
Top (2009) 17: 417–432
DOI 10.1007/s11750-009-0075-6

O R I G I NA L PA P E R

Cooperation in dividing the cake

Marco Dall’Aglio · Rodica Branzei · Stef Tijs

Received: 9 November 2007 / Accepted: 18 December 2008 / Published online: 6 February 2009
© Sociedad de Estadística e Investigación Operativa 2009

Abstract This paper defines models of cooperation among players partitioning a
completely divisible good (such as a cake or a piece of land). The novelty of our
approach lies in the players’ ability to form coalitions before the actual division of the
good with the aim to maximize the average utility of the coalition. A social welfare
function which takes into account coalitions drives the division. In addition, we derive
a cooperative game which measures the performance of each coalition. This game is
compared with the game in which players start cooperating only after the good has
been portioned and has been allocated among the players. We show that a modified
version of the game played before the division outperforms the game played after the
division.

Keywords Fair division · Cooperative games · Maximin partition
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1 Introduction

The problem of dividing a non-homogeneous cake among children with subjective
likes has gone a long way from the first pioneering works of Banach, Knaster, Stein-
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e-mail: branzeir@info.uaic.ro

S. Tijs
Tilburg University, Tilburg, The Netherlands
e-mail: S.H.Tijs@uvt.nl

mailto:marco.dallaglio@unich.it
mailto:branzeir@info.uaic.ro
mailto:S.H.Tijs@uvt.nl


418 M. Dall’Aglio et al.

haus (cited in Brams and Taylor 1996) and Dubins and Spanier (1961) to reach the
status of an independent field of research, named fair division theory. An overview of
the advances in this topic can be found in Hill (1993), Brams and Taylor (1996), and
Brams (2008).

The attention of most authors in the field has been focused on the design of simple
procedures to achieve a satisfactory division, and the classification of the various and
often conflicting optimality criteria. Less urgent, and therefore less developed—but
by no means less important—is the analysis of the players’ strategic concerns. Most
approaches to fair division require the adherence of the players to a procedure, usually
under the supervision of a referee. This leaves little freedom to the players, whose
strategic behavior is usually limited to actions, such as cutting (a portion of) the cake
according to a specified ratio in their own preferences, choosing a part of the cake
among many, or instructing the referee about their likes and dislikes. All these actions
deal with the revelation of the personal preferences by the players. Truthfulness is not
usually guaranteed in many procedures, and the attention of some authors has been
focused on designing strategy-proof procedures that encourage players in revealing
their true preferences, or, conversely, on showing the impossibility of this effort (see
Tadenuma and Thomson 1995; Brams and Taylor 1996).

Beyond the mere process of division, players may engage in other strategic ac-
tions: for instance, they may exchange parts of the slice they have been assigned, or
they may compensate a player who gives up a part of her fair share for the sake of
the whole coalition. Traditionally, this model has been associated with the division
of a piece of land among heirs (instead of a cake among children) who have already
received their share of inheritance and look for a better allocation of the whole lot of
land, but the mathematical structure underlying the problem remains essentially un-
altered. In Berliant (1985), in Berliant et al. (1992), and in Berliant and Dunz (2004),
it is shown that heirs trade their endowments knowing that there exists an equilibrium
allocation which belongs to the core of an NTU game, implying that such allocation
cannot be improved upon by a further redistribution among groups of heirs. In these
works, great care is devoted to the formal description of the preferences, which de-
parts from the classical measure-theoretic settings in fair division to take into account
non-additivity and the preference for shape and location of the plots.

Legut (1990) defines a model of cooperation within the classical framework of fair
division. Similarly to the model for land division, children attending the division of
the cake may redistribute the total amount of cake within a group in order to maximize
the joint utility of the group. This time side payments are allowed and a TU game is
defined. The same model is also considered by Legut et al. (1994) who characterize
the TU game and its core in great detail.

The models reviewed so far introduce cooperation by exchanges within the context
of fair division. As a matter of fact, however, this results in the juxtaposition of two
stages of activity which are separate both in time and in goals. At first, each child on
his own (with no hindsight for future cooperation) attends the division of the cake.
Then, once the division is completed, they may turn to the other players in search for a
mutually better arrangement. As it is presented, this is a division procedure, followed
by a model of exchange economy where the slices of the cake (or the plots of land)
represent the agents’ initial endowments. There is no interaction of sorts between the
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two stages, so that in the trading phase any division, no matter how unfair, would
be considered just fine. The discrepancy was already noted by Legut et al. (1994)
who kept the name of “fair division game” for the exchange model they analyzed, but
noted in a footnote that

“this name does not seem to be very appropriate in the present situation but in
Legut (1990) this term has been introduced for games of this kind where the
initial endowment [. . .] was a result of a fair division process. Since we are
studying the same games it is not sensible to change the name.”

Here we propose models in which the two activities of dividing the cake and co-
operating among children are merged together. At the beginning of the procedure and
before the cake is actually cut, children may form coalitions. Each coalition acts as a
single player in the division by reclaiming a share proportional to the cardinality of
the coalition, and distributing the share of the cake in the most efficient way within
the coalition, i.e., giving each crumble of the cake to the player in the coalition who
appreciates it most. A fair evaluation of the conflicting interests between competing
coalitions is taken care of by means of a maximin social welfare function, which is
widely used in the fair division literature.

We point out that, as a result of this procedure, while coalitions as a whole will
be treated fairly, the allocation within a single coalition may turn out to be extremely
unfair to single members of the coalition. Fairness at this level will be restored by
means of side payments according to the principles of TU-models: the overall payoff
of each player (inclusive of the side payments) should be high enough to discourage
single players or subgroups to leave the coalition. In particular, we will be interested
in payments that make the grand coalition formed by all players stable. Such pay-
ments belong to the core of the cooperative game.

The use of transferable utility is inherited from Legut (1990). Such assumption is
often criticized in the classical context of fair division where children attending the
division are not supposed to handle money. We have already noted, however, that the
domain of fair division theory is very large and extends to applications such as the
division of land, where money compensations are more common. Also, Legut et al.
(1995) connect situations where side payments are allowed (TU-models) to situations
where such transfers are not allowed (NTU-models) by means of a result (Theorem 5)
that guarantees the existence of equilibrium payoffs in one setting whenever an equi-
librium payoff exists in the other setting.

We will make two proposals for the definition of cooperative games associated
to the combined model of exchange and division, emphasizing the importance of
picking the right weights for the individuals, as well as for the coalitions that they
form.

Section 2 recalls the mathematical framework of fair division and introduces a cou-
ple of essential assumptions. Section 3 gives a formal description of the two opposite
attitudes which the players may put on: competition and cooperation, and describes
how to mix the two attitudes in a single model. Furthermore, we define a cooperative
game arising from cooperation in fair division before the division of the cake takes
place, and show that this game is superadditive, balanced and possesses population
monotonic allocation schemes. This game is compared in Sect. 4 with the cooperative
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game introduced by Legut (1990), in which players have initial endowments arising
from a process of fair division. To our surprise, it may be convenient for a group of
players to form a coalition after the division has taken place, rather than participating
to the division as a single coalition from the start. We also propose a modification of
the game defined in Sect. 3, which outperforms the corresponding game of coopera-
tion after division. We conclude with some remarks in Sect. 5.

2 Basic definitions and assumptions

A cake X ⊂ �n is to be divided among n players (children). Let N = {1,2, . . . , n}
denote the set of players. Each μi (i = 1,2, . . . , n) is a probability measure on
(X, B(X)), B(X) being the Borel sets in X. For each A ∈ B(X), μi(A) measured
on the unit scale tells us how much player i likes slice A. Throughout this work we
will require some assumptions to hold. The first one guarantees the complete divisi-
bility of the cake.

(A) Atomless preferences Each μi does not contain atoms: If μi(A) > 0, then there
exists a measurable B ⊂ A such that μi(A ∩ B) > 0 and μi(A ∩ Bc) > 0.

Each μi is absolutely continuous w.r.t. ν = ∑
i μi/n. Consequently, by the Radon–

Nikodym theorem, each μi admits a density function fi w.r.t. ν such that

μi(A) =
∫

Ai

fi dν for every A ∈ B(X).

As a special case, the preferences may be absolutely continuous w.r.t. the Lebesgue
measure λ, which therefore replaces ν in the above formula. In such a case, (A) holds
and each density function gives a pointwise description of the corresponding player.

Another useful assumption requires the players to share a common interest to the
same parts of the cake (though the liking may vary from player to player).

(B) Common support If μi(A) > 0 for some i and A ∈ B(X), then μj (A) > 0 for
every other j �= i.

The cake X will be partitioned into n measurable sets (A1,A2, . . . ,An). The set
of all measurable n-partitions of X is denoted as Πn.

The main purpose of fair division is to find a partition (A1,A2, . . . ,An) ∈ Πn and
assign “slice” Ai to player i, who will evaluate it μi(Ai). The goal is then to find a
“good” partition that keeps the values μi(Ai) as high and even as possible.

A partition (A1,A2, . . . ,An) ∈ Πn is equitable if

μ1(A1) = μ2(A2) = · · · = μn(An), (1)

and it is fair if

μi(Ai) ≥ 1

n
for every i ∈ {1, . . . , n}. (2)

Since all players assign value 1 to the whole cake and they are all treated equally, it
makes sense to assign each one a part which is worth at least one nth of the whole
cake.
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In fair division, players are usually treated equal, since it is assumed that they
have equal rights over the cake. If players have different entitlements, this is usually
managed by means of different weights wi ≥ 0, i ∈ N , associated to the players. The
notions of fairness and equitability could be adjusted by dividing each μi(Ai) by wi

in (1) and by replacing 1/n with wi/
∑

i∈N wi in (2). For what follows, we consider
the case of equal entitlements, but we keep in mind that, when it comes to comparing
coalitions in place of single players, we will have to resort to weights taking into
account the cardinality of the coalitions.

The following set,

D = {(
μ1(A1),μ2(A2), . . . ,μn(An)

) : (A1, . . . ,An) ∈ Πn

}
,

is called the allocation range. It plays a central role in many well-known results of
fair division theory and the present work will be no exception. The importance of the
allocation range can be explained by its properties, as Proposition 2.1 states.

Proposition 2.1 (Lyapunov 1940; Dubins and Spanier 1961) D is a compact subset
of �n. Moreover, if (A) holds, then D is also convex.

3 Competition and cooperation

An important issue in fair division theory regards the existence and construction of
an allocation which enjoys one or more desirable properties such as fairness or envy-
freeness. Usually, uniqueness of such allocation is not guaranteed, and often a whole
class of such allocations can be identified. To reduce the cardinality of such class of
allocations, the use of a social welfare function may come handy. The choice of such
function depends on the circumstances under which the division takes place. Dubins
and Spanier (1961) define two such functions related to optimization problems cor-
responding to two types of players’ behavior:1

Complete competition Each player is assigned a part of the cake and no further ac-
tion is possible. Therefore, an allocation is sought with players’ values as high and
equitable as possible. This can be achieved by maximizing the utility of the least
well-off player, via a maximin allocation

um = sup
{

min
i=1,...,n

μi(Ai) : (A1, . . . ,An) ∈ Πn

}
. (3)

Dubins and Spanier (1961) show in Corollary 6.10 that the supremum is always
attained. Therefore “sup” can be replaced by “max” in the above definition. In the
optimization problems that follow, the same reasoning applies, and we will consider
the maximizing partitions.
It is easy to verify that, when (A) holds, a maximin allocation is fair. Furthermore,
if also (B) holds, Dubins and Spanier note that the allocation is equitable.

1Dubins and Spanier define these two optimization problems—but do not attach any meaning to them in
terms of competition or cooperation.
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Complete cooperation Suppose now that after the allocation players are allowed to
transfer money to other players. Players are therefore likely to agree on an allocation
which maximizes their joint utility, as expressed by the sum, and compensate the less
fortunate players by means of side payments. The problem is now to find a partition
that maximizes the average utility, i.e., find

up = max

{∑
i∈N μi(Ai)

n
: (A1, . . . ,An) ∈ Πn

}

. (4)

The allocation is equitable by construction, and it is fairer, on average, than the
previous one, since

up ≥ um. (5)

The inequality holds since, for any vector (x1, . . . , xn) ∈ D,

min
i∈N

xi ≤
∑

i∈N xi

n
.

Maximizing both sides over D yields the result.
Dubins and Spanier (1961) show that

up =
∫
X

f dν

n
, (6)

where f = maxi fi . Moreover, they exhibit a maximizing allocation

A1 = {
x ∈ X : f1(x) = f (x)

};
Aj = {

x ∈ X : fh(x) < f (x) for h < j,fj (x) = f (x)
}
, j = 2, . . . , n.

In what follows, we study a class of intermediate situations between the two cases
listed above and we address the question: What happens when players form several
competing groups and are allowed to transfer money only within the coalition they
belong to? Within each coalition, players will agree on maximizing their joint utility.
The maximim social welfare function will take into account the average utility of
each coalition.

Let S = {S1, . . . , Sh} be a partition of N . A partition S ′ = {S′
1, . . . , S

′
h′ } is finer

than the partition S ′′ = {S′′
1 , . . . , S′′

h′′ } (and S ′′ is coarser than S ′) if for each S′
i ∈ S ′

there exists S′′
j ∈ S ′′ such that S′

i ⊂ S′′
j .

Now, assume that players cluster into the coalitions specified by the partition S =
{S1, . . . , Sh}. In this situation, we recommend an allocation satisfying

u(S1, . . . , Sh) = max

{

min
j=1,...,h

{∑
i∈Sj

μi(Ai)

|Sj |
}

: (A1, . . . ,An) ∈ Πn

}

. (7)

The cases of complete competition and complete cooperation, respectively, are in-
cluded as special cases, since

um = u
({1}, . . . , {n}) and up = u(N).
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For a given coalition structure S = {S1, . . . , Sh}, u(S1, . . . , Sh) can be interpreted as
the minimal average utility that each coalition is bound to receive. If (A∗

1, . . . ,A
∗
n)

attains the maximin value in (7), then
∑

i∈Sj
μi(A

∗
i )

|Sj | ≥ u(S1, . . . , Sh) for each j = 1, . . . , h.

It must be noted that, in the same context, it is not guaranteed that μi(A
∗
i ) ≥

u(S1, . . . , Sh) for every i ∈ N .
We now turn to an alternative interpretation for the value defined by (7).

Proposition 3.1 For any coalition structure S = {S1, . . . , Sh},

u(S1, . . . , Sh) = max

{

min
j=1,...,h

{
μSj

(Bj )

|Sj |
}

: (B1, . . . ,Bh) ∈ Πh

}

, (8)

where for each B ∈ B(X) and j = 1, . . . , h

μSj
(B) =

∫

B

fSj
dν with fSj

(x) = max
i∈Sj

fi(x).

Proof The main ideas for this proof are derived from Theorem 2 in Dubins and
Spanier (1961).

Denote with ũ the right-hand side in (8). For any partition (A1, . . . ,An) ∈ Πn and
the given coalition structure {S1, . . . , Sh} define a partition (B∗

1 , . . . ,B∗
h) in Πh by

B∗
j = ⋃

i∈Sj
Ai , j = 1, . . . , h. The following inequality holds

∑

i∈Sj

μi(Ai) =
∑

i∈Sj

∫

Ai

fi dν ≤
∑

i∈Sj

∫

Ai

fSj
dν =

∫

B∗
j

fSj
dν = μSj

(
B∗

j

)
.

Consequently,

min
j=1,...,h

{∑
i∈Sj

μi(Ai)

|Sj |
}

≤ min
j=1,...,h

{
μSj

(B∗
j )

|Sj |
}

.

Take the supremum over the two classes of partitions Πn and Πh to obtain

u(S1, . . . , Sh) ≤ ũ.

Following the same lines of Corollary 6.10 in Dubins and Spanier (1961), we can
show that the optimal value ũ is attained by some (B̃1, . . . , B̃h) ∈ Πh. We now show
that, for each j = 1, . . . , h, there exists a partition (Ãi)i∈Sj

of B̃j (and therefore a
partition of the whole space) such that

∑

i∈Sj

μi(Ãi) = μSj
(B̃j ). (9)
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In fact, write Sj = {i1, . . . , ir} and let Ãip (p = 1, . . . , r) be the subset of B̃j where

fi�(x) < fSj
(x) for � < p and fip (x) = fSj

(x). Then, (Ãi1 , . . . , Ãir ) is a measurable

partition of B̃j with

∑

�=1,...,r

∫

Ãi�

fi� dν =
∑

�=1,...,r

∫

Ãi�

fSj
dν =

∫

B̃j

fSj
dν = μSj

(B̃j ).

From (9) we derive

u(S1, . . . , Sh) ≥ min
j=1,...,h

{∑
i∈Sj

μi(Ãi)

|Sj |
}

= min
j=1,...,h

{
μSj

(B̃j )

|Sj |
}

= ũ,

which completes the proof. �

Proposition 3.1 suggests an alternative interpretation: players who coalesce into
Sj state their joint preferences as μSj

and participate in a maximin division with the
competing coalitions. Each coalition is given a weight which is proportional to the
cardinality of the group.

Inequality (5) shows that moving from complete competition to complete coop-
eration is beneficial on average to the players. This improvement carries on to the
intermediate situations as well: merging subcoalitions into larger ones improves the
average value of the division.

Proposition 3.2 If S ′ = {S′
1, . . . , S

′
h′ } is finer than S ′′ = {S′′

1 , . . . , S′′
h′′ }, then

u(S′
1, . . . , S

′
h′) ≤ u(S′′

1 , . . . , S′′
h′′). (10)

Proof Since S ′ is finer than S ′′, each S′′
j ∈ S ′′ is partitioned into elements of S ′, say

S′′
j = {S′

1, . . . , S
′
q}.

For any (x1, . . . , xn) ∈ D, the following holds:

min
�=1,...,q

{∑
i∈S′

�
xi

|S′
�|

}

≤
|S′

1|
(

∑
i∈S′

1
xi

|S′
1|

) + · · · + |S′
q |(

∑
i∈S′

q
xi

|S′
q |

)

|S′
1| + · · · + |S′

q | =
∑

i∈S′′
j
xi

|S′′
j | .

The inequality is preserved once we minimize over all S′′
j ∈ S ′′ and then again maxi-

mize this result over all (x1, . . . , xn) ∈ D. �

As a straightforward consequence, for any coalition structure S = {S1, . . . , Sh}, a
division attaining (7) is fair on average, since

u(S1, . . . , Sh) ≥ u
({1}, . . . , {n}) ≥ 1

n
.

The first inequality derives from Proposition 3.2, while the last one is a consequence
of the fairness of the maximin allocation reaching (3) in the complete competitive
setting.
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Our maximin objective function controls the average value of the least well-off
coalition. The other coalitions will get on average at least as much as that coalition,
but little is known, in general, about their value. If the preferences have common
support, however, all players are treated equal on average.

Proposition 3.3 If (A∗
1, . . . ,A

∗
n) is a maximin partition with respect to (7) for a

given coalition structure S = (S1, . . . , Sh), then
∑

i∈S1
μi(A

∗
i )

|S1| = · · · =
∑

i∈Sh
μi(A

∗
i )

|Sh| .

Therefore, all players get the same average value, no matter what coalitions they
belong to.

Proof First of all, it is easy to verify that since D is a convex subset of �n and by
virtue of the Lyapunov theorem, the set

H =
{(∑

i∈S1
xi

|S1| , . . . ,

∑
i∈Sh

xi

|Sh|
)

: (x1, . . . , xn) ∈ D
}

is also a convex subset of �h.
Now, assume that for some coalition structure S = {S1, . . . , Sh} the partition

(A∗
1, . . . ,A

∗
n) attaining the maximin value in (7) is not equitable and, say,

∑
i∈S1

μi(A
∗
i )

|S1| >

∑
i∈Sj

μi(A
∗
i )

|Sj | ≥ 1

n
for j = 2, . . . , h.

Denote Ã = ⋃
i∈S1

A∗
i . Since

∑
i∈S1

μi(A
∗
i ) > 0, then μp(1)(Ã) ≥ μp(1)(A

∗
p(1)

) > 0
for some p(1) ∈ S1.

For each j = 2, . . . , h, take a player p(j) ∈ Sj , fix ε, 0 < ε < 1, and consider the
following convex combination of elements in H

(1 − ε)

(∑
i∈S1

μi(A
∗
i )

|S1| ,

∑
i∈S2

μi(A
∗
i )

|S2| ,

∑
i∈S3

μi(A
∗
i )

|S3| , . . . ,

∑
i∈Sh

μi(A
∗
i )

|Sh|
)

+ ε

h − 1

(

0,

∑
i∈S2

μi(A
∗
i ) + μp(2)(Ã)

|S2| ,

∑
i∈S3

μi(A
∗
i )

|S3| , . . . ,

∑
i∈Sh

μi(A
∗
i )

|Sh|
)

+ ε

h − 1

(

0,

∑
i∈S2

μi(A
∗
i )

|S2| ,

∑
i∈S3

μi(A
∗
i ) + μp(3)(Ã)

|S3| , . . . ,

∑
i∈Sh

μi(A
∗
i )

|Sh|
)

· · ·

+ ε

h − 1

(

0,

∑
i∈S2

μi(A
∗
i )

|S2| ,

∑
i∈S3

μi(A
∗
i )

|S3| , . . . ,

∑
i∈Sh

μi(A
∗
i ) + μp(h)(Ã)

|Sh|
)

=
(

(1 − ε)

∑
i∈S1

μi(A
∗
i )

|S1| ,

∑
i∈S2

μi(A
∗
i )

|S2| + εμp(2)(Ã)

(h − 1)|S2| ,
∑

i∈S3
μi(A

∗
i )

|S3| + εμp(3)(Ã)

(h − 1)|S3| , . . . ,
∑

i∈Sh
μi(A

∗
i )

|Sh| + εμp(h)(Ã)

(h − 1)|Sh|
)

.
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Since H is convex, there exists a partition (Ā1, . . . , Ān) with the same values for
the players as the right-hand side term in the above equality. Since μp(1)(Ã) > 0, by
assumption (B), also μp(j)(Ã) > 0 for every j = 2, . . . , h and, for ε positive close
to 0, we have exhibited a partition with a better maximin value than (A∗

1, . . . ,A
∗
n) for

the coalition structure S . This is in contradiction with the previous assumptions. �

The partition maximizing (7) depends on the whole coalition structure. We change
the perspective and look at the division from the point of view of a single coalition
S ⊂ N .

Players may want to explore the advantage of joining a particular coalition S, in-
dependently of the behavior of the players outside that coalition. By Propositions 3.2
and 3.3 we know that players in S will get at least the value of the coalition struc-
ture defined when all the players outside S decide not to cooperate. Consequently, we
propose the following value for coalition S:

v(S) = |S|u(
S, {j}j /∈S

)
for S ⊂ N, (11)

i.e., the minimal value that the coalition S as a whole is bound to receive when the
coalition is formed, irrespective of the behavior of the other players. The function is
suitable for analysis in a cooperative game theoretical setting.

Proposition 3.4 The function v defines a superadditive game.

Proof First of all, we note that the empty coalition has value zero

v(∅) = |∅|u(∅, {j}j∈N

) = 0.

Next, we consider S1, S2, disjoint subsets of N . Then,

v(S1 ∪ S2) = |S1 ∪ S2|u
(
S1 ∪ S2, {j}j /∈S1∪S2

)

= |S1|u
(
S1 ∪ S2, {j}j /∈S1∪S2

) + |S2|u
(
S1 ∪ S2, {j}j /∈S1∪S2

)

≥ |S1|u
(
S1, {j}j /∈S1

) + |S2|u
(
S2, {j}j /∈S2

) = v(S1) + v(S2).

The inequality is motivated by Proposition 3.2, since {S1 ∪ S2, {j}j /∈S1∪S2} is coarser
than both {S1, {j}j /∈S1} and {S2, {j}j /∈S2}. �

In the cooperative game just defined, players are encouraged to form the grand
coalition N since the equal-share vector belongs to the core of v. The same equal
share principle can be applied to the smaller coalitions to provide a Population
Monotonic Allocation Scheme (PMAS, see Sprumont 1990).

Proposition 3.5 The game v has non-empty core and admits a PMAS.

Proof We show that the equal share vector
(

v(N)

n
, . . . ,

v(N)

n

)
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belongs to the core of v. To prove that a reward vector (x1, . . . , xn) is in the core of a
game, we need to show that

(i)
∑

i∈S

xi ≥ v(S) for each S ∈ 2N \ {∅};

(ii)
∑

i∈N

xi = v(N).

To prove (i) for the vector (
v(N)

n
, . . . ,

v(N)
n

) consider

∑

i∈S

xi =
∑

i∈S

v(N)

n
=

∑

i∈S

u(N) = |S|u(N) ≥ |S|u(
S, {j}j /∈S

) = v(S),

where the inequality holds by Proposition 3.2. Statement (ii) is trivial.
In a similar fashion we show that, for each non-empty S ⊂ N , the payoff vector

(xS,i)i∈S , with xS,i = v(S)/|S|, i ∈ S, generates a PMAS for v, since it is easy to
verify that

∑

i∈S

xS,i = v(S) for every non-empty S ⊂ N;

xS,i = v(S)

|S| ≤ v(T )

|T | = xT,i whenever i ∈ S ⊂ T . �

4 Cooperation after the division versus cooperation before the division

We now consider a two-stage model. At first, players take part into a fully compet-
itive scheme, and receive their share of the cake. Afterwards, they may trade parts
of their slices with other players for mutual benefit. A formal model for the coop-
erative behavior of players who already own slices of the cake and exchange their
endowments was first examined in Legut (1990) and Legut et al. (1994) in the con-
text of economies with land. In that setting, the players’ endowments are arbitrary
as long as they form a partition of X. Here, we specify that players just took part in
a competitive maximin division (3). Denote as (Am

1 , . . . ,Am
n ) the resulting maximin

partition. A coalition S ⊂ N of players will redistribute the total wealth of the play-
ers in the coalition, Am(S) = ⋃

i∈S Am
i , to maximize the joint utility. The following

post-division game (posterior to the actual division) can be therefore defined by

vpost(S) = sup

{∑

i∈S

μi(Ci)
∣
∣{Ci}i∈S is a partition of Am(S)

}

for each S ⊂ N.

Legut et al. (1994) show that

vpost(S) =
∫

Am(S)

fS dν = μS

(
Am(S)

)
for each S ⊂ N. (12)
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More importantly, the same authors give a two-fold characterization of this game:
(i) as a sum of n different games, each one defined on the initial endowment of the
single players, and (ii) as a linear combination of simple games characterizing infor-
mation market games with one informed player.

The multiple characterization allows a fairly detailed description of the core of the
game. In particular, it is non-empty and each element belonging to a specific non-
empty subset of the core can be extended to a PMAS. For more details we refer to
Legut et al. (1994).

Here, we are interested in the relationship between the game v defined in the
previous section, in which cooperation occurs before the division of the cake, and the
game, which we denote here by vpost, where cooperation takes place after the division
of the cake. The two games coincide in the extreme cases of complete competition,
where by definition

v
({i}) = vpost

({i}), i ∈ N,

and that of total cooperation, i.e.,

v(N) = vpost(N),

equality which holds by virtue of the definitions of the games v and vpost and the
results (6) and (12).

In the game v, players cooperate at an earlier stage than in the game vpost, and
before the partition is actually performed. Thus, when earlier agreements are allowed,
the optimal division of the cake takes into account the coalitions that have already
formed. In the vpost game, conversely, cooperation comes into play only after the cake
has already been divided. Therefore, one would expect that the earlier the cooperation
occurs, the better a coalition will perform, and the game v yields values at least as
high as those of vpost. Quite surprisingly, this is not always the case, as the following
counterexample shows.

Example 4.1 Consider X = [0,3] and the preferences of three players defined by the
following density functions:

f1(x) = 0.3I[0,1)(x) + 0.4I[1,2)(x) + 0.3I[2,3](x),

f2(x) = 0.2I[0,1)(x) + 0.3I[1,2)(x) + 0.5I[2,3](x),

f3(x) = 0.4I[0,1)(x) + 0.3I[1,2)(x) + 0.3I[2,3](x),

where I[a,b) is the indicator function of the interval [a, b). The values of v and vpost

can be computed by means of simple linear programs (Table 1).

The trouble with the given definition of v lies in one of its apparent strength:
average equitability, assessed by Proposition 3.3. For a given coalition structure
{S, {i}i /∈S} every player gets on average the same value, u(S, {i}i /∈S), whether or not
he belongs to the coalition S. Suppose now that no coalition is formed before the
division, and after the division, exchanges are allowed only among players in the
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Table 1 Values of v and vpost
in Example 4.1 S v vpost

{i}, i = 1,2,3 0.4231 0.4231

{1,2} 0.86 0.8615

{1,3} 0.8462 0.8462

{2,3} 0.86 0.8615

{1,2,3} 1.3 1.3

coalition S. Clearly, the coalition S will receive vpost(S), while each player i outside
S will receive vpost({i}). Now, it is easy to verify that

vpost(S)

|S| ≥ vpost
({i}), (13)

with strict inequality whenever the slice received by some player in S contains a part
which is strictly more valuable for some other player in the same coalition. In other
terms, the resulting allocation will not be equitable, with players in the coalition S

taking advantage of exchanges internal to the coalition.
Therefore, any coalition S ⊂ N deciding to cooperate before the division will ex-

pect an advantage over players outside S proportional to the bonus they would get
if they cooperated after the division. Accordingly, we can modify the weights of the
coalitions in v by replacing the cardinality of each coalition with the corresponding
value of the vpost game. For each S ⊂ N , define the pre-division game (precedent to
the actual division) as

vpre(S) = vpost(S)max

{

min

{∑
i∈S μi(Ai)

vpost(S)
,

μj (Aj )

vpost({j})
j /∈S

}

: (A1, . . . ,An) ∈ Πn

}

(14)

with the convention

vpre(∅) = vpost(∅) = 0. (15)

The game vpre makes sure that when the players in S coalesce before the cake is cut,
they maintain the same advantage over the players outside S, illustrated by (13), that
they would get if they coalesced after the division.

The games v and vpre differ in the system of weights contrasting the players in S

to those outside S. Some features of vpre, however, are inherited from those of v with
little effort.

Proposition 4.2 If (A∗
1, . . . ,A

∗
n) ∈ Πn belongs to argmax with respect to (14), then

∑
i∈S μi(A

∗
i )

vpost(S)
= μj (A

∗
j )

vpost({j}) for all j /∈ S.
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Moreover, we can write

vpre(S) = vpost(S)max

{

min

{
μS(BS)

vpost(S)
,

μj (Bj )

vpost({j})
j /∈S

}

:

(
BS,Bj (j /∈ S)

) ∈ Π|Sc|+1

}

.

Proof Repeat the proofs of Propositions 3.3 and 3.1 with the modified system of
weights. �

We now turn to the properties of vpre.

Proposition 4.3 The characteristic function vpre defines a monotonic game.

Proof In the definition (14), the factor vpost(S) is a constant, and can be distributed
among the terms composing the maximin objective. Thus, we can write

vpre(S) = max
(A1,...,An)∈Πn

min

{∑

i∈S

μi(Ai), vpost(S)
μj (Aj )

vpost({j})
j /∈S

}

. (16)

Further, by (15), vpre is a characteristic function. Now, take S,T ⊂ N with S ⊂ T

and consider (A∗
1, . . . ,A

∗
n) ∈ Πn, a partition that attains the maximin value defining

vpre(S) in (16). We can write

vpre(T ) ≥ min

{∑

i∈T

μi

(
A∗

i

)
, vpost(T )

μj (A
∗
j )

vpost({j})
j /∈T

}

≥ min

{∑

i∈S

μi

(
A∗

i

)
, vpost(S)

μj (A
∗
j )

vpost({j})
j /∈S

}

= vpre(S).

The second inequality is justified by the fact that
∑

i∈T \S μi(A
∗
i ) ≥ 0 and vpost(T ) ≥

vpost(S). �

Next, we show that vpre overcomes the difficulties associated with v.

Proposition 4.4 The game vpre dominates vpost in the sense that for each S ⊂ N ,

vpre(S) ≥ vpost(S) (17)

holds, with a strict equality sign holding for the extreme cases S = N and S = {i},
i ∈ N .

Proof Take i ∈ N . When S = {i}, vpost({i}) = vpost({j}), j �= i. Let (Am
1 , . . . ,Am

n ) be
a maximin partition achieving (3). Then, the same partition attains the maximin value
defining vpre({i}). In fact,

vpre
({i}) = vpost

({i}) max
(A1,...,An)∈Πn

min
j∈N

μj (Aj )

vpost({i}) = μi

(
Am

i

) = vpost
({i}).
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Table 2 Values of vpre and
vpost in Example 4.1 S vpre vpost

{i}, i = 1,2,3 0.4231 0.4231

{1,2} 0.8662 0.8615

{1,3} 0.8462 0.8462

{2,3} 0.8662 0.8615

{1,2,3} 1.3 1.3

For a generic S ⊂ N , it holds

vpre(S) = vpost(S) max
(BS,Bj (j /∈S))∈Π|Sc |+1

min

{
μS(BS)

vpost(S)
,

μj (Bj )

vpost({j})
j /∈S

}

≥ vpost(S)min

{
μS(Am(S))

vpost(S)
,

μj (A
m
j )

vpost({j})
j /∈S

}

= vpost(S).

Finally, both vpre(N) and vpost(N) coincide, up to the scale factor 1/n, with the fully
cooperative approach (4). �

Apart from the extreme cases, the values of the two games usually differ. Consider
again the situation presented in Example 4.1. The values of the games vpre and vpost,
shown in Table 2, make clear that vpre dominates vpost with a strict inequality for the
coalitions {1,2} and {2,3}.

We note that the game vpre overcomes a major difficulty of the first proposal v and,
therefore, it seems highly preferable to it. The game vpre, however, requires the use
of non-additive weights for the single coalitions, and poses new technical challenges
which make it more difficult to examine than its predecessor.

5 Conclusions

The proposed models are an attempt to overcome the limitations of the existing mod-
els of cooperation in the allocation of a divisible good. Here, players can cooperate as
soon as they are involved in the division process. The results show that, if side pay-
ments are allowed, it is beneficial for the players to join the grand coalition. More-
over, in the modified game where coalitions are given incentives, it is better to form
coalitions as soon as possible.

More investigation of the topic is needed. It would be useful to provide a de-
scription of the core of v and vpre following the lines of what has been done in
Legut et al. (1994) for the game of cooperation after the division vpost. The most evi-
dent difficulty lies in the fact that, while vpost can be seen as the sum of n games, each
defined on the endowments of the single players, the new context we are analyzing
dispenses altogether with the notion of endowments, since the players will receive a
share of the cake only at a second stage.

One of the main concerns in fair division is the design of procedures to achieve a
partition with the required properties. So it would be advisable to devise a procedure
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that achieves the optimal partitions in (11) and (14) or at least a good approximation
of them. On a less ambitious scale, it would be advisable to find an easy way to
compute the values of the two games v and vpre.
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