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Abstract A supply chain design problem based on a two-echelon single-product sys-
tem is addressed. The product is distributed from plants to distribution centers and
then to customers. There are several transportation channels available for each pair
of facilities between echelons. These transportation channels introduce a cost–time
tradeoff in the problem that allows us to formulate it as a bi-objective mixed-integer
program. The decisions to be taken are the location of the distribution centers, the
selection of the transportation channels, and the flow between facilities. Three varia-
tions of the classic ε-constraint method for generating optimal Pareto fronts are stud-
ied in this paper. The procedures are tested over six different classes of instance sets.
The three sets of smallest size were solved completely obtaining their efficient solu-
tion set. It was observed that one of the three proposed algorithms consistently outper-
formed the other two in terms of their execution time. Additionally, four schemes for
obtaining lower bound sets are studied. These schemes are based on linear program-
ming relaxations of the model. The contribution of this work is the introduction of a
new bi-objective optimization problem, and a computational study of the ε-constraint
methods for obtaining optimal efficient fronts and the lower bounding schemes.
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1 Introduction

Supply chains have received much attention recently after recognizing the importance
of the logistics costs in the cost structure of the products. Their efficient management
provides a competitive advantage to domestic and international firms. At the strate-
gic level, managers must design the supply chain to achieve the minimum cost and
to meet a desired customer service level. This task concerns aspects of inventory,
transportation and facility location (Ballou 1999). The supply chain is composed of
facilities and transportation flows between facilities. These facilities perform differ-
ent roles as suppliers, plants, warehouses, distribution centers and retailers. Thus, the
decisions implied in supply chain design are (Simchi-Levi et al. 2000):

• To determine the number of facilities
• To determine the location of the facilities
• To determine the capacities of the facilities
• To allocate products to facilities
• To determine the flow of products between facilities

Network design decisions determine the supply chain configuration and have a sig-
nificant impact in logistics costs and responsiveness (Chopra and Meindl 2004). For
instance, facility location has a long term impact in the supply chain because of the
high cost to open a facility or to move it. Opening and inventory costs induce to
reduce the number of facilities, while responsiveness causes a contrary effect. Re-
sponsiveness is the delivery of products in a short lead time, achieved by having short
transportation time, availability of the product in inventory, or a combination of both.
A high number of facilities may reduce the time to deliver a product to the final cus-
tomer. In certain products, lead time can be viewed as an added value so that the
firm that makes them available first can obtain short and long term advantages in the
market.

Many models developed to design distribution systems are based on discrete fa-
cility location where a set of potential sites is known. The earliest models were for-
mulated by Baumol and Wolfe (1958), and Kuehn and Hamburger (1963). These and
subsequent models have been formulated as mixed-integer programming problems.
The evolution of such models has considered until recently (Klose and Drexl 2005)
the following elements:

• Number of echelons
• Facility capacity
• Number of products
• Time periods
• Stochastic demand
• Side constraints to include:

◦ Single or multiple sourcing
◦ Routing
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However, an area of opportunity in supply chain design is to address the influence of
the transportation channels. The decision to use a certain transportation channel has
an effect on the lead time to deliver a product which is often an indicator of customer
service level. The availability of different channels to transport the product between a
pair of facilities is a feature of modern logistics services. These transportation chan-
nels can be seen as transportation modes (rail, truck, ship, airplane, etc.), shipping
services (express, normal, overnight, etc.) or just as simple as the offer from differ-
ent companies. Transportation choices are differentiated by parameters of time and
cost. Commonly, these parameters are negatively correlated with shorter times for
the most expensive alternatives. For many years, distance was treated as surrogate of
transportation cost and time. Nowadays this is not a valid assumption.

In this paper, we introduce a problem for supply chain design of a two-echelon
distribution system. We include the decision of selecting the transportation channel
between each pair of facilities. The problem is treated as a bi-objective optimization
problem where cost and time criteria are minimized. This problem has been named
“Capacitated Fixed Cost Facility Location Problem with Transportation Choices”
(CFCLP-TC). A literature review is presented in Sect. 2. Section 3 shows the prob-
lem description in detail. The mathematical model is explained in Sect. 4. Section 5
is dedicated to presenting three algorithms to obtain the set of efficient solutions for
an instance. These algorithms are variations of the ε-constraint method. The algo-
rithms are compared later in terms of efficiency (run time) and solution quality. Four
schemes for obtaining lower bound sets are described in Sect. 6. These schemes are
based on linear relaxations of the model and on the information of the mixed-integer
program (MIP) solutions. Therefore, to define their quality they are used for small
instances where the set of efficient solutions is known. Section 7 shows the results
of the computational experience with the algorithms proposed and the lower bound
schemes studied. The final conclusions are presented in Sect. 8.

2 Literature review

Several reviews about models for supply chain design (Aikens 1985; Thomas and
Griffin 1996; Vidal and Goetschalckx 1997; Klose and Drexl 2005; Sahin and Sural
2007; Melo et al. 2009) exist in the literature. In general, the optimization models
described were formulated as mixed-integer programs and solved by decomposition
techniques and heuristic methods. However, as mentioned before, the influence of
the availability of different transportation channels between facilities has not been
studied in depth. The transportation choices are qualified in terms of time and cost
producing a tradeoff that affects the distribution network configuration. This feature
induces naturally to re-formulate the supply chain design problem as a bi-objective
optimization model. Looking at the review by Current et al. (1990), it is evident that
the balance of these measures has not been studied extensively. Just until recently,
Farahani et al. (2009) dedicate a review to the multicriteria models related to facility
location problems. Some relevant works produced recently are highlighted next.
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2.1 Cost–time tradeoff with one transportation mode between facilities

A first set of works includes those that identify the cost–time tradeoff as an important
element in supply chain design. However, these papers do not relate this balance to the
availability of transportation choices between facilities. Zhou et al. (2003) introduced
two separate objective functions for cost and time. The total sum of transportation
times is minimized in one objective function. In that paper, only one transportation
alternative between each pair of warehouse–customer nodes is considered. The fa-
cility location decision is not included in the model. A genetic algorithm is used to
construct a set of non-dominated solutions. Eskigun et al. (2005) use an aggregated
function for time and cost. Although different transportation modes are included in
their model (rail and truck), the problem is to select between a direct and an inter-
modal shipping strategy. They do not have transportation choices between each pair
of locations. A Lagrangian heuristic is developed to solve the mixed-integer program-
ming model. In the problem proposed by Truong and Azadivar (2005), the cost–time
tradeoff is recognized. In this case, the time measure is included in the objective func-
tion as a parameter that influences inventory cost. Lead time is based on the complete
production–distribution path for the product without transportation alternatives be-
tween nodes. Their solution approach is based on an iterative method that uses a
hybrid genetic algorithm. In an intermediate stage of the algorithm, a mixed-integer
programming model and a simulation model are created and solved. The results are
used as entries for the external cycle of the genetic algorithm. Altiparmak et al. (2006)
handle transportation time as a constraint. In their problem, a set of feasible distrib-
ution centers is selected a priori. These facilities are those that are able to deliver the
product to the customer before a time limit. The selection of a transportation mode
is not considered in their model. Three objective functions are proposed to minimize
total cost, to maximize total customer demand satisfied, and to minimize the unused
capacity of distribution centers. In this case, a genetic algorithm is used to obtain a
set of non-dominated solutions. Vidyarthi et al. (2009) analyze a model based on a
response time of distribution centers that serve a set of customers. The response time
is modeled using a queuing formulation and is not tied to the distance between distri-
bution centers and customers. The authors developed a Lagrangian heuristic to solve
the problem.

2.2 Multiple transportation modes between facilities without cost–time tradeoff

A second set of papers appreciates the influence of the selection of the transportation
channel in the distribution network design. The main feature of this set of works is
that the cost–time tradeoff is not related to that decision. In the model proposed by
Benjamin (1990), the selection of the transportation mode is based on the capacity of
the channel. The time parameter is not considered. The problem is formulated as a
non-linear programming model that minimizes an aggregated cost objective function.
This function combines transportation and inventory costs. The solution procedure is
a heuristic method based on the Benders decomposition technique. Wilhelm et al.
(2005) also include the selection of a transportation mode but it is based on cost.
In this case, a portion of the quantity transported can be assigned to different trans-
portation modes. It is a multi-period problem where the supply chain configuration
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changes dynamically. A set of scenarios were solved to optimality for relatively small
instances. Cordeau et al. (2006) presented a model that has many of the elements of
classic distribution network design. Additionally, the selection of a transportation
mode is one of the decisions in the model. Nevertheless, the cost–time tradeoff is not
studied. The selection of the transportation mode is based on capacity and cost. They
developed a Benders’ decomposition method, which is a technique commonly used
to solve such type of problems.

2.3 Cost–time tradeoff with multiple transportation modes between facilities

The last set of works recognizes the importance of the cost–time tradeoff and re-
lates it to the availability of transportation choices between facilities. In the paper by
Arntzen et al. (1995), the cost–time balance is handled as a weighted combination
in the objective function. The decision is made on the quantity to be sent through
each transportation mode available. Here, transportation time is a linear function of
the quantity shipped. The problem is solved using elastic penalties for violating con-
straints, and a row-factorization technique. In the work by Zeng (1998), the impor-
tance of the lead time–cost tradeoff is emphasized. This feature is directly associated
to the transportation modes available between pairs of nodes in the network. The
author proposed a mathematical model to optimize both measures in the process of
supply chain design. A main difference with traditional models is that facility location
is not addressed. A dynamic programming algorithm was presented to construct the
efficient frontier assuming the discretization of time measure. Graves and Willems
(2005) propose a model that aggregates cost and time in the objective function. Their
approach is not directly related to transportation modes but it is open to any alterna-
tive to be chosen at each stage of the network design process. They use a dynamic
programming algorithm to solve this problem. Chan et al. (2006) present a multiob-
jective model that optimizes a combined objective function with weights. Some of
the criteria include cost and time functions. In this case, the objective function for
time is composed of many sources in addition to transportation time. The selection
of the transportation channel is associated to the cost–time tradeoff. It is a complex
model that includes stochastic components. However, in this case facility location
is not considered. Similarly to other approaches, the transportation time is a linear
function of the quantity transported. In this case, a genetic algorithm is the base of an
iterative method to solve the problem for several weight scenarios. ElMaraghy and
Majety (2008) propose a model that optimizes cost, including the cost of late deliv-
ery. The model is formulated in terms of periods to include the dynamic nature of the
decisions. The authors use commercial optimization software to solve the model, and
analyze different scenarios.

2.4 Remarks

It is evident that there are few works that handle the cost–time tradeoff derived from
the transportation channel selection in the supply chain design problem. The scarce
models proposed in the literature are different from the CFCLP-TC model presented.
Those models make some assumptions that facilitate the solution of the problem, but
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that are unreal or inconvenient for the decision making process. The first assump-
tion is the linearization of time. While this assumption helps to make the problem
easier to solve, it is not adequate to represent real transportation conditions. Usually,
the time to transport a product is independent of the quantity to be shipped. In the
negotiation of a transportation service, the quantity may affect cost because of econ-
omy of scale but time is not affected. Hence the transportation time is tied directly to
the transportation channel and it is independent of the quantity transported. The sec-
ond assumption is the preference for some criterion, usually the cost objective. The
use of this assumption is implicit when the multiobjective problem is transformed
to a single-objective problem combining the cost and time criteria in an aggregated
(utility) function. It helps also to reduce the complexity of the problem, but it is in-
convenient for the decision making process because some times the preferences of the
decision maker are not known a priori. Additionally, the selection of the appropriate
weights is a difficult task for criteria with different measures like cost and time that
cannot be compared directly. Hence an approach to show different non-dominated so-
lutions as alternatives to the decision maker is eluded, while it may be a good choice
when his/her preference is not known or the criteria cannot be compared easily. These
assumptions were excluded from the formulation and the solution approach to obtain
a more realistic model capable of providing a set of alternatives to the decision maker.

3 Problem description

The “Capacitated Fixed Cost Facility Location Problem with Transportation Choices”
(CFCLP-TC) is based on a two-echelon system for the distribution of one product in
a single time period. In the first echelon, the manufacturing plants send product to
distribution centers. The second echelon corresponds to the flow of product from the
distribution centers to the customers. The number and location of plants and cus-
tomers are known.

There is a set of potential locations to open distribution centers. The number of
open distribution centers is not defined a priori. Each candidate site has a fixed cost
for opening a facility. Each potential site has also a limited capacity. This capacity is
related to dispatching rate which depends on factors like physical limits, equipment
and productivity of the facility. The plants have limited manufacturing capacity. This
capacity represents the production rate at each plant. A supply constraint, called sin-
gle source constraint, states that each customer is supplied by a single distribution
center. However, the demand of each customer must be met.

The most important feature added to the problem, and one of the main contribu-
tions of this work is to consider several alternatives to transport the product from one
facility to the other in each echelon of the network. Each option represents a type of
service with associated cost and time parameters. The existence of third party logis-
tics companies (3PL) makes available different transportation services in the market.
The alternatives are generated by the offer from different companies, the availability
of different types of service at each company (e.g., express and regular), and the use
of different modes of transportation (e.g., truck, rail, airplane, ship or inter-modal).
Commonly, these differences involve an inverse correspondence between time and
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Fig. 1 Single product, single
period, and two-echelon
distribution system. Each
transportation channel has an
associated time and unitary cost

cost, i.e., a faster service will be more expensive. A scheme of the distribution net-
work is shown in Fig. 1.

The idea of this problem is to select the appropriate sites to open distribution cen-
ters and the flow between facilities to minimize the combined cost of transportation
and facility opening. This problem is very common in distribution networks where
manufacturing plants and points of demand already exist. However, this problem also
includes the selection of the transportation channel. This decision has an impact on
the transportation time from the plant to the customer. The tradeoff between cost
and time must be considered in the formulation of a mathematical model that min-
imizes both criteria simultaneously. Hence, the problem should be addressed with a
bi-objective optimization model. Following this approach, one criterion minimizes
the combined cost of transportation and facility location. The other criterion looks
for the minimum time to transport the product along the path from the plant to the
customer.

Some assumptions have been made and some elements have been left out of the
problem to maintain the tractability. Inventory costs, production costs, capacity on
the transportation links, congestion times at the facilities, international supply chain
aspects, and non-linear transportation costs are not considered. Therefore, we have
assumed that distribution centers do not retain inventory and their function is only to
split the product received from the plants. As no inventory is retained at the distribu-
tion centers, the latter may be used as cross-docks for the case of multiple products.
The distribution centers may receive product from any plant. There is no incentive
to ship the product directly from the plants to the customers. Also, transshipment
between facilities at the same stage is not allowed. Locally, at each pair of origin–
destination nodes the transportation channels with dominated parameters are elim-
inated, i.e., those with coincident longer time and greater cost than any other. The
sum of the capacity of the plants is enough to satisfy the total demand. The sum of
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the capacity of the potential distribution centers is enough to satisfy the total demand.
An important assumption is the discretization of the time parameter. Therefore, given
reasonable times for transportation (hours, days) the values can be represented as
integer units.

4 Mathematical framework

4.1 Model and notation

The CFCLP-TC problem described previously is represented as a bi-objective mixed-
integer programming model. The model formulation is preceded by the notation
shown below.

Sets:

I : set of plants i

J : set of potential distribution centers j

K : set of customers k

LPij : set of arcs l between nodes i and j ; i ∈ I , j ∈ J

LWjk : set of arcs l between nodes j and k; j ∈ J , k ∈ K

Parameters:

CPij l : cost of transporting one unit of product from plant i to distribution center j

using arc ij l; i ∈ I , j ∈ J , l ∈ LPij

CWjkl : cost of sending one unit of product from distribution center j to customer k

using arc jkl; j ∈ J , k ∈ K , l ∈ LWjk

TPij l : time for transporting any quantity of product from plant i to distribution
center j using arc ij l; i ∈ I , j ∈ J , l ∈ LPij

TWjkl : time for transporting any quantity of product from distribution center j to
customer k using arc jkl; j ∈ J , k ∈ K , l ∈ LWjk

MPi : capacity of plant i; i ∈ I

MWj : capacity of distribution center j ; j ∈ J

Dk : demand of customer k; k ∈ K

Fj : fixed cost for opening distribution center j ; j ∈ J

Decision variables:

Xijl : quantity transported from plant i to distribution center j using arc ij l; i ∈ I ,
j ∈ J , l ∈ LPij

Yjkl : quantity transported from distribution center j to customer k using arc jkl;
j ∈ J , k ∈ K , l ∈ LWjk

Zj : binary variable equal to 1 if distribution center j is open and equal to 0 other-
wise; j ∈ J

Aijl : binary variable equal to 1 if arc ij l is used to transport product from plant i to
distribution center j and equal to 0 otherwise; i ∈ I , j ∈ J , l ∈ LPij

Bjkl : binary variable equal to 1 if arc jkl is used to transport product from distribu-
tion center j to customer k and equal to 0 otherwise; j ∈ J , k ∈ K , l ∈ LWjk
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Auxiliary variables:

T : maximum time that takes sending product from any plant to any customer
E1

j : maximum time in the first echelon of the supply chain for active distribution

center j , i.e., E1
j = maxi,l(TPij lAij l); i ∈ I , j ∈ J , l ∈ LPij

E2
j : maximum time in the second echelon of the supply chain for active distribution

center j , i.e., E2
j = maxk,l(TWjklBjkl); j ∈ J , k ∈ K , l ∈ LWjk

MODEL 1:

min(f1, f2),

f1 =
∑

i∈I

∑

j∈J

∑

l∈LPij

CPij lXijl +
∑

j∈J

∑

k∈K

∑

l∈LWjk

CWjklYjkl +
∑

j∈J

FjZj , (1)

f2 = T (2)

subject to

T − E1
j − E2

j ≥ 0, j ∈ J, (3)

E1
j − TPij lAij l ≥ 0, i ∈ I, j ∈ J, l ∈ LPij , (4)

E2
j − TWjklBjkl ≥ 0, j ∈ J, k ∈ K, l ∈ LWjk, (5)

∑

j∈J

∑

l∈LWjk

Yjkl = Dk, k ∈ K, (6)

∑

j∈J

∑

l∈LPij

Xijl ≤ MPi , i ∈ I, (7)

MWjZj −
∑

k∈K

∑

l∈LWjk

Yjkl ≥ 0, j ∈ J, (8)

∑

i∈I

∑

l∈LPij

Xijl −
∑

k∈K

∑

l∈LWjk

Yjkl = 0, j ∈ J, (9)

∑

j∈J

∑

l∈LWjk

Bjkl = 1, k ∈ K, (10)

∑

l∈LPij

Aij l ≤ 1, i ∈ I, j ∈ J, (11)

∑

l∈LWjk

Bjkl ≤ 1, j ∈ J, k ∈ K, (12)

Xijl − Aijl ≥ 0, i ∈ I, j ∈ J, l ∈ LPij , (13)

Yjkl − Bjkl ≥ 0, j ∈ J, k ∈ K, l ∈ LWjk, (14)

MPiAij l − Xijl ≥ 0, i ∈ I, j ∈ J, l ∈ LPij , (15)

MWjBjkl − Yjkl ≥ 0, j ∈ J, k ∈ K, l ∈ LWjk, (16)
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∑

i∈I

∑

l∈LPij

Aij l − Zj ≥ 0, j ∈ J, (17)

T ,E1
j ,E

2
j ,Xijl, Yjkl ≥ 0, i ∈ I, j ∈ J, k ∈ K, l ∈ LPij , l ∈ LWjk, (18)

Zj ,Aijl,Bjkl ∈ {0,1}, i ∈ I, j ∈ J, k ∈ K, l ∈ LPij , l ∈ LWjk. (19)

In this formulation, objective function (1) minimizes the sum of the transportation
cost and the cost for opening distribution centers. Objective function (2) minimizes
the maximum time required to transport the product from the plants to the customers
through each distribution center. This function was reformulated from (20) to elimi-
nate the non-linearity:

f2 = max
j

(
max
i,l

(TPij lAij l) + max
k,l

(TWjklBjkl)
)
. (20)

Constraints (3)–(5) complete the linearization of (20) into objective function (2). It is
evident that variables Aijl and Bjkl should take the value of 1 only for open distri-
bution centers. Therefore, (20) considers the paths through open distribution centers
and minimizes the maximum time along the supply chain. Constraints (6) require the
demand satisfaction of each customer. Constraints (7) are formulated for not exceed-
ing the capacity limits of the plants. Constraints (8) state that the flow going out from
a distribution center must not exceed the capacity of the facility, but at the same time
requires that the flow of product only can be done through open distribution centers.
Constraints (9) keep the flow balance at the distribution center. Constraints (10) estab-
lish that each customer must be supplied by a single source. At most one arc may be
selected between nodes i–j and nodes j–k, as required in constraints (11) and (12),
respectively. Constraints (13)–(17) are formulated to make an appropriate link be-
tween the sets of variables Aijl , Bjkl , Xijl , Yjkl and Zj . When solving for f1 as
main objective function, the model tries to minimize the values of Xijl , Yjkl and Zj .
In the other direction, when solving for f2 the model tries to minimize the values of
Aijl , Bjkl . Constraints (13) and (14) require that an arc must be inactive if it does not
have flow through it. This avoids overestimating Aijl and Bjkl when solving for f1.
The flow of product only can be done through active arcs as stated in constraints (15)
and (16). Constraints (17) ensure that a distribution center must be closed if it has no
active incident arcs on it, i.e., the distribution center does not receive flow of prod-
uct. In this way, when solving for f2 the model does not overestimate Zj and avoids
passing flow through inactive arcs. Constraints (18) are for continuous non-negative
variables. Binary variables are required in constraints (19). If demands and capacities
have integer values, it is not necessary to change constraint (18) to require integer
values for Xijl and Yjkl . This is because once the values for Aijl , Bjkl and Zj are
fixed, the remaining structure is a transportation problem. It is well known that the
unimodularity property of this problem produces these integral results under such a
condition.

It should be noted that constraints (10) imply that a problem has a feasible solu-
tion only if for each customer there exists at least one distribution center with enough
capacity to satisfy its demand. Also note that constraints (10) imply (12), and con-
straints (13)–(14) and (17) are redundant in a strict sense. However, these strengthen
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the model when solving the subproblems or relaxations so they are included in the
model.

The CFCLP-TC is NP-hard. This can be proved by transforming the CFCLP-TC
to the well known uncapacitated facility location problem (UFLP). Since UFLP is
NP-hard (Cornuejols et al. 1990), it follows that the CFCLP-TC is NP-hard, too.

5 True efficient sets

A multiobjective optimization problem is described by:

min
{(

f1(x), . . . , fp(x)
) : x ∈ X

}
,

where f = (f1, . . . , fp) is the set of p real-valued objective functions, x is a solution
to the problem and X is the set of feasible solutions.

One of the most popular approaches for generating efficient frontiers is the
ε-constraint method. The ε-constraint method consists in a transformation of the
problem by making constraints all except one objective as follows:

min
{
fk(x) : fi(x) ≤ εi, i �= k, x ∈ X

}
.

The values of vectors εi are changed systematically to obtain the efficient frontier for
the problem. Further details can be found in Steuer (1989) and Ehrgott (2005).

This method is preferred because some results in multiobjective optimization the-
ory show that for combinatorial problems the weighted sum technique may not find
all the efficient solutions (Ehrgott 2005). The complete set of efficient solutions for
an instance is defined as the true efficient set. Recently, Ehrgott and Ruzika (2008)
have proposed an improved version of the ε-constraint method that combines some
ideas that address some weaknesses of the traditional method, namely the lack of
easy-to-check conditions for properly efficient solutions and the inflexibility of the
constraints.

In this work, three versions of the traditional ε-constraint method are developed.
The procedures were coded in ANSI C. The single-objective subproblems of the
ε-constraint method for fixed ε were solved by using the CPLEX 11.1 callable library.
In our implementation of the ε-constraint methods, for enhancing the computational
efficiency, we use the optimal solution found from a particular iteration when ε is
fixed as an input for the IP subproblem associated with the following iteration. This
has had a considerable positive impact on computational efficiency. For our specific
application, it was empirically observed that an implementation based on the method
by Ehrgott and Ruzika (2008) renders the same set of solutions as that obtained by
the classical method with no benefit in terms of computational time.

5.1 Forward ε-constraint method (eC)

In this version of the ε-constraint method, function f1 is used as the objective function
and f2 is used as a constraint. Therefore, the model described by (1)–(19) is rewritten
as follows, keeping the same objective function (1):
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MODEL 2:

minf t
1 =

∑

i∈I

∑

j∈J

∑

l∈LPij

CPij lXijl +
∑

j∈J

∑

k∈K

∑

l∈LWjk

CWjklYjkl +
∑

j∈J

FjZj

subject to T ≤ εt (21)

and constraints (3)–(19).

Each iteration of the algorithm is denoted by the index t . When the objective
function (1) is optimized without constraint (21), it is expected that variable T takes
its highest value. Thus it is natural to think of reducing the value of εt sequentially.
With this logic, at each iteration the value of εt is reduced by a constant δ = 1.

However, an optimal solution for this problem may result in constraint (21) being
inactive. Hence it is convenient to recalculate the value of T from the values of Aijl

and Bjkl of that solution using (20). This strategy avoids solving problems with loose
values of εt in constraint (21) for the next iteration of the algorithm. The algorithm is
shown in Fig. 2. The exit condition in Step 4 implies that the value of T has a lower
limit. Hence there is a point where the value of εt results in an infeasible problem.

5.2 Backward ε-constraint algorithm with lower and upper limits for f2 (ReC-2B)

The branch-and-bound algorithm used by many commercial solvers allows using a
known solution as incumbent solution to start the solution of a MIP. This utility im-

Algorithm eC

BEGIN
Input: Data instance of CFCLP-T.
Output: List of non-dominated solutions (NDS).

1. NDS = ∅, t = 1. Optimize Model 1 dropping objective function f2.
2. Recalculate T using (20).
3. Register the solution in NDS with f1 = f t

1 and f2 = T .
4. while (obtaining an optimal solution for Model 2)

4.1. t = t + 1.
4.2 Recalculate εt with δ = 1:

εt = T − δ

4.3. Optimize Model 2.
4.4. Recalculate T using (20).
4.5. Register the solution in NDS with f1 = f t

1 and f2 = T .
5. endwhile
6. Eliminate dominated solutions from NDS.
7. Return NDS.

END

Fig. 2 Pseudo-code for the forward ε-constraint algorithm (eC)
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proves the efficiency of the branch-and-bound algorithm because many solutions can
be discarded initially from the tree. Also this incumbent solution may help to produce
useful cuts in the first stages of the branch-and-bound algorithm. We implemented
this feature trying to reduce the run time of algorithm eC. This is possible when
the following is observed. Consider two solutions S1 and S2 that are efficient solu-
tions where f1(S1) < f1(S2) and f2(S1) > f2(S2). Thus, S2 is a feasible solution for
Model 2 when εt = f2(S1). Hence S2 can be used as the incumbent solution for that
iteration of the ε-constraint method. This incumbent solution is used by the solver as
initial solution and may reduce the run time in that iteration.

To use a starting solution, a modification to the algorithm has to be made. Instead
of running the cycle reducing εt , now the value of this parameter has to be increased.
Two issues have to be considered here. The value of T has to be recalculated at each
iteration as well; however, this parameter is no longer useful for knowing the next
value of εt in advance. Hence the movement of εt is always of δ = 1 and some more
weakly-efficient points are obtained. Also, the initial and final values of εt are not
known unless a previous computation is made. To identify the lower limit of f2, i.e.,
the initial value of εt , Model 1 must be optimized by dropping objective function f1.
To identify the upper limit of f2, i.e., the final value of εt , Model 1 must be optimized
by dropping objective function f2 and recalculating the value of T with (20). The
loops run between these extreme points. The algorithm is shown in Fig. 3.

5.3 Backward ε-constraint method with estimated lower limit for f2 (ReC-1B)

The third version uses the same idea as that of the previous version, that is, using an
existing solution as incumbent for the next iteration of the algorithm. It was observed
that the linear relaxation of Model 1 dropping objective function f1 was very loose,
resulting in long times for Step 5 of the ReC-2B algorithm. One way to avoid this
optimization was to estimate a lower limit for f2 from the instance data and start the
computation cycle from that point. The initial value of εt is estimated as follows:

εfirst = min
j

(
min
i,l

(TPij l) + min
k,l

(TWjkl)
)
. (22)

The implication of this procedure is that the cycle may begin from an infeasible prob-
lem for the initial value of εt , so that some extra computations may be made. The
algorithm is a modification of that shown in Fig. 3. Steps 5 and 6 are substituted by a
step in which εfirst is estimated with (22). Steps 8.2, 8.3 and 8.4 are embedded in an
if cycle that is executed only if a feasible solution is obtained from step 8.1.

6 Lower bound sets

Because of the computational complexity of the CFCLP-TC, relatively large in-
stances of this problem may no longer be tractable from an exact optimization per-
spective. In that case, one uses heuristic methods that find an approximate set of
non-dominated solutions. In that sense, having information about lower bounds for
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Algorithm ReC-2B

BEGIN
Input: Data instance of CFCLP-TC.
Output: List of non-dominated solutions (NDS).

1. NDS = ∅, t = 1. Optimize Model 1 dropping objective function f2.
2. Recalculate T using (20).
3. Register the solution in NDS with f1 = f t

1 and f2 = T .
4. Register εlast = T as the final value for εt .
5. Optimize Model 1 dropping objective function f1.
6. Register εfirst = f2.
7. Initialize t = 2 and εt = εfirst.
8. while (εt < εlast)

8.1. Optimize Model 2.
8.2. Recalculate T using (20).
8.3. Register the solution in the NDS with f1 = f t

1 and f2 = T .
8.4. Register the solution as initial solution for the next iteration.
8.5. t = t + 1.
8.6 Recalculate εt with δ = 1:

εt = εt−1 + δ

9. endwhile
10. Eliminate dominated solutions from NDS.
11. Return NDS.

END

Fig. 3 Pseudo-code for the Backward ε-constraint algorithm with lower and upper limits for f2 (ReC-2B)

these non-dominated sets allows a measure of the quality of these solutions. In multi-
objective problems, it is more appropriate to talk about a “lower bound set” (Ehrgott
and Gandibleux 2007).

In this paper, several strategies based on linear relaxations within the branch-and-
bound framework are proposed and tested. The idea is to attempt to exploit the fact
that relaxing some sets of the variables may result in more tractable subproblems.
The schemes are described next.

(a) Scheme LP (linear programming relaxation). It consists of relaxing all the integer
variables. It is the most common method to obtain lower bounds. The quality of
this bound is closely related to the formulation of the problem. In a branch-and-
bound framework, this bound is equivalent to the LP relaxation computed at the
root node.

(b) Scheme LPc (LP relaxation with cuts). It is basically the LP relaxation of the
MIP followed by an effort to identify and add some common cuts. The addi-
tion of these cuts may in some cases strengthen considerable the LP relaxation.
The following cuts used by default with CPLEX were Clique Cuts, Cover Cuts,
Implied Bound Cuts, Flow Cuts. Flow Path Cuts, and Gomory Fractional Cuts.
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(c) Scheme ABr (LP relaxation of variables Aijl and Bjkl). These variables represent
a big portion of the number of binary variables in large instances. By doing this
relaxation, the resulting problem has as binary decision variables only those for
selecting the distribution centers. Given that it is not a complete linear relaxation
of the model, this lower bound should be better than the lower bound obtained
through the scheme LPc.

(d) Scheme Zr (LP relaxation of variables Zj ). These variables are closely related to
the facility location problem. Hence their relaxation may reduce the complexity
of the problem, and a good lower bound may be obtained in shorter time. By
this relaxation, the problem of facility location becomes a linear problem where
variables Zj take on fractional values and the flows in (8) are bounded by the
value of MWjZj . This scheme should have a better quality than the one obtained
by scheme LPc.

For generating the complete lower bound set, each of these schemes is embedded
within an algorithm similar to the ε-constraint method (ReC-1B) by fixing εt at each
iteration using a fixed value of δ = 1. Of course, in this algorithm, rather than solving
the original MIP formulation, the focus is on solving the related relaxations.

7 Empirical evaluation

The specific goals accomplished by the experiments are as follows. The first goal is
to evaluate the proposed exact algorithms to identify which of these is more efficient
in obtaining the efficient frontier. The second goal is to present a detailed study of
the profile of the efficient frontier, and to establish empirically that the two model
objectives are indeed in conflict. Another goal was to identify the size of instances
that can be solved in a reasonable time with the computing resources available. In
terms of the lower bound sets, we wanted to identify the characteristics of the lower
bound sets obtained through the schemes proposed and their efficiency in run time
and quality.

To perform the computational study, instances are randomly generated as follows.
For each instance, there are four main size parameters: the number of plants, the
number of potential distribution centers, the number of customers, and the number
of available transportation modes between each pair of nodes. The sizes generated
are shown in Table 1, where the group code indicates: [number of plants—number
of potential distribution centers—number of customers—number of available trans-
portation modes between each pair of nodes]. The other parameters were randomly
generated assuming some relations between these parameters as will be described be-
low. Customer demands are drawn from a uniform distribution with values between
5000 and 10000. To guarantee to some extent that the single source constraint can
be met, the capacities of the distribution centers must be higher than the maximum
demand.

To avoid an “easy” facility location decision, some distribution centers must be
able to supply the total demand. The assumption is that providing more options makes
the instance harder. Hence the total demand DT is the base to generate the distribution
center capacity. The distribution center capacity is an integer random variable with
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Table 1 Generated instances
Group code Number of

instances
Number of
binary
variables

Number of
constraints

5-5-5-2 10 105 385

5-5-5-5 10 255 835

5-5-20-2 10 255 940

5-10-10-2 10 310 1115

5-10-15-2 10 410 1475

5-10-20-2 10 510 1835

5-5-20-5 10 630 2065

values between MWlow and MWhigh according to a uniform distribution, where these
parameters are defined as follows:

DT =
∑

k∈K

Dk,

MWlow = max
k∈K

(Dk),

MWhigh = DT + (DT − MWlow) = 2DT − MWlow.

The plant capacity must be generated also taking into consideration the total demand.
In a feasible instance, the total capacity of the plants must satisfy the total demand.
However, to generate a hard instance some plants are allowed to have a high capac-
ity near to the total demand. The assumption is again that providing more options
makes the problem harder. The plant capacity is an integer random variable with val-
ues between MPlow and MPhigh according to a uniform distribution, where these
parameters are defined as shown below:

MPlow = DT

|I | , MPhigh = DT .

An assumption is that transportation cost and time are negatively correlated. For each
arc, the time and cost are calculated but repeated parameter values are avoided for
each pair of facilities. The transportation time is an integer random variable Tarc with
values between 5 and 25 according to a uniform distribution. The unitary transporta-
tion cost Carc is a floating-point variable calculated with the Tarc value generated, as
follows:

Carc = 50

Tarc
. (23)

The generation of the distribution center fixed cost is based in some parameters al-
ready generated. An assumption is that the fixed cost is positively correlated with the
distribution center capacity. To produce a hard instance, the total fixed cost must be
close to the total transportation cost. As can be seen in (23), the maximum cost has
a value of 10 which is used to estimate a reference transportation cost Cref . The av-
erage distribution center capacity MWave is calculated and used to compute the fixed
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cost.

Cref = 10 ∗ DT

|J | , MWave =
∑

j∈J MWj

|J | , Fj = Cref ∗ MWj

MWave
, j ∈ J.

These are all the parameters required for an instance of the CFCLP-TC.

7.1 True efficient sets

The three algorithms previously presented were used to solve the generated instances.
All procedures (exact algorithms and lower bounding schemes) were coded in C
and compiled with Visual Studio 6.0. CPLEX 11.1 callable library (ILOG SA 2008)
was used to solve optimally the sub-problems involved in the ε-constraint based al-
gorithms (and in the lower bounding schemes also). These routines were run in a
3.0 GHz, 1.0 GB RAM, Intel Pentium 4 PC.

The instances of the groups 5-5-5-2, 5-5-5-5, 5-5-20-2, 5-10-10-2, and 5-10-15-2
were solved completely with the proposed algorithms, i.e., their complete true ef-
ficient sets were obtained. The results are shown in Table 2 comparing in the last
columns the improvement in efficiency achieved by the algorithms ReC-2B and ReC-
1B against the algorithm eC. The following is observed in these results:

• In 32 cases out of 50 (64%), ReC-2B was faster than eC.
◦ Only for the favorable cases this improvement can be up to 23.9% of time re-

duction and 3.4% on the average.
• In 37 cases out of 50 (70%), ReC-1B was faster than eC.

◦ Only for the favorable cases this improvement can be up to 26.6% of time re-
duction and 4.9% on the average.

Run times were similar between ReC-2B and ReC-1B, when individual iterations
(each εt value) were compared. Yet, an overhead time is produced in ReC-2B when
the initial value of εt is obtained through the optimization of f2. Hence, a benefit is
achieved in ReC-1B when the initial value of εt is obtained through the computation
of a lower limit. Although some additional points had to be solved the time consumed
is insignificant.

Figure 4 shows the efficient frontier for the instance 5-5-5-5-2. The efficient fron-
tier for the rest of the mentioned instances is similar. The points are not connected
because of the discretization of time units. The tradeoff between cost (f1) and time
(f2) is evident.

Figure 5 shows the run times for the iterations of the eC algorithm in the 5-5-20-2-
1 instance. This behavior is similar in all the instances. It is observed that intermediate
values of εt create problems that are more difficult to solve, in general. This behavior
can be explained as follows. First, as it is empirically shown in more detail in the
following section, the initial gap in the branch-and-bound algorithm increases from
high to low values of εt . This trend of the initial gap may be related to the increase of
time to solve each MIP from high to intermediate values of εt . Nevertheless, when the
value of εt is decreased the solution space becomes more constrained, and a reduced
number of solutions must be explored. Also, for low values of εt CPLEX is more
efficient in finding cuts to reduce the initial gap.
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Table 2 Comparison of algorithms in terms of time usage

Group code Instance Time (CPU seconds) Reduction in run time
(%) vs. eC algorithm

eC ReC-2B ReC-1B ReC-2B ReC-1B

5-5-5-2 1 9.4 7.6 7.1 18.7 24.7

2 15.0 11.4 11.0 23.9 26.6

3 10.8 13.0 11.7 −19.6 −7.9

4 30.0 25.4 24.3 15.5 18.9

5 10.3 10.4 10.3 −1.5 −0.6

6 22.3 20.7 20.6 7.1 7.8

7 15.2 11.6 11.3 23.8 25.3

8 15.9 12.4 12.1 22.1 24.1

9 13.8 10.6 10.4 23.2 24.4

10 24.7 24.7 22.8 −0.1 8.0

5-5-5-5 1 143.3 139.0 134.9 3.0 5.8

2 181.3 158.0 157.8 12.8 12.9

3 227.4 219.2 219.2 3.6 3.6

4 188.2 179.8 179.8 4.5 4.5

5 120.9 111.2 111.1 8.0 8.1

6 109.6 102.3 101.5 6.7 7.4

7 123.9 118.0 117.2 4.8 5.4

8 149.4 134.7 134.0 9.8 10.4

9 158.8 146.3 145.6 7.9 8.3

10 174.1 151.0 150.2 13.3 13.7

5-5-20-2 1 279.5 235.8 235.5 15.7 15.7

2 254.8 269.2 268.6 −5.6 −5.4

3 446.5 455.8 452.2 −2.1 −1.3

4 290.5 324.7 323.8 −11.8 −11.4

5 396.8 496.2 491.0 −25.1 −23.7

6 286.7 302.4 301.3 −5.5 −5.1

7 478.3 503.0 499.8 −5.2 −4.5

8 426.8 493.8 492.8 −15.7 −15.4

9 322.4 322.9 321.5 −0.2 0.3

10 409.1 430.5 430.3 −5.2 −5.2

5-10-10-2 1 860.1 834.7 834.4 3.0 3.0

2 507.2 500.1 500.1 1.4 1.4

3 1101.7 963.6 960.7 12.5 12.8

4 646.9 593.9 583.2 8.2 9.9

5 638.8 633.6 631.7 0.8 1.1

6 1011.0 1029.5 1019.9 −1.8 −0.9

7 672.3 592.1 585.6 11.9 12.9

8 555.4 592.4 582.2 −6.7 −4.8
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Table 2 (Continued)

Group code Instance Time (CPU seconds) Reduction in run time
(%) vs. eC algorithm

eC ReC-2B ReC-1B ReC-2B ReC-1B

9 597.9 550.7 550.7 7.9 7.9

10 791.7 690.6 682.3 12.8 13.8

5-10-15-2 1 15131.2 13889.4 13836.3 8.2 8.6

2 23555.9 22136.2 21820.5 6.0 7.4

3 25971.3 30189.9 29860.6 −16.2 −15.0

4 37599.2 37060.1 36416.7 1.4 3.1

5 21181.8 19518.4 19350.4 7.9 8.6

6 24924.8 28100.7 26623.9 −12.7 −6.8

7 33744.1 34819.5 32181.9 −3.2 4.6

8 29886.3 27506.5 27337.4 8.0 8.5

9 20102.2 22378.8 22253.2 −11.3 −10.7

10 15745.5 14863.2 14753.2 5.6 6.3

Fig. 4 Set of non-dominated solutions for the instance 5-5-5-5-2

7.2 Lower bound sets

The goals of these experiments are to study the quality of the lower bound sets ob-
tained with the proposed schemes, and to gain insight in the structure of the problem.
Four lower bounding schemes based on linear relaxations of the MIP were evaluated.
These are described in Sect. 6. In summary, scheme LP is the linear programming
relaxation of the MIP. Scheme LPc is the LP relaxation with CPLEX cuts at the end
of Node 0. Scheme ABr is the LP relaxation of the variables Aijl and Bjkl . Finally,
scheme Zr is the LP relaxation of variables Zj . For generating the lower bound sets
in a specific instance, the lower bounding schemes were used within the framework
of ReC-1B algorithm with some modifications about fixing the initial and last values
of the parameter εt according to the instance data. This procedure was coded in C
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Fig. 5 Run time behavior of eC algorithm as a function of the value of εt

Fig. 6 Quality of the lower bound sets for instance 5-5-5-2-1

and compiled with Visual Studio 6.0. CPLEX 11.1 callable library (ILOG SA 2008)
was used to solve optimally the sub-problems. The routines were run in a 3.0 GHz,
1.0 GB RAM, Intel Pentium 4 PC.

To define the quality of the lower bound set the schemes were tested in five in-
stances of each of the following data sets, 5-5-5-2, 5-5-5-5, 5-5-20-2, 5-10-10-2, and
5-10-15-2. For a fixed value of εt , the ratio f1 (scheme)/f1 (MIP) was calculated. The
behavior of these ratios is shown in Fig. 6 for instance 5-5-5-2-1. Figures 7 and 8 in
the Appendix show he behavior for instances 5-5-5-5-1 and 5-5-20-2-1, respectively.
This trend is similar for the other instances examined.

Table 3 in the Appendix presents the average, minimum and maximum values of
the f1 (scheme)/f1 (MIP) ratios for the lower bound schemes proposed. Data for
scheme Zr and instances 5-10-10-2 and 5-10-15-2 are not included in Table 3 be-
cause the runs were stopped after a limit of 10 hours and only partial information is
available.

It is evident from the results that the best lower bound set is obtained with the
scheme Zr that uses the linear relaxation of variables Zj . In order of quality the sec-
ond best is the LPc scheme. The third best is obtained with the ABr scheme through
the linear relaxation of variables Aijl and Bjkl . The worst lower bound set is ob-
tained with the complete linear relaxation of the MIP model, i.e., the LP scheme.
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A degradation of the lower bound set is observed for the lowest values of εt in the
ABr and LP schemes. It is because the value of εt is loose in constraint (21) and
the value of f1 barely changes between the lowest and highest values of εt , while
the value of f1 in the MIP increases for lower values of εt . The run times for the
linear relaxation schemes are displayed in Table 4 in the Appendix. The column MIP
represents the time required by the ReC-1B algorithm to obtain the optimal solu-
tion.

In the case of the LPc scheme, a recovery can be observed in the lowest and highest
values of εt . The reason for the improvement of these ratios may be a more efficient
use of the solver default heuristics and cuts for strengthening the linear relaxation
of the MIP. Although the quality of the lower bound set with the Zr scheme is high,
the run time is a disadvantage because it is longer than the time used to solve the
CFCLP-TC with the ReC-1B algorithm. This behavior is counterintuitive because it is
expected that a linear relaxation may be solved in less time than the MIP model. There
is one reason for this behavior. The magnitude of the cost associated with variables
Zj in the objective function f1 is high. When these variables are continuous CPLEX
is unable to find useful cuts with a high impact in the gap. Therefore, the gap is not
improved fast enough during the exploration of the nodes in the branch-and-bound
algorithm.

8 Conclusions

In the process of supply chain design, many decisions have to be made and sev-
eral aspects must be taken into account. An area of opportunity was identified
by incorporating the selection of the transportation mode in the supply chain net-
work design while generating a set of efficient solutions for the decision maker
in terms of the cost–time tradeoff. The problem introduced here considers the dis-
crete facility location in the intermediate echelon of a two-echelon distribution net-
work, the selection of the transportation modes between facilities, and the deter-
mination of the flows between facilities. We have named this new problem as the
“Capacitated Fixed Cost Facility Location Problem with Transportation Choices”
(CFCLP-TC). To the best of our knowledge this problem has not been addressed
before.

To solve the model, three versions (named eC, ReC-2B, and ReC-1B) of the classi-
cal ε-constraint method were studied. Within the ε-constraint method, the cost func-
tion was considered as objective function while the time function was handled as a
constraint with changing right-hand side values (εt ). These algorithms were designed
to obtain the set of efficient solutions for a problem instance.

The numerical results showed that the ReC-1B algorithm was more efficient
(faster) than algorithms ReC-2B and eC. The ReC-1B algorithm takes advantage
of using an initial solution in each optimization step and obtains the initial value
of εt from a lower limit estimated with the instance data. We infer that the ReC-
1B algorithm may be adapted to other bi-objective problems easily. Therefore, we
see a contribution in showing clearly a way to implement efficiently the ε-constraint
method taking advantage of the setting parameters available in commercial optimiz-
ers.
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In addition, four different strategies for obtaining lower bound sets were examined.
These were based on linear relaxations of the MIP model, named LP, LPc, ABr,
and Zr. The best lower bound sets in terms of quality were obtained with the Zr
scheme with a more homogeneous behavior along the efficient frontier. The main
disadvantage is its relatively large run time. Further work must be done to obtain
lower bound sets of high quality for this problem in reasonable run times. An option
is to attempt to speed up scheme Zr by means of a Lagrangian relaxation scheme or
relaxing the single-sourcing constraint.

Future work related to possible model extensions include the case of multiple com-
modities, the use of direct flows from plants to customers, considering flows between
distribution centers, and including the processing times in the plants and distribution
centers. Also a third objective may be included to minimize total transportation time
of the system. The interdependency of the choice on the transportation mode with
strategic inventory decisions and international supply chain aspects is an important
aspect that needs to be further addressed. Some other issues worthwhile studying
are the variability of some of the model parameters, which would yield a stochas-
tic program, the decisions on the inventory levels at the distribution centers, or the
integration with routing decisions.

The proposed solution procedures are a good alternative for small- to medium-
size instances; however, it is clear they are not suitable for large-scale instances
that may represent a number of real-world problems due to the inherent NP-
completeness of the problem. Therefore, it is evident that the computational com-
plexity of the CFCLP-TC makes necessary the use of a heuristic method to solve
larger instances. This conclusion remains true for the extensions proposed for the
model.
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Fig. 7 Quality of the lower bound sets for instance 5-5-5-5-1
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Fig. 8 Quality of the lower bound sets for instance 5-5-20-2-1

Table 3 Comparison of f1(scheme)/f1 (MIP) ratios for the lower bounding schemes

Group code Ins. Average ratio Minimum ratio Maximum ratio

f1 (scheme)/f1 (MIP) f1 (scheme)/f1 (MIP) f1 (scheme)/f1 (MIP)

LP LPc ABr Zr LP LPc ABr Zr LP LPc ABr Zr

5-5-5-2 1 0.60 0.86 0.65 0.91 0.30 0.58 0.35 0.84 0.93 1.00 1.00 0.96

2 0.68 0.85 0.76 0.92 0.38 0.74 0.42 0.87 0.90 0.97 1.00 0.96

3 0.61 0.84 0.73 0.89 0.33 0.77 0.40 0.84 0.83 1.00 0.99 0.94

4 0.63 0.82 0.71 0.86 0.33 0.67 0.39 0.81 0.89 1.00 1.00 0.91

5 0.61 0.85 0.67 0.87 0.35 0.73 0.41 0.83 0.92 0.99 1.00 0.93

5-5-5-5 1 0.62 0.79 0.66 0.94 0.27 0.54 0.29 0.90 0.95 0.99 1.00 0.98

2 0.68 0.82 0.72 0.95 0.32 0.56 0.35 0.91 0.95 1.00 1.00 0.97

3 0.64 0.79 0.73 0.90 0.28 0.65 0.32 0.85 0.88 0.98 1.00 0.94

4 0.64 0.78 0.68 0.91 0.29 0.66 0.31 0.88 0.94 1.00 1.00 0.95

5 0.63 0.80 0.65 0.91 0.23 0.65 0.26 0.78 0.96 1.00 1.00 0.96

5-5-20-2 1 0.82 0.90 0.85 0.96 0.54 0.84 0.56 0.88 0.96 0.96 1.00 0.97

2 0.80 0.88 0.83 0.96 0.53 0.81 0.55 0.92 0.96 0.97 1.00 0.98

3 0.78 0.87 0.80 0.95 0.52 0.79 0.53 0.90 0.98 0.98 1.00 0.98

4 0.78 0.85 0.81 0.96 0.51 0.76 0.53 0.93 0.97 0.97 1.00 0.98

5 0.77 0.85 0.81 0.94 0.49 0.79 0.51 0.89 0.96 0.97 1.00 0.97

5-10-10-2 1 0.71 0.85 0.72 – 0.33 0.76 0.35 – 0.97 1.00 0.99 –

2 0.68 0.86 0.70 – 0.31 0.73 0.32 – 0.96 1.00 0.98 –

3 0.70 0.85 0.71 – 0.33 0.74 0.34 – 0.97 1.00 0.99 –

4 0.67 0.83 0.68 – 0.28 0.52 0.29 – 0.96 1.00 0.97 –

5 0.71 0.84 0.72 – 0.36 0.75 0.37 – 0.96 0.97 0.98 –

5-10-15-2 1 0.77 0.87 0.78 – 0.45 0.80 0.46 – 0.96 0.97 0.97 –

2 0.74 0.85 0.75 – 0.40 0.76 0.41 – 0.97 0.98 0.99 –

3 0.76 0.85 0.76 – 0.46 0.77 0.46 – 0.97 0.98 0.98 –

4 0.73 0.84 0.74 – 0.38 0.75 0.38 – 0.97 0.98 0.99 –

5 0.71 0.86 0.72 – 0.35 0.77 0.36 – 0.97 1.00 0.99 –
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Table 4 Run time (CPU seconds) for the lower bounding schemes

Group code Instance Lower bounding schemes

MIP LP LPc ABr Zr

5-5-5-2 1 7.1 0.3 1.4 3.5 24.8

2 11.0 0.3 1.4 2.4 25.1

3 11.7 0.3 0.5 2.4 26.1

4 24.3 0.3 0.7 4.5 39.8

5 10.3 0.3 0.7 3.8 32.6

5-5-5-5 1 134.9 0.6 1.4 5.2 4275.7

2 157.8 0.6 1.1 1.8 6032.6

3 219.2 0.8 1.3 2.7 6792.8

4 179.8 1.2 0.7 5.4 5026.7

5 111.1 0.6 0.9 3.2 5113.5

5-5-20-2 1 235.5 1.0 1.9 7.5 382.4

2 268.6 0.9 1.2 6.2 525.8

3 452.2 1.1 0.8 8.1 985.1

4 323.8 0.9 0.9 10.8 725.8

5 491.0 0.9 1.0 14.0 960.3

5-10-10-2 1 834.4 1.0 2.7 23.2 –

2 500.1 0.9 2.1 21.8 –

3 960.7 1.1 2.1 35.1 –

4 583.2 1.0 2.1 17.0 –

5 631.7 1.0 1.9 31.1 –

5-10-15-2 1 13836.3 1.6 2.3 48.5 –

2 21820.5 1.4 3.8 69.5 –

3 29860.6 1.5 2.2 20.5 –

4 36416.7 1.6 3.3 35.3 –

5 19350.4 1.5 1.6 48.3 –
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