
Top (2011) 19:67–92
DOI 10.1007/s11750-009-0082-7

O R I G I NA L PA P E R

A crossover operator that uses Pareto optimality
in its definition

I. Alberto · P.M. Mateo

Received: 15 February 2008 / Accepted: 21 March 2009 / Published online: 8 April 2009
© Sociedad de Estadística e Investigación Operativa 2009

Abstract Evolutionary Algorithms are search and optimisation methods based on the
principles of natural evolution and genetics that attempt to approximate the optimal
solution of a problem. Instead of only one, they evolve a population of potential
solutions to the problem, using operators like mutation, crossover and selection.

In this work, we present a new crossover operator, in the context of Multiobjective
Evolutionary Algorithms, which makes use of the concept of Pareto optimality. After
that it is compared to four common crossover operators. The results obtained are very
promising.

Keywords Multiobjective decision making · Metaheuristics · Evolutionary
algorithms

Mathematics Subject Classification (2000) 90C29 · 90C59 · 68T20

1 Introduction

In order to model problems in a more realistic way, complex formulations of real
systems have to be established. A great amount of these formulations constitute mul-
tiobjective problems in which there are more than one objective function for compar-
ing the quality of solutions. Often, these complex models are unapproachable with
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Fig. 1 General schema of an
evolutionary algorithm

generate initial population P0
evaluate P0
t = 0
while (no termination condition)

variate Pt

evaluate Pt

select Pt+1
t = t + 1

end while

classical techniques, but the use of heuristic methods allows the researchers to deal
with them.

Evolutionary Algorithms, EAs, can be considered the most adequate methods
for solving complex Multiobjective Optimisation Problems (MOOPs). The general
schema of an EA is shown in Fig. 1. For a general vision in this field, the reader is
referred to these classical books: Holland (1975), Goldberg (1989) and Michalewicz
(1996), and the more recent book with a complete description of the different tech-
niques by Eiben and Smith (2007).

Regarding the multiobjective optimisation field, since the Vector Evaluated Ge-
netic Algorithm (VEGA) was proposed by Schaffer in the mid-1980s Schaffer (1984,
1985), a large amount of different EA implementations have been proposed and a
great quantity of papers on this matter have appeared. The web site by Coello (2008)
and the books by Coello et al. (2007) and Deb (2001) provide a good and complete
introduction as well as a broad list of references about Evolutionary Multiobjective
Optimisation.

Researchers are aware of the importance of efficiency in these kinds of algorithms
in the sense of obtaining different elements whose improvement provide us with “bet-
ter” solutions in a “faster” way. These elements can be: solution representation, man-
agement of solutions, design of operators (mutation, crossover, selection), techniques
for improving the coverage of the Pareto front, and so on.

The crossover operator is an important element in the design of EAs. Together
with the mutation operator, both are responsible for the exploration of the space of
solutions. A great amount of crossover operators can be found in the literature, for
example, in Deb (2001) and in Coello (2005) some of the most widely used are pre-
sented.

In this work, a new crossover operator is introduced and compared to the following
operators (Deb 2001): naïve crossover, linear crossover, blend crossover, and simu-
lated binary crossover. As it will be shown, the new crossover operator outperforms
the other ones.

The paper is organised as follows: In the next section, we briefly present the defin-
itions and notations on multiobjective problems that we will need later. In Sect. 3, we
present the four crossover operators we will use to compare them to the new crossover
operator, which is explained in Sect. 4. Next, we explain the experiment carried out
for accomplishing the comparison. Finally, the conclusions are presented in Sect. 6.
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2 Multiobjective optimisation problems and Pareto optimality

The aim of Multiobjective Optimisation is to optimise a set of objective functions
which, in general, may be of a conflicting nature. Hence, the term “optimise” means
to find a solution satisfying the constraints, which would give reasonable values of
all objective functions to the decision maker. More formally, MOOPs can be defined
in the following way:

min f(x) = (
f1(x), . . . , fm(x)

)

s.t. x = (x1, . . . , xn) ∈ D ⊂ R
n.

Contrary to single objective optimisation, in multiobjective optimisation it is usu-
ally impossible to find one optimal solution. Instead, algorithms for optimising mul-
tiobjective problems try to find a family of points known as the Pareto optimal set.
These points verify that there is no different feasible solution which strictly improves
one component of the objective function vector without worsening at least one of the
remaining ones.

A more formal definition of Pareto optimality or Pareto efficiency is the following:

Definition 1 If given a solution y, there exists another solution x such that ∀j =
1, . . . ,m, fj (x) ≤ fj (y) and ∃j ∈ {1, . . . ,m} such that fj (x) < fj (y), then we will
say that solution x dominates solution y (denoted by x ≺ y), and, obviously, solution
y will never be sensibly selected as the solution to the problem.

Definition 2 A solution x ∈ D is said to be Pareto optimal or efficient if and only if
�y ∈ D such that y ≺ x.

Definition 3 The real Pareto optimal set will be denoted with P true. The image of
P true in the objective function space is called Pareto front and it will be denoted by
PF true.

The crossover operator we propose takes into account the quality of the solution
in terms of its efficiency. In this sense, we will need the solutions to be divided into
two groups: the first one contains the efficient solutions and the second the remaining
ones. The way in which the operator works depends on whether the selected individ-
uals are efficient or not.

3 Crossover operators

Among the crossover operators that can be found in the literature, we have considered
four of them. These operators and their characteristics are the following:

– Naïve crossover or standard one-point crossover (C1) (Holland 1975): Given x(1,t)

and x(2,t) two solutions of the current population in iteration t of an EA, the
naïve crossover operator selects a random crossover point j (between 2 and n)
and then the components j to n in both solutions are swapped. In Fig. 2, the
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Fig. 2 Crossover operators considered. The values x
(L)
i

and x
(U)
i

represent the lower and upper bounds
of component xi , respectively. Parents are marked by filled circles. This is a reprint of Figs. 57, 58, 59, 61,
and 62 of Deb (2001). Copyright John Wiley & Sons Limited, 2001. Reproduced with permission

solutions x(1,t) = (x
(1,t)
1 , x

(1,t)
2 ) and x(2,t) = (x

(2,t)
1 , x

(2,t)
2 ) are recombined taking

as the crossover point the second component, obtaining the offsprings x(1,t+1) =
(x

(1,t)
1 , x

(2,t)
2 ) and x(2,t+1) = (x

(2,t)
1 , x

(1,t)
2 ).

– Linear crossover (C2) (Wright 1991): This operator creates three solutions from
two parents. The value of the ith component of the offsprings are obtained accord-
ing to:

0.5
(
x

(1,t)
i + x

(2,t)
i

)
, 1.5x

(1,t)
i − 0.5x

(2,t)
i , −0.5x

(1,t)
i + 1.5x

(2,t)
i .

Unlike the original version of this operator, we have used a slight modification
which consists of keeping the three offsprings instead of selecting the two best
ones. In Fig. 2, the offsprings are marked with empty circles.

– Blend crossover (C3) (Eshelman and Schaffer 1993): This operator, also de-
noted BLX-α, generates individuals according to the following formula (assuming
x

(1,t)
i < x

(2,t)
i ):

(1 − γi)x
(1,t)
i + γix

(2,t)
i ,

where γi = (1 + 2α)ui − α and ui ∈ U(0,1). The authors of this crossover as
well as, for example, of Herrera et al. (1998) reported the value α = 0.5 to behave
better than others, probably because this value provides a balanced relationship
between exploitation and exploration. An important property of this operator is the
following: If the parents are close to each other then the offsprings are close to
the parents, too. This constitutes an adaptive device: In the early stages when the
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parents are usually not close to each other, the operator tends to search through the
whole variable space. And when the algorithm iterates and the solutions tend to be
closer, the operator carries out a focused search. In Fig. 2, marked with a line is the
range where the offsprings are generated using a uniform distribution.

• Simulated binary crossover (C4) (Deb and Agrawal 1995): This operator simulates
the behaviour of the single-point crossover operator on binary strings in the sense
that common interval schemata between the parents are kept in the offspring. It
works generating the components of the offsprings as follows:

x
(1,t+1)
i = 0.5

[
(1 + βi)x

(1,t)
i + (1 − βi)x

(2,t)
i

]
,

x
(2,t+1)
i = 0.5

[
(1 − βi)x

(1,t)
i + (1 + βi)x

(2,t)
i

]
,

where

βi =
{

(2u)
1

η+1 if u ≤ 0.5,

( 1
2(1−u)

)
1

η+1 otherwise.

For parameter η, we have considered the value 20 as used in Deb et al. (2002) and
Zitzler et al. (2001). In Fig. 2, the line represents the probability density function
for generating offsprings in the corresponding interval: The higher the line, the
greater the probability of the offspring to be generated there.

4 The new Pareto based crossover operator

The new Pareto based crossover operator, PBC, is a uniform crossover operator which
has a different maximum range of variation depending on the quality of the solution.
The main idea of the operator is to use good parents (efficient ones) to improve the
quality of the offspring (exploitation) and to use not so good parents (non-efficient
ones) to explore the whole space (exploration).

More specifically, when pairs of non-efficient solutions are considered for
crossover, they are recombined with a BLX-α with α initially equal to 0.5. But α

is slightly modified depending on the distance between the solutions in such a way
that, if the solutions are very close, the parameter α is increased, and, if the solutions
are distant, α is decreased, with the objective of keeping the capacity of exploration
more or less stable.

In any other case, two efficient solutions, or one efficient and the other non-
efficient, are recombined generating points in intervals centred around them, with
the amplitude of the interval depending on both the solutions and the iteration. If
both solutions are efficient, the amplitude of the interval depends on the distance be-
tween them and on the iteration t . If only one of the solutions is efficient, the efficient
one behaves as in the previous case, and the non-efficient one has an amplitude of the
interval that only depends on the distance between the solutions. Also, in both cases,
with probability equal to 0.25, the centres of the intervals are interchanged with the
objective of increasing the capacity of sharing information between the solutions.

Let Pt be the current population in iteration t , POSt its Pareto optimal set, and
pt = |POSt |. In order to decide whether or not the parents are close to each other, a
fact that will be used in the design of the operator, we use the following process:
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Step 1: Let dist(x,y) be the Euclidean distance between x and y. Calculate d(eff,t),
the mean distance between all pairs of solutions in POSt , and σ (eff,t), the standard
deviation, according to:

d(eff,t) = 2

p2
t − pt

∑

x(i,t),x(j,t) ∈ POSt

i < j

dist
(
x(i,t),x(j,t)

)
,

σ (eff,t) =
√√√√√

2

p2
t − pt

∑

x(i,t),x(j,t) ∈ POSt

i < j

(
dist

(
x(i,t),x(j,t)

) − d(eff,t)
)2

.

Step 2: Let f Neff and f (eff,t) be the amplitude factors associated to the non-efficient
and efficient solutions, respectively, calculated according to

f Neff = 1,

f (eff,t) = 1 − �t/stepsIter	 · 0.11,

where stepsIter corresponds to the maximum number of iterations performed by the
algorithm divided by 10 and �·	 represents the floor function, i.e. the greatest integer
less than or equal to its argument. Observe that f (eff,t) is a decreasing step function
that takes values in [0.01,1].

The amplitude factors f (eff,t) and f Neff will act in such a way that, if the indi-
viduals are close, the factors extend the default amplitude of the interval, �(i) =
3
4 |x(1,t)

i − x
(2,t)
i |, i = 1, . . . , n, in which the components of the descendants will take

values. Otherwise, they will reduce the amplitude.
After the above establishments, let x(1,t) and x(2,t) be the parent solutions selected

for crossover. At that moment, and depending on the distance between x(1,t) and
x(2,t) and on the values of d(eff,t) and σ (eff,t), the factors f (eff,t) and f Neff are both
multiplied by one of the following quantities:

(i) 1 if d(eff,t) = 0 or σ (eff,t) = 0,

(ii) 4
3 if dist(x(1,t),x(2,t)) < d(eff,t) − 3σ (eff,t),

(iii) 2
3 if dist(x(1,t),x(2,t)) > d(eff,t) + 3σ (eff,t),

(iv) (1 + d 0.11
σ (eff,t) ) if d(eff,t) − 3σ (eff,t) ≤ dist(x(1,t),x(2,t)) < d(eff,t),

(v) (1 − d 0.11
σ (eff,t) ) if d(eff,t) + 3σ (eff,t) ≥ dist(x(1,t),x(2,t)) ≥ d(eff,t),

where d = |d(eff,t) − dist(x(1,t),x(2,t))|.
It can be observed that in cases (ii) and (iii) the factors are increased and decreased

by a factor of 33%, respectively. In cases (iv) and (v), a continuous correction is made
but the maximum modification is equal to 33%.

Finally, the last correction in f (eff,t) is accomplished by

f (eff,t) = min
{
1, f (eff,t)}.
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After these calculations and in order to carry out the crossover, three cases are
considered: neither solution is efficient, both solutions are efficient, and only one is
efficient.

• Case 1: Neither of the parents is efficient. In this situation, the new components
x

(1,t+1)
i and x

(2,t+1)
i , will be generated taking two random values in the interval

[
x

(1,t)
i + x

(2,t)
i

2
− 4

3
�(i) f Neff,

x
(1,t)
i + x

(2,t)
i

2
+ 4

3
�(i) f Neff

]
.

Note that this corresponds to a BLX-α operator, where 1
6 ≤ α ≤ 5

6 , depending on
the value f Neff.

• Case 2: Both parents are efficient solutions. Then the two values, x(h,t+1)
i , h = 1,2,

for the new solutions are randomly created in the intervals
[
xh
i − �(i) f (eff,t), xh

i + �(i) f (eff,t)], h = 1,2,

where, when we are obtaining x
(h,t+1)
i , xh

i is equal to x
(h,t)
i with probability 0.75

or equal to x
(3−h,t)
i with probability 0.25, h = 1,2.

• Case 3: Only one of the parents is efficient. This situation is similar to Case 2.
Assuming that x(1,t) is the efficient solution (the other case is analogous), then one
value is obtained in the interval

[
x1
i − �(i) f (eff,t), x1

i + �(i) f (eff,t)],

where x1
i is equal to x

(1,t)
i with probability 0.75 or equal to x

(2,t)
i with probability

0.25. And the other value is taken in the interval
[
x2
i − �(i) f Neff, x2

i + �(i) f Neff],

where x2
i is equal to x

(2,t)
i with probability 0.75 or equal to x

(1,t)
i with probability

0.25.

In all these situations, the solutions are randomly generated in the corresponding
intervals using the uniform distribution (i.e. using a constant probability density func-
tion in the interval). In all the cases, if the obtained solution is not feasible, another
one is generated in the same way.

From the former cases, the following key ideas can be observed: All the values of
the new components are obtained using the uniform distribution in an interval cen-
tred in (x

(1,t)
i + x

(2,t)
i )/2 or xh

i , and with a default amplitude equal to 4
3�(i) or �(i)

depending on whether Case 1, 2 or 3 holds. Our aim is to use non-efficient solu-
tions to broadly explore the space and the efficient ones to maintain the capacity of
exploitation. Then, in the case of non-efficient solutions, their default amplitude is
increased or reduced by a maximal amount of 33%, maintaining an important capac-
ity of exploration. On the other hand, in the case of efficient solutions, their default
amplitude is also multiplied by a factor that tends to zero when the number of it-
erations is advanced in such a way that initially it has also an exploratory capacity
which is subsequently substituted, when iterations proceed, by a higher capacity of
exploitation.
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5 Computational experiment

In this section, the computational experiment we have carried out to test the perfor-
mance of PBC is explained. We should remark that the aim of the paper is to com-
pare the PBC with some of the existing crossover operators and not to create a new
Evolutionary Algorithm. Therefore, the comparison is accomplished using a naïve
algorithm as the one shown in Fig. 1, and in which the ‘variate’ step only involves
one of the crossover operators considered and no mutation operator is used.

All the calculations were carried out on a PC Pentium 2.66 Ghz with 512 MB of
RAM under Linux Mandriva 2006, and all programmes were coded in C language
and compiled with a GNU GCC compiler. A precision of 10−8 has been taken for all
arithmetical calculations, one unit of accuracy more than the one used in the Pareto
Fronts supplied by CEC (2007). All the codes used in the paper were written by
the authors, except the code for the hypervolume calculation that was obtained from
Fonseca et al. (2006b) based on Fonseca et al. (2006a), and all the codes for the
function evaluations that were extracted from the available codes provided in CEC
(2007).

This section contains four subsections. The first focuses on showing the perfor-
mance measures used to accomplish the comparison of the results, and the second
shows the test problems that we have considered. In the third subsection, we describe
how the experiment is carried out and, finally, in the last part we report the obtained
results.

5.1 Measures for comparing the operators

In order to compare our crossover operator with the other operators pointed out be-
fore, we have considered three measures: hypervolume difference to a reference set
(CEC 2007; Huang et al. 2007), generational distance (Coello et al. 2007), and set
coverage (Zitzler 1989).

The outline of these measures is the following: Given P ∗, the set of non-dominated
solutions resulting from the execution of an optimisation algorithm, and PF∗, its im-
age in the objective space,

– Hypervolume difference to a reference set (HD): The original hypervolume mea-
sure (Zitzler and Thiele 1999) calculates the volume covered by the hypercube
formed by the vectors of PF∗ (considering that all the objectives are to be min-
imised) and a reference point. The reference point is placed in such a way so as to
be at least weakly dominated by every member in P ∗, and can be found, for exam-
ple, by constructing a vector of worst objective function values in PF∗. Since this
metric is not free from arbitrary scaling of objectives, we will normalise the objec-
tive values first. In order to obtain the value of the hypervolume difference, HD,
we calculate the difference between the hypervolume of a reference set contained
in PFtrue and the hypervolume of PF∗. This reference set consists of 500 points for
two objective problems and of 5000 points for three objective problems, they have
all been obtained from CEC (2007). For this measure, the smaller the value, the
better the population, in contrast to the original hypervolume measure.
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– Generational distance (GD): This measure, which also requires a reference set
contained in PFtrue to be known, reports how far, on average, PF∗ is from PFtrue.
Mathematically, it is defined as:

GD = (
∑n

i=1 d2
i )1/2

|PF∗| ,

where |PF∗| is the number of vectors in PF∗ and di is the Euclidean phenotypic
distance between each member, i, of PF∗ and the closest member in PFtrue to that
member i. For this measure, the smaller the value, the better the population.

– Set coverage (C): Let P ∗
1 and P ∗

2 the non-dominated sets resulting from the exe-
cution of two different algorithms. This measure calculates the proportion of so-
lutions in set P ∗

2 which are weakly dominated (� means ≺ or =) by solutions in
set P ∗

1 :

C(P ∗
1 ,P ∗

2 ) = |{b ∈ P ∗
2 |∃a ∈ P ∗

1 , a � b}|
|P ∗

2 | .

Since this operator is not symmetrical, both C(P ∗
1 ,P ∗

2 ) and C(P ∗
2 ,P ∗

1 ) have to be
calculated. In the best situation, P ∗

1 is better than P ∗
2 if C(P ∗

1 ,P ∗
2 ) is close to one

and C(P ∗
2 ,P ∗

1 ) is close to zero. In general, P ∗
1 is better than P ∗

2 if C(P ∗
1 ,P ∗

2 ) is
notably greater than C(P ∗

2 ,P ∗
1 ).

5.2 The test problems

The use of a set of test problems helps to guarantee that the proposed operator will
confront efficient solution spaces of different characteristics. The test suites ZDT (Zit-
zler et al. 2000) and DTLZ (Deb et al. 2002) have been extensively used. However,
these suites have some drawbacks since the test problems share some characteristics
and often have some design flaws. Then, we have used the extended and rotated or
shifted version of some of these problems proposed by Huang et al. (2007). A short
description of their characteristics is shown in Table 1.

For problems 1 to 3 and 5, the number of objective functions is 2 and the number
of decision variables is 30; for problems 6 and 8, these numbers are equal to 3 and
10, respectively; and finally, problems 4 and 7 have 10 decision variables and 2 and
3 objective functions, respectively. In all of these test problems, the Pareto optimal
set is known. For a review on multiobjective test problems the reader is addressed to
Huband et al. (2007).

5.3 Selection operators

After applying the crossover operator, we conform a temporary population consisting
of the current one together with the new individuals obtained in order to apply the
selection process. We have used three different selection operators: two of them of
the roulette wheel selection type (surviving and death selection) and the other of
the elitist type. The operators use a ranking of the individuals of the population. To
establish this ranking, we have used the one proposed by Goldberg (1989), but any
other can be used, for example, the one introduced by Fonseca and Fleming (1993)
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Table 1 Properties of the test functions. S: Separable; NS: Nonseparable; U: Unimodal; M: Multimodal

Test Objective Number of Separability Modality Geometry

problem variables

1. S-ZDT1 f1 1 S U Convex

f2 >1 S U

2. S-ZDT2 f1 1 S U Concave

f2 >1 S U

3. S-ZDT4 f1 1 S U Convex

f2 >1 S M

4. R-ZDT4 f1:2 >1 NS M Convex

5. S-ZDT6 f1 1 S M Concave

f2 >1 S M

6. S-DTLZ2 f1:3 >1 S U Concave

7. R-DTLZ2 f1:3 >1 NS M Concave

8. R-DTLZ3 f1:3 >1 S M Concave

or even the raw fitness defined in Zitzler et al. (2001) for the algorithm SPEA2. The
ranking proposed by Goldberg assigns a value equal to 1 to the efficient solutions,
then these solutions are removed from the population. The efficient solutions of this
new set are assigned ranking 2, and the process continues until there are no solutions
left.

The selection operators considered are the following:

– Surviving selection (S1) (Michalewicz 1996) (pp. 34): This operator assigns a
higher probability to those individuals with smaller ranking. In iteration t , the
selection probability pi(t) is defined for each individual x(i,t) ∈ Pt according
to:

pi(t) = rmax + 1 − ri∑
x(j,t)∈Pt

(rmax + 1 − rj )
,

where rj is the ranking value of individual x(j,t) in Pt and rmax = maxj {rj }. Then,
using these probabilities, a roulette wheel selection is performed in order to fill the
whole new population.

– Death selection (S2) (Michalewicz 1996) (pp. 62): In this case, each individual
receives a probability of not surviving (a higher probability to those individuals
with greater ranking) defined according to:

pi(t) = ri∑
x(j,t)∈Pt

rj
.

Then, a roulette wheel selection with these probabilities is accomplished in order
to eliminate the spare individuals until reaching the fixed population size. With this
mechanism the population does not receive two copies of the same individual, thus
helping to avoid crowding the population with the same individuals.
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– Elitist selection (S3): Taking into account the size of the population, the spare
individuals with higher ranking, i.e. the worst solutions, are removed from the
population without random selection. The process is similar to the selection opera-
tor used in the algorithm NSGA-II (Deb et al. 2002): It uses a crowding distance to
keep a diverse front by making sure each member stays a crowding distance apart.
This keeps the population diverse and helps the algorithm to explore the fitness
landscape.

5.4 Implementation and execution

For implementing the experiment we have considered a usual fixed population size
equal to 100 individuals as in Zitzler et al. (2001) and Deb et al. (2002). The compar-
ison of our PBC with C1, C2, C3, and C4 is carried out taking into account different
scenarios. A scenario is defined by any combination of the levels of the factors: num-
ber of iterations and selection operator. The number of iterations takes three different
values (levels of this factor): 100, 500 and 1000 times which represent 104, 5 × 104

and 105 function evaluations since, for each individual x ∈ Pt , the probability of
crossover is 1, which means that in every generation all the individuals are recom-
bined. Also, when two individuals are selected for crossover, all their components
are recombined. The factor selection operator has three different levels which corre-
spond to the three different selection operators of the previous subsection. Since both
factors have 3 levels, the number of different scenarios is equal to 9.

For each problem, 50 initial populations are generated. We apply the algorithm
using a different crossover operator each time, considering each of the 9 differ-
ent scenarios. By doing so, we obtain 50 final populations for each combination of
crossover operator and scenario. In each of these populations, we obtain the set of ef-
ficient solutions, P ∗, and we calculate the measures of Sect. 5.1. For calculating HD,
for each problem and number of iterations, the reference point is placed by obtain-
ing the worst objective function value among all the P ∗ populations obtained with
the different crossover and selection operators. That is to say, for each problem the
same reference point is used for all the P ∗ once the number of iterations has been
fixed.

Figures 3 to 11 summarise the results for the three measures considered: Figs. 3,
4 and 5 for a number of iterations equal to 100; Figs. 6, 7 and 8 for a number of
iterations equal to 500, and finally, Figs. 9, 10 and 11 for a number of iterations equal
to 1000. The figures show the mean value of the 50 executions in each scenario. To
be able to slightly distinguish the results in Figs. 4, 7 and 10 (those corresponding
to the measure GD) the scale of edge y is limited to 500. In this measure and for
Problem 8 (R-DTLZ3), values around 2500 are reached in some scenarios. Some
relevant results for Problem 8 and the measure GD are the following: In the case of
100 iterations, the best value of GD is reached by C1 for all the selection operators
and the second best by PBC. For 500 iterations, the best is C1 for selections S1 and
S2, and PBC for selection S3. The second best is PBC for selections S1 and S2, and
C1 for selection S3. And for 1000 iterations, the best crossover operator is always
PBC followed by C1.

Since only the mean values themselves are not enough to decide whether an op-
erator is better for a given measure than other or not, we have considered carrying
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Fig. 3 Mean values of hypervolume difference (HD) for each scenario and crossover operator considered.
Results for 100 iterations

Fig. 4 Mean values of generational distance (GD) for each scenario and crossover operator considered.
Results for 100 iterations
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Fig. 5 Mean values of coverage for each scenario; C(PBC,Ci) in grey and C(Ci,PBC) in white. The
black dot represents the difference C(PBC,Ci) − C(Ci,PBC). Results for 100 iterations

out a statistical test to determine this fact (Casella and Berger 2002). To perform
statistical hypothesis tests for comparing PBC with Ci , i = 1,2,3,4, and with the
objective of determining the effect of the crossover when using them in the algorithm
starting from identical initial conditions, the data are paired in the following way: For
each scenario, the measure obtained in the resulting population using crossover Ci is
paired with the measure obtained in the resulting population using crossover PBC.

Two different hypothesis tests are performed. For each measure, the first hypoth-
esis test is H0: PBC performs worse than or equal to Ci versus H1: PBC performs
strictly better than Ci , i = 1,2,3,4. Note that this hypothesis test is the one that
least favours our operator PBC, since the fact of PBC being strictly better than Ci

is placed in the alternative hypothesis. The second hypothesis test, applied when the
former null hypothesis H0 is accepted, is H0: PBC performs equally to Ci versus H1:
PBC is different from Ci , i = 1,2,3,4. For both tests, the significance level is equal
to 0.05.

In Table 2, the results of these tests are shown. A ‘+’ sign appears when the first
null hypothesis is rejected (and so, PBC is strictly better than Ci ). If the first null
hypothesis is accepted, an ‘=’ sign appears when the second null hypothesis H0:
PBC is equal to Ci is accepted (then, both operators PBC and Ci have an equivalent
behaviour); and a ‘−’ sign otherwise (which means that PBC cannot be considered
equal to or better than Ci , i = 1,2,3,4). Then, in this table, the fewer ‘−’ signs
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Fig. 6 Mean values of hypervolume difference (HD) for each scenario and crossover operator considered.
Results for 500 iterations

Fig. 7 Mean values of generational distance (GD) for each scenario and crossover operator considered.
Results for 500 iterations
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Fig. 8 Mean values of coverage for each scenario; C(PBC,Ci) in grey and C(Ci,PBC) in white. The
black dot represents the difference C(PBC,Ci) − C(Ci,PBC). Results for 500 iterations

Fig. 9 Mean values of hypervolume difference (HD) for each scenario and crossover operator considered.
Results for 1000 iterations
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Fig. 10 Mean values of generational distance (GD) for each scenario and crossover operator considered.
Results for 1000 iterations

Fig. 11 Mean values of coverage for each scenario; C(PBC,Ci) in grey and C(Ci,PBC) in white. The
black dot represents the difference C(PBC,Ci) − C(Ci,PBC). Results for 1000 iterations
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appear, the better the operator PBC is. With the same codification, in Tables 3 to 6
the results for all the problems appear separately.

Table 2 also shows, for every combination of crossover Ci , i = 1,2,3,4, and
scenario, the confidence interval for the mean of the paired difference of measures
MCi

− MPBC, where MCi
is the hypervolume difference or the generational distance

calculated in the final population using crossover Ci in a specific scenario and MPBC
is the measure calculated in the final population using PBC in the same scenario.
Since for both measures the smaller is the better, when the interval lays above 0, it
means that MCi

> MPBC, PBC performing then better than Ci for that measure in
that scenario. In the case of coverage, for each scenario, we have calculated the in-
terval for the mean of the difference C(PBC,Ci) − C(Ci,PBC). In this case, when
the interval lays above 0, we can also say that PBC performs better than Ci in this
measure.

5.5 Results from the experiment

First and foremost, we have to point out that, in the great majority of the scenarios
and for both hypothesis tests, the decision to accept or reject the corresponding null
hypothesis is taken with p-values higher than 30% (accepting H0), or of the order of
10−5 or smaller (rejecting H0). That is to say, there are not many indecisive situations
for accepting or rejecting H0 with p-values close to the chosen significance level.

Before starting the analysis of the results obtained, note that, since there are three
measures for judging the behaviour of the crossover operators to be compared, the de-
cision of which crossover operator behaves better is itself a multiobjective problem.
Then, we have decided to make the following compromise decision: For commenting
on the remaining tables we have organised the results in such a way that if the differ-
ence between the number of ‘+’ and ‘−’ signs in a scenario is positive, we will say
that PBC “performs better than” Ci in that scenario; if that difference is negative, we
will say that Ci “performs better than” PBC in that scenario; Ci and PBC performing
in an equivalent way otherwise.

In Table 2, it can be observed that there is no combination of scenario and
crossover for which PBC performs worse than Ci in the three measures simulta-
neously. It can be observed that for C2 and C4, under the 9 scenarios considered,
PBC always obtains a behaviour strictly superior in the three measures considered.
With respect to C1, the only measure in which C1 is superior to PBC is in the gen-
erational distance with 100 iterations with all the selection operators, and with 500
iterations with selection operator S2; this fact is due mainly to the values obtained in
this measure for problem R-DTLZ3. With respect to hypervolume and coverage, the
values obtained with PBC are better than those obtained with C1 in all the scenarios.
In relation to C3, this operator presents a better behaviour than PBC only in hypervol-
ume in two of the nine scenarios considered, PBC being better than C3 in the other
measures in most cases and in two cases equal to C3. Also, as it was commented at
the beginning of the subsection, the confidence intervals corroborate that there are no
indecisive situations in which the p-value of the test is close to the significance level.

Then, globally, we can conclude that the new operator PBC has clearly a better be-
haviour than Ci , i = 1,2,3,4, when considering all the measures together, according
to the compromise solution established.
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Table 3 Results of the hypothesis tests performed for S-ZDT1 (left) and S-ZDT2 (right). A ‘+’ sign
means that the hypothesis “PBC performs better than Ci” is accepted. An ‘=’ means that the hypothesis
“PBC performs equally to Ci” is accepted. And a ‘−’ represents that the hypothesis “PBC performs worse
than Ci” is accepted

Sel. Measure S-ZDT1. PBC versus S-ZDT2. PBC versus

C1 C2 C1 C2

No. iterations No. iterations No. iterations No. iterations

100 500 1000 100 500 1000 100 500 1000 100 500 1000

S1 HD + + + + + + + + + + + +
GD = + + + + + = + + + + +
C + + + + + + + + + + + +

S2 HD + + + + + + + + + + + +
GD = + + + + + = + + + + +
C + = + + + + + + + + + +

S3 HD + + + + + + + + + + + +
GD + + + + + + + + + + + +
C + + + + + + + + + + + +

C3 C4 C3 C4

S1 HD + + = + + + + − − + + +
GD + + + + + + + − − + + +
C + + + + + + + − − + + +

S2 HD + + = + + + + + = + + +
GD + + + + + + + + = + + +
C + + + + + + + + + + + +

S3 HD + − = + + + + = = + + +
GD + + + + + + + = = + + +
C + = + + + + + + = + + +

However, when considering the problems separately, there exist some scenarios for
some problems in which the behaviour of PBC is not the best, and then, we comment
on the previous results separately for each problem. If we observe Figs. 3 to 11 and
Tables 3 to 6, we can conclude the following:

S-ZDT1 If we observe Figs. 3, 6 and 9 which correspond to HD and with regard to
this problem, our operator PBC obtains better values than C1, C2 and C4. For C3,
the values are too close to appreciate the difference in the figures. This also happens
in Figs. 4, 7 and 10 due to the high values of GD obtained for problems S-ZDT4,
R-DTLZ2 and R-DTLZ3. With respect to the coverage measure, Figs. 5, 8 and 11
clearly show that PBC presents better behaviour than the other operators. In a more
rigorous way, if we look at the results of the hypothesis tests performed in Table 3,
we can conclude that for this problem PBC clearly outperforms Ci , i = 1,2,3,4.
There is only one scenario in which a ‘−’ sign appears, which corresponds to C3,
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Table 4 Results of the hypothesis tests performed for S-ZDT4 (left) and R-ZDT4 (right). A ‘+’ sign
means that the hypothesis “PBC performs better than Ci” is accepted. An ‘=’ means that the hypothesis
“PBC performs equally to Ci” is accepted. And a ‘−’ represents that the hypothesis “PBC performs worse
than Ci” is accepted

Sel. Measure S-ZDT4. PBC versus R-ZDT4. PBC versus

C1 C2 C1 C2

No. iterations No. iterations No. iterations No. iterations

100 500 1000 100 500 1000 100 500 1000 100 500 1000

S1 HD + + + + + + + + + + + +
GD + + + + + + + + + + + +
C + + + + + + + + + = = =

S2 HD + + + + + + + + + + + +
GD − + + + + + + + + = + +
C + + + + + + + + + = + +

S3 HD + + + + + + + + + + + +
GD + + + + + + + + + + + +
C + + + + + + + + + + + +

C3 C4 C3 C4

S1 HD + + = + + + + = = + + +
GD + + = + + + + = = + + +
C + + = + + + + = = + + +

S2 HD + + = + + + = + + + + +
GD + + + + + + = + + + + +
C + + + + + + = + + + + +

S3 HD = + + + + + + + + + + +
GD = + + + + + = + + + + +
C = + + + + + = + + + + +

but the other two measures have a ‘+’ and an ‘=’ sign, and so PBC and C3 can
be considered equivalent in this scenario. In the other scenarios, the number of ‘+’
signs is 2 or 3.

S-ZDT2 Figures 3, 6 and 9 for HD and Figs. 5, 8 and 11 for coverage show that PBC
only alternates the first position with C3, and only in two scenarios (S1 with 500
and 1000 iterations). When considering the hypothesis tests performed, as Table 3
shows, for this problem PBC clearly outperforms Ci , i = 1,2,4. C3 outperforms
PBC in scenarios (S1, 500 and 1000 iterations) for all the measures. In the other
seven scenarios, PBC clearly outperforms C3 in 4 cases, PBC performs better than
C3 in two cases, and both are equivalent in one case.

S-ZDT4 If we observe the values of HD corresponding to this problem in Figs. 3, 6
and 9, it can be noticed that PBC obtains better values than C1, C2 and C4. With
respect to C3, it presents values which are close but, in general, slightly worse than
those obtained with PBC. Something similar happens with respect to GD (Figs. 4,



88 I. Alberto, P.M. Mateo

Table 5 Results of the hypothesis tests performed for S-ZDT6 (left) and S-DTLZ2 (right). A ‘+’ sign
means that the hypothesis “PBC performs better than Ci” is accepted. An ‘=’ means that the hypothesis
“PBC performs equally to Ci” is accepted. And a ‘−’ represents that the hypothesis “PBC performs worse
than Ci” is accepted

Sel. Measure S-ZDT6. PBC versus S-DTLZ2. PBC versus

C1 C2 C1 C2

No. iterations No. iterations No. iterations No. iterations

100 500 1000 100 500 1000 100 500 1000 100 500 1000

S1 HD + + + + + + + + + + = −
GD + + + + + + + + + + + +
C + + + + + + + + + + + +

S2 HD + + + + + + + + + + − −
GD + + + + + + + + + + + +
C + + + + + + + + + + + +

S3 HD + + + + + + + + + + + +
GD + + + + + + + + + + + +
C + + + + + + + + + + + +

C3 C4 C3 C4

S1 HD = − − + + + + − − + + +
GD = − − + + + + + + + + +
C = − − + + + + + + + + +

S2 HD + = = + + + + − − + + +
GD + = = + + + + + + + + +
C + = + + + + + + + + + +

S3 HD + − − + + + + + + + + +
GD + − − + + + + + + + + +
C + − − + + + + + + + + +

7 and 10) and coverage (Figs. 5, 8 and 11). On the other hand, the hypothesis tests
presented in Table 4 show that PBC clearly performs better than Ci , i = 1,2,3,4
for all the scenarios, except when compared to C3 in scenarios (S1, 1000 iterations)
and (S3, 1000 iterations) where they can be considered equivalent.

R-ZDT4 It can be observed in Figs. 3, 4, 6, 7, 9, and 10 that the only operator that
presents values of these measures close but, in general, slightly worse than those
obtained with PBC is C3. With respect to coverage, in Figs. 5, 8 and 11, the only
operators and scenarios that present values better than those obtained with PBC are
C2 (S1, 100 iterations) and C3 (S1 500 and 1000 iterations). Also, attending to the
results of Table 4, we can say that PBC clearly performs better than Ci , i = 1,2,4 in
all the scenarios. With respect to C3, PBC clearly outperforms C3 in five scenarios,
in one scenario PBC performs better than C3 and in the remaining three scenarios
PBC and C3 are equivalent.
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Table 6 Results of the hypothesis tests performed for R-DTLZ2 (left) and R-DTLZ3 (right). A ‘+’ sign
means that the hypothesis “PBC performs better than Ci” is accepted. An ‘=’ means that the hypothesis
“PBC performs equally to Ci” is accepted. And a ‘−’ represents that the hypothesis “PBC performs worse
than Ci” is accepted

Sel. Measure R-DTLZ2. PBC versus R-DTLZ3. PBC versus

C1 C2 C1 C2

No. iterations No. iterations No. iterations No. iterations

100 500 1000 100 500 1000 100 500 1000 100 500 1000

S1 HD + + + + + + + + + + + +
GD − + + + + + − − + + + +
C + + + + + + − + + + + +

S2 HD + + + + + + − + + + + +
GD − − + = = + − − + + + +
C = + + + + + − + + + + +

S3 HD + + + + + + − + + + + +
GD - + + + + + − + + + + +
C + + + + + + − + + + + +

C3 C4 C3 C4

S1 HD + + = + + + + + + + + +
GD + + = = + + + + + + + +
C + + + − = + + + + + + =

S2 HD + + + = + + + + + + + +
GD + + + − − − + + + + + +
C + + + − − = + + + + + +

S3 HD + + + − + + + + + + + +
GD + + + − + + + + + + + +
C + + + − + + + + + + + +

S-ZDT6 After examining Figs. 3 to 11 and Table 5, we observe that when comparing
PBC with Ci , i = 1,2,4, PBC clearly outperforms the other operators since all the
signs are ‘+’. When comparing PBC with C3, C3 outperforms PBC in four scenar-
ios, PBC outperforms C3 clearly in two scenarios. So, globally, in this problem, C3

outperforms PBC.
S-DTLZ2 In Figs. 3, 6 and 9, it can be noticed that the operator C2 obtains better

values in the measure HD than PBC in three out of nine scenarios, and C3 obtains
better values than PBC in four out of nine scenarios. However, with respect to cov-
erage, in Figs. 5, 8 and 11, it can be observed that the values obtained with PBC are
better than those obtained with all the other operators. These facts are also reflected
in the hypothesis tests of Table 5. For this problem, PBC performs better than Ci ,
i = 1,2,3,4 in all the scenarios, with only some ‘−’ signs appearing in the measure
HD.
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R-DTLZ2 With respect to HD it is not possible to distinguish the values in Figs. 3,
6 and 9. For GD, PBC shows bad results with few iterations which are improved
when the number of iterations increases. For 100 iterations, C1 and C4 obtain better
results with all the selection operators considered; for 500 iterations, C1 and C4

are better only with S2; and when 1000 iterations are considered, only C4 with S2

remains better than PBC. With respect to coverage, Figs. 5, 8 and 11 show that C4

is the only operator that obtains, in four cases, better values than PBC (S1, S2 and
S3 with 100 iterations, and S2 with 500 iterations). From Table 6 we obtain that in
four scenarios the operator PBC outperforms C4. In two scenarios, C4 outperforms
PBC and in one it performs better that PBC. In the remaining scenarios, PBC and
C4 are equivalent. With respect to Ci , i = 1,2,3, PBC outperforms all of them.

R-DTLZ3 It can be observed in Figs. 3, 6 and 9 that the values obtained for HD with
PBC are better than those obtained with Ci , i = 1,2,3,4, except when selection S3

is used. In this case, all the values of HD are very close to each other. With respect to
coverage, in Figs. 5, 8 and 11 it can be observed that the only operator that obtains
better values than PBC is C1 with 100 iterations. Looking at Table 6, PBC clearly
outperforms Ci , i = 2,3,4. With respect to C1, this operator clearly outperforms
PBC in all scenarios with 100 iterations. But with 500 and 1000 iterations, PBC
outperforms C1.

In the light of these reports, none of the crossover operators considered be-
haves better than PBC for every problem. Furthermore, C1 always performs worse
than PBC except in three scenarios for problem R-DTLZ3 and both operators
can be considered equivalent in one scenario for problem R-DTLZ2. PBC per-
forms always better than C2. C3 does not outperform PBC in problems S-ZDT1,
S-ZDT4, R-ZDT4, S-DTLZ2, R-DTLZ2, and R-DTLZ3, PBC being superior to
C3 in all of them. Only in problems S-ZDT2 and S-ZDT6, C3 gets to out-
perform PBC in some scenarios (two of them in problem S-ZDT2 and four in
problem S-ZDT6), and then, only problem S-ZDT6 is the one in which PBC
has been outperformed by C3. And finally, PBC performs better than C4 ex-
cept in two scenarios in which they can be considered equivalent and three sce-
narios in which C4 performs better than PBC, all these cases in problem R-
DTLZ2.

Therefore, globally, we can conclude that the new crossover operator, PBC,
presented in this paper performs better than all the crossover operators consid-
ered.

6 Conclusions and further research

In this work, we have proposed a new crossover operator that takes into account the
quality of the solution (efficient or not) and the distance between parents in rela-
tion to the mean distance among efficient solutions, and we have compared it with
four standard crossover operators. From the experiments carried out, it follows that
our new operator behaves better than the usual ones for the selected test problems.
Except for some scenarios, the operator PBC obtains better values of the measures
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considered (hypervolume difference, generational distance and set coverage) than the
other operators.

Considering the mutation operator proposed by the authors in Alberto and
Mateo (2008) and this new crossover operator, the next step is to carry out a
study of some of the well-established algorithms in the literature (NSGA-II Deb
et al. 2002, SPEA2 Zitzler et al. 2001, etc.) by substituting the operators pro-
posed by their authors with our operators and some of the currently most promis-
ing algorithms as those based on Differential Evolution for Multiobjective Opti-
misation. This approach was first introduced for uniobjective optimisation prob-
lems by Storn and Price (1995) and subsequently adapted for multiobjective op-
timisation problems. An updated survey can be found in Mezura-Montes et al.
(2008).
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