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Abstract The linear ordering problem consists of finding an ordering of the nodes
of the weighted complete digraph on n nodes such that the sum of the weights of the
arcs compatible with the ordering is maximized. In this paper, we report about the
usefulness of mod-k cuts in a branch-and-cut algorithm for solving linear ordering
problems to optimality.
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1 Introduction

Let Dn = (Vn,An) be a complete digraph on n nodes with m = n(n − 1) arcs and
integer weights cij for every arc (i, j) ∈ An. A tournament T in An is a subset of
arcs containing, for every pair of nodes i, j , either the arc (i, j) or the arc (j, i), but
not both. An acyclic tournament is a tournament without directed cycles. The weight
of a tournament is the sum of the weights of its arcs. It is easy to see that an acyclic
tournament induces a linear ordering of the nodes and vice versa, and we can define
the weight of a linear ordering as the weight of the associated tournament. The prob-
lem of finding an acyclic tournament (linear ordering) of maximal weight is called
linear ordering problem (LOP). It is a classical NP-hard combinatorial optimization
problem with several applications (Reinelt 1985). Another frequently used name is
triangulation problem which refers to an equivalent formulation of the problem where
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one looks for a simultaneous permutation of the rows and columns of a square matrix
in order to maximize the sum of the superdiagonal elements.

In this paper, we deal with branch-and-cut algorithms for solving the LOP to opti-
mality. Such algorithms focus on the linear ordering polytope P n

LO which is defined
as the convex hull of the characteristic vectors of the acyclic tournaments in An, i.e.,

P n
LO = conv

{
χT ∈ {0,1}m | T ⊆ An is an acyclic tournament

}
,

where χT
ij = 1, if (i, j) ∈ T , and χT

ij = 0, otherwise. Obviously, there is a 1–1 corre-
spondence between the vertices of P n

LO and the acyclic tournaments of An.
Conceptually, the linear ordering problem can now be solved by maximizing cT x

over P n
LO (where c denotes the vector of arc weights). This is the basic idea of branch-

and-cut algorithms. However, a description of P n
LO with linear inequalities and equa-

tions is needed. Although this description exists, due to the NP-hardness of the prob-
lem, it is highly complex and one can only attempt to find part of it.

A coarse approximation of P n
LO consists of the following equations and inequali-

ties:

xij + xji = 1, for all i, j ∈ Vn, i < j,

xij + xjk + xki ≤ 2, for all i, j, k ∈ Vn, i < j , i < k, j �= k,

xij ≥ 0, for all i, j ∈ Vn.

The equation system is the minimal equation system for P n
LO, which implies that

its dimension is
( n

2

)
. The so-called 3-dicycle inequalities define facets of the linear

ordering polytope. The 0/1-points in this polytope are exactly the characteristic vec-
tors of all acyclic tournaments. Therefore, by requiring in addition xij ∈ {0,1} for all
(i, j) ∈ An, we obtain an integer programming formulation of the LOP. If instead of
integrality conditions only the inequalities xij ≥ 0 are introduced, this results in the
so-called 3-dicycle relaxation.

There has been a lot of work on studying the structure of the linear ordering poly-
tope to improve the approximation by 3-dicycle inequalities (e.g., in (Doignon et al.
2006; Fiorini 2001; Grötschel et al. 1984; Leung and Lee 1994; Reinelt 1995)), and
a first branch-and-cut algorithm has been described in Grötschel et al. (1985).

In this paper, we report on a branch-and-cut algorithm that does not make use
of further a priori known inequalities but generates a type of inequalities of general
nature. These inequalities are not specific for the LOP, and thus our approach can
also be tried for other optimization problems. The algorithm starts with the 3-dicycle
relaxation and then tries to strengthen it using the so-called mod-k inequalities which
are generated based on the current fractional solution.

We assume familiarity of the reader with polyhedral combinatorics and the branch-
and-cut approach. Section 2 discusses mod-k inequalities in general and the identi-
fication of maximally violated mod-k cuts. In Sect. 3, we describe the special case
of mod-2 inequalities and their separation with shortest path algorithms. Section 4
discusses the usefulness of these general cuts based on experimental results for a set
of benchmark problems.
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2 Maximally violated mod-k cuts

As a first possibility to generate cuts in a branch-and-cut algorithm we describe
the so-called mod-k inequalities which are a special kind of Chvátal–Gomory cuts
(Caprara et al. 2000).

Let Ax ≤ b be a system of linear inequalities with integral coefficients and let
k > 1 be an integer number. Suppose, we scale every inequality p of Ax ≤ b by a
nonnegative factor μp and sum up the resulting inequalities.

Now, if μ denotes the vector of all factors μp , assume that all coefficients of μT A

are divisible by k and that the remainder of dividing μT b by k is k − 1. Then μ

satisfies the congruence system

μT A ≡ 0 mod k,

μT b ≡ k − 1 mod k.

We have μT b = sk + (k −1) for some s ∈ Z, and therefore μT b− (k −1) is divisible
by k. Furthermore, μT Ax is divisible by k for all integer vectors x, and therefore the
inequality μT Ax ≤ μT b− (k−1) is valid for all feasible integer solutions of Ax ≤ b.

We can express the inequality in an equivalent way as mod-k inequality

1

k
μT Ax ≤ 1

k

(
μT b − (k − 1)

)
.

Now consider some fractional solution x∗ of Ax ≤ b. Recall that all coefficients
of this inequality are integral. In a branch-and-cut algorithm we would like to find
an integer k and a vector μ such that the congruence system above is satisfied and
the corresponding mod-k inequality is violated by x∗, thus providing a cutting plane
(a so-called mod-k cut). Since μT Ax∗ ≤ μT b, this solution can violate 1

k
μT Ax ≤

1
k
(μT b − (k − 1)) by at most k−1

k
and the maximal violation can only be achieved if

μT Ax∗ = μT b, i.e., if μp = 0 for all p with Ap.x
∗ < bp , where Ap. denotes the pth

row of A.
We describe an algorithm for the separation of maximally violated mod-k cuts as

suggested in Caprara et al. (2000). Let x∗ be a fractional solution of the current LP
relaxation Ax ≤ b. Due to the remarks above, in order to find a maximally violated
inequality, we restrict the congruence system to contain only those inequalities that
are tight for x∗. We have to choose k and find an integer multiplier vector μ ≥ 0
such that the congruence system is satisfied. Note that the coefficients of μ can ob-
viously be restricted to values smaller than k, i.e., μp ∈ {0,1, . . . , k − 1} for all p.
Furthermore, due to a theorem of Caprara et al. (2000), only prime numbers have to
considered for k.

If k is a prime number, then the solution of the congruence system can be obtained
by applying standard Gaussian elimination to a modified system over the finite field
Fk = Z/kZ with k elements {0,1, . . . , k − 1}. To this end, we transform the integral
coefficients of A and b into elements of Fk by defining z = z mod k = z − 	z/k
k,
for z ∈ Z.

Now let A = (aij ) and b = (bij ). Every solution vector μ for the resulting system

μT A = 0T and μT b = k − 1 (1)



Applying mod-k-cuts for solving linear ordering problems 161

over Fk also solves the system of congruences.
Suppose the system (1) has no solution. In this case, we might be satisfied with

a mod-k cut with less than maximal violation and could try to find a solution of the
modified system

μT A = 0T and μT b = q, for q ∈ {1, . . . , k − 2}.

But as every solution μ over Fk yields a solution ((k −1)/q)μ of (1) over Fk , it holds
that if we have a mod-k cut violated by l/k, l ≤ k − 2, then there exists a maximally
violated mod-k cut.

In a more common way, (1) can be written as

A
T
μ = 0 and b

T
μ = k − 1. (2)

The rows of A
T

correspond to arcs, whereas the columns represent valid inequalities

that are tight for x∗. Let us define ÃT = (
b
T

A
T

)
, i.e., ÃT is A

T
with b

T
as 0th row.

After having transformed ÃT into an upper triangular form by Gaussian elimination,
one can easily check whether there exists a maximally violated mod-k cut or not.
Usually the existence of one cut gives rise to plenty maximally violated mod-k cuts.
The number f of free variables μi , these are variables the value of which can be
chosen freely from {0,1, . . . , k − 1}, ranges from dozens to a few hundreds. There
exist exactly kf different solutions of (2) and, even though the mapping of solutions
to cuts is not injective, we will have to address the problem of selecting cuts from the
huge set of generated constraints to be added to the linear relaxation.

3 Mod-2 cuts

We next describe the efficient exact separation procedure for the case k = 2 given in
Caprara and Fischetti (1996). Again, we search for a multiplier vector μ for Ax ≤ b

satisfying the congruence system (2). The arguments of Sect. 2 show that

1

2
μT Ax ≤ 1

2

(
μT b − 1

)
(3)

is valid for {x ∈ Z
n | Ax ≤ b} and can be violated by at most 1

2 by a tight fractional
solution x∗ of Ax ≤ b. For λ = 1

2μ and μ satisfying the congruence system, all
entries of λT A are integers and λT b − 1

2 = 	λT b
. Therefore, (3) can be expressed
equivalently as

λT Ax ≤ ⌊
λT b

⌋
.

This inequality is the so-called {0, 1
2 }-Chvátal–Gomory inequality. We now describe

an algorithm searching for a violated {0, 1
2 }-Chvátal–Gomory cut for a given frac-

tional solution of Ax ≤ b which is not restricted to binding inequalities as in the
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previous section. The identification of a suitable vector λ, in principle, amounts to
optimizing over

P1/2 =
{
x ∈ R

n | Ax ≤ b,λT Ax ≤ ⌊
λT b

⌋
and λ ∈

{
0,

1

2

}m

such that λT A ∈ Z
n

}
.

The separation problem for P1/2 is NP-hard. There are, however, possibilities to relax
P1/2 in such a way that optimization in polynomial time is possible.

The system Ax ≤ b is transformed into a weakened system A′x ≤ b′ containing at
most two odd coefficients per row. To this end, let Oi = {j | aij is odd} be the index
set of all odd coefficients in row i. Furthermore, let −xij ≤ 0 be the lower bound and
xij ≤ dj be the upper bound of the variables.

The L-weakening makes use of the lower bound constraints xij ≥ 0. For h,g ∈ Oi ,
h < g, the corresponding L-weakening of an inequality

∑
j aij xij ≤ bi is

aihxih + aigxig +
∑

j �∈Oi

aij xij +
∑

j∈Oi\{h,g}
(aij − 1)xij ≤ bi.

Using upper bounds xij ≤ 1 in an analogous way, we obtain for h,g ∈ Oi , h < g, the
U-weakening

aihxih + aigxig +
∑

j �∈Oi

aij xij +
∑

j∈Oi\{h,g}
(aij + 1)xij ≤ bi +

∑

j∈Oi\{h,g}
dj .

Both weakenings are applied to all inequalities in Ax ≤ b with |Oi | ≥ 3, hence the
transformed system A′x ≤ b′ contains

( |Oi |
2

)
L-weakenings and

( |Oi |
2

)
U-weakenings

for every inequality in Ax ≤ b. Generally, it even has exponentially many rows, but,
due to Caprara and Fischetti (1996), the system A′x ≤ b′ can be reduced because, for
every triple (i, h, g), it is sufficient to consider only two weakenings with respect to a
fractional solution x∗ of Ax ≤ b. Namely, only the weakenings with minimum slack
and even (odd right-hand side, respectively) have to be taken into account. They can
be computed in linear time O(n).

Hence, we have found a way to optimize over the relaxation

P ′
1/2 =

{
x ∈ R

n | A′x ≤ b′, λA′x ≤ ⌊
λT b′⌋ and λ ∈

{
0,

1

2

}m

such that λT A′ ∈ Z
n

}

of P1/2 in polynomial time.
Mod-2 cuts for the linear ordering problem can be identified in the following way.

Let Ax ≤ b be the system of all 3-dicycle inequalities and x∗ a solution of this system.
We first construct from Ax ≤ b a new inequality system A′x ≤ b′ where each inequal-
ity has a left-hand side with at most two odd coefficients. This is achieved by applying
the above procedure. For example, the 3-dicycle inequality xij + xjk − xik ≤ 1 is re-
placed by the U-weakenings

2xij + xjk − xik ≤ 2,

xij + 2xjk − xik ≤ 2,

xij + xjk − 2xik ≤ 1,
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and the L-weakenings

xjk − xik ≤ 1,

xij − xik ≤ 1,

xij + xjk ≤ 3.

In the following, let Ip denote the pth inequality of A′x ≤ b′ and a′
pij the coefficient

of xij in Ip and let

Eodd = {
(ij, kl) | ∃ Ip with odd right-hand side such that a′

pij and a′
pkl are odd

}
,

Eeven = {
(ij, kl) | ∃ Ip with even right-hand side such that a′

pij and a′
pkl are odd

}
.

We construct the weighted graph G = (V ,E) with

V = {ij | 1 ≤ i, j,≤ n, i < j},
E = Eodd ∪ Eeven.

The edge weights of G are the slacks of A′x ≤ b′ with respect to x∗, i.e., the edge
weight of (ij, kl) is the slack of its corresponding inequality Ip .

We now have to find the shortest cycle in G with an odd number of edges in Eodd.
To this end, we construct the weighted graph G̃ = (Ṽ , Ẽ) with nodes

Ṽ = {ij | ij ∈ V } ∪ {ĩj | ij ∈ V }
and edges Ẽ = E1 ∪ E2, where

E1 = {
(ĩj , kl), (ij, k̃l) | (ij, kl) ∈ Eodd

}
,

E2 = {
(ĩj , k̃l), (ij, kl) | (ij, kl) ∈ Eeven

}
.

The weights of G̃ are adopted from the edges of G. In G̃, we now search for the
shortest path between an arbitrary node ij and its counterpart ĩj .

Let P = (ij, . . . , ĩj ) be such a shortest path with length strictly less than 1. We add
up all inequalities whose corresponding edges are contained in P . Let this new in-
equality be dT x ≤ δ. Since P contains an odd number of edges in E1, the right-hand
side δ is odd. Furthermore, as every node in P represents an odd coefficient in A′ and
as all inequalities corresponding to edges in P are summed up, every odd coefficient
is added twice, hence all coefficients of the left-hand side of the new inequality are
even. Dividing dT x ≤ δ by 2 and rounding down the right-hand side, we obtain the
inequality

1

2
dT x ≤

⌊
δ

2

⌋

with integer coefficients which is valid for P n
LO. If the length of P is strictly less

than 1, then this inequality is violated by x∗. It is maximally violated by the amount
of 1

2 if x∗ satisfies all inequalities in the combination with equality.
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The advantage of the shortest path mod-2 method is that there is no restriction
on the constraints that are used for the generation of the cut, as long as they can be
transformed in a way that they have exactly two odd coefficients on the left-hand side.
Another advantage is that the graph G̃ is sparse, which is convenient for the shortest
path computation. On the other hand, no extension from 2 to bigger prime numbers
is possible, and the violation of the resulting cut is maximal if and only if all used
constraints are tight for x∗.

It was shown in Caprara and Fischetti (1996) that the family of shortest path mod-
2 cuts with respect to 3-dicycle inequalities contains a certain subclass of Möbius
ladder inequalities, which constitute a rich constraint class of facets of the linear or-
dering polytope. In fact, besides for 3-dicycle facets, this is the only known separation
algorithm or heuristic for a class of facet-defining inequalities of P n

LO. There is a rich
knowledge about the facet structure of this polytope, but the development of further
separation procedures is still a research task. Only for some classes it was shown that
the separation problem is NP-hard.

4 Computational experiments

We have applied our branch-and-cut algorithm on ten random problem instances
p40-01 – p40-10 (n = 40) and on p50-01 (n = 50). Details on these problems
and further benchmarks can be found in LOLIB (2008). All computations were per-
formed on a PC equipped with 2 Xeon E5450 processors, 2.5 GHz, 6 MB Cache and
8 GB RAM.

Since we want to assess the usefulness of mod-k cuts and mod-2 cuts, we first
computed the upper bounds obtained from the 3-dicycle relaxation. This relaxation
was solved with a cutting plane algorithm using the branch-and-cut framework Aba-
cus (Jünger and Thienel 2000) and the LP solver Cplex 8.1 (Ilog Cplex 2009).

It should be noted that the solution of the 3-dicycle relaxation can be speeded
up considerably if violated 3-dicycle cuts are added as follows: We first generate all
violated cuts and then sort them with respect to their angle with the objective function.
(In the 3-dicycle case, it is sufficient to just consider the sum of the three objective
function coefficients.) Then the cuts with the largest sum, i.e., with the smallest angle,
are added to the linear program. The best number depends on the size of the problem,
for the instances considered here we added at most 250 3-dicycle inequalities per
iteration.

The problem instances are difficult and no 3-dicycle relaxation had an integral
optimum solution. In the following, we describe how we deal with the fractional
solution x∗ of the relaxation. We will also speak about the digraph associated with x∗
which consists of the arcs whose associated variables have a positive value.

4.1 Rotation of facets

Since the generation of cuts is time consuming, we incorporated a heuristic element
in our separation procedures to possibly generate further cuts cheap. Our idea is based
on an interesting property of P n

LO.
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Let P = conv(X) ⊆ R
d be a polytope. An affine mapping ψ of R

d onto itself
is called a rotation mapping of P if X = ψ(X). It is clear that a rotation mapping
transforms a facet F of P to a facet ψ(F) of P .

For the linear ordering polytope there are two rotation mappings. The arc reversal
mapping φ (Reinelt 1985) is defined by

φ(x)ij = xji, for all 1 ≤ i, j ≤ n.

This mapping transforms a facet f T x ≤ f0 to a facet gT x ≤ g0, where gij = fji ,
for all i and j , and g0 = f0. In Bolotashvili et al. (1999), a second mapping ψr is
presented. For an arbitrary fixed r ∈ {1, . . . , n}, it is defined by

ψr(x)rj = xjr , for all 1 ≤ j ≤ n, j �= r,

ψr(x)jr = xrj , for all 1 ≤ j ≤ n, j �= r,

ψr(x)ij = xij + xjr + xri − 1, for all 1 ≤ i, j ≤ n, i �= r , j �= r.

It is shown in Bolotashvili et al. (1999) that if f T x ≤ f0 defines a facet F of P n
LO,

then

n∑

i=1,i �=r

n∑

j=1,j �=r

fijψ
r(xij ) =

n∑

i=1,i �=r

n∑

j=1,j �=r

(
fij (xij + xjr − xir ) + firxri + frixir

)

≤ f0

defines the facet ψr(F ).
We enhanced our separation routines by using rotation in the following way. For

a given LP-solution x∗ and a fixed rotation parameter r ∈ {1, . . . , n}, we compute
the mapping ψr(x∗). Now we perform all separation procedures directly on ψr(x∗).
If a violated inequality is found, then we construct its rotated version which is then
violated by the original LP solution x∗. This procedure is performed for every r in a
random order.

Note that using the rotation mappings also for the 3-dicycle separation does not
lead to additional inequalities because 3-dicycles are mapped to other 3-dicycles or
trivial inequalities.

A mapping of the vertices of P n
LO onto themselves was already presented in

McLennan (1990). But, since this mapping is only well-defined for permutations,
it cannot be applied in our case, where the fractional LP solution x∗ has to be trans-
formed.

4.2 Generation of mod-k cuts

We use two general strategies for trying to generate mod-k cuts violated by the current
fractional solution x∗. The first strategy considers small subdigraphs (of the digraph
defined by x∗) and generates all violated cuts that can be found for this digraph. The
idea is that by proceeding this way, the relaxation can locally be strengthened consid-
erably and therefore allow for a reasonable bound improvement in the branch-and-cut
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algorithm. The second strategy applies the mod-k separation routine to the complete
digraph and selects cuts afterwards. Cuts for the whole digraph should provide global
information which is also important for the algorithm. We implemented two strategies
of the first and one of the latter type.

The strategies for choosing an appropriate subdigraph differ as follows. The vari-
able heuristic limits the number nV of variables from which the subdigraph is con-
structed, while the improvement heuristic limits the number nN of the nodes of the
subdigraph.

The variable heuristic starts with the variable that occurs in most constraints of the
current LP. (If there are several variables satisfying this condition, then we choose one
of them at random.) Then we continue to successively select all other variables from
these constraints and also choose all constraints that contain these new variables. If
the limit nV on the number of variables is reached, the selection is stopped and the
subdigraph G′ is defined by the variables selected by this procedure.

A practical problem we had to address was that already a slight increase of nV

could lead from subdigraphs for which no cuts were found to subdigraphs where very
many violated cuts existed. This phenomenon turned out to be caused by the fact that
not all 3-dicycle inequalities for the subdigraph are part of the LP relaxation. After all
trivial and binding 3-dicycle inequalities were added, this problem disappeared. We
experienced that for our problem instances nV = 1

4n and nV = 1
5n are good bounds as

the resulting digraph was just big enough to generate a reasonable number of mod-k
cuts.

The improvement heuristic uses information from the current LP solution. For
every node, the sum of the values of variables corresponding to outgoing arcs is
computed. Then the nodes are linearly ordered with respect to nonincreasing sums.
Our heuristic is based on the hypothesis that nodes closely together in this ordering
will also be neighboring in an optimum solution. For forming the subdigraph we
therefore take the first nN nodes of the ordering, then the second nN nodes, etc., and
generate all mod-k cuts from these n/nN subgraphs. Values nN ∈ { 1

4n, 1
5n, 1

6n} lead
to suitable results.

The third strategy is to apply the maximally violated mod-k method to the whole
digraph and select cuts afterwards. This selection strategy is based on some different
criteria. First, we randomly order the columns of the matrix to avoid to always gen-
erate the first cuts obtained from the system (2) in each iteration. Second, we prefer
cuts introducing few non-zero coefficients because dense LPs are usually more diffi-
cult than sparse ones. A further criterion is to select only the single basic solution or
at most f trivial solutions of (2) and not take all kf possible solutions of the system
into account.

A detailed presentation of further aspects of cut generation and selection for mod-k
separation is given in Fricke (2007).

4.3 Generation of mod-2 cuts

For the shortest path calculation of the mod-2 procedure, we use Dijkstra’s algorithm
leading to running time O(Ẽ log Ṽ ). To avoid that inequalities are found more than
once, we delete all nodes that are part of an already found violated inequality from
the list of potential starting nodes.
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In the case of rotation, we repeat this procedure for all rotation parameters r in a
random order until the limit of 250 cuts is reached. For the violation tolerance, we use
the relatively high value of 0.01 because otherwise the separation procedure finds a
lot of cuts without significantly improving the dual bound. In addition, we use tailing
off which stops the mod-2 separation if the last 10 separations did not improve the
bound by more than 0.05 percent.

4.4 Computational results

The aim of this paper is to study how much mod-k separation can improve the branch-
and-cut algorithms which are only based on the 3-dicycle relaxation. For measuring
this improvement, we compute the gap closure

100 · |cT x∗ − c3cycle|
|copt − c3cycle| ,

where copt, c3cycle, and cT x∗ are the optimum objective function value, the 3-dicycle
upper bound, and the bound obtained with additional mod-k cuts, respectively. Thus
the gap closure gives (in percent) how much of the gap between 3-dicycle bound and
optimum value could be closed.

Table 1 displays for the instances p40-01 – p40-10 the optimum values, the
3-dicycle bound and the improved bound when additional cuts are added for tighten-
ing the LP relaxation. In the first two experiments, we added mod-2 and mod-k cuts
separately (Mk and M2), in the third experiment both separations were employed
(Mk + M2). The branch-and-cut algorithm was stopped when no more violated in-
equalities could be found at the root node, i.e., no branching was started.

Table 2 verifies that these bounds can be improved considerably without much
additional computational effort when rotation is employed to find further cuts.

Improvement with respect to the 3-dicycle relaxation is easier to assess if one
considers the gap closure. Table 3 shows that the gap between 3-dicycle bound and
optimum can be closed by 86% on average and that the gap closure is mainly due to
mod-2 cuts with rotation.

Table 1 Root bounds

Problem Opt 3-cyc Mk M2 Mk + M2

p40-01 9540 9577.48 9571.09 9540.00 9540.00

p40-02 7767 8317.00 8252.75 8053.25 8053.11

p40-03 8822 9115.33 9058.53 8859.77 8859.59

p40-04 8064 8622.67 8544.46 8300.85 8298.93

p40-05 5808 6571.33 6449.60 6213.72 6207.33

p40-06 10787 11255.30 11176.90 10944.40 10939.30

p40-07 8971 9598.00 9484.08 9243.53 9239.43

p40-08 8388 8991.67 8865.77 8584.46 8581.07

p40-09 8097 8702.00 8597.85 8417.49 8410.87

p40-10 9177 9587.67 9529.26 9337.68 9334.69
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Table 2 Root bounds with rotation

Problem Opt 3-cyc MkR M2R Mk + M2R

p40-01 9540 9577.48 9568.69 9540.00 9540.00

p40-02 7767 8317.00 8241.53 7933.32 7932.84

p40-03 8822 9115.33 9051.45 8822.00 8822.00

p40-04 8064 8622.67 8517.68 8153.76 8153.77

p40-05 5808 6571.33 6443.01 6037.71 6036.77

p40-06 10787 11255.30 11169.30 10809.20 10809.10

p40-07 8971 9598.00 9471.06 9073.02 9072.75

p40-08 8388 8991.67 8856.02 8432.82 8433.41

p40-09 8097 8702.00 8596.59 8216.73 8217.30

p40-10 9177 9587.67 9530.65 9218.55 9218.37

Table 3 Gap closure

Name Mk MkR M2 M2R Mk + M2 Mk + M2R

p40-01 17.05% 23.45% 100.00% 100.00% 100.00% 100.00%

p40-02 11.68% 13.72% 47.96% 69.76% 47.98% 69.85%

p40-03 19.36% 21.18% 87.12% 100.00% 87.19% 100.00%

p40-04 14.00% 18.79% 57.61% 83.95% 57.95% 83.94%

p40-05 15.95% 16.81% 46.85% 69.99% 47.69% 70.03%

p40-06 16.74% 18.36% 66.39% 95.26% 67.48% 95.28%

p40-07 18.17% 20.25% 56.53% 83.73% 57.19% 83.77%

p40-08 20.86% 22.47% 67.46% 92.58% 68.02% 92.48%

p40-09 17.21% 17.42% 47.03% 80.21% 48.23% 80.01%

p40-10 14.22% 13.88% 60.87% 89.88% 61.60% 89.93%

So, with respect to bound improvement, the additional separation has proved its
advantages. But interesting as well is to check if this improvement also leads to faster
computation times when a provably optimum solution has to be computed.

Our experiments revealed that the separation of maximally violated mod-k in-
equalities did not have a big effect on the root bound and is, in general, not worth
the effort compared to mod-2 separation. Mod-2 separation gives a better gap clo-
sure, and because of the better bounds the number of branch-and-nodes needed to
solve the problems to optimality is considerably smaller (even when rotation is not
invoked). Therefore, we did not use mod-k separation anymore. Table 4 displays the
respective results of our computations.

Table 4 shows the following facts. If only 3-dicycle separation is used, the algo-
rithm spends most of its CPU time for solving the linear programs. Mod-2 separation
changes this relation. Now separation is responsible for the CPU time. Because of the
better bounds, the number of branch-and-cut nodes is drastically decreased. However,
since separation is time consuming, the overall solution time for the problems with
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Table 4 CPU times (sec), numbers of subproblems and percentages of separation time

Name 3-cyc M2 M2R

time #subs sep time #subs sep time #subs sep

p40-01 0 3 30% 1 1 70% 1 1 75%

p40-02 417 5441 4% 1586 147 87% 2091 41 91%

p40-03 8 115 6% 32 5 79% 23 1 79%

p40-04 198 2317 4% 768 69 86% 836 19 89%

p40-05 6096 24317 3% 5379 471 85% 6792 73 93%

p40-06 48 609 4% 182 19 84% 123 3 84%

p40-07 262 2775 3% 947 85 87% 725 15 87%

p40-08 117 1287 4% 381 33 85% 285 3 87%

p40-09 462 5625 4% 1917 177 87% 1181 23 89%

p40-10 33 421 4% 194 19 86% 221 7 87%

p50-01 2838 8349 7% 4542 153 82% 1474 47 76%

n = 40 is not reduced. But this changes for larger problems. Problem p50-01 can
now be solved in half of the time.

Our computational experiments for the linear ordering problem lead us to the con-
clusion that the incorporation of general cut generation procedures is worthwhile and
promising, and should also be tried for other combinatorial optimization problems.
This coincides with the suggestion in Andrello et al. (2007), where a heuristic mod-2
separation procedure was applied to different ILPs. The optimal use of mod-2 and
mod-k inequalities still has to be explored. To some extent, their potential cannot
be fully exploited because LPs are becoming more difficult, at least for current LP
solvers.
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