint 6 is an equality.

From constraint 6, we deduce that θ must be such that 1
2

1
q
( 1−θ

θ
) = v ≤ 1

2 . We then

look for a minimum of r when r = 1
2θq

(θ2 − 2θ + qθ2 + 1), 1
1+q

≤ θ ≤ 1.

By computing the derivative r ′
θ = 1

2θ2q
(θ2 + qθ2 − 1), one gets that r admits a

global minimum when θ =
√

1
q+1 ≥ 1

1+q
. This value satisfying the constraints, we

get:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ =
√

m

n + m
= √

α,

r = 1
n
m

(√

1 + n

m
− 1

)

,

r = α

1 − α

(√
1

α
− 1

)

.

This completes the proof of Theorem 1.

Appendix C: Proof of Theorem 2

The proof essentially follows the strategy used in the proof of Theorem 1, namely the
use of composed block matrices. The main difference is that we no longer distinguish
between the 2 sets M and N .

Let X be a vote profile involving J individuals (columns), C issues (lines), and
such that, without loss of generality, ∀c, μc(X) = 0.

We denote
⎧
⎪⎨

⎪⎩

s(c) = m0
c − m1

c

J
, where c = 1, . . . ,C,

J (γ,X) = proportion of issues c such that s(c) ≤ γ.

Moreover, we assume that

(P )

{
J (γ,X) = x,

∀j �= h, d(xj , xh) ≤ rC.

First note that, for any permutation σ of the voters, (P ) also holds for the per-
muted profile Xσ , as well as for the composition of all Xσ , where σ ∈ ∑

, the set of
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permutations of {1, . . . , J }. Hence, we can assume w.l.o.g. that X is a composition of
block matrices, where Y is the initial matrix containing C′ rows. Pick up line c in Y ,
and suppose that m1

c(Y ) = k. Moreover, define uk = 1
2 − k

J
. Furthermore, let c(k) be

the number of rows c′ in Y such that m1
c′(Y ) = k, and let θk = c(k)

C′ .
Since μc(X) = 0 for all c, then uk ≥ 0.
The distance between two votes xj and xh in X is given by r ′(J !), where r ′ =

( 1
2 − 2

∑
k u2

kθk)
J

J−1 .
We then have to solve the following program:

min r under the constraints

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r =
(

1

2
− 2

∑

k

u2
kθk

)(
J

J − 1

)

,

∑

k:2uk≤γ

θk = x.

One gets r = J
J−1 [ 1

2 − 2
∑

k:2uk≤γ u2
kθk − 2

∑
k:2uk>γ u2

kθk]. Minimizing r re-

quires maximizing
∑

k u2
kθk and then setting:

⎧
⎨

⎩

uk = γ /2 if 2uk ≤ γ,

uk = 1

2
if 2uk > γ.

One thus obtains:

r = J

J − 1

(
1

2
− 2

γ 2

4
x − 2

1

4
(1 − x)

)

= J

J − 1

x(1 − γ 2)

2
,

x = 2
J − 1

J

r

1 − γ 2
.

The conclusion follows from limm→∞[2 J−1
J

r

1−γ 2 ] = 2r

1−γ 2 .
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