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Abstract We are concerned with the stationary distributions of reflecting processes
on multidimensional nonnegative orthants and other related processes, provided they
exist. Such stationary distributions arise in performance evaluation for various queue-
ing systems and their networks. However, it is very hard to obtain them analytically,
so our interest is directed to analytically tractable characteristics. For this, we con-
sider tail asymptotics of the stationary distributions.

The purpose of this paper is twofold. We first overview the current approaches
to attack the problem from a unified viewpoint. We then take up two approaches,
Markov additive and analytic function approaches, which are recently developed by
the author and his colleagues. We discuss their possible extensions. We mainly con-
sider the tail asymptotics for two-dimensional reflecting processes, but also discuss
how we can approach the case of more than two dimensions.
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1 Introduction

Many queueing problems are related to networks, and in the present days have
been studied using stochastic networks, which are stochastic models for describing
stochastic flows on a graph with finitely many nodes. These models have been used to
design and control network systems. We are often interested in performance measures
observed over a long time period. For this, we first describe the model by a stochastic
process, then consider its stationary distribution for computing performance measures
of interest. Our primary interest is to see how those system performances depend on
its modeling primitives, provided its stationary distribution exists.

However, except for special cases, computing the stationary distribution of a
stochastic network is very difficult even for very simple models because their state
spaces are multidimensional. For example, the Jackson network is an exceptional
model, which has a product form stationary distribution. It is known that this nice an-
alytical solution is destroyed by small structural changes such as server collaboration
or batch arrivals. To overcome this difficulty, we consider the following two objects
to be required:

(la) A reasonably wide class of models which incorporate some structural changes;
(1b) Analytically tractable characteristics which are still useful to assess perfor-
mance of models.

For (1a), we consider a discrete time reflecting process on the multidimensional
nonnegative integer orthant, where the integer orthant means that all entries of its
coordinate are nonnegative integers. This coordinate represents a state of a network.
We here allow flexible state transitions as long as possible while keeping analytical
simplicity. To this end, we partition the orthant into two disjoint regions, called the
interior and the boundary, where each state in the interior has a positive coordinate.
We further partition the boundary into disjoint faces that are determined by the entries
of the coordinate that vanish, and assume that state transitions within the interior and
those within each face are homogeneous. That is, their increments at each transition
instant do not depend on the current state as long as the process stays in the interior
or in the same face. This process is referred to as a reflecting random walk on a
nonnegative orthant. We will give its precise definition in Sect. 3. This model is used
as a basic model, and we will discuss its extensions which allow multiple interiors
and more complicated boundary.

As a related model of this reflecting random walk, we also discuss a semi-
martingale reflecting Brownian motion, SRBM for short, which is a continuous time
process with a continuous state space. This process is obtained as a limit of a se-
quence of reflecting random walks under suitable scaling in time and state space. In
queueing terminology, it is obtained under the so-called heavy traffic condition (e.g.,
see Harrison and Williams 1987). The advantage of this model is its analytical sim-
plicity. We need less primitive data to describe an SRBM, and its stationary equation
is simpler than that of the reflecting random walk. Both classes of multidimensional
processes have been studied for many years not only in the queueing theory but also
in operations research and probability theory (see Harrison 2003).

Nevertheless, their theoretical studies are still at a primitive stage. For example,
even the stability has not yet been fully answered for the more than three-dimensional
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reflecting random walks and SRBM. The tail asymptotics of the stationary distribu-
tions are only available for the two-dimensional processes except for special cases.
Furthermore, Gamarnik (2002, 2007) argued for undecidability, that is, non-existence
of a universal algorithm for computing the stationary distribution of a multidimen-
sional reflecting process, verifying its stability, as well as obtaining the tail decay
rate (see Sipser 1997 for details of undecidability). This does not exclude the pos-
sibility that the problems are solvable for some classes of models, but suggests that
appropriate models should be chosen.

For (1b), we focus on tail asymptotic behaviors of the stationary distribution. As
the undecidability discussed above suggests, this is still a hard problem, but greatly
simplifies analysis compared with other characteristics. Furthermore, they are still
important since they can be used to evaluate the probabilities of rare events which
are generally preferred to be avoided. Thus, we consider the tail asymptotics of the
stationary distribution of a multidimensional reflecting random walk. The aim of this
paper is to give an overview of the methods to get these asymptotics and to discuss
how they can be used in applications. Thus, this paper is basically a review paper,
but includes some new suggestions as well. Namely, a new class of reflecting random
walks is proposed in Sect. 3.3, while some new results are derived in Sect. 6. We also
present a few conjectures.

In queueing theory, tail asymptotics have been studied for many years. The liter-
ature goes back at least to the early 1960s (e.g., see Feller 1971). The main interest
was in the exact or rough asymptotics by exponential (or geometric) functions for the
stationary distributions of the workload (or queue length) in the M /G /1 and GI/G/1
queues, provided their stability was assumed (e.g. see Kingman 1970). Here, the tail
distribution of a random variable X is said to have an exact exponential asymptotic
if, for some constant ¢, b > 0,

lim ¢**P(X > x) = b, 1.1)
X—> 00
while it is said to have a rough exponential asymptotics if
1
lim —logP(X > x) = —a. (1.2)
X—>00 X

Obviously, (1.1) implies (1.2). This « is called a decay rate. Those asymptotic re-
sults have been obtained using either the theory of analytic functions or the renewal
theorem.

There were two streams for extending those results on a single queue with a
single server. One direction is to cover more general arrival processes (see Glynn
and Whitt 1994), and the other direction is to have many server queues (see, e.g.,
Takahashi 1981; Neuts and Takahashi 1997; Sadowsky 1995 and Sadowsky and Sz-
pankowski 1995). For them, there are three notable approaches. One is the large de-
viations technique (see Bertsimas et al. 1998; Chang 1995; Dupuis and Ellis 1997;
Shwartz and Weiss 1995). Another is the matrix-analytic method due to Neuts (1981),
which may be considered as an application of a Markov additive process and Wiener—
Hopf factorization (e.g., see Arjas and Speed 1973 and Miyazawa and Zwart 2009).

The studies in those lines generally allow neither simultaneous arrival at different
queues nor dynamical changes in arrival and service mechanisms. However, there
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are some exceptions for them. They are two queues in parallel with Poisson arrivals
and exponentially distributed service times. One variation is for arriving customers to
join the shortest queue (see, e.g., Kingman 1961). Another is to allow simultaneous
arrivals at two queues (see Flatto and Hahn 1984). These models can be also viewed
as two-dimensional reflecting random walks, and analytic functions are used to get
certain representations of their stationary distributions, which yield the exact geomet-
ric asymptotics. This may be considered as the third approach extending the classical
analytic method. In this direction, we must acknowledge great contributions of the
Russian school (Borovkov and Mogul’skii 1996, 2000, 2001; Fayolle et al. 1999;
Ignatyuk et al. 1994).

All these three approaches, namely large deviations, Markov additive and analytic
functions, have been further developed. We review them and discuss their possible
extensions. For this, we start to reconsider the definitions (1.1) and (1.2) of the tail
asymptotics in a more general context as well as for multidimensional distributions in
Sect. 2. We then introduce the reflecting random walk and related models in Sect. 3.
We discuss various approaches to get the tail asymptotics in Sect. 4. In those discus-
sions, a particular interest is placed on what is difficult in studying the tail asymptotic
problems.

Among those approaches, we detail the Markov additive approach in Sect. 5 and
the analytic function approach using the convergence domain in Sects. 6 and 7. We
now have good answers for the two-dimensional reflecting processes. They are pre-
sented in Sect. 7. Those results are applied to some of modified Jackson networks
and parallel queues with the join the shortest queue in Sect. 8. We conclude this pa-
per with various remarks for future study in Sect. 9. As you will see, there are so
many problems open for further study, and some of them are going to be solved.

2 Tail asymptotics of distributions

In this section, we consider how we can define tail asymptotics. Our main interest is
in multidimensional distributions, but we first consider one-dimensional distributions
for simplicity.

Let X be a nonnegative random variable. We are interested in the tail probability
P(X > x) for large x when the exact expression of P(X > x) is not available. We may
think about approximating this tail distribution by a analytically tractable function.
That is, a function £ such that

. P(X=>x)
lim ——— =

Jim =S @1

It may be questioned how this approximation by # is useful. For example, if the tail
diminishes very quickly in the sense that it almost vanishes above a certain value of
x orif it is very heavy, that is, it decreases very slowly, then it may not be meaningful
to find such an approximating function. On the other hand, if the tail is between
these two extremes, then the approximating function 4 of (2.1) may be useful in
applications. To make these statements specific, we give the following definitions.
Let ¢(6) be the moment generating function of X, that is,

90 =E(”Y), 6eR,

as long as it exists.
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Definition 2.1 The tail distribution P(X > x) is said to be

(2a) Small if ¢ () < oo forall 6 > 0,
(2b) Light if ¢ () < oo for some 6 > 0, but ¢(6) = oo for some other 6 > 0,
(2c) Heavy if ¢(6) = oo for all 6 > 0.

In this definition, X is real-valued, but the reflecting process is integer vector-
valued as we discussed in Sect. 1 (see also Sect. 3). There is a good reason for this.
If the state space of the reflecting random walk is one-dimensional, then we certainly
do not need to consider a real-valued random variable. However, if it has the more
than one dimension, the tail area to be considered may have various shapes. For ex-
ample, a rectangle, a half-space separated by a hyperplane and a convex cone may be
interesting. In these cases, the boundary of the tail area may not be well expressed by
integers. The tail probability P(c1 X1 + c2 X2 > x) with positive numbers ¢ and ¢ is
such an example.

As we have discussed, a light tail is ideal for studying the tail asymptotics. How-
ever, we do not know the tail type for the stationary distribution at the beginning.
So far, the first step should be to consider which type of the tail distribution occurs
under what conditions. We will consider this for d = 2, that is, the two-dimensional
reflecting random walk in Sect. 6. In what follows, we heuristically consider how
naturally a light tail arises in a queueing model with a single waiting line. This model
is not a queueing network, but it may be also considered as one node in the queueing
network.

Consider a single queue, and suppose that a smaller queue is more likely to in-
crease than a larger queue. This may be intuitively expected. Let X be the size of
such a queue in the steady state, then our supposition can be expressed as

PX>=m4+nX>m)<P(X>n), m,n>1. 2.2)
Let f(n) =P(X > n), then (2.2) is equivalent to
fm+n) < f(m)f(n), mn=1. (2.3)

Inequality (2.3) is termed submultiplicativity. Assume that f(n) > O foralln > 1.
Then, taking logarithm of both sides, we have

log f(m +n) <log f(m) +log f(n), m,n>1.
This is called subadditivity. Then, it is well known that
1
lim log f(n) = inf —log f(n) <O0; 2.4)
n— 00 n>1n

see, e.g., Lemma A.4 of Seneta (1981) and Theorem 7.6.1 of Hille and Phillips
(1957). Let

1
o = —inf —log f(n).
n>ln

Obviously « > 0. If @ = o0, then the tail is small, while it is light if @ < co. This « is
referred to as a decay rate of { f (n); n > 1}. Thus, under the assumption (2.2), the tail
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distribution is either light or small. This means that a heavy tail is impossible under
this assumption.

In general, let X be a nonnegative real valued random variable, and we define the
decay rate o as

1
lim —logP(X > x) = —«, 2.5)
X—>00 X

as long as it exists. In this case, P(X > x) is said to have rough asymptotic decay
behavior with rate «. Note that this « is nonnegative, and may take the values 0 or
0o, which characterizes heavy and small tails.

As we have discussed, 0 < o < oo is preferable for making use of this asymptotics
in applications. As we have already seen for the queue length distribution, we may
expect this. It turns out that this is indeed the case in many stochastic network models.
So far, we target the light tail asymptotics. It is also notable that the decay rate « can
be characterized by the fact that, for any € > 0,

]E(e("‘*)x) < 00, ]E(e(“+€)x) = 00.

This suggests that the moment generating function ¢(6) = E(e?X) is useful for find-
ing not only the tail type but also the decay rate.

We next consider a refinement of (2.5) in the form of exact asymptotics (2.1).
However, we use a slightly weaker form to broaden its applicability.

Definition 2.2 If there exists a constant b > 0 and positive-valued function 4 on R4
such that

1

lim —P(X >x)=0b, (2.6)
x—00 h(x)

then P(X > x) is said to have exact asymptotic function 4. In this case, we also write

P(X > x) ~ bh(x) or

P(X > x) =bh(x) + o(h(x)), x— oo.

Note that we generally do not care about constant b in this definition. Of course,
in application, this constant may be important, but theoretically it unduly restricts
analytical study, so here we content ourselves with less fine asymptotics. In view
of (2.5), h(x)e** would be a subexponential function, that is, the function which
changes more slowly than an exponential function. It turns out that the following
function

h(x)=x"e"**, x>0, 2.7

for finite ¢ > 0 and x € R, occurs for the stationary distribution of the reflecting
random walk. In particular, if k = 0, then P(X > x) is said to have an exact exponen-
tial asymptotics with decay rate «. If X is integer-valued, then P(X > n) is said to
have an exact geometric asymptotics with decay rate «. Note that this is equivalent to
saying that P(X = n) has an exact geometric asymptotics with decay rate «.

One may wonder how to get the power « and the decay rate o from the modeling
primitives and how they change according to those primitives. These are not easy
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questions to answer when no analytic expression is available for the stationary distri-
bution. Nevertheless, we can answer them for the case of d = 2 to some extent, and
we may expect to use the same idea for higher dimensions.

Until now, we have only considered one-dimensional distribution which captures
a single queue. If such a queue belongs to a queueing network, we generally need to
consider multiple queues at once. Thus, we may need to study the tail asymptotics of a
multidimensional distribution. For such a distribution, we have to make the definition
of a tail set clear. To consider this, let X = (X1, ..., X4) be a d-dimensional random
nonnegative vector for a positive integer d. Then, for a Borel measurable subset B of
the d-dimensional Euclidean space Ri and a direction vector ¢ € R?, that is, a vector
¢ satisfying |[c|| = 1 and ¢ > 0, we consider the tail asymptotics for

P(X exc+ B), x>0, 2.8)

where u + B = {u+ y; y € B} for u € R?. In this case, ¢ is called a direction vector,
and xc + B is called a tail set.
In view of the tail distribution, we may require that

t(xe+y)exc+ B, VyeB,Vit>0,
that is, that ¢ + B be a cone. Then, (2.8) is equivalent to
IP(X ex(c+ B)), x> 0. 2.9)

This probability is generally used to consider the tail asymptotics. Since ¢+ B C R<,
we may also use B itself instead of ¢ + B. This tail set is studied in the theory of large
deviations.

Definition 2.3 If there exists a lower semi-continuous function /(#) on Ri such
that, for any measurable B C R2 s

1
limsup —loglP(X € xB) < — inf I (v), (2.10)
x—o00 X veB
1
liminf —logP(X € xB) > — inf I(v) 2.1
X—>00 X veB®

where B and B° are the closure and the interior of B, respectively, then 7 (v) is called
a rate function. This rate function is said to satisfy a large deviations principle for the
distribution of X.

We can again consider refinements of the rough asymptotics considered in this
definition. That is, we may consider an asymptotic function for the tail probability
P(X € xB) for each fixed B. For example, if, for i € J = {1,2,...,d}, we take
B={x¢ Rﬁ; x; > 1}, then

P(X € xB) =P(X; > x).

This is the marginal distribution of the ith component.

@ Springer



240 M. Miyazawa

We may also consider the tail set:
B={ueR%; f(u)> 1} (2.12)

by using a measurable function f from Ri to Ry. This is particularly useful for
considering tail types as in Definition 2.1. For this, we use

f@) =Y ciu;=(c.u),
i=1

for a directional vector ¢ > 0. In this case, (2.12) is the upper half-space over the
hyper plane which is orthogonal to the vector ¢. This set is analytically convenient
because we can use the moment generating function as in Definition 2.1.

We define the joint moment generating function ¢ of a d-dimensional random
vector X as

90) =E(?X), 0er?
We now classify the tail distribution of X as in Definition 2.1.

Definition 2.4 The distribution of a random vector X is said to have a small, light or
heavy tail in the direction ¢ > 0 if (¢, X) has a small, light or heavy tail, respectively,
in the sense of Definition 2.1. In particular, if the distribution of X has a light tail in
all directions ¢ > 0, then X is said to have a light tail.

In view of this definition as well as the rough tail asymptotics, we may realize that
it is important to consider the set of  for which ¢ (@) is finite. For this, we define the
convergence domain D as

D = the interior of {# € R?; ¢(6) < co}. (2.13)

Obviously, this domain plays a crucial role in finding the tail asymptotics. Further-
more, it can be used to characterize light tails. We note this as a lemma.

Lemma 2.1 The domain D is a convex subset of R%. (a) If there is some 00 D
such that 0 > 0, then the tail distribution P({¢, X) > u) (u > 0) has a light tail or
a small tail for each directional vector ¢ > 0. (b) If the assumption in (a) is satisfied
and if D is bounded above by some hyperplane which is orthogonal to some vector
¢ > 0, then the tail distribution has a light tail.

Proof Since the exponential function is convex, we have, for A € (0, 1) and 8, 5 € R,
028 + (1 — 1)y) = E(HXHI=Dn X))
<E(re¥) 4+ (1 — 1))
= AE (X)) + (1 — DE(™Y)
=21p(0) + (1 = 1)o(n).
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Thus, ¢ is a convex function, and therefore D is a convex set. Since 00 - 0, we can
find uo > 0 such that ¥ > ugc > 0. Then,

¢ ((c, X) > 1) < ("X 1 ((uoe, X) > uug)) < E(e?” X)) < oo.

This implies that P({c, X) > u) decays at most exponentially fast. Thus, we have
proved (a). If (v, X) has a small tail distribution for some directional vector v > 0,
then ¢ (uv) must be finite for all u > 0. This contradicts the bounded assumption
in (b). a

From this lemma, we can also see that, for any convex set B C R* which does not
contain a neighborhood of the origin, the tail distribution P(X € uB) (# > 0) has a
light or small tail under the condition of (a).

3 Reflecting processes on orthants

In this section, we introduce a unified model for a reflecting random walk. For this,
we first discuss the Jackson network as a motivating example.

3.1 Motivating example: Jackson network

Consider a continuous time queueing network with d nodes, numbered as 1,2, ..., d.
In Sect. 2, we have used the notation:

J={1,2,....d},

which is the set of nodes here. We assume that exogenous customers arrive at node i
subject to a Poisson process with rate };, and customers in node i have independent
service times with an exponential distribution with mean 1/u;, and are served in
first-in-first-out manner by a single server, which is independent of everything else.
A customer who completes service at node i goes to node j with probability r;; or
leaves the network with probability r;o, where

d
Zrij:l’ ield.
Jj=0

We assume that all the movements are independent. Thus,
Ais Wiy Tij,s i=1,2,...,d, j=0,1,2,...,d

are modeling primitives. This model is referred to as a Jackson network.

This network model is usually described by a continuous time Markov chain. For
this, let L;(z) be the number of customers in node i at time ¢. The d-dimensional
vector-valued process L(¢) = (L1(t),...,Lg4(t)) is a continuous Markov chain,
whose state space is the d-dimensional nonnegative integer orthant S = Z% , where
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Zy 1is the set of all nonnegative integers. It is not hard to see that its transition rate
matrix Q = {g(n,n’); n,n’ € S} is given by, forn #n’,

A n=n+e;,i#0,
HiTij n’:n—ei+ej,n,->0,i,j7é0,

/ —_—
qn.m)= wirio n'=n—e;j,n;>0,i #0, G-1)
0 otherwise,
where inequality of vectors stands for entry-wise inequalities, and
gn,m)y=—" " q(n,n). (3.2)

n'#n

For notational convenience, we let rog = 0 and

d
Mozzkk, roi =Ai/mo, i=1,2,...,d.
k=1

Then, (d + 1) x (d + 1) matrix R = {r;;} is stochastic, and called a routing matrix.
We can assume without loss of generality that R is irreducible.

If L(¢) has the distribution which does not depend on 1z, it is called a stationary
distribution. Denote this distribution by = if it exists. It is well known that this 7 is
obtained as a nonnegative summable solution of the stationary equation:

7Q=0,

and it is the product of the marginal distributions on nodes. To describe this distribu-
tion, let a; be the solution of the following traffic equations:

d
ai=Ai+Zajrji, iel.
j=1

Under the assumption that the routing matrix R is irreducible, the solution ay, az,
...,aq exists uniquely. This a; represents the total arrival rate at node i. Let
pi = a;i /i, and assume the stability condition:

pi<l, iel. (3.3)
Then, the stationary distribution r is given by
d
mm) =[] -ppl. nes. (3.4)
i=1

This distribution is said to have a product form. The details for this result can be
found in standard textbooks (see, e.g., Chao et al. 1999; Chen and Yao 2001; Serfozo
1999).

@ Springer



Light tail asymptotics in multidimensional reflecting processes 243

Thus, for the Jackson network, we have a nice analytic expression for the station-
ary distribution, which accounts for its popularity in applications. However, this nice
analytic result breaks down if there is even a small change of the modeling assump-
tions. For example, if we modify them in such a way that an idle server at node 1
helps a server at node 2 as long as node 1 is empty, which just increases p; when
some other nodes are empty, the product form solution is destroyed. Furthermore,
there is no prospect of finding any analytic expression for the stationary distribution.
We meet similar situations when customers simultaneously arrive at different nodes.
We may want to see how the system performance is changed in those cases because
such changes may naturally arise in applications.

This is exactly what we have discussed in Sect. 1. As a flexible model to handle
these situations, we have proposed the reflecting random walk. We now formally
introduce it.

3.2 Reflecting random walk on an orthant

We use some of standard notations for sets of numbers. Let R and R be the sets
of all real and all real nonnegative numbers, respectively. Similarly, let Z and Z be
the sets of all integers and all nonnegative integers, respectively. Let d be a positive
integer. Then, S = Z‘j_ is referred to as a nonnegative orthant of Z?. The reflecting
random walk is defined on this orthant. That is, it has state space S.

To describe a reflection mechanism, we partitioned this S into disjoint subsets. Let
J={1,2,...,d}. For each subset A C J, we define S4 as

Sa={xeS;ixi>1icAx;=0,jeJ\A.

If A J, then Sy is called a boundary face. S; represents the inside of S, and we
also denote this inside by S;. That is,

Sy=Sy={x=@1,....x0) €8x, >0,i=1,2,....d}.

The collection of all boundary faces is simply called the boundary, and denoted by 9S.
That is,

aS = U Sa.

ACT,A#]

We now define the reflecting random walk. For each A C J, let {X A; £=1,2,...}
be a sequence of independent identically distributed random variables which are also
independent of everything else. X ? represents a jump at time £ when the random
walk is in S4. We denote its distribution by { p;‘; x eR? }, that is,

p;‘ :IE”(X? :x), xeZe.

We omit the superscript A of X ? and p;;‘ for A = J when it is convenient. Thus, X,
and p, may be used instead of them. We assume the following condition:
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(3a) p;‘ =O0unless x; > —1 foralli € Aand x; >0 forall j € J\ A.

This condition means that each jump in the side or face is skip-free downward.
Let Zy be a random vector taking values in S, and inductively define a discrete
time process {Z¢; £ =0,1,...} by

Zopi=Zo+ Y X} 1(ZgeSa), €=0.1,.... (3.5)
ACJ

By the assumption (3a), Z, remains in S for all £ > 0. We refer to this process as a re-
flecting random walk on a nonnegative orthant with downward skip-free transitions,
or simply as a reflecting random walk. We may interpret Z, as a state of a discrete
time queueing network with d nodes, numbered as 1,2, ..., d, where the ith entry
of the state is the number of customers in node i at time £. Since, each entry Z, ;
behaves like the M /G /1 queue at departure instants, this reflecting process is also
referred to as a multidimensional M/ G /1-type queue.

Clearly, {Z,} is a discrete time Markov chain with state space S. Define its transi-
tion probability p(n,n’) as

pn,n)y=P(Zyy1=n'|Zy=n), n,n' €S,

where the right side of this equation does not depend on ¢ > 0 by the modeling as-
sumption. Let P be the infinite-dimensional matrix whose (n, »’)th entry is p(n, n’).
This P is a transition matrix, which is obviously stochastic.

We are interested in the stationary distribution of the reflecting random walk {Z,}.
That is, we seek a distribution 77 on S such that

P(Z;=n)=n(n), neS, {=01,.... 3.6)
Let Z be a random vector subject to the distribution , then it follows from (3.5) that

Z:Z—i—ZXAl(ZeSA), £=0,1,..., (3.7)
AcCJ

where “~” stands for the equality in distribution. We can view 7 as the row vector
whose nth entry is 7 (n). Then, (3.7) is equivalent to ¥ = & P, and called a stationary
equation. If P is irreducible, then it uniquely determines & as long as & exists. We
assume this irreducibility throughout the paper. Algebraically, our goal is to find the
asymptotic behavior of the solution of this stationary equation. However, this will not
be an easy task since x is an infinite-dimensional vector.

Even the existence of the stationary distribution is a big issue for the reflecting
random walk. We will discuss it for d = 2. The problem is still open for d > 4.
However, in its applications to queueing networks, we often easily find the stability
condition by comparing the total arrival rate and the total service rate at each node.

We show how the reflecting random walk can accommodate the Jackson network
and its modification for server collaboration by examples below.

Example 3.1 (Reflecting random walk for Jackson network) Let us show how the
Jackson network is described by the reflecting random walk in discrete time. We first
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note that if we change time from ¢ to bt for a constant b > 0, that is, time scale is
changed by b, then A; and u; are also increased b times, and so does Zle X+ ).
However, this does not change the stationary distribution 7. Hence, for studying the
stationary distribution, we can assume without loss of generality that

d
> it =1
i=1

By doing so, we closely look at the transition rate matrix Q of (3.2), and define pj
foreach A C J as

d
Pa= ) D lm=ej—epuiry+1m=0) } ui.

icAU{0} j=0 ieJ\A

where ey = 0. Note that the second summation on the right hand side is a dummy
transition for {p7} to be a probability distribution. Thus, we have defined the reflect-
ing random walk.

Forn € Sy,

p(n,n+ej)=p£‘j=uor0j=kj, j=1,...,d;

p,m)=py =" i,

ieJ\A
and if i € A then
pn,n+ej—e;) :pg‘j_el_ =uwirij, j=0,1,...,d.
Hence, forn € Sy,

an5=1m¢n5ﬂmn3+lm=n3§:mdmw=m.

iel

Thus, m Q = 0 is equivalent w P = 7, and this reflecting random walk indeed has the
same distribution as the Jackson network.

This reflecting random walk can be also used to describe some modifications of
the Jackson network. For example, let us change pf,‘ for nonempty A # J as

d
pi= " Y lm=e; —e) (i + 511G #0)r;

ieAU{0} j=0

+1(n=0)< D wi —Zaf‘>,

ieJ\A ieA

where SiA for i € A is a nonnegative number, and it is assumed that

Z MiZZ(SiA

icJ\A icA
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Fig. 1 Transition diagram for
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for p,ﬁ‘ to be well defined. Then, this modification describes server collaboration when
they are idle. Clearly, SiA is an additional service rate for node i from idle servers.
In this way, the reflecting random walk can be used to model the effect of server
collaboration. Similarly, we can consider batch arrivals.

Example 3.2 (Multiple QBD process) If the reflecting random walk {Z,} is skip-free
for all directions, that is, all entries of X ,‘2‘ take values O, 1 or —1, then it is called a
reflecting skip-free random walk. In queueing applications, it is also called a multi-
dimensional quasi-birth-and-death process, or multiple QBD process for short. This
is because each entry of Z, behaves like the birth-and-death process. This multiple
QBD has simpler transitions, but still flexible for applications. For example, it can
accommodate the Jackson network and some of its modifications. However, its tail
asymptotics have not been well studied except for d = 2.

The multiple QBD process for d =2 is called a double QBD process whose tran-
sition diagram is given in Fig. 1.

Even for this simple network model, some of tail asymptotics are still unknown.
We will discuss them in Sect. 7.

We will consider the tail asymptotic problem on the reflecting random walk in
Sect. 6, and give some answers in Sect. 7.

3.3 Generalized reflecting random walk

We have considered the reflecting random walk on the orthant, but, for some appli-
cations, it may be convenient to have a more general state space and to allow some
of boundary faces to be penetrable, that is, the boundary faces may be placed inside
of the state space. We meet such a model when arriving customers join the short-
est queue among parallel queues. For this model, the interior of the state space is
partitioned, and each partitioned area has its own random walk.

It is straightforward to generalize the reflecting random walk on an orthant in this
direction. We just replace the partitions {S“4} according to all subsets of J by those
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Fig. 2 Transition diagram for the two-sided DQBD process

according to an arbitrarily given index set. Denote this index set by 7, and let S be a
subset of Z?. This S is used for a state space, which may not be an orthant. Similar
to the reflecting random walk on an orthant, we partition S into disjoint subsets S;
for j € J. Thus, S4 is replaced by S;. Similarly, we replace X ? by X 2/ ), and denote
its distribution by { p,(rj ); x € SUW}. Thus, we define a discrete time process {Z; £ =
0,1,...} by

Zep=Zi+ Y XPWZes). €=0.1,..., (3.8)

jied
where we assume that distributions {p/)} for j € J are defined so that Zy,, | € §
(see Fig. 2). We refer to this process as a generalized reflecting random walk, which
is clearly a Markov chain. For the subset §;, it is less meaningful to distinguish

boundary and interior. Thus, we will not use them unless they are really needed.
We give an example for this random walk below.

Example 3.3 (Two-sided double QBD) We consider a two-dimensional generalized
reflecting random walk with two insides and four boundary faces, which is a special
case of a two-sided QBD process introduced in Li et al. (2007). Let S =Z x Z4 and
let 7 ={—,+,0, 1+, 1—,2}. We define S; as

Sy ={(n1.m)eSin,na=1},

S_={(ni.ny)eS;n <—1,ny>1}, So = {0},

Sip={m.0)eSin=1},  Si-={(n.0)eSin<-1},

Sr = {(O,n) eS;n> 1}.

In this model, S} and S_ may be considered as interiors, and S is a penetrable
boundary face.
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Assume that all the increments are skip-free. Then, the transition diagram of the
Markov chain {Z,} is given above. We refer to this model as a two-sided double
QBD (quasi-birth-and-death) process. The tail asymptotics of this process is studied
in Miyazawa (2009b). We discuss them in Sect. 7.3.

3.4 Technical assumptions and stationary equations

We will consider the tail asymptotics of the stationary distribution of the d-
dimensional reflecting random walk. We are interested in the case where it has a
light tail. For this, we need some extra conditions on the modeling primitives. In this
subsection, we first give them in terms of the moment generating functions of distri-
butions for the modeling primitives. We then derive the stationary equations in terms
of generating functions.

For A C J and 8 € R?, define the moment generating function of X4 as

ya@®) =E(®X), R,

as long as it exists. Recall that X* is an independent copy of X ?. For the stationary
distribution of the reflecting random walk to have a light tail, it is reasonable to as-
sume that each increment at each transition instant has a light tailed distribution, that
18,

(3b) Foreach A C J, y4(0) is finite for some 6 > 0.

In addition to this condition, we assume the following regularity condition:

(3b") Foreach A C J and each u > 0, {# € R?; y4(0) < u} is a closed set.

This condition is slightly stronger than what we really need, but proofs can be
amended with minor technical arguments. So, we take an easy way.

We use one more assumption on the distributions of the increments also for making
arguments simpler:

(3¢) The random walk Y, = Zf: 1 X lJ is aperiodic and irreducible.

This irreducibility condition is equivalent to that the addition group generated by n
such that P(X = n) > 0 is identical with Z¢. In certain applications, this is not satis-
fied, but we can again amend the arguments for such cases. By this assumption, the
reflecting random walk {Z,} is aperiodic and irreducible as a Markov chain. Hence,
the stationary distribution is unique if

(3d) There exists a stationary distribution for the reflecting random walk {Z,}.

We recall that the stationary distribution is denoted by . Assuming the condition
(3d), let Z be a random vector subject to the stationary distribution 7. We define a
family of moment generating functions concerning Z as

0a0) =E( "2 1(ZeSs)), 0eR? AcC.

Let ¢(@) be the moment generating function of 77, then we have

9O) = pa(®). (3.9)

AcCJ
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We take the moment generating functions of (3.7). Then, we get

0@0) = ya®)¢a(®). (3.10)
ACJ
Hence, we obtain
> (11— va®)pa®) =0, G.11)
AcJ

as long as all ¢4 () are finite. We will use the pair of (3.9) and (3.11) so as to uniquely
determine the stationary distribution 7.

For the generalized reflecting random walk, we can similarly define ¢; and y;
for j € J, and get the stationary equations. However, they may not be so useful
because there is neither interior nor boundary. As we will see in Sect. 6, it is crucial
to distinguish them for deriving the convergence domain of ¢. Thus, we are probably
better if we introduce interiors and boundary faces by adding extra random elements
if necessary.

For example, let us consider the two-sided QBD process. In this case, we introduce

Zi-=—Z11(ZeS_US1-), Ziy=Z11(Z € SL US1y),

and consider (Z1—, Z14, Z3) instead of Z = (Z;, Z»). Similarly, the increments on
So and S, are partitioned as

X =—xV1xV=-1), xP=x"1(x{V=1),
xP=-xP1(xP=-1), x%=xP1(x{”=1).

Thus, (X, X{”, X$) replaces X = (X}, x§) for j =0, 1,1—, 1+, 2.

We approprlately define moment generating functions using three variables 0 _,
01+ and 6. For example,
¢ (01,6,) = E( 112221 (Z € S1)),
e1-(0) =E("-1(Z e S10),  ¢a6) =E(*P1(Z € S)),
) ) ) (-
y—(61,0,) =E(eMX1- 105 ), y1-(61,62) =E(e X 40X )-
Y261 014 60) = E(eN-X12+00 X 40257
We then have the stationary equations similar to (3.9) and (3.11).

3.5 Semi-martingale reflecting Brownian motion (SRBM)

A reflecting Brownian motion on an orthant is a continuous time and space version
of the multiple QBD. Let X (¢) be a d-dimensional Brownian motion. We express
itas X () =t + B(t), where p is the mean drift vector, and B(t) is the null drift
Brownian motion with d x d covariance matrix X = {0;;}. We assume
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(3-1) X is positive definite, that is, non-singular.

Let R be a d x d matrix. Then, we define the reflecting Brownian motion Z(¢) as a
solution of the following equation:

Zt)=X({t)+RY(®), t=0, (3.12)

where Y (¢) is a regulator, that is, a minimal continuous and nondecreasing process
such that ¥ (0) = 0 and its ith entry Y;(¢) is increased only when Z;(t) = 0 for each
i € J. This Z(¢) is referred to as a semi-martingale reflecting Brownian motion,
SRBM for short (e.g., see Sect. 7.5 of Chen and Yao 2001).

Under the non-singularity assumption (3-i), it is known that this solution exists at
least in distribution if and only if the following condition is satisfied (see Reiman and
Williams 1988 and Taylor and Williams 1993).

(3-ii) R is a complete-S matrix, that is, for each of its principal-submatrices, there is
a nonnegative column vector which is transformed to a positive vector by this
submatrix.

If R is an M-matrix, that is, there is a nonnegative matrix G and a positive diagonal
matrix D such that R = (I — G)D and (I — G)~! exists, then the solution Z () of
(3.12) can be expressed as a functional of X (¢), that is, (3.12) has a strong solution.
This functional is called a reflection mapping. Denote it by ¥;, then we have

Z(t)y =¥ ({Xw);ul0,11}).
For the existence of the stationary distribution of the SRBM, it is known to be
necessary that
(3-iii) R has an inverse R~!,and R~'p < 0.

If R is an M-matrix, then this condition is both necessary and sufficient.

For d = 2, the stationary distribution exists if and only if (3-iii) holds and R is a
‘P matrix, that is, all principal submatrices of R have a positive determinant. Namely,
the latter condition is written as

(3-iv) rjj >0fori =1,2 and riirpp — riarop > 0.

See Bramson et al. (2010) and Harrison and Hasenbein (2009) for recent develop-
ments.

We now assume that the stationary distribution exists, and denote it by 7. We
use [td’s integral formula for deriving the stationary equation. Denote, for a twice
continuously differentiable function f of d variables, V f = (f{,..., f, [})t and

1 d d an
Lf(x)= 3 ;;Uijm(x),

where o;; is the (i, j)th entry of the covariance matrix X, and x! stands for the
transpose of vector x. Then, Itd’s integral formula reads
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1
f(Z(u))—f(Z(O)):/O (VF(Zw), pdu+dBw))

1 1
+/ <Vf(Z(u)),RdY(t))+/ Lf(Zw)du, (3.13)
0 0

where (x, y) is the inner product of vectors x, y € RY.
Assume that Z(t) is a stationary process with the initial distribution 7. Define
functions y (0) and y;;1(0) as

d
0.20),  wp@®)=> 6iryj. j=12.....4d,

i=1

1
y®)=—0.p)— 5
and denote the moment generating function of 7 by ¢(6). Here, y(;1(6) corresponds
to yy\(j}(@) of the reflecting random walk in Sect. 3.4. Let ¢r;1(0[j]) denote the
moment generating functions of Z(¢) with respect to the Palm measure generated
by the nondecreasing process Y;(t), where [ j] is the vector # whose jth entry is
replaced by 0, that is,

1
§0[A,'](0[j]) =E, (/ 0L, ZGw) dy; (u)>
0

From (3.12), it is not hard to see that E; (Y (1)) = —R ™' is a finite and positive
vector by (3-iii). Thus, ¢[;1(8[j]) is well defined at least for #[j] < 0. Let f(x) =
exp({f, x)) in (3.13), and taking the expectation with respect to the initial distribution
7, we have the stationary equation:

d
y@)p®) =Y y1j1®)¢(0111), (3.14)

j=1

as long as ¢(0), ¢r;1(0[;]) are finite for all j, which holds at least for # < 0. This
stationary equation corresponds to (3.11) for the reflecting random walk, which is
obtained from the stationary equation (3.6).

We can see how (3.14) is simple compared with (3.11). This is another great ad-
vantage of an SRBM in applications. This suggests that we may also use an SRBM
as a pilot model for the reflecting random walk in studying the stationary distribution
and its tail asymptotics.

4 How to attack the problem

We now have all materials in our hands. The problem is how to derive the tail asymp-
totics. The difficulty of this problem comes from the fact that the reflecting boundary
is not a bounded set. This means that the tail asymptotics can be influenced by the
boundary even if the tail set is far away from the origin. Hence, we have to incorporate
the influence into the tail asymptotics. For d > 2, there is more than one boundary
face, so the influence from different faces also has to be simultaneously considered.
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We here summarize four approaches which have been used to study those issues. Two
of them, Markov additive and analytic function approaches in Sects. 4.3 and 4.4, will
be detailed in Sects. 5, 6 and 7.

4.1 Brute force approach

If the stationary distribution is obtained in a closed form, then we may directly work
with it to get its tail asymptotics. For example, a closed form expression is available
for the stationary distribution of an SRBM for a two-node tandem queue, and the
tail asymptotics is obtained from it in Lieshout and Mandjes (2007). However, these
cases are rather exceptional, and we cannot expect that this approach is generally
applicable because analytical expressions of the stationary distributions are hardly
ever obtained.

Because of this difficulty as well as its own interest, there have been numerous ef-
forts to find analytically tractable solutions by modifying the modeling assumptions.
Typically, the queueing networks are modified in such a way that they satisfy local
balance, which produces product form solutions similarly to Jackson networks (e.g.,
see Chao et al. 1999; Serfozo 1999). Those modifications generally require unrealistic
assumptions. However, in some cases, they can be used for stochastically bounding
the stationary distributions (e.g., see Kella and Miyazawa 2001 and Miyazawa and
Taylor 1997). Thus, they may be useful to get rough asymptotics if lower bounds
are available. However, even if they are found, it is hardly expected for them to be
tight, that is, for the lower bounds to be identical with the upper bounds (see, e.g.,
Kobayashi and Miyazawa 2011).

We refer to these two methods as a brute force approach. We should not exclude
every approach for attacking the tail asymptotic problem, but we have to say that this
approach is very limited in use.

4.2 Large deviations approach

A standard approach for the tail asymptotics is the theory of large deviations. This
approach aims at finding a rate function that satisfies a large deviations principle for
the stationary distribution (see Definition 2.3). In Majewski (1996), it is obtained in
two steps. First, we find tail asymptotics for a sequence of boundary free processes,
which are usually input processes. Such a sequence is typically obtained through
fluid scaling. This part is called sample path large deviations. We consider this for the
SRBM {Z (%)} discussed in Sect. 3.5. Let {B(¢); t > 0} be the Brownian motion for
this SRBM, which can be written as \/f W (¢) using the standard Brownian motion
{W(t); t > 0} and covariance matrix X'. For each 7" > 0, let Cd[O, T] be the set of all
continuous functions from [0, '] to R?. Then, the sample path large deviation prin-
ciple for the fluid scaled process {%W(nt); t € [0, T']} for the supremum is obtained

for a closed set A C C?[0, T] as

. 1 . Lt
limsup — logP({W(nt);1 € [0, T]} enA) < — inf —/ lo@ | dr, @.1)
0

n—oo N weANHd 2

where H? is the set of all functions from [0, co) to RY which are absolutely con-
tinuous and have locally square integrable derivative. Taking the expression X (¢) =
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tp + +/ X W(t) into account, we define the function /7 as

1T .
Ir(f)= 5/0 (f@&) =, 27N (F @) — p))dr. (4.2)
Then, (4.1) implies
limsupllogIP’({X(nt);te[O, Tl}enA)<— inf I7(f). (4.3)
n—oo N feAnHd

Thus, we can see that I7 is the rate function for the fluid scaling {%X (nt);t €10, T]}.

In the second step, we assume that R is an M-matrix, which guarantees that the
reflecting process Z(¢) has a strong solution, that is, it is obtained from X () by the
reflection mapping ¥;. We apply the contraction principle of large deviations for ¥;.
This yields

1
lim sup — logIP’({Z(nt); t €10, T]} € nA) < - inf It (f). 4.4
n—oo N fFeHI (W, (f);te[0,T]}cA

Then, letting A = {f € C[0, T']; %f(t) € B,t € (0, T]} for a measurable closed set
B C Ri and after some manipulations, we can prove that

1
limsup — logP(Z(0) enB) < — inf inf I7(f). 4.5)
n—oo N T>0,xeB feHI wr(f)=x

One can also verify the lower bound corresponding to (2.11). Thus, the rate function
for (2.10) and (2.11) is given by

] ) 1 7T . S
I(x)=;r;f()feHd}£f(f)=x§/O (fO) —p, 271 (F @) — m))dt. (4.6)

It remains further work to get I (x) in terms of the modeling primitives. This re-
quires solving the variational problem in (4.6). For d = 2, this variational problem
has been analytically solved in Avram et al. (2001) under the assumption that R is an
M-matrix (see also Harrison and Hasenbein 2009). Weaker conditions for this can
be found in Dupuis and Ramanan (2002).

The basic idea of Avram et al. (2001) is to reduce the function space for finding
the optimal solution to a class of line graphs with two segments at most. Thus, the
variational problem becomes an optimization problem with finite-dimensional vari-
ables. For d = 3, some studies in this line were made by El Kharroubi et al. (2010),
but the decay rate has not been obtained yet. An alternative expression of /(x) was
obtained by Dupuis and Ramanan (2002), but it has not yet produced any explicit
solution except for special cases.

This large deviations approach works also for the reflecting random walk as long
as a reflecting mapping exists (see Majewski 1998). However, these requirements are
generally not satisfied because the reflections are not deterministic for the reflecting
random walk, in general. Even if the reflecting mapping exists, it is very difficult to
analytically solve the variational problem (e.g., see Majewski 2004).
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4.3 Markov additive approach

Because of the limited availability of the sample path large deviations, another ap-
proaches have been explored. Among them, the Markov additive approach is the most
popular for the reflecting random walk. A key ingredient of this approach is to extract
a one-dimensional additive process removing one of the boundary faces. This enables
us to apply limiting theorems, including large deviations.

This additive process itself is not Markov, so we add a background process for it to
be Markov. This background process is generated by all components of the reflecting
random walk except for the one corresponding to the additive process. Thus, it is a
discrete time Markov chain, and the additive process with this background process is
called a Markov additive process, which is formally defined in Sect. 5.2.

This Markov additive process is used to compute the mean sojourn time, that is, the
mean visiting number, at each state before it returns to the level 0, which corresponds
to the removed boundary face. The set of these conditional mean sojourn times is
referred to as an occupation measure. The stationary distribution is obtained from:

(4a) The occupation measure of the Markov additive process,
(4b) The stationary measure on the removed boundary face.

Thus, we need to see tail asymptotics of these two quantities.

For d = 1, the Markov additive process is reduced to a renewal process. In this
case, for (4a), we can apply the renewal theorem with help of the Wiener—Hopf
factorization for a random walk while (4b) is trivial since the boundary is a sin-
gle point. For d > 2, (4a) may be answered by either applying Markov renewal
theorem or by computing the convergence parameter of the matrix moment gener-
ating function of the Markov additive transition kernel. The problem (4b) is much
harder even for d = 2, and therefore strong conditions have often been used for sup-
pressing this influence. There are many papers along this line (see, e.g., Foley and
McDonald 2005a, 2005b; Fujimoto et al. 1998; Haque et al. 2005; He et al. 2009;
Li et al. 2007). The most general results in this line may be found in Miyazawa and
Zhao (2004), which are given in Theorem 5.2.

However, for d = 2, the problem for the tail asymptotics of (4b) has been solved
by two different ways. The first is to combine two Markov additive processes along
two different axes. This will be detailed in Sect. 5.6. The second is to find them
through the convergence domain of the moment generating function of the stationary
distribution, which will be discussed in Sect. 6 (see also Sect. 4.4.2).

The Markov additive approach appears under different formulations in the liter-
ature. We first summarize them, then discuss their features. The technical details of
this approach will be discussed in Sect. 5.

4.3.1 Matrix analytic method

The matrix analytic method originated in Neuts (1981, 1989) and has been applied to
the tail asymptotic problems, particularly for single queues. A basic idea is to use vec-
tors and matrices as if they were numbers. It was motivated by the possibility to avoid
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using transforms such as generating functions so as to numerically compute charac-
teristics of instants directly. It greatly succeeded for a quasi-birth-and-death process,
QBD process for short, which is a Markov modulated birth-and-death process.

From its original motivation, this method has been mainly used when the back-
ground Markov chain has finitely many states. However, it is also well known that it
can be used for countably many background states, although it generally looses the
nice feature for numerical computations. Then, matrix manipulations as operators
become more important (e.g., see Katou et al. 2008; Miyazawa 2004 and Takahashi
et al. 2001). In this respect, this approach can be considered as the Markov additive
approach. Relations between those two approaches are also discussed in Miyazawa
(2002).

4.3.2 Borovkov—-Mogul’skii approach

Borovkov and Mogul’skii have studied the tail asymptotic problem for many years
(Borovkov 1998; Borovkov and Mogul’skii 1996, 2000, 2001), and solved it for a
two-dimensional reflecting random walk with a thick boundary and real vector val-
ued jumps, where a thick boundary means that the boundary has some bounded depth
(Borovkov and Mogul’skii 2001). They combined various techniques for deriving ex-
act asymptotics on a multidimensional renewal function, in which there are many ex-
cellent ideas for studying the tail asymptotics of the reflecting random walk. However,
their results are not very explicit, and therefore they are not easy to use in applica-
tions. The essence of their approach is very close to the Markov additive approach.
See the end of Sect. 5.6 for some remarks on this issue.

4.3.3 Foley—McDonald approach

Foley and McDonald have studied the tail asymptotic problem in a series of papers
(Foley and McDonald 2001, 2005a, 2005b). They mainly considered a skip-free re-
flecting random walk on the two-dimensional integer orthant, that is, a double QBD
in our terminology. Their approach can also be considered as the Markov additive ap-
proach. However, there is one thing to be noted. As we will see, the Markov additive
approach is generally useful for finding exact geometric (or exponential) asymptotics,
but not easy for finding other types of exact asymptotics. In Foley and McDonald
(2005b), the authors challenged the latter problem using the ratio limit theorems for
a Markov chain and the complex inversion of an analytic function around a branch
point. This is rather connected to an analytic approach which will be discussed in
Sect. 4.4.

4.3.4 Advantages and disadvantages of Markov additive approach

The Markov additive approach is very flexible for implementing extra information
about the background states. For example, supplementary information on the arrival
process and service times is easily incorporated. It also provides exact tail asymp-
totics for each fixed background state. There are also many studies on its own asymp-
totics (e.g., see Collamore 1996; Ney and Nummelin 1987a, 1987b). In this sense,
the Markov additive approach has excellent features. However, it has two crucial lim-
itations in application for the tail asymptotic problem.
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One is the assumption that the additive component is one-dimensional. This en-
ables us to apply the Wiener—Hopf factorization and Markov renewal theorem. For
this, we can put necessary information into the background state space, but it may be
complicated to compute eigenvalues and eigenvectors, particularly, for the reflecting
random walk for d > 3. To prevent this difficulty, we may directly consider a mul-
tidimensional additive process. This formulation is studied in Miyazawa and Zwart
(2009). One needs to generalize the Wiener—Hopf factorization. However, this ap-
proach has not yet been fully available to get the tail asymptotics.

The other is the strong conditions for the Markov renewal theorem to be applica-
ble. For the double QBD process, there is a way to overcome this difficulty as shown
in Sect. 5.6. However, it seems not to be applicable to higher-dimensional reflecting
processes. Thus, we may need another approach here. The analytic approach which
will be discussed below seems to be a good candidate for this.

4.4 Analytic function approach

We may consider a multidimensional moment generating (or generating) function for
the stationary distribution for the tail asymptotics problem. In Sect. 2, we have used
them for categorizing the tail types. Here, we go one step further. The idea is to use
complex variable functions and to apply the theory of analytic functions, where a
complex-valued and complex variable function f(z) is said to be analytic at z = zg
if it is well defined on some neighborhood of zg on the complex plane C and it has a
unique derivative at zg in all directions. The following fact is elementary, but it is the
basis for this approach.

Lemma 4.1 Let f(0) be the moment generating function of a measure on R with
real variable 0, and let 6y = sup{f € R; f(0) < oo}. Then, the complex variable
Sfunction f(z) is singular at z = 6y, and analytic on {z € C; Rz < 0p}.

The corresponding theorem for a generating function is called Pringsheim’s theo-
rem, which is given bellow.

Lemma 4.2 (Pringsheim’s theorem) Let f(6) be the generating function of a mea-
sure on Zy, and let 8y = sup{6 > 0; f(6) < oo}. Then, the complex variable function
f(2) is singular at 7 = 0y, and analytic on {z € C; |z| < 6p}.

This lemma is less obvious and needs a proof (see, e.g., Theorem 17.13 in Vol. 1
of Markushevich 1977). Because of these lemmas, we can expect that the leftmost
singular point would be the decay rate. A significant feature of an analytic function is
that it is uniquely determined by a set which has an accumulation point. For example,
if two complex variable functions f(z) and g(z) agree on some open interval (a, b)
of real numbers and if f(z) is analytic on an open set G such that (a, b) C G, then g
is uniquely extended on G in such a way that

g)=f), ze€G.

This is a classic result, but it turns out to be very powerful for finding the domain of
the moment generating function of the stationary distribution.
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Another useful technique is the inversion formulas for a complex variable moment
generating function at a leftmost singular point (see Doetsch 1974). They provide ex-
act tail asymptotics. In the literature, two types of inversion formulas have been used
according to the nature of the singularity, pole or branch point. The exact asymptotic
function 4 (x) has the form

h(x) =x e ",

If the singularity is caused by a pole, then « is a nonnegative integer. On the other
hand, if it is caused by a branch point, then « is a rational number but not an integer.
Their details can be found in Appendix C of Dai and Miyazawa (2010). For generat-
ing functions, similar results have been studied by researchers of combinatorics (see
Flajolet and Sedgewick 2009), which are used in Li and Zhao (2009, 2010).

A problem with the analytic function approach is the difficulty in finding an an-
alytic expression for the moment generating function of the stationary distribution,
particularly for d > 2. This function is obtained as a solution of the stationary equa-
tions (3.9) and (3.10) (or (3.11)). Thus, we need to solve a functional equation for
multivariable functions. This is generally a hard problem. Of course, there are some
exceptional cases. For example, the moment generating functions can be analytically
obtained for tandem and priority queues. In this case, the analytic function approach
is well applied (see, e.g., Li and Zhao 2009; Lieshout and Mandjes 2008). However,
we cannot expect such nice solutions in general. Here, we need ideas to overcome
this difficulty.

4.4.1 A method using Riemann surface

For d =2, there have been some efforts to get a certain analytic expression for the
generating function of the stationary distribution. Their essence is to reduce the prob-
lem to finding expressions for measures on the boundary faces, then getting the sta-
tionary distribution from those measures in terms of generating functions. In Fayolle
et al. (1999), either a Riemann surface generated by the null points of the generating
function of the increments of the reflecting random walk in the interior or the solu-
tion for the boundary value problem is used for this derivation. The idea has already
appeared in Kingman (1961) and has been used in Flatto and McKean (1977), Flatto
and Hahn (1984) and Fayolle and lasnogorodski (1979).

The current version of this approach is only applicable to the two-dimensional
skip-free reflecting random walk, that is, the double QBD process. It has been used
to derive rough asymptotics for this skip-free random walk in Ignatyuk et al. (1994).
This method can also be used to get exact asymptotics, but it has been limited to rela-
tively simple models such as tandem or parallel queues (e.g., see Flatto and McKean
1977). Its recent studies can be found in Guillemin and van Leeuwaarden (2011) and
Li and Zhao (2010), where the approach is called a kernel method.

4.4.2 A method using the convergence domain

There is yet another analytic approach which is recently developed by Miyazawa and
Rolski (2009) and Dai and Miyazawa (2010). This approach uses not a generating
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function but a moment generating function. This is mainly because a moment gen-
erating function is convex and has nice analytic properties as a function of complex
variable. Nevertheless, some basic ideas are very similar to the methods of Riemann
surface and boundary value problem. Namely, this method is also based on the sta-
tionary equation, and the measures on the boundary faces play a key role.

A unique feature of this approach is to start with identifying the convergence do-
main of the moment generating function. The convexity and analytic properties of
this function are particularly useful. For example, the domain has a nice geometric
interpretation. Furthermore, the approach is potentially useful for d > 3. Once the do-
main is obtained, we can find singular points of the moment generating function on
the boundary of the domain, then get tail asymptotics applying the analytic inversion
formulas around the singular points. We will detail this approach in Sects. 6 and 7.

5 Markov additive approach: technical details

We discuss technical ideas of the Markov additive approach discussed in some re-
cent papers (Kobayashi et al. 2010; Li et al. 2007; Miyazawa 2009a; Miyazawa and
Zhao 2004; Miyazawa and Zwart 2009). We start with a useful identity for a general
Markov chain, which will be used not only for a Markov additive process but also for
the reflecting random walk.

5.1 Pitman identity

As we have discussed in Sect. 4.3, the Markov additive approach uses two measures
in (4a) and (4b). In this section, we derive a basic formula to produce the stationary
distribution from them. Let S;, be a countable set, and let S =7 x Sp. Let {Z,} be a
S-valued Markov chain with transition kernel Q, and let {F,} be its natural filtration.
Let 7 be a stopping time, that is, 7 is a nonnegative integer valued random variable
such that {t < ¢} € Fy for all £ > 0. Define S x S matrices G, (s) and H; (s) as, for
m,nes,

[ér(s)]m 2 =Em (s"1(Z: =n)1(r <)),

[A:5)], (Zs 1(Z —n))

where [E,, stands for the conditional expectation given Zy = m
We consider the identity:

o
Zs‘fl(zg =n)l(t>0)+5"1(Z, =n)
=0
o0
=1(Z0=n)+2s”11(24+1:n)l(t>Z), nes. (5.1
=0

@ Springer



Light tail asymptotics in multidimensional reflecting processes 259

Since 7 is a stopping time, we have

En(1(Zes1 = m)1(t > 0) = E (1 > OE((Z41) = n|Z0))

:Em<z l(t>4,Z =n/)Qn/,n)'

n'eS
Hence, taking the conditional expectation of (5.1) yields
He(s)+Go(s) =1 +5H:(5)Q, 0<s<l,

where [ is the identity matrix. Rearranging terms in this equation, we have the so-
called Pitman identity.

Lemma 5.1 (Pitman (1974))
H.(s)(I—s0)=1—G(s), 0<s<]l. (5.2)
We rewrite this identity as
Ge(s) =1+ H.(s)(I—sQ), 0<s<1.

Then, it can be considered as a discrete time version of Dynkin’s formula for a con-
tinuous time Markov process (e.g., see Ethier and Kurtz 1986).

5.2 Wiener-Hopf factorization

We now formally define a Markov additive process, and derive a useful identity on
the ladder instants of the additive component applying Lemma 5.1. This identity is
called RG decomposition or Wiener—Hopf factorization.

Let (X¢, Yr) be an S-valued process satisfying the following condition:

P(Xep1 — Xe=n, Y11 = jlXp—1, Vi1, k <€, Y, =10)
=PXer1 — Xe=n,Yp1 = jlYe =),

for n € Z and i, j € Sj. Denote the right-hand side by [A(n)];;. Obviously, {Y,} is
a Markov chain with transition probability matrix Z:{i’iw A(n). This {(Xy, Y¢)} is
said to be a discrete-time Markov additive process (MAP) with transition kernel A(-).
{X¢} is called an additive process while {Y;} is called a background process. The
values of X, and Y, are referred to as level and background state, respectively. Define

the stochastic kernel Q as
Qm.iy.n.jy = [A( —m)],.

Then, it is easy to see that {(X,, Y;)} is a Markov chain with transition kernel Q.
Thus, we can apply Lemma 5.1 to this Markov additive process, and (5.2) is available.
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Let ry_o =inf{n > 1; X, — Xo < y}. That is, 'L’y_o is the hitting time at or below
level y from above. Define Z x Sj matrices G O(s, 0) and Hj (s,0) by

0 6(X —o—Xo)
K]

[G0G.0)];, =Ei(s% e 1(Y;o0 = ),

—0
Ty —1
[Hi(s,0)];; =Ei( > st Xy, :j)),

£=0
Then, from (5.2) with T = 7, 0 we have
Hy(s,0)(I —sA.(0) =1— G (s,6), (5.3)
where
[A«@)];; =E(" X011 = pIYo=1i).
Define
)
[RY(s,0)],; =i (Z st XX (v, = j)1(Xo < X¢ <min(X1, ..., XH))).
=1
Then, it can be proved from a sample path decomposition that
Hi(s,0) = (I — R} (s,6)) " (5.4)
Hence, (5.3) implies
(I —sA@)=(I—R(s.0))(1 - GO, 0)). (5.5)

This is called an RG decomposition (see, e.g., Grassmann and Heyman 1990 and
Zhao et al. 2003).

We convert (5.5) into another form, using a time reversed process of the Markov
additive process under a suitable measure. For this, we need some further notions.
Since A = A, (1) is stochastic, it has a subinvariant vector s, that is, t A < x. Then,
we can define a substochastic matrix A by

A=A71ATAL,

where Ay is the diagonal matrix whose diagonal entries are the entries of 7, and A
denotes the transpose of A. Let {(X¢, Y¢)} be the MAP generated by A. Define

- =+ O(X.+—Xo) .
[Gj(s,é?)]iszi(s’Oe 0 I(Yf(jr:])),
where ~y+ =inf{n > 1; )?g — )20 > 0}. Then, it can be shown that
(GH(s,0))" = R} (5,6). (5.6)

Hence, we have
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Theorem 5.1 (Wiener—Hopf factorization Arjas and Speed (1973), Miyazawa and
Zwart (2009))

I —sA.0)=(1-GFs, 0N (I -G %G,0), 6eR,|s|<1, (5.7)
as long as both sides exist and are finite.

This identity is known as the Wiener—Hopf factorization. In its applications, we
need to carefully examine for which 6 and s it is valid. This is thoroughly considered
in Miyazawa and Zwart (2009).

For s = 1, we simply denote G (s, 8), R} (s, ) and H; (s,60) by G;°(0), R.(6)
and H,(0). Then, (5.5) for s = 1 can be written as

(I -A.®)=(I - R ®)(I - G°®). (5.8)

This factorization formula plays a crucial role in the Markov additive approach be-
cause it relates the transformed occupation measure H, () to the transformed Markov
additive kernel A, (0).

We have worked on the matrix moment generating functions, but it may be conve-
nient to use probability or expectation matrices such as A(n). For this, we introduce
the following notation:

[G_O(n)]ij =Pi(X 0~ Xo=n.Y 0= ),

r(;o—l
[H(l’l)]ij in< Z 1(X¢—Xo=n,Y, =J')),

£=0

M2

[R+(n)]ij =Ei <

[GTm],; =Pi(

(X —Xo=n,Y,=j,Xo < Xy §min(X1,...,Xg_1))),

~
—

<

c—Ro=n T =),

T

Then, (5.6) and (5.8) can be written as

[Gtm] =RT(), n=>1, (5.9)
I—Am)=(-RY)*(I-G ), nez, (5.10)

where A * B(n) represents the convolution of two sequences of matrices {A(n)} and
{B(n)} of the same sizes, that is,

+00
Ax B(n) = Z A(k)B(n —k),

k=—o00

where B(k) =0 if it is not defined for k.
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5.3 Reflecting Markov additive process

We next consider the description of the reflecting random walk using the Markov
additive process. For this, we apply the Pitman identity (Lemma 5.1) and the Wiener—
Hopf factorization (Theorem 5.1).

Let {Z,} be the d-dimensional reflecting random walk that we introduced in
Sect. 3.2. We choose Z; for the additive process. That is, let

X¢=Zu, Yo = (Zea, Zess - - -, Zea)-

Here we do not use X, and Y, since ()A( 05 ?g) is not a Markov additive process. Since
{(X¢, Yy)} is identical with Z, it is a Markov chain. Let Q = {Qu.i).(n. )} be its tran-
sition matrix. Then, we can see that Q(m’i),(n,j) only depends on n —m form,n > 1.
So, we define the S; x Sp matrix A(n) forn=—-1,0,1,... as

[A(n —m)],-,j = Q(m,i),(n,j)a mn>1,n—m=>-1,i,je€S.

Let {(X¢, Y¢)} be the Markov additive process generated by the additive kernel
{A(n)}. Similarly, we define B(n) forn € Z as

Q0.i).n.j)» n>0,

[B(n)]i,j =1 91.1).0.)) n=-—1,
0, n<-2.

Thus, the reflecting random walk can be expressed by the Markov additive process
and the boundary transitions {B(n)}.

We have constructed Q from the reflecting random walk. However, in this subsec-
tion, our arguments below do not depend on the random walk structure except for a
few places. If we do not assume any special structure for the background state tran-
sitions in Q, the Markov chain with transition kernel Q is referred to as a reflecting
Markov additive process. In particular, it is called a quasi-birth-and-death process,
QBD process for short, if the additive process is skip-free, that is, its increments are
at most unit in absolute value.

We apply Pitman’s identity (Lemma 5.1) to the reflecting MAP {(}A( 2, l?g)} with
stopping time t for each m > 1 defined by

r=inf{t>1; X, <m —1}.
Then the following corollary is immediate from (5.2).
Corollary 5.1 If é, (1) has the stationary measure 1, that is,
we(m, i) = [1: G ()] m,i), m<n—1,i€S, (5.11)
and if T on Zi which is defined as
w(m,i) = [m: He(D](m,i), m=n—1,i €Sy, (5.12)

is a measure, then m is the stationary measure of Q.

@ Springer



Light tail asymptotics in multidimensional reflecting processes 263

We now assume that the reflecting random walk has the stationary distribution 7.
We decompose 7 as a sequence of vectors {x,}:

w,(i)=nn,i), n=>0,i€S.
To compute 7;, we introduce the transition matrix R%*(n) defined as
0+
[R™T ()], j

o0
=Y P(Xe=nY=j.0<X, <min(X;, Xa,.... X¢1)|Xo=0,Yp=1i).
=1

Using this definition and the fact that the transitions are homogeneous above or at
level n > 1, we can write (5.12) with m = n as

n—1
m,=moR () + Y mR*(n—k), nx=1 (5.13)
k=1

Taking the transpose of this equation and using (5.9), we have

n—1
Ty =R nf+Y Gtn—kmy, nx=1 (5.14)
k=1

This is a Markov renewal equation with transition kernel {é+ n)}.
5.4 Exact geometric asymptotics

We are now ready to consider the tail asymptotics of the stationary distribution of the
reflecting Markov additive process.
From (5.4) and (5.13), it follows that

= [moR*T x H](n), n=0,1,.... (5.15)

This is a vector-and-matrix expression for the stationary distribution. In particular, if
the additive process is skip-free, that is, the reflecting Markov additive process is a
QBD process, then (5.15) can be written as

wn=moR(RTY'™', n=0,1,.... (5.16)

This expression is well known as a matrix geometric form. If the background state
space of the QBD process is finite, then matrix computations are feasible. This QBD
process was firstly systematically studied by Neuts (1981). We here do not assume
that the background state space is finite, but many of the arguments are parallel to the
finite case except for eigenvalues and eigenvectors. They are very hard to compute if
the background state space is not finite, and we need further structure like a random
walk.
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In this and the next sections, we assume

(5a) The transition matrix Q of the MAP is irreducible and its additive process is
1-arithmetic (see Miyazawa and Zhao 2004 for this definition).

In the view of (5.15), this is a natural condition for exact asymptotics to exist.
We further express (5.15) by a vector moment generating function. Let

o0
TL(0) = Zeennn.
n=0

Then, from (5.4) and (5.15), we have
7.(0) = moRYT(0) Ha (0) = mo RO (0) (I — R (6)) ™. (5.17)

From these formulas, we may see two scenarios for the asymptotics of the stationary
distribution r,,.

(5-1) The asymptotics are only determined by H. That is, the asymptotics of H
dominates that of o RO+ .

(5-i1)) The asymptotics are influenced by both H and ]l'()R2+. In other words, n0R2+
controls H.

We first consider the case (5-1), and give sufficient conditions to have exact geo-
metric asymptotics.

Assume A, (0) has the left and right positive invariant vectors x and y such that
xy < o0o. Define a Markov additive kernel by

AO )y = A7 (P Am))" Ay
Similarly, we define
ROmy=a;"(""G )" Ay,
GO ()= A7 ("R () Ay,
G(@)o+(n) _ A;l (een R‘”(n))TAx.

These matrices are said to be twisted by 6.
We twist the RG decomposition (5.10), then we have

1= KO0 = [(1- RO0) (1 - GO0, 5.18)
It can be shown that Gf”(l) is stochastic (positive recurrent) if and only if
A® = Af)(l) is stochastic (positive recurrent). For the stationary distribution & =
(o, 1, ...), let

n X

70 = A7 ().
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Then, from (5.13), we have

n—1
7© = GO ()70 + ZG(GH(/();,;@E/(. (5.19)
k=1

Thus, we again have a Markov renewal equation. Define transition matrices for the
background states by

o) 0
G(@)Jr — Z G(@)Jr (n), G(Q)OJr — Z G(G)OJr(n)'

n=1 n=1

Let £© be the left invariant positive vector of G@+ if it exists. Assume that A®) is
positive recurrent and

EOGO 7, < 0,
and denote this 6 by . Let r@ = A1 ()T, then this condition is written as
£ GO0 0 — 0 R (a)r @,

Then, applying the Markov renewal theorem (see, e.g., Alsmeyer 1994 and Cinlar
1975) to (5.19) yields

1
lim ¢*"m, = E(nORQ+ (@)r®)x, (5.20)

n—oo

where B(a) = £ (3%, nG@+(n))1. Note that r®@ = A1 ()T is the right in-
variant vector of R™(«). Thus, we get the following theorem.

Theorem 5.2 (Theorem 4.1 of Miyazawa and Zhao 2004) Assume that the reflecting
Markov additive process has a stationary distribution and (5a) is satisfied. If there is
an a > 0 satisfying the following three conditions:

(5b) A.(x) has positive left and right invariant vectors x and y,
(5¢) Ai(w) is positive, that is, (x, y) < oo for the vectors x and y of (5b),
(5d) moRM ()r® < o0,

then i, (i) has the exact geometric asymptotic (5.20) for each fixed i € Sp as n — 00.

This theorem does not need the background process to be a reflecting random
walk. However, the three conditions are restrictive and may be hard to check. For the
two-dimensional reflecting random walk, (5b) and (5¢) can be checked, but there is
some difficulty in verifying (5d) because it requires the stationary probabilities o on
the boundary, which are unknown. Thus, its availability is limited, but there are many
cases where it is still applicable (e.g., see Foley and McDonald 2005a; Fujimoto et
al. 1998; Li et al. 2007; Takahashi et al. 2001). We remark that Theorem 5.2 does not
cover even all the cases of (5-1) (see, e.g., Foley and McDonald 2005b).
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We next consider the case (5-ii). In this case, we have to know the tail asymp-
totics in different directions at once. This is generally a hard problem, and results
are only known for the two-dimensional reflecting random walk. A key idea is to si-
multaneously consider two Markov additive processes in different directions, which
are obtained from the reflecting random walk as discussed in Sect. 5.3, and derive
certain fixed point equations. Their solutions give sufficient information on . This
approach is used in Borovkov and Mogul’skii (2001) and Miyazawa (2009a).

There is another way to verify (5d) for the two-dimensional reflecting random
walk. The idea is to use the convergence domain of the moment generating function
@) of {my(n); n=0,1,...}. Because [y]; = e fori =0, 1,...is known, we have

R ()r™® = moRYT (@) (I — G2 (0))y < moRY () y
<Y wo®[Bf @];;e™
i,j

o0 o
= Zno(i)e'“j Z[Bj(a)]o j_ienz(jfi) = (1) x constant.
i=0 =0

Hence, if ¢2(n1) is finite, then (5d) is satisfied. The finiteness of ¢,(n1) would be
obtained from the convergence domain of the moment generating function of the sta-
tionary distribution. Thus, the problem is reduced to finding the convergence domain,
which will be discussed in Sect. 6.

5.5 Lower bound for the decay rate

It may be questioned whether any further tail asymptotics can be obtained in the
framework of the Markov additive process. There are some ways to get different type
of exact asymptotics using ratio limit theorems of Markov chain (see, e.g., Foley
and McDonald 2005b). However, they are still limited in use. We here consider the
problem from a different viewpoint.

We reconsider the expression (5.15) through the occupation measure H (€). Since
(5.15) implies that

logm, (i) > 1og[n0R°+(1)]j +logHji(n—1), i,je€Sp,
we can get a lower bound for the tail decay rate of the stationary distribution if the

decay rate of H(n) is available. Indeed, it is shown in Theorem 4.1 of Kobayashi et
al. (2010) that

1
lim —log[H(n)]l.. =—dy, 1i,j€Sp,
n—oon J
where

dy =sup{f > 0; H.(0) < oo},
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Thus, we have

1
liminf —logm, (i) > —dg, i€ Sp. (5.21)
n—»oo n
It remains to get dy from the modeling primitives. The following idea is standard
for this (see, e.g., Ignatiouk-Robert 2001). For a square matrix A, define its conver-
gence parameter ¢, (A) as

o0
cp(A) = sup{s >0; ZSKAK < oo}

=0

Since H.(0) = (I — R:‘(G))_l, dy should be obtained from 6 such that
cp(Rj(G)) =1. This is equivalent to c,(A«(#)) = 1 from the RG factorization
(5.8). Since A, () is an infinite-dimensional matrix, there are multiple 6 satisfying
cp(As(0)) =1.Let

0 =sup{6 > 0; ¢, (A+(0)) = 1}.

Then, Theorem 4.1 of Kobayashi et al. (2010) shows that dg = 6©). In computing
this (), we usually investigate a subinvariant vector x, which is a positive vector
such that

xAL(0) <x.

It is known that the existence of this subinvariant vector is equivalent to ¢, (A4 (6))=1
(see Nummelin 1984 and Seneta 1981). This fact is compatible with the condi-
tion (5b) in Theorem 5.2.

Hence, (5.21) is written as

1
liminf — logm, (i) > —6©, ie€S§). (5.22)
n—oo n

Thus, we have a lower bound (¢ for the decay rate. In the view of the two scenarios
(5-1) and (5-ii), we can expect that the exact decay rate ) is tight for (5-1), but not
for (5-ii). However, the lower bound is still useful for finding the decay rate in the
other direction.

5.6 The decay rate for a QBD process

As we have discussed, it is hard to get the tail asymptotics for the reflecting Markov
additive process without extra conditions (5¢) and (5d). Even for the decay rate in
coordinate directions, we cannot get a complete answer. However, if the additive
process is skip-free, that is, the process is QBD, then there is a way to overcome this
difficulty. For this, we use the matrix geometric expression (5.16), which is rewritten
as

o= (RY)"™, n=12.... (5.23)
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The idea is that if 7 is asymptotically identical to the left eigenvector of R™ then
the eigenvalue for this eigenvector can determine the decay rate because of the matrix
geometric form (5.23). The following fact is a key for this, which is obtained in Li et
al. (2007).

Lemma 5.2 (Theorem 2.1 of Li et al. 2007) For the discrete-time QBD process with
background state space S, = Z., if there exist a positive left invariant vector x = (xy)
of A (a) for some a > 0 and some finite ¢ > 0 such that

1
lim —m; (k) =c, (5.24)
k—00 X}

then, for any nonnegative column vector h satisfying (x, h) < oo,

lim e (m,, h) =ce*(x,h). (5.25)

n— o0

In particular, if 0 < ¢ < 00, then (&, h) decays geometrically with rate o as n goes

to infinity.

Note that this result does not require the positivity assumption (5¢) on A, («).
Instead of this assumption, we need to find an appropriate o so that (5.24) holds,
and the background state space must be totally ordered. In some special models,
this works well as reported in Adan et al. (2009), Khanchi (2010), Li et al. (2007),
Tang and Zhao (2008). However, the conditions may not be easily verified since we
generally do not know the tail asymptotic of {m(k)}. However, if the background
process is also a QBD, this difficulty can be overcome. This is exactly what has been
done for the double QBD process in Miyazawa (2009b).

In what follows, we briefly introduce ideas presented in Miyazawa (2009b). Con-
sider the double QBD process, and generate the Markov additive process as we have
done in Sect. 5.3. Then, the decay rates are derived in the following steps:

1. (Theorem 3.1 of Miyazawa 2009b) Find a region for A, () to have the left and
right positive invariant vectors. Compute these invariant vectors for each 6 in the
obtained region. Perform the same procedure for the other direction.

2. (Proposition 3.1, Corollary 3.1 of Miyazawa 2009b) Find upper bounds for the
decay rates in both directions using an extended version of Lemma 5.2.

3. (Theorem 4.1 of Miyazawa 2009b) Derive an optimization problem to determine
the decay rates using the upper bounds in Step 2.

4. (Corollary 4.1 of Miyazawa 2009b) Solve this optimization problem and get the
decay rates in both directions at once.

Here we cite results for Steps 3 and 4 from Miyazawa (2009b), which will be
compared with another derivations in Sects. 6 and 7. Let

r={6eR*y120) <1}, Ne={0 eR: yuy0) <1}, k=1,2.

Theorem 5.3 (Theorem 4.1 of Miyazawa 2009b) For the double QBD process satis-
fying conditions (3c) and (3d), define «; fori =1,2 as

ap =sup{bi;n1 <01,0, <ma, 01,62) € T NIy, (1, m2) € T N1}, (5.26)
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ay =sup{na; 1 < 601,62 <2, (61,62) € I' N1, (n1,m2) € ' N1} (5.27)

Then, o and a are the decay rates of &, (i) as n — oo for each fixed i > 0.

Corollary 5.2 (Corollary 4.1 of Miyazawa 2009b) For k =1, 2, let
0% = argy _posup{f) > 0;0 € I' N I},
then the solution of (5.26) and (5.27) is obtained as

91(1’6), 92(1,(,‘) < 92(2,0)7 . 952,6), 01(2,c) < 9](2,6)’
1=1= . 2=3 < .
10, 039 =079, 56, 6 =6,
(5.28)

where & (63_1) = sup{6i: y (61,62) = 1} for k =1,2.

We will see that these «; and a» exactly correspond to 71 and 1, of (6.13) in
Lemma 6.8 for a more general reflecting random walk. This means that the optimiza-
tion problems (5.26) and (5.27) in Step 3 can be reduced to the fixed point prob-
lem with equation (6.12). This fixed point equation has also been used to combine
the asymptotics of two Markov additive processes in the coordinate directions in
Borovkov and Mogul’skii (2001). However, they neither explicitly obtained the fixed
point equation nor solved it. This is the drawback of their general modeling assump-
tions (see Miyazawa 2009b for more discussions on this issue).

6 Domain for the analytic function approach

In this and next sections, we discuss the analytic function approach using the conver-
gence domain for the reflecting random walk {Z,} defined in Sect. 3.2. We will obtain
the tail asymptotics only for d = 2, but we start with a general d > 2 to see how our
framework works. For this, we assume (3b), (3b’), (3¢), and (3d). That is, the station-
ary distribution of the reflecting random walk uniquely exists, and the distributions
of all increments at each time have light tails.

In this section, we consider the domain D of the moment generating function of
the stationary distribution, then the tail asymptotics will be considered in Sect. 7.

6.1 Stationary inequalities

We first observe two key facts. We like to use the stationary equation (3.11) for finding
the convergence domain of the moment generating function ¢ (@), but it is valid only
when ¢(#) is finite. This is something like a circular argument. Here we need a clue
to expand the region of those @ € R? for which ¢(#) is known to be finite. The next
lemma gives us this clue. We recall that J = {1,2, ..., d}, and denote the set of all
subsets of J by 2.
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Lemma 6.1 For the reflecting random walk {Z,} defined in Sect. 3.2, assume the
conditions (3b), (3b"), (3¢), and (3d). For C C 27, if the following two conditions

hold:

ya@) <1 forall AeC,
9a(0) <oo forall Ac2’\C,

then

0= (1=ya@®)pa® < > (ra®) —1)pa(6) < oo,

AeC Ae2/\C

and therefore p4(0) < oo for all A € C, and ¢(6) < oo.

(6.1
6.2)

(6.3)

Proof We apply truncation arguments for the stationary equation (3.7). For each

n=1,2,...,1let
fu(x) =min(x,n), xeR.
It is not hard to see that, for any x >0 and y € R,

x<n,

fn(x+y)§fn(x)+{y’ -

0, x>n.

Hence, we have, using the independence of Z and X4,

6.4)

E(eﬁz«o,(zuf‘)»](z €54) < E(en O 1(Z e Sp, (0,2) < n))E(efn((l),XA)))

+ E(eED1(Z € S4, (8, Z) > n)).
On the other hand, it follows from (3.7) that

e/ (0.2) ~ $ O D+O.XN (7 ¢ §,).
ACJ

Taking the expectation of this distributional equation and applying the above inequal-

ity, we have
E(e.fh((0,l))) — Z E(efn((b‘,ZH(b‘,XA))l(Z c SA))
AcJ
< Y E(eOIN(Z € Sp., (0. Z) < n)) E (S OX D)
AcCJ
+ Y E(e/ I (Z € 54, (. Z) > n)).
AcJ
Substituting

E(ef;l((b‘,l))) — Z E(efﬁ(“’*Z))l(Z e SA))

AcCJ

@ Springer

6.5)



Light tail asymptotics in multidimensional reflecting processes 271

into (6.5) and rearranging terms, we have

S (1 E(ef@X D) E( IV (Z € Sa, (8. Z) <n))
AeC

< Y (E(eHOXDY 1)E(MOIY(Z € Sa, (8, Z) <n)).
Ae2! -C

Let n go to infinity in this inequality, then conditions (6.1)—(6.2) and the monotone
convergence theorem yield (6.3) since f,(x) is nondecreasing in x. O

We next consider bounding the domain D. For this, let
Tmax= {0 € R0 <30",y,0) < 1}.

The following lemma shows that D is upper bounded by I« . Its proof for d = 2 can
be found in Kobayashi and Miyazawa (2011) (see Lemma 3.3 there), and a less com-
plete proof for a general d is found in Borovkov (1998). Since the proof in Kobayashi
and Miyazawa (2011) can be easily adapted for a general d, we omit a proof of the
following lemma.

Lemma 6.2 For the reflecting random walk {Z,} defined in Sect. 3.2, assume the

conditions (3b), (3b), (3¢), and (3d). For any direction vector ¢ > 0 and a nonempty
open set B C R’i,

1
liminf —logP(Z e nc + B) > — sup{(O, c);yr0) < 1}, (6.6)
n—o00 n
and therefore D C I'yax.

Note that Ijnax is bounded from above, that is, there is a 8’ € R4 such that @ < ¢’
for all € I'max because of (3b"). Also note that, if E(Xij) =0foralli € J, then

[0 Ry, (0) <1} ={0},

by the convexity of function y; (@) and y;(0) = 1. Hence, the right hand side of (6.6)
equals 0, and we immediately have the following facts from Lemma 6.2.

Lemma 6.3 For the reflecting random walk satisfying the same assumptions as
Lemma 6.2, (a) the stationary distribution cannot have a small tail in any direc-
tion (see Definition 2.4 for the small tail); (b) if E(XiJ) =0 foralli € J, then the
stationary distribution has heavy tails in all directions.

6.2 A program for identifying the convergence domain

Recall that the domain D is defined as

D = the interior of {6 € RY; 0(0) < 00}.
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We consider an iterative algorithm to find this domain. For this, we use Lemma 6.1,
and need some notations. Let 27 be the set of all subsets of J = {1, 2, ...,d} includ-
ing the empty set. For each A € 27, we let

Fa={0eR:y 0) <1}.

For convenience, we often write y;(0) and Iy as y(0) and I', respectively. Note that
I’ is a bounded convex set by (3c). However, we cannot use ¢(8) for ¢;(6) since
they are different. We define 0 4 as the d-dimensional vector whose ith entry is 6; for
i € A and vanishes fori € J \ A for 0 = (61,65, ...,04). Note that 94 (0) = pa(0 4).

Let C be an arbitrary collection of subsets of J. That is, C is a subset of 27 We
allow C to be the empty set. Let G be an arbitrary subset of R4 For these C and G,
we define

Dc(g)={0€ () ra:vBe2/\C.3eG.05 <n3},
AeC

which is an open set, where ) peg 1B = R, By this definition and Lemma 6.1, if
G C D, then Do (G) C D. We also note that

Dy(G) = {0 e R VB €2/ 3 € G, 05 < np)

= U{OeRd;0<n}.
neg

Denote the convex hull of a subset A of R by conv(A). Then, G C D implies that
gc conv( U Dc((])) cD.
cc2/

This suggests iteratively using a mapping from G to conv(| e »s D¢ (G)).
Welet Gy = {0 € RY: 0 < 0}, and inductively define, forn =0, 1, ...,

Gt = conv( U Dc(g,,)>. 6.7)
cc2’
Clearly, Gy C D and G,, increases in n. Hence,
Goo = lim G,
n—>oo

exists, and G, C D. It is easy to see that G, is an open set and a solution of the
following fixed set equation:

G= conv< U Dc(g)>. (6.8)

cc2/

We summarize the above arguments as a theorem.
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Theorem 6.1 For the reflecting random walk {Z,} defined in Sect. 3.2, assume the
conditions (3b), (3b"), (3¢), and (3d), then we have

(6-1) D is the solution of (6.8).

(6-1i) Goo is the minimal solution of (6.8) such that 0 € G, for all § < 0.
(6-iii) Goo and D are convex open sets.
(6-iv) Goo C D C Iinax-

Hence, the stationary distribution has light tails in all directions if 0 € Goo.

Remark 6.1 (6-ii) and (6-1ii) are valid without conditions (3¢) and (3d) since neither
is involved with the stationary distribution. We only need (3b) and (3b’) for them.

Based on this lemma, we propose either computing G, or finding the minimal
solution of the fixed set equation (6.8). In particular, we conjecture the following
claim.

Conjecture 6.1 Under the assumptions of Theorem 6.1, Goo = D.
In view of Remark 6.1, we also have another conjecture.

Conjecture 6.2 Under the assumptions of (3b) and (3V'), the stationary distribution
with a light tail exists if and only if 0 € Go.

Both conjectures hold true for d = 2 under certain skip-free conditions as we will
see in Sects. 6.3 and 6.4. Furthermore, D is explicitly obtained using extreme points
of I'y’ in this case. This suggests a similar characterization for d > 3. These ideas are
also considered for the multidimensional SRBM in Miyazawa and Kobayashi (2010).
However, they remain as conjectures for d > 3.

Once the domain D is identified, we can get the following upper bound for a
similar but slightly different tail set from that of (2.10). Let ¢ > 0 be a direction
vector, and let B be a bounded measurable subset of Ri. Then, we have

1
limsup — logP(Z € nc + B) < —sup{(8, ¢); § € D}. (6.9)
n—oo N
The proof of this upper bound for d = 2 is given for the two-dimensional SRBM
in Dai and Miyazawa (2010) and the two-dimensional reflecting random walk in
Kobayashi and Miyazawa (2011). We note that their proofs can be used for a gen-
eral d > 3.

6.3 Light tail conditions for d =2

In the previous section, we proposed a program to find the domain D for the
d-dimensional reflecting random walk. We will show that it indeed works for d = 2.
For this, we assume (3b), (3b’) and (3¢), but do not assume (3d). Instead of it, we use
stability conditions given below, which turns out to be necessary and sufficient for
the stationary distribution to have a light tail.
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-

01

Fig. 3 Tangent hyperplanes and orthogonal vectors for (6a) and (6b)

For d = 2, the stability is completely characterized using the expectations of the
increments in Fayolle et al. (1995). To describe these stability conditions, we intro-
duce some notation. Let, fori =1, 2,

mi=E(x"), O —px), @ —E(x?).

1

Define the vectors

m = (mp,my), m® = (mﬁ”,mé“), m® — (m§2),m§2)),
mj}) = (mgl)’ _mgl))’ m(f) _ (_mgz)’ mgz))'

Obviously, m51f> is orthogonal to m™® for each k = 1,2. Note that m is orthogonal

to the tangent of the convex curve y (8) = y1,2)(#) = 1 at the origin. Similarly, m®
is orthogonal to the tangent of the convex curve yy)(#) =1 at the origin. Note that
mél) > ( and miz) > () because X;l} > (0 and X?} > 0; see Fig. 3.

In Fayolle et al. (1995), the stability conditions are separately studied for m = 0
and m # 0. When m = 0, the stationary distribution has a heavy tail in all directions
by Lemma 6.3. Thus, we assume m # 0 for light tail. Unfortunately, Theorem 3.3.1 of
Fayolle et al. (1995) for this case is incorrect. That is, it misses one case. We correct
it as follows.

Lemma 6.4 (Corrected Theorem 3.3.1 of Fayolle et al. 1995) If m # 0, then the two-
dimensional reflecting random walk {Z,} has the stationary distribution if and only
if one of the following three conditions holds:

(62) my <0,my <0, (m,m") <0, and (m,m'?y <0;
(6b) my >0,ma <0, (m,m") <0, and m? <0 form® =0;
6¢) my <0,my >0, (m,m?) < 0and m%l) < 0 for mgl) =0.
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Remark 6.2 The last conditions in (6b) and (6¢) are obviously required for the sta-
bility since m®? =0 (n{" = 0) implies that P(X{? =0) =1 (P(X{" =0) =1,
respectively). However, they are missing in Theorem 3.3.1 of Fayolle et al. (1995).

The conditions in Lemma 6.4 have geometric interpretations. First, (m, m(ﬁ)) <0

means that m(ll) is above the hyperplane which is orthogonal to m. This implies that
I'N Iy (= I'y N I{yy) contains a vector @ such that 8; > 0. It also contains a vector 6
such that §; > 0and 6, <0if m; <O0. (m, m(f)) < 0 has a similar interpretation (see
the left picture of Fig. 3). On the other hand, if m| > 0 and m» < 0, then I" N Iy,
always contains a vector @ such that (§, m®) < 0 and 6, > 0 (see the right picture
of Fig. 3). Note that 8§ € I" N Iy implies (#,m) < O and @, m®©y <0 for k =
1,2. These arguments conclude the following lemma, which is formally proved in
Kobayashi and Miyazawa (2011).

Lemma 6.5 (Lemma 2.2 of Kobayashi and Miyazawa 2011) Either one of the sta-
bility conditions of Lemma 6.4 holds if and only if y(0) =1 and yx(0) =1 has a
solution @ such that 6y > 0 for each k = 1, 2. Furthermore, at least for either one of
k=1,2, there exists a @ € I' N\ I} such that 6 > 0 and 03_j < 0.

We are now ready to determine the tail type of the stationary distribution.

Theorem 6.2 For the two-dimensional reflecting random walk {Z,} satisfying the
conditions (3b), (3b") and (3¢), the following conditions are equivalent:

(6d) The stationary distribution of this process exists and has a light tail.
(6e) Either one of the three conditions (6a), (6b) and (6¢) holds.

Proof We first prove that (6e) implies (6d). The existence of the stationary distribu-
tion is immediate from Lemma 6.4. We need to show that ¢ (6) < oo for some 6 > 0.
For this, we apply operation (6.7). By Lemma 6.5, Gy is not empty, and we can find
0 = (01, 62) € G; such that either 8; > 0,0, <0 or 8; <0, 6, > 0. We then repeat the
operation, and find a point @ > 0 in G,. This point must be in D by Theorem 6.1.
This proves the claim. We next prove the reverse direction. Since the stationary dis-
tribution exists, by Lemma 6.4, we have (6e) if m #£ 0. If m = 0, then the stationary
distribution has a heavy tail by Lemma 6.2. This contradicts (6d). Thus, the converse
is proved. O

6.4 The convergence domain for d =2

We now consider the convergence domain D of the moment generating function ¢ (6).
For this, we introduce the following shorthand notation:

o+ =97, ok =owy, k=0,1,2,
Y=Y Ye=vuw, k=0,1,2,
=1y, =Ty, k=12
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We also use the following notation for the boundaries of I" and I}:
Ir={0ecR:y@) =1}, ={0cR:pn@ =1}, k=12

By Theorem 6.2 and Lemma 6.5, I" contains a @ > 0 such that ¢(0) < oo, and both
of Il and I'; are not empty. From the conditions (3b), (3b’) and (3¢), I is a bounded
convex set, while I is convex and bounded from above but unbounded from below
in the second component since the second component of X!} is nonnegative. Sim-
ilarly, I is convex and bounded from above but unbounded from below in the first
component.

The decay rates will be determined through extreme points of the bounded convex
sets I" N I For this, it will be convenient to use the following notations for k = 1, 2:

g k:max) _ arg max {Qk; y(61,62) = 1},
(01,62)

| (6.10)
0(k,m1n) =arg min {Gk, )/(01, 92) = 1}’
(01.62)
09 =arg sup {6x;0 € I' N I},
(01,62) (6.11)

gke — arg sup {6x;0 €0l NIly}.
(01,62)

From the definitions, it is easy to see that, for k =1, 2,

plko) 6%, (@ m®) > 1,
- o(k,max)’ yk(o(k,max)) S 1.

We will also use the following functions:
§1(6) =max{6:y(0.62) =1}, &,(60) =max{6;y (61, 6) = 1},
£, =min{6;y(©®.6) =1},  &,61) =min{6: y(61.6) = 1.

The following lemmas are keys for our arguments, which are immediate from
Lemma 6.1.

Lemma 6.6 If0 € R? satisfies the condition that 0 € I" and ¢ (6)) < oo fork =1, 2,
then @(0) is finite.

Lemma 6.7 Foreachk = 1,2, choose 0 € I' N\ Iy such that p3_x(03—_) is finite, then
©(0) and ¢ (6y) are finite.

We can execute the program proposed in Sect. 6.2 by producing G, inductively. In-
stead of doing so, we here inductively produce a sequence of points which converges
to extreme points of the closure of G, following Kobayashi and Miyazawa (2011).
Our aim is to show how these points are related to G,, with the help of Lemmas 6.6
and 6.7.
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Let I k(O) = {0} for k = 1, 2. Obviously, 0 is the extreme point of Gy. Let Fk(l) =
{0 € I' N I}; 603 <0} for k = 1,2. Obviously, ¢3_;(63_x) is finite. Hence, by
Lemma 6.7, ¢(8) and g (6y) are finite for 8 € I}V Thus, ¢(8), ¢1(61) and ¢2(62)
are finite for 6 € Fl(l) U Fz(l). We define 02) = (91(1’1), 92(2’1)) by

(k,1)

oD = sup{op: 01,60 e V), k=1,2.

Here we use subscript k in addition to superscript k because it will be used as the kth

entry of the two-dimensional vector 0(’"1), where 9302,1) = § 3k (QIEk’l)). It is easy to

see that at least one of 91(1’1) and 62(2’1) is positive by Lemma 6.5, and
0(1’1), 02D are extreme points of G,

where G is the closure of G;. We inductively define O(A”) = (91(]’”), 92(2’”)) forn>1
by

ngk’n) = sup{@k; 0l NIy, 03 < 93(3_7{]{’”_1)},
and let

0(1,n) — (Ql(l,n)’ﬁz(gl(l,n))), 0(2,n) — (§] (92(2,11))’ ez(l,n)).

It is easy to see that ™ 921 are extreme points of [
Then, H(A”) is nondecreasing in n, and O(A”) < 0™ from our definition. Thus, the

sequence O(A") converges to a finite vector. Denote this limit by 7 = (11, 72). We can
see that

g=sup{bp;0 e ' NIy, 03k <134}, k=1,2. (6.12)

This can be considered as a fixed point equation. We illustrate these iterations
in Fig. 4.

) 6(2,max)

9(2,0): 9(270

(Lmax) 9%22)
—gl.e)

—>

9g2,1)

61

Fig. 4 The first two steps of the iterations
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To solve (6.12), the following classifications will be convenient:
O 67 <o and 65" <679,

(D2) 0@ <919 (D3) 919 <939,

Note that it is impossible to have 91(2’0) > 91(1’(:) and 92(]’0) > 92(2’0). The following
solution is obtained for (6.12) in Kobayashi and Miyazawa (2011).

Lemma 6.8 (Lemma 3.1 of Kobayashi and Miyazawa 2011) The limit T of the se-
quence O(A") is given by

(9](1,0), 92(2,c)) if (D1) holds,
(11, @) =1 €057, 65°) if (D2) holds, 6-13)
69, 5,0"))  if (D3) holds.

We have an answer to the domain D in the following theorem (see Figs. 5 and 6).

Theorem 6.3 (Theorem 3.1 of Kobayashi and Miyazawa 2011) Under the conditions
(3b), (3b"), (3¢), and the stability condition given in Lemma 6.4, we have

D={0 € I'max; 0 < 7}, (6.14)
where we recall that

Tmax = {0 € R2; 0 <30’ J/(o/) < 1}.

This theorem is proved in Kobayashi and Miyazawa (2011). We here outline this
proof. From the observation that 0(1’”), 0%m g » and Theorem 6.1 and Lemma 6.8,
it is not hard to see that

Do=1{0 € I'max; # <t} CD. (6.15)
92 0(2>1"3X) B(Z,max) 0y
2 — TSN CI R “““",T
0(2&):9(2’6) O(I«xnax) : 0 9 i
or !
hae
Ty !

0(1, ze(l,max)
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Fig. 5 Typical domains D for (D1) (green color online)
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40, 0y A

7'24.‘_ (7'1722(7'1»

PRl S —

O(Q,max)

or

7| fgo_ge) a i
""" (1(72),72) E

Iy Ty

(Le)_ g(Lre)

L

Fig. 6 Typical domains D for (D2) and (D3) (green color online)

Thus, we need to show the opposite inclusion, that is, ¢(8) = oo for § & Dy. This is
verified by the following lemmas, all of which assume the conditions of Theorem 6.3.

Lemma 6.9 0 ¢ I, implies that ¢(0) = oo.

Lemma 6.10 For k = 1,2, 6 > 9,51“) implies that ¢y (0r) = oo, and therefore
@(0) = oo.

Lemma 6.11 For k = 1,2, 6 > t; implies that ¢x(6r) = 0o, and therefore
@(0) = oco.

All of these lemmas have been proved in Kobayashi and Miyazawa (2011). Here
we explain how they can be obtained. Lemma 6.9 is immediate from Lemma 6.2
(see also Lemma 3.6 of Kobayashi and Miyazawa 2011). Lemma 6.10 is Lemma 3.7
of Kobayashi and Miyazawa (2011), which requires the Markov additive approach.

Lemma 6.10 is also a special case of Lemma 6.11 because ngk’c) < 1. However,
we require Lemma 6.10 for proving Lemma 6.11. Lemma 6.11 requires the analytic
extension of a complex variable function. We outline its idea below.

Since 7, < Olfk’c), we only need to consider the case that 73 < Glfk’c) in view of

Lemmas 6.10 and 6.11. Suppose that 71 < 91(1’0). This occurs only when (D2) holds.
We claim that ¢ (61) = oo for 61 > 11. This proves Theorem 6.3.
From (3.11) and (6.15), we have, (z1, z2) € C? such that (Wz;, Rz2) € Do,

(1= y(z1.22)94 (1. 22)

= (r1(z1,22) — Do1(21) + (12(z1, 22) — 1)@2(22) + (yo(21, 22) — 1)Py.
(6.16)

To make the left side of this equation vanish, we introduce an analytic extension § ,(2)
of & (0) for real 6 € (™", ™) such that

v(z,6,@)=1.
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By the implicit function theorem, & 2(z) is analytic at least on some open set G in-

cluding the real interval (92(2,min)7 Gz(z’max)). Plugging (z1,22) = (2, & ) (z)) into (6.16),
we have, for z € G satisfying 9z € (0, 71),

(1-%1(2.6,))¢i1(2)
= ()’2(2@2(2)) - 1)902@2(2)) + (VO(Z,gz(Z)) —1)Po. (6.17)

Note that ¢; (gz(z)) is analytic for Mz < 1 but singular at z = 11 since § (t1) =10.

Since 1 — y1(z,£,(2)) # 0 and y2(z, §,(z)) — 1 # 0 for 3z € (0, QI(Z’C))), this singu-
larity implies that of ¢1(z) at z = 1. This proves the claim.

7 Deriving the tail asymptotics for d =2

Once the domain D is obtained, we can use the stationary equations (3.11) and (3.14)
of moment generating functions on D. This enables us to find tail decay rates at the
boundary of D. We demonstrate this for the reflecting random walk for d =2 and a
two-dimensional SRBM. We here employ two methods.

First, we refine the Markov additive approach in Sect. 5 using the information of
the domain. This will be discussed in Sect. 7.1 for the two-dimensional reflecting
random walks with unbounded jumps. Second, we directly work on the stationary
equation (3.14) for the two-dimensional SRBM. This will be discussed in Sect. 7.2.

7.1 Two-dimensional reflecting random walk

We continue to use the random vector Z in Sect. 6, which is subject to the stationary
distribution of the two-dimensional reflecting random walk. We consider two types of
the tail sets, {Zy > n, Z3_; = 0} and {{(c, Z) > n} for a directional vector ¢ > 0. For
convenience, we will use unit vectors e; = (1,0) and e; = (0, 1). All results in this
subsection is cited from Kobayashi and Miyazawa (2011). So, we omit their proofs
except for the following lemma, which suggests what decay rate we can expect.

Lemma 7.1 Under the assumptions of Theorem 6.3,

1
limsup —log P(Zy >n, Z3_y =0) < —1, k=1,2, (7.1)

n—oo N

and, for any directional vector ¢ > 0,

1
lim sup — log P((c, Z)> n) < —sup{x > 0; xc € D}. (7.2)

n—oo N
Proof (7.1) is immediate from Theorem 6.3. To see (7.2), we use Markov inequality:

e"P(le,Z) >n) < E(e"%), x>0,n=0,1,....
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Taking logarithms of both sides, dividing by n > 1 and letting n — oo, we
have (7.2). Il

By this lemma, the decay rates of P(Z; > n, Z3_x =0) and P({c, Z) > n) are
expected to be respectively 7 and

a. =sup{x > 0; xc € D}, for directional vector ¢ > 0.

For the double QBD process, we have used the procedure given in Sect. 5.6. Its
key ingredient is Lemma 5.2, but we cannot use this lemma because of unbounded
jumps. On the other hand, we have the domain D, which enables us to directly use
the results such as Theorem 7.2 in Sect. 5. This has been performed with help of
Lemma 7.1 and generalizing Lemma 5.2 by Kobayashi and Miyazawa (2011).

Theorem 7.1 (Theorem 4.1 of Kobayashi and Miyazawa 2011) Under the conditions
of Theorem 6.3, we have,

1
lim —logP(Zy>n,Z3_y=0)=—1, k=1,2. (7.3)
n—oon

Theorem 7.2 (Theorem 4.2 of Kobayashi and Miyazawa 2011) Under the same con-
ditions of Theorem 7.1, we have, for any directional vector ¢ > 0,

1
lim — logP((c, Z)> n) = —ag, (7.4)

n—oon
where we recall that o = sup{x > 0; xc € D}. Furthermore, if y(a.c) =1 and if
ve(aee) # 1 and accy # T for k = 1, 2, then we have the following exact asymptotics:
lim e“‘”P((c, Z)> n) =b,. (7.5)

n—oQ

Remark 7.1 Since ae, may be less than 1y, the decay rate of P(Zy > n) may be
different from that of P(Zy >n, Z3_; =0).

We note that the tail asymptotic of P({¢, Z) > x) is generally different from that
of P(Z > xc). The latter may be different from P(Z € x(c¢ + B) for a bounded set
B C R%r. Nevertheless, the tail asymptotics obtained in Theorem 7.2 have some sim-
ilarity to the asymptotics of P(Z € xc + U;) for the two-dimensional reflecting skip-
free random walk obtained in Borovkov and Mogul’skii (2001), where U is a unit
square.

7.2 Two-dimensional SRBM

We consider the two-dimensional SRBM under the conditions (3-ii) and (3-iii) in
Sect. 3.5. These are necessary and sufficient conditions for the existence of the sta-
tionary distribution. Then, we have the stationary equation (3.14) in terms of moment
generating functions. For d = 2, it is written as

y(®) @) = y11@)e11(62) + v @ e (01), 6 €D. (7.6)
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Fig. 7 Typical domains D for (D1) and (D2) (green color online)

We only use this equation for deriving the tail asymptotics. A key idea is to directly
connect g1} and @[2). For this, we take a path obtained from y (8}, 62) = 0 on R?. On
this path, y[1](61) and y|2)(6>) are directly related by (7.6), where 6 is a function of
61 and vice versa.

Denote this function f>(61). Then, it can be shown that f>(z) with complex vari-
able z is analytic for iz € D. Analytically extending this complex variable function,
we can find analytic behaviors of ¢[11(z) and ¢|2)(z), respectively, at the singular
points whose real parts are smallest. Then, the complex variable version of (7.6):

Y (21, 220921, 22) = Y (1, 2)9(22) + Y121, 2)9p1 (1), (Rz1, Rz) € C2,
(7.7

and analytic inversions yield the exact tail asymptotics of P({c, Z) > x) as x — o0
for each directional vector ¢ > 0.

This scenario has been recently completed by Dai and Miyazawa (2010). We here
briefly introduce their results. The domain D has essentially the same form given by
Theorem 6.3. The regions I', I} and I are defined as

r=1{0eR*y@®) >0}, Ne={0 eR% y(0) <0}, k=1,2.

Vectors §k-max) gk.min) g(k.c) ,nq 9k-e) are defined by (6.10) and (6.11), respec-
tively. The classifications (D1), (D2) and (D3) are also the same as those in Sect. 6.4.
See Theorem 2.1 of Dai and Miyazawa (2010) for details, in which slightly different
notation is used, but they exactly correspond to those introduced in this paper.
Because of simplicity of the stationary equation (7.6), we can successfully apply
complex analysis and get sharper results. We denote a random vector subject to the
stationary distribution by Z. We also use the following notation. If T & I, then

1V =(0.6H@), 1% =(5m)n).

Otherwise, we let V) = y® = 7. Typical figures of the domain D are drawn
in Fig. 7.

The exact tail asymptotics are derived for the one-dimensional stationary distribu-
tion in each direction in the following two theorems. In what follows, for a non-zero
vector u € Ri, the line fu with ¢ > 0 is referred to as the ray u, and aray u = (u1, u3)
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is said to be below (on, above) ray v = (vy, v2) if u; = sv; for some s > 0 implies
Uy < svp (uy = svo, Uy > Svo, respectively).

Theorem 7.3 (Theorem 2.2 of Dai and Miyazawa 2010) Assume that conditions
(3-i1) and (3-iii) hold and that the SRBM data is in case (D1). Let ¢ € R%r be a
direction. Then, P({c, Z) > x) has the exact asymptotic bh.(x) with some constant
b > 0 and h(x) being given below. (a) When the ray ¢ is below ray 5V,

X ifﬂ(l) ?éo(l,max)’
he(x) = x—1/2p—acx ifn(l) — 0(1,max) — 0(1’8), (7.8)
x—3/28—acx l-fn(l) — o(l,max) ?é 0(1’8).

(b) When the ray c is above or on the ray 3V and below the ray n®,

x~12e=%X - ifcis on line pV = g (1-max) * oo,
he(x) = { xe %, if ¢ is on line D = g(1-max) (7.9)
e X otherwise.

(c) When the ray c is above the ray 7, the case is symmetric to (a) and a part of (b).

For cases (D2) and (D3), we only consider (D2) II because of their symme-
try. In (D2), ©» = 92(2’6), T = gl(rz), 17(1) = 17(2) =1 = (11, T2), and the condition
nV #£01M) jg equivalent to the condition 7; < Qfl’max).

Theorem 7.4 (Theorem 2.3 of Dai and Miyazawa 2010) Assume that conditions
(3-ii) and (3-iii) hold and that the SRBM data is in case (D2). Let ¢ € ]R%_ be a
direction. Then, P({c, Z) > x) has the exact asymptotic bh.(x) with some constant
b > 0 and h.(x) being given below.

(a) When the ray c is below the ray T,

e %X, if T #0519 and v + 91Hm
or if‘[ — 0(l,max) — 0(1’6),
hc(X) == xe—acx’ l:fT — 0(1,6) 7& o(l,max)’ (710)
x—l/ZE—acx’ if‘[ — o(l,max) ;é o(l,e).
(b) When the ray c is on the ray T,
he(x) = xe %>, (7.11)
(c) When the ray c is above the ray t,
he(x) = e %", (7.12)

The results in Theorems 7.3 and 7.4 exactly correspond to those in Theorem 7.2.
As we noted there, the tail asymptotic of P({c, Z) > x) is generally different from
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Fig. 8 The domain D (green color online) projected to 61_—6, and 0y —0> quadrants for two-sided
DQBD

that of P(Z > xc¢) and P(Z € x(c + B)) for a bounded open set B C R%r. We may
discuss their difference using the large deviations rate function obtained by Avram et
al. (2001). This will be done elsewhere.

7.3 Two-sided double QBD

This process is introduced in Example 3.3. It is determined by six distributions of the

increments, {p,(,")} for j =0,4, —, 1+, 1—, 2. As we have discussed in Example 3.3,
we have to work with the three-dimensional variable (61—, 61, 87) for the generating
functions.

Similar to the double QBD process, let

N-={0eR%y_(6) <1,71-(6) <1},

Iy = {0 e R%: y+(0) < 1,y14(0) < 1},

Dy={(01-,011,62) €R% y-(01-,60) < Ly14 (014,62 < 1,
y2(01-, 014, 62) < 1}.

We then get the extreme points 71—, 14+ and 1 of the domain in the coordinate
directions as the solution of the following fixed point equations:

T =sup{6) >0;0 € I'_, 6» < 1}, (7.13)
71+ =sup{6) > 0;0 € Iy, 6 < 12}, (7.14)
T =sup{6y > 0; (01—, 011,62) € 3,01 <71, 014 < T4} (7.15)

To find this solution, we compute the following extreme points (see Fig. 8):

019 = argy sup{6; > 0; (61, 62) e I'_ N T_},
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09 = argy sup{6; > 0; (61,62) € I'y N T4},
0(2,(;) = arg(gl_’gH_’@z) Sup{92 > 09 (01—1 91+9 92) € Fz}

Then, we have

] o170, gm0 pBa [phe gline g0,
1= 9<2 ) 9<17 ) > 9(2 c) I+ = 9(2 .0) 9§1+‘c> > 952,c>,
(7.16)
629, 920 _g1=0 5.0 _ g+ o
= . 1-, 1+, 2, 1-, 2, 1+, .
min(6y' 6" 039 =07 or o> > 91+

These 11—, 71+ and 1, are obtained as the decay rates of the three coordinate di-
rections in () (see Theorem 1.3 there), which uses the Markov additive approach.
Here we derive them by the analytic function approach using the program proposed
in Sect. 6.2. Similar to the SRBM case in Sect. 7.2, it should not be very difficult to
find the exact tail asymptotics in an arbitrary given direction. However, the proposed
program in Sect. 6.2 has not yet been verified except for the two-dimensional reflect-
ing process on the orthant. Hence, we need some more work for using the analytic
function approach.

8 Applications

In this section, we collect some examples to see how the decay rates obtained through
the domain D are useful in applications.

8.1 Modified Jackson networks
8.1.1 Jackson network

We have considered the Jackson network in Sect. 3.1. Here we consider the case for
d =2. For this model, the moment generating functions y and yj are given by

y(0) =n1e” 4+ 22e® + e (ri2e” 4+ r10) + poe 2 (r1e” +r20), (8.1
Y10) = r1e” + roe®” + p1e " (rine® + ri0) + 2. (3.2)

Assume the stability condition (3.3). Then, the stationary distribution for d =2 is
given by
mn,m)=1—p)A—p)pi'py, m,nely.

Let 7; = —logp; for i = 1,2. Then, the moment generating functions of the m,
{m(0,n);n € Z,}and {m(m, 0); m € Z} are computed as

(etl —D(e? 1)
(e —eP)(er — )’

P+(0) =9(0) =
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72(0) =
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Fig. 9 The location of t for (D1) and (D2)
efi —1

@i () = 6_(1_e—r3_,»), i=1,2.

eti — el
Plugging these into the stationary equation, we derive
(1=y®)+ (1 =n@®)(? —e?)e ™+ (1= p20)) (e —e”)e™
= (y0(0) - 1)71(0, 0) (eTl - 891)(612 - eez)e_”_fz.

Let # = 7 in this equation, then we immediately see that y () = 1. Thus, 7 = (11, ©2)
must be on the boundary of I', thatis, T € dI". This is illustrated in Fig. 9.
We next compute 019 which is the solution of the following equations:

y@=1, n@=1,  0#0.
From (8.1), (8.2) and €?2 = ry1€”" + ry9, we can find
01 = (—10 p1,—1lo S )
£ grzl + (I =r21)p1
Hence, y (11, 62) = 1 has two solutions:

p1

0 =1(=—logpy) and —log————.

r1+ (1 —ra)pi
. 0 _ .

Thus, if p > m, which is equivalent to

L1 < r21,02’
I—p1 " 1=—p

(8.3)

then 7, < 92(1’6), and therefore we have the case (D2). Otherwise, the case (D1) or

(D3) occurs, and we have 819 = (19 (see Fig. 9). Similar results are obtained
for > That is, (D3) occurs if

r
P2 < 1201

< . (8.4)
l—p2 " 1=p
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Fig. 10 The effect of server collaboration for (D1) and (D2)

Otherwise, (D1) or (D2) occurs.
We cannot have (8.3) and (8.4) simultaneously because they imply rj2ra; > 1,
which contradicts the stability condition. Thus, we have the following classification:

(J1) If neither (8.3) nor (8.4) holds, then we have the case (D1).
(J2) If (8.3) holds but (8.4) does not hold, then we have the case (D2).
(J3) If (8.3) does not hold but (8.4) holds, then we have the case (D3).

8.1.2 Server collaboration

Similarly to Miyazawa (2009b), we next modify the Jackson network in such a way
that servers at nodes 1 and 2 help service at the other nodes when their own nodes
are empty. We describe this by increasing 1z up to uj in yx () for k = 1, 2. To make
arguments simple, we assume that

1+ py <+ p, w2+ w5 <+ pa.

This only changes yx(#) for k = 1,2. We denote this modified functions by y,(8).
From (8.2) and the corresponding formulas for y» (@), we can see that the curve of
¥y (@) =1 is located above that of y;(f) = 1. Similarly, the curve of y;(#) =1 is
located at the right side of that of y»(f) = 1. See Fig. 10.

From this figure, we can see how the decay rate t; of the queue length distribution
at node k is increased to t;°, which is the decay rate of the modified network. It is
noted that increasing the service rate at node 1 does not gain any improvement for the
case (D2) while that at node 2 improves service at both nodes. These improvements
stop if increased service rates are larger than the thresholds which correspond to the
maximum points §>™ and ™ This is detailed in Miyazawa (2009b). This
problem is also discussed by Foley and McDonald (2005b) and Khanchi (2010).

8.1.3 Batch arrival Jackson network

We can also modify the two node Jackson network by exogenous batch arrivals. This
is considered in Kobayashi and Miyazawa (2011). Contrary to the server collabora-
tion, its effect is negative as one may expect. In this case, the closed curve of y (0) =1
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Fig. 11 Generalized join
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becomes smaller and the curves of y1(#) = 1 and y»(6) = 1 are shifted downward and
to the left, respectively.

For this batch arrival model, Miyazawa and Taylor (1997) derived a stochastic
upper bound of product form for the stationary distribution. Kobayashi and Miyazawa
(2011) show that this bound is generally not tight, that is, the decay rates of the
upper bound in coordinate directions are generally smaller than the decay rates for
the stationary distribution.

In our formulation, we can also allow simultaneous batch arrivals at two nodes
whose sizes can have an arbitrary joint distribution. For example, the bath room prob-
lem of Flatto and McKean (1977) can be answered.

8.2 Join the shortest queue

It is very natural to join the shortest queue if there are parallel queues for identical
service. This service system is called a join the shortest queue. A typical assumption
is that customers arrive subject to the Poisson process and join the shortest queue
with tie breaking, and service times are i.i.d. with the exponential distribution. This
queueing model may look simple, but the stationary distribution of its joint queue
length is very hard to get even for two parallel queues. Thus, the tail asymptotics
have been studied. It has a long history from starting from Kingman (1961), but
satisfactory answers are only available for two parallel queues (e.g., see Foley and
McDonald 2001; Kurkova and Suhov 2003; Li et al. 2007; Sakuma et al. 2006 and
Takahashi et al. 2001). The large deviations principle is derived for the stationary
distributions of joint queue lengths under very general assumption for general d >
2 in Puhalskii and Vladimirov (2007). However, the result is not easy to use for
applications because we have to solve the variational problem (see Sect. 4.2).

We consider such a general model but for d = 2. This model has two parallel
queues, numbered as queues 1 and 2. For each i = 1, 2, queue i serves customers in
the first-come first-served manner with i.i.d. service times subject to the exponential
distribution with rate w;. There are three exogenous Poisson arrival streams. The first
and second streams go to queues 1 and 2 with rates A1 and X,, respectively, while
arriving customers in the third stream with rate § choose the shorter queue with tie
breaking. The probability that a customer with tie breaking chooses queue 1 does not
change the tail decay rate, so we simply assume it to be 1/2. This model is referred
to as a generalized join shortest queue (see Fig. 11).

The tail asymptotic problem for this generalized join shortest queue was studied
by Foley and McDonald (2001). However, they mainly considered the case where the
moment generating function of the Markov additive kernel is positive (see condition
(5¢) in Theorem 5.2). For some other cases, the exact geometric asymptotics were
obtained in Li et al. (2007). However, those two papers have not yet completely solved
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Fig. 12 State transitions for the generalized shortest queue

the tail asymptotic problem even for the rough asymptotics, that is, the decay rate
problem. For the latter problem, a complete solution was recently obtained in ()
by using the Markov additive approach and the optimization technique developed in
Miyazawa (2009b). In this section, we revisit this result using the analytic function
approach based on the convergence domain.

Similar to the Jackson network, we can formulate this continuous time model as
a discrete time Markov chain. Following (), we formulate it as a two-sided double
QBD. For this, we assume without loss of generality that

MAAr+ur+ur+6=1.

Let L1y and Ly, be the queue lengths including customers being served at time ¢ =
0,1,...,and let L1y = Loy — L1¢ and Z¢ = min(L1¢, Ly¢). It is not hard to see that
Zy = (Zyg, Z2p) is the two-sided double QBD process introduced in Example 3.3. For
example, it is a skip free random walk on each region Sy = (Z U \{0}) x (Z \ {0})
reflected at the boundary S;4+ = (Z4 \ {0}) x {0} (see Fig. 12).

Then, the transition probabilities are give by

- _ -) _ ) _ ) _
P_ho=*.  P_pen=H2  Pig =R1.4 Py =i+,
s o & &
Po’ =42, Py—1 = K1 P10 = M2 P =r1 38,
@ _ 8 @  _ ) _ @ _ 8
Pip =22+ 5 Py = M1, PZ1y—1) = M2, Py = AL+ 5
1- 1— 1+ 1-
P((_1;0=M, P = 12, Pio” =1, pi ) =+,
(1+) _ (+) _ I+ _ +) _
Pio —)"2» Poo = = M1, p(_l)O—ILQ’ P(_l)l —)¥1 +87
O _, 98 ) _ O 548
P = 2+§, Doy = M1+ 12, P 1o = 1+§,

where all other transitions are null. To exclude obvious cases, we assume that
8, 11, Wo are all positive.
Denote traffic intensities by

Al A2 A +Ar+4
= — p2:—’ = —m———-

pr=—, P
M1 M2 M1+ 2
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Then, it is known that this generalized join shortest queue is stable if and only if p; <
1,2 < 1land p <1 (e.g., see Foley and McDonald 2001). This stability condition is
assumed throughout this section. We will also use the following notation, which was
introduced and shown to be very useful in computations in Li et al. (2007):

B =10 + A2, Ba = p2p® + A1
We need to compute Gfl_’c), 91(1+’°) and OZ(Z’C), which are defined as
01" =sup{61;y-(0) < 1, y1-(8) < 1},
6" = sup(61: 4 (0) < 1. y14(0) < 1},
057 = sup{62; y—(01-,62) < 1, ¥4 (011,62) < 1,12(01—,614,62) < 1}.
They are obtained if we can solve the following three sets of equations:
@ =1,  y_@®)=1, (8.5)
(@) =1, 71+(0) =1, (8.6)
y-(01-,0) =1, v+(014,60) =1, »2(01-,014,00)=1.  (8.7)
For convenience, let z = ¢! and &= e” in (8.5). Then, we have
Mzt pzE T T+ a+ 8T E =1, (8.8)
Mz e+ izt Qa4+ 8z lE=1. (8.9)

Solving these equations for z # 1, we have z =& = pl_l. For z = pl_l, (8.8) yields

) B e | -1 H2
§=p s Pl Note that p; " < 13

,01_1 if and only if up > A, + §. Hence,

using notation 61 ™Y

'™ — max{logz; (8.8)holds},  65' ™ = max[logé; (8.8) holds},
we have

—1 —1

(1=0) ,(1=,0) (log p; ", logp; ), w2 > Ay +38,
0 ,0 = _ L 8.10
g 2 ) O 7m0 g Tmay ) < g 48 (8.10)

,max)

It is also noted that 91(17 > log pl_l, so we always have Qflf’c) > log ,ol_1 .

Remark 8.1 The Oi(l_’max) for i =1, 2 are computed from their definitions as

_ 1 -
o =log o (1-2Vw2G2 +9) +¢7),

(1= max) _ | 1—4()»1M1+()»2+5)M2)+C2(_)
%2 =08 8A1 0 +0)

’
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where

(7 =1+ 4202+ 8) — Vi2Ga +8) — M)

6 =\ (1 = 40uasu1 + G + 8)112))° - 64Gh2 + H)hapur o

Similarly, letting z = €' and £ = ¢ in (8.6),

Mzt uizE O+ 8 E=1, 8.11)
Mz+ur+uaz P48z lE=1. (8.12)

Solving these equations for z # 1, we have z =& = ,02_1. For z = ,02_1, (8.11) yields
£= p;l, ﬁp{l. Recalling that

6"t — max{logz; (8.11)holds}, 65" "™ = max{logé; (8.11) holds},

we have that 91(1+’C) > log pgl and
-1 -1
(I+.0) ,(1+.0) (logpy ", logp, ), w1 > Ay +38,
(% ,0 = 8.13
(& ) Y) {(91(]+,max)’92(1+,max))7 w1 <3 +8. (8.13)
We also consider the solution of (8.7). In this case, let & = e, 71 = ¢?'- and
7o = %1+, Then, (8.7) becomes
Mz moziE T g+ Qo+ 8z e =1, (8.14)
Mz iz oz G+ 8z e =1, (8.15)
1) _ _ )
<M~I—§>21+M2Z1S "+ 28 1+()»2+§>22=1- (8.16)

These equations have been solved in Li et al. (2007). That is, if z # 1, then £ = p—2

and z; = z0 = p~ . For £ = p 2, the first equation has solutions z; = oL, %p‘l,

and the second equation yields zo = ,0’1, ik p’l. In this case, 92(2’0) is obtained as
the maximum £ that satisfies (8.14), (8.15) and

) 8
<)~1+§>Z1+M2Z1§_1+M1Z2§_1+ (Xz-i-i)zzf L. (8.17)

Thus, we need to solve a convex optimization problem. We already know that
(z1,22,8) = (1,1, 1), (p~ 1, p~ 1, p=2) are the extreme points of the set of all the
points (z1, 22, &) that satisfy the constraints (8.17). To identify the latter point on the
convex curves (8.14) and (8.15), it is convenient to introduce the following classifi-
cation:

p2+8 > P, P1+38> P2, (8.18)
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B2 +8 < B, B1+68> B2, (8.19)
Bo+8> B, B1+68<po, (8.20)

where we exclude the case that 8> 4+ § < 81 and 81 + 6 < B>, which is impossible
since § > 0. Note that (8.18) is equivalent to

|B1 — B2l <3,

which is introduced under the nomenclature “a strongly pooled condition” in Foley
and McDonald (2001).
We now find 92(2"') by solving the convex optimization problem.

Lemma 8.1 (Lemma 1.8 of Miyazawa 2009a) If the strongly pooled condition (8.18)
holds, then

1

2, _ 2, 2, _
6,79 =logp~2, 679 =69 =logp.

Otherwise, if (8.19) holds, then

9(2,17)
- e”
(6,7,62,639) = (92(1 M Jog g arg max 91>,
20052+ un) 61,65HeDS”
and, if (8.20) holds, then
692(2.0)
(639,629, Q&C)) = <92(1+’max), arg  max  6y,log —)

. _ 2,0)
©1,05")eDf” 2(h2e%" + 1)

‘We need another classification:

pP1L<p, p2<p, (8.21)
L= P, P2 <p, (8.22)
pL<p, 2= P, (8.23)

where we do not consider the case that p; > p and p2 > p, which is impossible since
8 > 0. The condition (8.21) is referred to as a weakly pooled condition in Foley and
McDonald (2001).

Under the conditions (8.18) and (8.21), the asymptotic decay of

]P’(min(Ll,Lz):n,Ll —LQZE), n— oo,
is shown to be exactly geometric with decay rate — log(p?) for each fixed £ in Foley

and McDonald (2001) while some other cases are obtained in Li et al. (2007). We are
ready to present a complete answer.

Theorem 8.1 (Theorem 1.5 of Miyazawa 2009a) For the generalized join the short-
est queue with two queues, suppose that the stability conditions p < 1, p1 < 1 and

@ Springer



Light tail asymptotics in multidimensional reflecting processes 293

. . _po .
p2 < 1 are satisfied. Then, the geometric decay rate ry = e™% " exists for the min-

imum of the two queues in the sense of marginal distribution as well as jointly with
each fixed difference of the two queues, and one of the following three cases occurs:

(S1) If (8.18) holds, then either one of the following cases occurs:
(Sla) (8.21) implies ry = p?.
(S1b) (8.22) implies ry = 2” o1.
(Slc) (8.23) implies ry = *;:5 0.

(S2) If (8.19) holds, then either one of the following cases occurs:
(S2a) (8.21) implies

6_02(1—,max) ’ 9(2 ,C) < 9(1+ C)

2= 240 1(;rc) (1+.0)
sz, QH- > 91 .
(S2b) (8.22) implies
—eélf'max), Ql(zf) <log ,0_l 9(2 ©) 9(1+’C)
Az+5p L OI(Z_,C) - 10g,01 1 9(1+ c) < 9(1+ C)
r = %pz, 01(2_,0) <]0g,01 1 9(2 c) 91(1+,c)’
mln(AZHp], M,02), 91(2_ ©) >logp; —1 9(2 -©) 91(1+’C).

2!

(S82¢) (8.23) implies ry = )‘L—T‘sz.
(S83) If (8.20) holds, then either one of the following cases occurs.
(S3a) (8.21) implies

(14, max) _
e L oY <o 79,
}"2 =
do+8 (2,0 (I—=,0)
g P 0,7 >0, .

(S3b) (8.22) implies ry = Afl—j‘s o1.
(S3c) (8.23) implies

et 62 <619, 629 <logp; !,
A+ 2.0) (I=,0) 52,0 —1
2= Allljap ’ 91(21) z(gl(pc)’el(;rc) <10gP271’
i P2 0,27 <0, .0, =logp,
min()‘ﬁsp ’ A1+5 ). el(%c) > 91(1—,0)’ Ol(z,c) > log,oz_l.

Furthermore, the decay rates are exactly geometric for the cases (S1), (S2) unless
0> =" "™ and (S3) unless 6> = 6! ™).

Note that the cases (S2) and (S3) are symmetric. See Fig. 13 for (S1) and Fig. 14
for (S2).
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9(2 ») 9(20)

(052#«2)‘ 9§2Ac))

g0—o) r P2+ p2:0)

\P 077 0577) log o2 ‘ /%

\j log 12 2 \ i

—F) p2c) Az +9
(64 ,0;77) 4 log o2 JATEN
o(1+e) log py!
¢ N
r, prend: I I

/ Av4 v

—log py* \ —logp™" logp~* log py ! \/
Slog 220 - . 1
7 —log p; logp™! logp,
Case (Sla) Case (S1b)

Fig. 13 The decay rates for strongly pooled (8.18): case (Sla) for (8.21) and case (S1b) for (8.22)

ng'°> _ 022,171&)() (9§2+<c)‘ ggz.c)) 952*’) — 951"“1*)
9(. 7'(’)A0(2'C) I/ . . (2+,¢) )
(47,05 = (029, 429, (0 205

log p~*

log p*‘Z g(1+.e)
) L
1“(2+ g+ I‘é’) F;“
PYC) ‘x log 7!
o1—p
v/ i hvi
! —logp~t " —1 —1
~logpr! —logp™! logp™" logpy"! Clog 2210, logp™"  logp;
—logpy! it

Case (S2a) Case (S2b)

Fig. 14 The decay rates for not strongly pooled (8.19): case (S2a) for (8.21) and case (S2b) for (8.22)

9 Concluding remarks

This paper focuses on the tail asymptotic problem for the stationary distribution
of reflecting processes. We have mainly considered two-dimensional reflecting ran-
dom walks and two-dimensional SRBM, and had some discussions for the higher-
dimensional reflecting processes. However, we have not discussed much about re-
laxing the modeling assumptions and said nothing about limiting behaviors of a se-
quence of reflecting processes constrained in bounded (or partially bounded) regions
as the regions are expanded. The latter is important for applications because buffers
cannot have infinite capacity in actual queueing networks. In this section, we address
these two issues.
We first list possible changes about the modeling assumptions.

@ Springer



Light tail asymptotics in multidimensional reflecting processes 295

(i) Relaxing technical assumptions such as the aperiodicity and irreducibility of the
random walk and the non-singularity of the covariance matrix of the Brownian
motion (see conditions (3c), (3d) and (3-1)).

(ii) Removing the skip-free assumption in all directions.
(iii) Allowing the reflecting random walk to be real vector-valued.
(iv) Modulating the reflecting process by a background process.

As for (i), some of them were discussed in Miyazawa (2009b). Li and Zhao (2009)
studied the priority queue with two types of customers, which is the case that the
random walk is not irreducible. We may need more systematic studies on this issue.

To implement (ii) and (iii), we need to appropriately define a reflection mecha-
nism. One such attempt was made by Borovkov and Mogul’skii (2001). They use a
thick boundary, but it considerably complicates the analysis. Another way is to in-
troduce a function to return to the boundary when the boundary is overshot. This is
something similar to the reflection mapping of a SRBM. The third one is to change
the transition probabilities from the interior to the boundary. This has been considered
for a reflecting Markov additive process in Miyazawa and Zwart (2009).

As for (iv), a reflecting Markov additive process is proposed in Miyazawa and
Zwart (2009). This class of models is important to more accurately describe queueing
networks. Even a finite background space is useful. There are some studied in this
direction for d = 2 (see, e.g., Fujimoto et al. 1998; Katou et al. 2008; Sakuma et
al. 2006) for the so-called generalized Jackson network, which replaces the Poisson
arrivals by the renewal arrivals and allows service times to be generally distributed.
No satisfactory answer has been obtained, but Ozawa (2011) very recently solved this
problem in a certain way using the framework presented in Sect. 5.6.

Of course, it is much more interesting to extend the tail asymptotic results of the
two-dimensional processes to higher-dimensional cases. We have already proposed
one program in Sect. 6.2. There are some related conjectures. Miyazawa (2003)
conjectured the decay rates for the generalized Jackson network. Miyazawa and
Kobayashi (2010) make a similar conjecture for an SRBM, which is in the same
line as that conjectured in Sect. 6.2. In a very recent work, Kobayashi et al. (2011)
solved the join the shortest queue problem for an arbitrary number of parallel queues
using a similar technique presented in Sect. 6. This is a sign for the multidimensional
problem for d > 3 to be solvable.

We finally consider a sequence of the reflecting random walks with bounded state
spaces whose limit is unbounded. In general, those processes with bounded state
spaces may be interesting for numerical computations, but are less interesting for
theoretical study because analytically tractable results cannot be expected. This leads
us to consider their limiting behavior.

There are two papers studying this issue. Kroese et al. (2003) considered the effect
of buffer truncation for the two-node Jackson tandem queue, and found the condition
that the buffer full probabilities converge to the decay rate of that of no buffer trun-
cation. They also found the limiting buffer full probability when this condition is not
satisfied. Those results are extended for the two-node Jackson network by Sakuma
and Miyazawa (2005). It would be nice to investigate this limiting behavior for the
general reflecting random walks on Zi.
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