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1 Introduction

The Shapley value was introduced1 in 1953. Seen in retrospect, a great year for co-
operative games, since in that year also the core appeared (Gillies 1953): the two
solution concepts most widely studied and used.

1Created or discovered? A long lasting debate on mathematical research.
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The Shapley value addresses a problem:

How to convert information about the worth that subsets of the player set can
achieve, into a personal attribution (of payoff ) to each of the players?

Shapley proposes an answer to this question, which is based on the idea of defining
a “value” for each player involved in the game, so that players can evaluate ex-ante
the convenience to participate. It is clear that there is an immediate connection of
this idea with the most well-known concept of a solution at that time: the value for a
zero-sum game, whose existence was proved in 1928 by von Neumann (1928), in the
so-called “minimax theorem”.

The approach followed by Shapley is a clever one: to provide a set of properties
that a “conversion” as described above should satisfy. In other words, he uses the
so-called “axiomatic approach”, that proved to be so powerful just a few years be-
fore, employed by Arrow (1951 the “dictator” theorem) and by Nash (1950 the Nash
bargaining solution).

Shapley succeeded in providing three conditions on the transformation from a TU-
game into an allocation that can be fairly said to be natural. Actually, two of them can
be considered quite compelling, from the point of view of the standard interpretation
of cooperative games. The last one, which requires additivity for the transformation,
is more debatable, for sure. Not incidentally, quite similar remarks can be made about
the role that the “Independence of Irrelevant Alternatives” plays (in different settings)
in the approach by Arrow and Nash. It is not by chance that these axioms have a key
role in allowing to extend the “solution” from a small set of situations to a much
broader and more interesting one.

In the fifty years elapsed since it appeared, Shapley value has shown an amazing
vitality, staying in the foreground, and prompting:

• Applications to quite diverse fields (this will be the main focus of this survey);
• Introduction of new theoretical approaches to the Shapley value;
• A lot of extensions and generalizations, but also of “particularizations”, that is,

restrictions to smaller classes of games, of special interest for specific applications.

It is worth mentioning also that the Shapley value is used both as a normative tool
and as a descriptive tool, quite similarly to what happens for the Nash bargaining
solution.

So, the literature about the Shapley value is quite large, and we refer the reader,
who would like to have an idea of the kind of the results that are available, to some
dedicated sources or surveys, like: Roth (1988a) and six chapters in the 3rd volume
of the Handbook of Game Theory (Aumann and Hart 2002): Chap. 53 by Winter
(2002), 54 by Monderer and Samet (2002), 55 by McLean (2002), 56 by Neyman
(2002), 57 by Aumann and Hart (2002), and 58 by Mertens (2002). See also the
on-line bibliography Hart (2006).

From a broader point of view, we mention some books that offer a general intro-
duction to game theory and, especially, to cooperative games: Owen (1995), Myerson
(1991), and Osborne and Rubinstein (1994).

The aim of this contribution is not to provide a survey of the Shapley value, its the-
oretical developments, and the bulk of its applications. We shall look at some specific
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cases of application, trying to emphasize the diversity of the fields and disciplines to
which the Shapley value has been applied. Whenever appropriate, we shall also em-
phasize the variants that have been introduced to better fit the application at hand. We
shall discuss applications to the following fields: cost allocation (especially, the costs
of infrastructures), social networks, water-focused issues, biology, reliability theory,
belief formation.

We feel the need to stress that the topics chosen are not meant to be “the most
important”, or the like. We used some kind of “bounded rationality” criterion, i.e.,
chose some examples, characterized by the fact that they are significantly distant
each other, with the hidden goal to encourage the search for applications that could
extend the “scope” of game-theoretical methods.

The structure of this contribution is as follows: after a section devoted to establish
notations, terminology, and definitions, the Shapley value is introduced in Sect. 3.
Then, Sect. 4 deals with some reformulations of the original approach to the Shapley
value, while Sect. 5 offers some of the extensions, generalizations, and particular-
izations. The remaining sections contain the discussion of the special topics outlined
above. A very short concluding section precedes the list of references.

2 Notations

Given a set N , the set of its subsets will be denoted by P(N), while P (N) refers to
all nonempty subsets, and P2(N) denotes the set of all subsets of N with cardinality 2;
R ⊆ S means that R is a subset of S, while the notation R � S means R ⊆ S and
R �= S.

A TU-game2 in characteristic form3 is (N,v), where:

– N is a finite set (whose elements are usually said to be the “players”)
– v :P(N) → R is a map, with v(∅) = 0.

As it is customary in this setting, we shall be quite loose in the notation used to
identify sets, to avoid to be too cumbersome. We shall use v(i) instead of v({i}),
v(ij) instead of v({i, j}), v(S ∩ i) instead of v(S ∩ {i}), and so on. We shall also use
in a systematic way lowercase letters to indicate the number of elements in a set: in
particular, given a coalition S, its cardinality will be referred to as s.

We shall say that a TU-game is:

– Superadditive, if v(S ∪ T ) ≥ v(S) + v(T ) for all S,T ⊆ N s.t. S ∩ T = ∅;
– Cohesive, if v(N) ≥ ∑m

k=1 v(Sk) for any partition {S1, . . . , Sm} of N ;
– Convex, if v(S ∪ i) − v(S) ≥ v(T ∪ i) − v(T ) for all S,T ⊆ N s.t. S ⊇ T .

The class of all TU-games with player set N will be denoted by G(N), while
SG(N) denotes the set of superadditive games.

Often, instead of looking at the worth of coalitions, one focuses on the costs at-
tributed (or due) to the coalitions. We shall usually employ the notation c(S) when

2Also said: “side-payment game”, or “coalitional game”.
3Or in “characteristic function form”, or also “in coalitional form”.



4 S. Moretti, F. Patrone

we shall refer to cost games. The class of cost games is identical to the class of TU-
games, so that the distinction is just a matter of interpretation. Notice, however, that
unilateral conditions (superadditivity, convexity, etc.) need the reversed inequalities
to have a natural (or useful) interpretation in the context of cost games: so, subaddi-
tivity, concavity, etc., are the conditions that are usually employed for cost games.

An allocation for a game (N,v) is an element x ∈ RN . A pre-imputation is
an allocation which is both feasible:

∑
i∈N xi ≤ v(N), and collectively rational:∑

i∈N xi ≥ v(N). A pre-imputation that satisfies also the condition: xi ≥ v(i) is said
to be an imputation. Notice that the standard interpretation of

∑
i∈N xi ≤ v(N) as a

feasibility condition (which, together with the collective rationality assumption, iden-
tifies the pre-imputations, often called efficient allocations) is disputable if a game is
not cohesive (actually a non-cohesive game can have an empty set of imputations:
just consider N = {1,2}, with v(1) = v(2) = 1 and v(12) = 0. This game has no
imputation, while considering the allocation x1 = x2 = 1 as unfeasible is exposed
to strong criticism). Given an allocation x, we shall use the notation x(S) to denote∑

i∈S xi .
An imputation is in the core of the game (N,v) if x(S) ≥ v(S) for all S ⊆ N .

3 The basic model

Given a subset C of G(N), a (point map) solution on C is a map Φ : C → RN . For a
solution Φ we shall be interested in various properties.

Property 1 (Efficiency, EFF) For all games v ∈ C,
∑

i∈N Φi(v) = v(N), i.e., Φ(v)

is a pre-imputation.

Remark 1 The name “efficiency” given to this property is acceptable from the point
of view of interpretation for cohesive games, and a fortiori for superadditive games.
On the contrary, it could be misleading when applied to some other class of games,
or to the whole set G(N). A trivial example is given by the game already used in the
previous section: N = {1,2}, v(1) = v(2) = 1, v(1,2) = 0. In the class G(N) it could
be better to see it as a normalization condition. Due to its widespread use, we shall
stick to the traditional name, but the reader should bear in mind this remark.

Property 2 (Symmetry, SYM) If v(S ∪ i) = v(S ∪ j) for all S ⊆ N s.t. i, j ∈ N \ S,
then Φi(v) = Φj(v).

Definition 1 (Null Player) Given a game (N,v), a player i ∈ N s.t. v(S ∪ i) = v(S)

for all S ⊆ N will be said to be a null player.

Property 3 (Null Player Property, NPP) Φi(v) = 0 if i is a null player.

Property 4 (Additivity, ADD) Given v,w ∈ G(N), Φ(v + w) = Φ(v) + Φ(w).
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Theorem 1 (Shapley 1953) There is a unique map Φ defined on G(N) that satisfies
EFF, SYM, NPP, ADD. Moreover, for any i ∈ N :

Φi(v) =
∑

S⊆N :i∈S

(s − 1)!(n − s)!
n!

(
v(S) − v(S \ i)

)
. (1)

To describe the classical proof we need a bit of terminology.

Definition 2 (Unanimity game) Given N and S ⊆ N , S �= ∅, the game uS , defined as
follows:

uS(T ) =
{

1, if S ⊆ T ;

0, otherwise,
(2)

will be called unanimity game.

The reason for the name is obvious: to get “something”, the unanimous consent of
all of the members of S is needed (and sufficient). The set of unanimity games is a
basis for the vector space G(N), which has dimension 2n − 1.

The proof of the theorem makes use of the following facts. Properties EFF, SYM,
NPP determine Φ on the class of all games αv, with v a unanimity game and α ∈ R.
Since the class of unanimity games is a basis for the vector space, ADD allows to
extend Φ in a unique way to G(N).

Every coalitional game (N,v) can be written as a linear combination of unanimity
games in a unique way, i.e., v = ∑

S⊆N,S �=∅ λS(v)uS . The coefficients λS(v), for each
S ∈P (N), are called unanimity coefficients of the game (N,v) and are given by the
formula: λS(v) = ∑

T ⊆S(−1)s−t v(T ).
An alternative representation of the Shapley value can be given in terms of the

unanimity coefficients (λS(v))S∈P (N) of a game (N,v), that is,

φi(v) =
∑

S⊆N :i∈S

λS(v)

s
, (3)

for each i ∈ N . As already said, s denotes the number of elements of S, i.e., its
cardinality. The number δS = λS

s
is called Harsanyi dividend, relative to the coalition

S (Harsanyi 1959).
The formula (1) can be seen as a condensed version of the following:

Φi(v) = 1

n!
∑

σ

mσ
i (v). (4)

Here σ is a permutation of N , while mσ
i (v) is the marginal contribution of player i

according to the permutation σ , which is defined as:

v
({

σ(1), σ (2), . . . , σ (j)
}) − v

({
σ(1), σ (2), . . . , σ (j − 1)

})
,

where j is the unique element of N s.t. i = σ(j).
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Formula (4) can be connected with the following story (the “room parable”): play-
ers gather one by one in a room to create the “grand coalition”, and each one who
enters gets his marginal contribution.4 Assuming that all the different orders in which
they enter are equiprobable, one gets Formula (4).

Let us notice that the Shapley value can be characterized by the same properties
also on SG(N), despite of the fact that it is not a vector space. The proof simply
needs to take the formula which provides a game v as a linear combination of una-
nimity games and decompose it into two parts: where unanimity games have positive
coefficient and where coefficients are nonnegative. See, e.g., Owen (1995).

The original setting in which Shapley proved his result was the setting of super-
additive games. The approach was also slightly different from those outlined here.
Instead of working with a fixed set N of players, Shapley used an infinite set of po-
tential players (but games were always with a finite number of players), and had a
unique condition (“support”) that amounts essentially to the joining of efficiency and
null player properties.

As it was said earlier, ADD is the property which is less “obvious” among those
introduced by Shapley. Its acceptability was questioned, in particular, by Luce and
Raiffa (1957, pp. 250–252). Notice that the criticism (which makes use of a special
example) is referred to the (normative) interpretation of the Shapley value as an “ar-
bitration scheme”; it does not apply directly to the original interpretation proposed
by Shapley. Additivity is, moreover, often a quite natural condition in the context of
cost allocation.

If the game is superadditive, it is immediate to prove that the Shapley value is
individually rational, and hence it is an imputation.

One of the difficulties of the Shapley value is that it is not guaranteed that the value
is in the core, even when it is not empty, pointing at problems about the stability of
the Shapley value allocation.

Example 1 (Glove game) Let N = {1,2,3}, v({1,2,3}) = v({1,2}) = v({1,3}) = 1,
and v(S) = 0 for the other coalitions S. This is the simplest example of a so-called
“glove game”. The core contains a unique imputation, (1,0,0), while the Shapley
value is (4/6,1/6,1/6).

The fact that the Shapley value does not belong to the core is not a serious draw-
back if one looks at it as an expected outcome, not as a specific allocation to be real-
ized ex post. An important class of games for which the Shapley value lies always in
the core is the class of convex games.

A couple of conditions that often replace NPP and SYM are DPP and ANON. Both
of these conditions are stronger than their counterparts, but it is worth mentioning
them, since they describe interesting properties.

4An alternative approach could be to share this marginal contribution between the existing group and the
new entrant. This different approach, that would lead to a final allocation different, in general, from the
Shapley value, is largely unexplored. Notice that this solution does not satisfy NPP.
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Property 5 (Anonymity, ANON) Let (N,v) be a game and σ : N → N be a per-
mutation. Then, Φσ(i)(σv) = Φi(v) for all i ∈ N . Here σv is the game defined by:
σv(S) = v(σ (S)), for all S ⊆ N .

Definition 3 (Dummy Player) Given a game (N,v), a player i ∈ N s.t. v(S ∪ i) =
v(S) + v(i) for all S ⊆ N will be said to be a dummy player.

Property 6 (Dummy Player Property, DPP) If i is a dummy player, then Φi(v) =
v(i).

Clearly ANON is usually stated on a class of games C s.t. σv ∈ C, provided that
v ∈ C, a property which is satisfied by most of the interesting classes of games. The
meaning of ANON is that whatever a player gets via Φ should depend only on the
structure of the game v, not on his “name”, i.e., the way in which he is labeled.

As a last comment on the classical results about the Shapley value, we remind
that Shapley and Shubik (1954) proposed to use the Shapley value as a power index,
when restricted to the class of simple games S(N), which is the class of games such
that v(S) ∈ {0,1} (often is added the requirement that v(N) = 1). From the point of
view of its axiomatic characterization, it is important to notice that the ADD prop-
erty does not impose any restriction on a solution map defined on S(N).5 Therefore,
the classical conditions are not enough to characterize the Shapley–Shubik value on
S(N). A condition that resembles ADD and can substitute it to get a characteriza-
tion of the Shapley–Shubik index on S(N) is the following (v ∨ w is defined as:
(v ∨ w)(S) = (v(S) ∨ w(S)) = max{v(S),w(S)}, and v ∧ w is defined analogously,
using min instead):

Property 7 (Transfer, TRNSF) For any v,w ∈ S(N), it holds:

Φ(v ∨ w) + Φ(v ∧ w) = Φ(v) + Φ(w).

The characterization is due to Dubey (1975).

4 Reformulations

Other axiomatic approaches have been provided for the Shapley value, of which we
shall briefly describe those by Young and by Hart and Mas-Colell. We shall also men-
tion the work of Roth on the interpretation of the Shapley value as a von Neumann–
Morgenstern utility.

It is quite interesting that approaches which, like those quoted above, seem to be
far from the original one by Shapley, eventually provide the same “value”. Not only
this offers new insights, together with some additional “defense” of the assumptions
used by Shapley, but it can be of interest from the point of view of applications. Some

5From this point of view, considering S(N) as a subset of SG(N) or of G(N) does not make any differ-
ence.



8 S. Moretti, F. Patrone

of the properties may be debatable in a given context, while others will have a much
greater appeal: we shall see this fact discussing some of the applications.

Let us start with the axiomatization provided by Young, which is interesting for at
least two reasons: it shows that one can (apparently) dispose of the additivity condi-
tion, substituting it with another one with a good appeal; it makes clear that the NPP is
just a very partial expression of a property behind the Shapley value, the marginalistic
principle.

Property 8 (Marginalism, MARG) A map Ψ : G(N) → RN satisfies MARG if, given
v,w ∈ G(N), for any player i ∈ N s.t.

v(S ∪ i) − v(S) = w(S ∪ i) − w(S) for every coalition S ⊆ N,

the following is true:

Ψi(v) = Ψi(w).

Theorem 2 (Young 1988) There is a unique map Ψ defined on G(N) that satisfies
EFF, SYM, and MARG. Such a Ψ coincides with the Shapley value.

A proof (by induction) of this result can be found in Young (1988), where it is
noticed that this axiomatization is valid also on SG(N). What is interesting in this
approach is that it makes clear that the Shapley value is based in a fundamental way
on a “marginalistic principle”: whenever symmetry considerations do not apply, the
unique guiding principle is: look at the marginal contributions. For sure, a quite clear-
cut statement.

Property MARG can be substituted by SMON (see Young 1985). Property SMON
is the following:

Property 9 (Strong Monotonicity, SMON) A map Ψ : G(N) → RN satisfies SMON
if, given v,w ∈ G(N), for any player i ∈ N s.t.

v(S ∪ i) − v(S) ≥ w(S ∪ i) − w(S) for every coalition S ⊆ N,

the following holds:

Ψi(v) ≥ Ψi(w).

Just to quote a couple of solutions that do not satisfy MARG, one can refer to the
“proportional to marginal product rule”, which is discussed in Young (1988), and is
defined as:

Fi(v) = v(N)
v(N) − v(N \ i)

∑
j∈N [v(N) − v(N \ j)] ;

also the solution suggested in footnote 4 clearly fails to satisfy MARG, since it does
not satisfy NPP.
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A quite different approach was pursued by Hart and Mas-Colell (1987). In a few
words, the basic idea is to see the Shapley value as a (discrete) gradient of a conve-
niently defined potential. That is, to each game (N,v) one can associate a real num-
ber P(N,v) (or, simply, P(v)), its potential. P has the key property that its “partial
derivative”, that is: Di(P )(N,v) = P(N,v) − P(N \ i, v), coincides with Φi(N,v).
Here, (N \ i, v) is defined simply as the restriction of v to the subsets of N \ i.

The nice point is that it can be proved that such a function exists and is unique, up
to a constant (that can be fixed, defining P(∅, v0) = 0, where v0 is the unique game
defined on the empty set, being v0(∅) = 0, of course).

The result that delivers these properties is the following:

Theorem 3 (Hart and Mas-Colell 1987) There is a unique map P , defined on the set
of all finite games, that satisfies:

{
P(∅, v0) = 0,
∑

i∈N DiP (N,v) = v(N).

Moreover, Di(P )(N,v) = Φi(N,v).

That such a P is uniquely defined is a consequence of its recursive definition,
while the identity D(P ) = (Di(P ))i∈N = Φ may be proved showing that D(P ) sat-
isfies Shapley’s axioms.

An interesting point is that the potential P of a game (N,v) is determined only by
v and its subgames. This is in contrast with the previous axiomatizations which use a
“big” class of games, so that this parsimonious characterization may be of interest in
applications.

Due to the connection with the Shapley value it is not surprising that there are
formulas for the calculation of the potential that are similar to those that we have
seen in the previous section. For example, P(N,v) = ∑

S⊆N
1
s
λS , where λS are the

coefficients that appear when v is expressed as a linear combination of unanimity
games. Or in terms of the Harsanyi’s dividends: P(N,v) = ∑

i∈S δS .
One additional contribution from Hart and Mas-Colell (1987) to the understanding

of the structural properties of Shapley value is the emphasis that is given to the con-
sistency requirement. In words, the idea is quite simple: given a game v, assume that
some players leave the scene, taking with them what they should receive according to
the Shapley value. Is there any connection between what the Shapley value assigned,
in the original game v, to the players who don’t leave the game, and what the Shapley
value would give them in the new (smaller) game?

The key point is the appropriate definition of the reduced game, which will depend
on the point map solution concept that is being considered. Assume that φ is the
solution used and that players in T remain, while T c is the group of players who
leave the game. The reduced game (T , v

φ
T ) is defined as follows, for all S ⊆ T ,

v
φ
T (S) = v

(
S ∪ T c

) −
∑

i∈T c

φi

(
S ∪ T c, v

)
.

Notice that v(S ∪ T c) represents what coalition S would have earned if they had
been together with all of the players in T c . The other term, to be subtracted, is what
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the members of T c would have received if they had played the game restricted to
S ∪ T c . As it can be easily seen, some calculations are needed to get the reduced
game. Anyway, the consistency condition is easy to state:

φi(T , v
φ
T ) = φi(N,v), ∀(N,v), ∀T ⊆ N, ∀i ∈ T .

The last reformulation that we shall see is the interpretation of the Shapley value as a
von Neumann–Morgenstern utility function, due to Roth (1977), who has investigated
the possibility of giving a definite meaning to Shapley’s idea that his value could be
seen as an “a priori” evaluation of the prospect of playing a cooperative game.

As customary in modern utility theory, the starting point is a preference rela-
tion (of some rational decision maker), described by means of a total preorder on
N × SG(N). As for interpretation, an element (i, v) ∈ N × SG(N) represents a po-
sition (the position i) in the game v, that the decision maker is evaluating (and com-
paring with other positions in other games).

That is, (i, v) �∗ (j,w) should be interpreted as: “the decision maker weakly
prefers to play the position i in game v than position j in game w”.

It is assumed that these preferences can be represented by means of a von
Neumann–Morgenstern utility function θ : N × SG(N) → R.

Roth imposes additional restrictions to the preferences on N × SG(N). A key
point is to allow that θ can be seen as an “extension”, on the same scale, of the utility
values used to describe the game. In particular, it happens that θ(i, cvi) = c, where vi

is the game defined by vi(S) = 1 iff i ∈ S, and zero otherwise.
We refer to Roth (1988b) for the details (see his conditions R1, R2, and R3). The

restrictions imposed by these conditions are not enough to prove the coincidence of
θ with the Shapley value, but two additional conditions are needed, which can be
connected with the ADD and EFF properties (ordinary risk neutrality gives ADD,
while strategic risk neutrality gives EFF).

Let us see their detailed formulation.

Property 10 (Neutrality to ordinary risk over games) Given (i, v), (i,w) ∈ N ×
SG(N) and q ∈ [0,1],

(
i, qv + (1 − q)w

) ∼∗ [
q, (i, v); (1 − q)(i,w)

]
.

The indifference is between the alternative of being in position i in the “expected
game” qv + (1 − q)w, and the alternative of having to face the lottery according
to which one should be with probability q in position i in the game v, and with
probability 1 − q in the same position, but in game w.

Roth proves that in his setting this property is equivalent to the additivity of θ .
The second condition refers to what Roth calls “strategic risk”, and is connected

with the expectation of the decision maker about what he could get from a pure bar-
gaining game.

Given a unanimity game uR (seen as a pure bargaining game), its “certainty equiv-
alent” is defined as the real number f (r) s.t. (i, uR) ∼∗ (i, f (r)vi), for a position
i ∈ R. Notice that, in the game f (r)vi (vi is the game defined above), player i should
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receive f (r), for sure. So, this number provides one estimate of what the decision
maker would expect to get in the pure bargaining game uR .

Roth introduces the following:

Property 11 (Neutrality to strategic risk) For all r ∈ {1, . . . , n}, f (r) = 1/r .

and proves that, for a decision maker who satisfies both kinds of neutrality, the utility
θ coincides with the Shapley value.

It is worth mentioning that a different f , that is f (r) = 1
2r−1 , yields the Banzhaf

value (Banzhaf 1965), provided that the decision maker is neutral to ordinary risk.

5 Extensions, generalizations and particularizations

The Shapley value has been extended and “adapted” to different settings. Typically,
the picture is as follows: additional characteristics are added to the standard model of
a TU-game, and one tries to understand whether and how these add-ons influence the
“classical” Shapley value.

We shall discuss here just some of the main cases of this kind. About this, we
would like to stress that we shall not discuss a lot of these “variations on the theme”.
Among the main “omissions” we quote: fuzzy games and multi-level games (see
Aubin 1981 and Branzei et al. 2005); games with infinitely many players (Aumann
and Shapley 1974, is a classical reference); stochastic cooperative games (Suijs and
Borm 1999; Suijs et al. 1999; Timmer et al. 2004), who propose three different ap-
proaches for the Shapley value); NTU-games, for which there are a couple of out-
standing extensions of Shapley value: the λ-transfer value by Shapley (1969) and the
Harsanyi (1963) NTU value.

We shall describe briefly some relevant cases:

• Simple games;
• Restricted set of coalitions;
• Coalition structures;
• Communication links;
• Weighted value.

Simple games have been already considered in Sect. 3. We just notice that
the standard interpretation for these games is to consider coalitions as “winning”
(v(S) = 1) or “losing” (v(S) = 0). We denote by S(N) the class of simple games,
whose standard field of application is the analysis of power, especially political
power, but also the power of shareholders.

On the class S(N) there is a “competing” value that is often used in their political
applications: the Banzhaf value (Banzhaf 1965). The Banzhaf value for a game can
be evaluated using a formula similar to the one for the Shapley value:

βi(v) =
∑

S⊆N :i∈S

1

2n−1

(
v(S) − v(S \ i)

)
. (5)
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The restriction that defines the class of simple games is a restriction on the values
that the characteristic function can take. Somehow dually one can consider the case in
which the characteristic function for a TU-game is undefined for some coalitions. It
is easy to give examples for which this restriction arises in a natural way: connection
problems (some players, i.e., nodes in a network, for some reason cannot be directly
connected), various kinds of incompatibility between players (political reasons, lin-
guistic barriers, etc.), flow problems (connecting two nodes some intermediate nodes
cannot be left out), etc.

Different approaches can be used, whose acceptability depends on the context.
A simple idea is to define v(S) just as the sum of the values of its subcoalitions.
In general, this operation could lead to different values, in case of different possible
ways6 of aggregating the values of subcoalitions. One way to get out of this problem
is to define a new game v′ as follows (assuming that v is always defined for singletons,
a mild restriction):

v′(S) = max

{
m∑

k=1

v(Sk) : {S1, . . . , Sm} a partition of S

}

.

The formula above, where only coalitions for which v(S) exists are considered, can
be seen as a reasonable approach in a context in which superadditivity is considered
as a condition that “should” hold (notice that, having in mind the interpretation as a
“cost game”, the use of min instead of max would be appropriate).

Another approach can be adapting the “room parable”: we shall come back to this
issue in Sect. 8.

The first case that we consider in which there is some additional structure, is when
players can be partitioned into a set of mutually disjoint coalitions, that represent
the existence of special ties among the players. A typical example of this kind is
the division of citizens, or of parliament members, into political parties. For a less
obvious example, players could be aircraft landings, and the special ties could be
provided by the fact that planes belong to the same flight company. It is, of course,
of interest to take into account in some way this additional structure, and see which
kind of adaptation can/must be done to the Shapley value to catch it in some way.

Different approaches have been proposed to this issue. We shall mention here just
a couple of them.

Assume that the set of players is partitioned into a coalition structure, so that each
player belongs to exactly one of these coalitions.

The question is: what is the payoff that a player i, belonging to a coalition S in
this coalition structure, would get?

A straightforward answer, provided by Aumann and Dréze (1974), is that to player
i its Shapley value (that we shall denote by Φi(v,S)) of the game v, restricted to the
subsets of S (we shall continue to denote it by v), should be imputed. Of course,
Φi(v,N) is just the Shapley value for player i in the game (N,v).

6For example, for N = {1,2,3}, assume that only one and two-person coalitions are directly meaningful.
There is no reason, in principle, why it could not happen that, e.g.: v(1) + v(23) �= v(12) + v(3).
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It has been proved by Myerson (1980) that the coalitional value can be character-
ized by means of the following conditions:

{∑
i∈S Φi(v, S) = v(S), ∀S ⊆ N ;

Φi(v,S) − Φi(v,S \ j) = Φj(v,S) − Φj(v,S \ i), ∀S ⊆ N ∀i, j ∈ S.
(6)

Since, as noticed, Φ(v,N) is just the Shapley value for (N,v), clearly (6) provides,
as a byproduct, another characterization for the Shapley value. The force of the con-
ditions (6) lies, clearly, in the fact that they work on all of the subsets of N .

It is interesting to notice how the second condition in (6), which can be seen as
a “balanced contributions”, can be used (conveniently adapted) to provide a charac-
terization of an extension of the Shapley value to the case in which a graph-based
conference structure is added to the game, which we shall see later.

Another approach to this value, in presence of a coalition structure, has been pro-
vided by Owen (1977). As before, the additional structure is represented by a parti-
tion of the set N . One can find in Owen (1995), to which we refer, both an axiomatic
characterization of the coalitional value, as a formula to evaluate it, given v and the
coalition structure T = {T1, . . . , Tk}, where T is a partition of N .

We shall describe here another approach (also in Owen 1995), because it empha-
sizes in a direct way the difference between the solution provided by Owen and that
discussed above, exploiting in an explicit way the fact that the “a priori” coalitions
are not worlds apart.

Given (N,v) and a coalition structure, i.e., a partition T , one can build the quo-
tient game, which is the game played between the “a priori unions”: players are the
coalitions Tj and the characteristic form is defined in an obvious way. The value
v(N) is divided among the coalitions Tj according to the Shapley value for the quo-
tient game. The interesting part comes when one looks at the way in which the value
is divided among the players of Tj : this is done taking into account the possibility
that a player i ∈ Tj can cooperate with players outside Tj .

This is done through a reduced game wj . A coalition S ⊆ Tj bargains with his
partners in Tj \ S, taking into account what can get with the help of players in N \ Tj

and without the help of players in Tj \ S. So, the game wj (again, its characteristic
function is defined in an obvious way) involves, as players, S and the remaining
unions Tm for m �= j , and the coalition S will get, as its worth, the Shapley value
of this game. Having built the game vj , its Shapley value in the game wj will be
assigned to a player i ∈ Tj .

Along with this line of thought, it is worth to mention that it is possible to adapt
formula (4) to get the Owen value: the value for a player i is obtained as his average
marginal contributions, taking into account only the orderings of the players which
respect the way in which players are grouped into unions.

In the case considered by Myerson (1977), the additional structure is a non-
oriented graph G on N , that is G ⊆ P2(N), which is used to formalize the con-
ference structure mentioned above, with the intended meaning that G identifies the
direct communication possibilities existing among the players.

Given a coalition S, the players of S will be able to negotiate effectively only if
they are all connected via the given graph, restricted to S; in such a case, we say
that S is internally connected via G. To express formally this, a piece of notation
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is useful. S|G will denote the partition of S into equivalence classes defined as the
sets of players connected by the graph G within S. Of course, S|G will reduce to a
singleton, {S}, if and only if S is internally connected via G.

The following two conditions appear as reasonable restrictions for an allocation
rule Ψ that takes into account the structure provided by the communication possibil-
ities among players, provided by G.

We assume that Ψ is defined for each game (N,v) and any graph G on N , and we
shall use the notation Ψ (v,G):
{∑

i∈S Ψi(v,G) = v(S), ∀G,∀S ∈ N |G;
Ψi(v,G) − Ψi(v,G \ {i, j}) = Ψj (v,G) − Ψj (v,G \ {i, j}), ∀G ∀{i, j} ∈ G.

(7)
The first one is an “efficiency” condition that is assumed to hold only for those coali-
tions whose players are able to communicate effectively among them and are not
connected to other players.

The second one says that two players should gain or lose in exactly the same way,
when a direct link between them is established (or deleted).

Myerson (1977) has proved that conditions (7) characterize a unique allocation
rule Ψ . Moreover, Ψi(v,P2(S)) = Φi(v,S). That is, whenever all players in S

are directly connected, this rule coincides with the coalitional value. In particular,
Ψi(v,P2(N)) is just the Shapley value for (N,v).

An interesting and immediate consequence of the second condition in (7) is that,
in a superadditive game, players will never lose in forming a link between them.

To introduce a weighted Shapley value, one needs a family of positive weights
λ = (λi)i∈N . An immediate way to define the weighted Shapley value is to use the
weights to split the gains in the unanimity games (and their multiples), and then
simply use additivity to extend it to all of G(N). Given a coalition S ⊆ N and its
corresponding unanimity game uS , the weighted Shapley value for uS is defined as
follows:

(Φλ)i(uS) =
{

λi∑
k∈S λk

, for i ∈ S;

0, for i �∈ S.

We refer to Kalai and Samet (1988) for a survey on weighted Shapley value (included
the use of “weight systems” in which zero weights are also allowed).

6 Shapley value and infrastructure cost games

The topics chosen in this section have in common not only the subject, but also a
technical aspect: the calculation of the Shapley value in practice. In applications, the
calculation of the Shapley value often does not create computational problems: for a
“generic” game (i.e., a TU-game without a special structure) the main difficulty7 is

7We had investigated this issue in Moretti and Patrone (2004), where we propose an extended model
of cooperative games (TUIC games) to take into account the costs incurred in getting the data and the
potential arbitrary choices done choosing the level of detail.



Transversality of the Shapley value 15

the effort required for collecting the 2n data needed to have a TU-game on a set of n

players.
It can happen, however, that the data have a potentially simple structure, so that

it is possible to treat (in applications) games with a huge number of players. As it is
easy to imagine, in such cases one can exploit the specific structure of the data to get
a much more manageable formula than, e.g., (1).

We shall see here a couple of examples of this kind. Both of them refer to the use
of an infrastructure: a landing strip or the railway infrastructure. Another example can
be found in Moretti et al. (2007), where the evaluation of the Shapley value for a game
with thousands of players is possible (and easy) using an approach that bypasses the
explicit construction of the microarray game (see Sect. 9.2).

The first example is one of the most classical examples in game theory: we are
referring to the so-called airport game.

Airport games were analyzed via the Shapley value by Littlechild and Thompson
(1977), and Littlechild and Owen (1973). Notice, however, that a cost allocation rule
which coincides with the Shapley value for the airport game was earlier proposed in
Baker and Associates (1965) and by Thompson (1971). There is also an axiomatiza-
tion of the Shapley value for the class of airport games, due to Dubey (1982).

The issue is: how to divide the costs due to the landing strip of an airport among
the planes that use it? One idea has to do with the identification of the players that will
give rise to a cooperative (cost) TU-game: a reasonable modeling approach brings to
the idea that the players are the landings that occur during the lifetime8 of the landing
strip.

Clearly, such a modeling choice gives a game with a lot of players. So, it becomes
crucial to have an “easy” way to calculate the Shapley value, if one wants seriously
to take into account this approach.

The first step is to define c(S) for a set S of landings. Since not all players will
need a landing strip of the same length, one can reasonably assume that the cost
associated with a landing strip long enough to accommodate all of the landings in S

can be imputed to S.
Formally, we partition the set of all landings, N , into groups of landings that re-

quire a strip of the same length: N1,N2, . . . ,Nk , ordered in an increasing way w.r.t.
costs. For each group Ni , let Ci be its cost.

So, we can define

c(S) = max{Ct : S ∩ Nt �= ∅}.
If we introduce the quantities ci = Ci − Ci−1 (C0 = 0), we see that we are facing
a cost allocation problem in which we can identify the cost elements ci (see Young
1994). Since, for the way in which the problem has been approached, there is no
worry about the intensity of use of the various components by the players (landings),
a sensible accounting principle suggests to divide the cost due to an element evenly
among those who use it.

In such a way, it is easy to get a sensible cost allocation, for whose straightforward
computation we need very few data:

8Or one can limit the analysis to a “typical” year, referring to the amortization costs.
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– the cardinality of each of the homogeneous groups Ni ,
– C1,C2, . . . ,Ck , the costs induced by each of the groups.

The resulting allocation, for a player m belonging to Ni , is given by the formula

Φm(N,c) =
i∑

j=1

cj

|⋃k
r=j Nr |

.

The allocation has been derived applying an accounting principle, without making
any explicit reference to the (cost) game that was defined above. So, an interesting
aside is that this approach provides exactly the Shapley value for the given game (the
decomposition property is well suited for the exploitation of the ADD property).

A slight generalization of this line of thought has been provided by Fragnelli et al.
(1999) (see also González and Herrero 2004). The issue was, again, a fair imputation
of the costs arising from the use of an infrastructure (the railway network, in this case)
among its users. Here, again, one faces a problem whose modeling leads “naturally”
to a game with a lot of players, that in this case are trains running on the infrastructure
during, e.g., one year.

To tackle such a problem, the authors used a couple of simplifications, one of
which is a decomposition of the game into additive components.

One decomposition that has been used is the decomposition of the railway in-
frastructure into different “facilities” (tracks, catenary, bridges, etc.), that are assumed
to enter in an additive fashion into the overall costs. Of course, the acceptability of the
decomposition is justified on modeling grounds, and has no special game-theoretical
content. On the other hand, if one believes that the Shapley value offers a sensible
way to allocate costs, this additive decomposition proves to be quite useful.

A second simplification was done assuming that the costs induced by a group of
trains could be approximately described in a “linear” way, where linearity refers to
the number of trains running. Concentrating the attention on one facility (e.g., tracks)
the assumption made was that the costs imputed to a homogeneous group of trains
could be approximately given as the sum of a fixed part, plus another part linear in
the number of trains.

Dropping for the moment the necessary technicalities, clearly this approach rep-
resents a generalization of the airport game; moreover, the fact that the costs for a
coalition can be expressed by means of a restricted number of parameters, allows for
an easy computation of the Shapley value, even in presence of thousands of players
(trains) involved.

Formally, the class of the maintenance games is introduced. The set N of play-
ers divided into groups9 N1, . . . ,Nk . We are given k(k+1)

2 non-negative numbers
{αij }i,j∈{1,...,k},j≥i .

9The same set of groups introduced for the “airport game” is used. Even if the maintenance game will be
added to an airport game with the same groups of players, it is immediate to see that such an assumption
can be done without loss of generality.
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The maintenance cost game corresponding to N1, . . . ,Nk and to the αij ’s is the
cooperative cost game (N, c) defined as follows:

c(S) =
j (S)∑

i=1

|S ∩ Ni |Aij (S),

for S ⊆ N , and where Aij = αii + · · · + αij for all i, j ∈ {1, . . . , k}, with j ≥ i, and
j (S) = max{r : S ∩ Nr �= ∅}.

The meaning of the numbers αij is the following. Assume that one player in Ni

has used the corresponding facility i. To restore the facility up to a level j (with
j ≥ i), the maintenance costs are Aij = αii + · · · + αij .

So, c(S) expresses the maintenance cost corresponding to the facility up to the
level j (S) (i.e., the most sophisticated level required by players in S).

In Fragnelli et al. (1999) a formula for the calculation of the Shapley value for a
maintenance cost game is provided. Using the data already introduced, the Shapley
value for a player i, belonging to the group Nj(i) is:

Φi(N, c) = αj(i)j (i) +
k∑

m=j (i)+1

αj(i)m

nm + · · · + nk

nm + · · · + nk + 1

+
j (i)∑

m=2

m−1∑

l=1

αlm

nl

(nm + · · · + nk)(nm + · · · + nk + 1)
(8)

(nr denotes, as usual, the cardinality of the set Nr ).
As said earlier, in Fragnelli et al. (1999) it was assumed that the costs for the use

of the infrastructure can be described as an “infrastructure cost game”, which is the
sum of an airport game and a maintenance cost game. Clearly, the additivity of the
Shapley value allows for an easy utilization of the two formulas described above.

To show the effectiveness of the approach, in Fragnelli et al. (1999) a calculation
is provided in a realistic case involving 20.000 trains. The main point is to show
that estimates of the costs provided in Baumgartner (1997) can be converted into an
infrastructure cost game. The remaining calculations are straightforward, even with a
huge number of “players”.

The problem of determining landing fees has been approached also in Vázquez-
Brage et al. (1997). The authors suggest that the Owen value is more appropriate in
this context, to take into account the fact that the airplanes are organized into airlines,
which represent a priori unions. The set of players and the cost structure are identical
to the airport game. In addition, a system P = {P 1, . . . ,P A} of a priori unions is
given.

One result is the establishment of a formula for the Owen value in this special
context. Not surprisingly, the formula allows for an easy calculation of the value for
an airline a and an airplane of type t :

Φa,t (N, c,P ) =
t∑

τ=1

cτ

|A≥τ | · |Na≥τ |
,
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where Na≥τ = ⋂T
k=τ Nk ∩ P a is the set of planes of airline a that are of type τ or

larger, and where A≥τ = {a ∈ {1,2, . . . ,A} : Na≥τ �= ∅} is the set of the airlines that
have airplanes of type τ or bigger.

A consequence of this formula is that the fee which will be paid by an airline
depends on the types of its airplanes, but not on the number of movements made. This
means that the cost for movement will be lower for the airlines which use the airport
most intensively. Since this result could raise doubts about its fairness, the authors
notice that the total fees paid by the companies will also include other parts, as in the
classical airport game.

Connected to this remark is the behavior of Owen value w.r.t. mergers: it is proved
in Vázquez-Brage et al. (1997) that mergers are always profitable, in the sense that
the total costs to be paid will not increase for a group of airlines that would merge.

As a last point, which is interesting from the point of view of applying a specific
value, we notice that Vázquez-Brage et al. (1997) provide a characterization of the
Owen value that can be considered especially meaningful for the class of airport
games. Contrary to the classical axiomatization by Owen (1977), the authors provide
a characterization in which the characteristic form is kept fixed, while changes are
allowed for the a priori unions. The search is restricted to coalitional values which
would restitute the Shapley value for degenerate sets of a priori unions (i.e., in the
cases in which the unions are all singletons). Under this assumption, it is shown that
the Owen value is characterized by a couple of additional properties:

Property 12 (Balanced Contributions, BC) Φ satisfies the property of balanced con-
tributions if, for any system of a priori unions P , for all P a ∈ P and i, j ∈ P a ,

Φi(N, c,P ) − Φi(N, c,P−j ) = Φj(N, c,P ) − Φj(N, c,P−i ),

where P−r is the system of unions obtained when player r separates from the union
P a to which belongs, i.e.,

P−r = {
P 1, . . . ,P a−1,P a \ {r},P a+1, . . . ,P A, {r}}.

Property 13 (Quotient game, QG) Φ satisfies the condition

∑

i∈Pa

Φi(N, c,P ) = ΦPa

(
P, cP ,P

)
,

where P is the set of players for the game on the right, cP (S) = c(
⋃

r∈S P r) and P
is the trivial system of unions for the set of players P , that is,

P = {{
P 1}, . . . ,

{
P A

}}
.

7 Social networks

An application of the Shapley value, which uses both the classical one and the one by
Myerson (1977), has been proposed by Gómez et al. (2003), to provide a definition
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of centrality in social networks. We refer to the paper for an interesting discussion,
focusing on different notions of centrality and its relation with the notion of power,
and for a comparison between their proposal and other centrality measures available
in the literature. Here we confine ourselves to mention that they look at a network of
social binary relations, formally represented by a (finite) undirected graph G.

The proposal is to look at the difference between:

– Ψ (vG): the Myerson value, that takes into account the communication structure;
– Φ(v): the Shapley value, that disregards completely the information provided by

the graph G.

So, the point of view adopted by the authors is clear and clearly stated in their pa-
per: the centrality of a node refers to the variation in power due to the social situation
(represented by the graph), whilst the power is approached via a game theoretical
approach. More precisely, it is the Shapley value of a game that is used as a power
index.

A couple of simple examples are used to illustrate the approach. In both cases a
weighted majority game with the winning quote fixed to 2/3 is considered. In the first
case, the votes of players 1, 2, and 3 are, respectively, 40, 20, and 40%; in the second
case the votes are 30, 40, and 30%. In both cases, the graph contains two links: {1,2}
and {2,3}. In the first case, the Shapley value for the players is: 1/2 for 1 and 3,
0 for 2, while the Myerson value is 1/3 for each of the players. So, the centrality
value is 1/3 for player 2 and −1/6 for 1 and 3. In the second example there is no
difference between the Shapley and Myerson value, so that the centrality is 0 for all
of the players. As the authors stress, the relevant role that the chosen game has in
determining the centrality of a player is apparent.

Clearly, this approach needs to have a game v defined on P(N) (N is, of course,
the set of nodes of the graph G). The general approach proposed by Gómez et al. is
to restrict the choice only to symmetric games, aiming at emphasizing the role of the
graph structure. A game is symmetric if there is some f : N → R s.t. v(S) = f (s)

for all coalitions (s is, as usual, the number of elements in S): notice that the Shapley
value for a symmetric game is equal to v(N)

n
for each player. Due to the symmetry

condition imposed on the game, the centrality measure inherits a couple of properties
from the Myerson value. The “balanced contributions” is one, the other is the fact that,
removing an edge, the centrality of the incident nodes does not increase (assuming
that the game is superadditive).

The authors describe general properties of their centrality measure, and in partic-
ular, how the abstract structure of the graph influences it. Some specific symmetric
games (“message”, “overhead”, and “conference” games) are proposed as games of
special interest for the analysis of centrality, and how it is affected by the specific
choice of the game v. The authors provide also an interesting decomposition of cen-
trality into communication centrality and betweenness centrality; we refer to the paper
for the details.

8 Water related issues

The modeling tool of TU-games has been often applied to the context of issues re-
lated, in various ways, with water: allocation of water, allocation of costs related with
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Table 1 Table for the
generalized Shapley value 1234 2134 3124 4123

1234 2143 3142 4132

1324 2314 3214 4213

1342 2341 3241 4231

1423 2413 3412 4312

1432 2431 3421 4321

various kinds of projects (water reservoirs, irrigation systems, wastewater treatments
and reuse, etc.).

The use of TU-games can be seen as a useful approach, since other methods (in
primis: the working of a competitive market) have difficulties, due to reasons like
the small number of agents involved, the absence of anonymity in the relations, and
others.

So, it is far from being surprising that the Shapley value has appeared often in this
context and that some interesting comments about it can be found in the literature.

One of the most relevant contributions, from this point of view, can be traced back
to the work of Loehman and Whinston (1976) and related papers (e.g., Loehman et
al. 1979). They take into account the fact that, for some structural reason, it is not
plausible that all coalitions could be potentially considered. For example, to build a
piping system

it is quite possible that coalitions like {1,4} or {2,4} will not form, possibly due
to high costs due to the distance from a “source” located close to 1 and 2, while
the presence of player 3 could allow some savings for coalitions like {1,3,4} and
{2,3,4}.

Such kind of situation makes disputable the applicability of the symmetry axiom.
The issue is not so much, however, of assigning different weights to the players per
se, but taking into account how these asymmetries influence the coalition building
process. The proposal made by Loehman and Whinston (1976) uses the idea of a ran-
domly generated process of building the “grand coalition”N via incremental addition
of single players (the “room parable”). Analogously to the idea that we have already
seen here for the Owen coalitional value, the proposal of Loehman and Whinston is
to consider that some of these permutations should not be taken into account, since
in the process they would require to build up an ‘impossible” coalition. In the exam-
ple, if we assume that coalitions {1,4} and {2,4} cannot form, then one should delete
(in Table 1, these are striked out) the permutations that involve, in the process, the
creation of an “impossible coalition”. Notice that it is assumed that this is the unique
reason to break the symmetry. The solution thus obtained is named the “generalized
Shapley value” by Loehman and Whinston (1976).

It is clearly impossible to compare the results found above with the classical Shap-
ley value, since the values of {1,4} and {2,4} are missing and we cannot find the
Shapley value for this “partial” game. One could follow, however, a different route,
simply defining v(14) = v(1) + v(4) and similarly v(24) = v(2) + v(4). This idea is
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far from being exotic, since it is rooted in a quite standard approach to define v(S),
as the highest possible value that can be achieved through cooperation between the
players of S (see Sect. 5).

It is interesting to notice that this last approach, which is quite close in spirit to
considerations that were expressed in a paper by Loehman et al. (1979) and that are
often used to justify the superadditivity condition, provides results that are different
from those of Loehman and Whinston (1976). So, it appears to be a delicate issue to
choose between the two approaches.

Other kinds of interesting considerations can be found in other papers devoted
to the analysis of water related issues. For example, Young et al. (1982) bring the
attention to the fact that often in a project one has to choose the allocation rule before
the actual costs are known (at best, good estimates are available). True costs will be
known later. This means that a property of monotonicity w.r.t. variations in the total
costs (i.e., the costs for the grand coalition N ) is a desirable one for the rule which is
being used to find the allocation of costs (or benefits). That the Shapley value satisfies
this kind of condition is straightforward.

Other issues, even if they do not apply in a specific way to the Shapley value, are
worth being mentioned, since they point at a cautious use of TU-games to approach
allocation problems in the context of multi-faceted issues, like water.

It is interesting, for example, to look at the restrictions that are imposed on the
calculations by law: Loehman et al. (1979) offer evidence of an approach, dictated
by law, that imposes a separation between piping costs and the costs for building
the wastewater treatment facility. Correctly, Loehman et al. (1979) point at the risks
of inefficiencies which could be generated by such a separation (discouraging users
located too far from the treatment facility).

Another interesting issue comes from the ways that are allowed to collect fees to
pay the costs for the wastewater treatment. The use of an allocation method, like the
Shapley value, among different municipalities (for example) can provide difficulties
when the citizens are called to pay for the services provided. It is quite possible that
the allocation of costs among municipalities brings to differences in the tariffs for
the final users that may be difficult to justify (at least, from the point of view of
gathering enough political consensus at the local elections). Notice that there could
be restrictions according to which the tariff is to be proportional (apart some fixed
part) to some specific measurable quantity (water consumption, or an estimate of the
amount of wastewater). This tension is clearly visible from the interesting interviews
of the local decision makers that are mentioned in Loehman et al. (1979).

Anyway, to transfer an allocation (e.g., the Shapley value) from the level of munic-
ipalities to the level of the single citizen, one is forced to make a non-trivial choice
between a tariff that is consistent with the Shapley value used at the upper (aggre-
gated) level, and the need for a simple and manageable method to assess the fee at
the level of the final user.

Another issue that is raised (by Dinar et al. 1986) is about the mix between players
that are significantly different (e.g., towns and “big” farms). This heterogeneity of the
players makes, for example, the use of the symmetry axiom questionable. One reason
for asymmetry could be, for example, a different exposure to risk between “players”
of different kinds. In their contribution, Dinar et al. point out the fact that there is
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a much higher exposure to risk of farmers, compared with a town, concerning the
profits (or savings) obtainable from the facility for the treatment of wastewater. An
answer to this issue could be to use a more sophisticated model than a classical TU-
game, like a stochastic TU-game (see the references mentioned at the beginning of
Sect. 5). One must take into account, however, that a more detailed model requires
(usually) a higher number of data. Added to this, it could happen that the extension
of a solution for TU-games to this richer model is not obvious or unique; this is
precisely the case for the Shapley value, for which Timmer et al. (2004) show that
three approaches that coincide in the classical TU-model will provide, in general,
three different answers, when applied to a stochastic cooperative game.

9 Applications to biology

In the last two decades, the advent of new technologies in molecular biology and
epidemiology allowed for the assessment of a large number of biological and en-
vironmental markers and other relevant factors at once. The increasing importance
of results for medical research on the causes of disease and their implications for
public health decisions was accompanied by a dynamic conceptual development of
research strategies, study designs, measures of effects, and statistical methods of in-
ference. The encoding of real-world problems in these fields requires many variables,
representing the factors that jointly produce an effect of interest, and involves the re-
finement of multifactorial statistical models that realistically represent their complex
interrelations. In this direction, the Shapley value of a properly defined coalitional
game has been used in several applications as an index which attributes to each fac-
tor/variable a measure of its relevance in producing a certain biological or epidemio-
logical effect.

9.1 Epidemiology and risk analysis

In many epidemiological situations, multiple influential factors affect the risk of a
disease for the individuals of a given population. Consequently, it is necessary to
quantify the impact on the disease load in the population that can be attributed to
having been exposed to certain risk factors. Suppose, for instance, a uranium miner,
exposed to some amount of occupational radiation, smokes cigarettes and has finally
developed lung cancer. In the case of the miner taking legal actions in order to fight for
compensation, a juridical problem arises: both exposures are known to be strong risk
factors for lung cancer, but the employer is only responsible for radiation, whereas
the worker himself is responsible for smoking. So, how can the compensation for him
be determined? This kind of problem in Epidemiology is known as the risk attribut-
ion problem and can be formulated in the following way. Consider a binary random
variable D with D = 1 in case of a diseased individual and D = 0, otherwise. In
addition, consider n categorical exposure variables E1, . . . ,En describing n distinct
risk factors, where the ith variable has ki categories and is equal to zero (the low
risk level) in case of no exposure to the ith risk factor. In this multifactorial situation,
epidemiological risk analysis can be directed towards answering the following ques-
tions for each subset S ⊆ N of exposure variables, with N = {E1, . . . ,En}: to what
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maximum extent can the probability of disease be lowered by completely reducing
exposure to the risk factors described by variables in S to low risk levels?

The attributable risk parameter that is suited in epidemiology to answer this ques-
tion is the combined attributable risk AR, defined in (9). For any S ⊆ N , AR(S) is
defined as the relative difference between the original probability of disease among
the exposed individuals and the reduced probability of disease P red

S (D = 1), which
hypothetically results from reducing exposure of selected risk factors in S to low risk
levels in the exposed population.

AR(S) = P(D = 1) − P red
S (D = 1)

P (D = 1)
, (9)

where the probability distributions P and P red have to be estimated from epidemio-
logical data. Note that P red

∅ = P ; so AR(∅) = 0.
Cox (1985) noticed the formal equivalence of multifactorial risk assessment in epi-

demiology and the mathematical formalism in cooperative game theory. Each vari-
able can be compared to a player and any subset of variables specifying risk factors
to be eliminated in the population corresponds to a coalition of players. The solution
to the problem of multifactorial risk attribution can be found by interpreting the func-
tion AR : P(N) → R mapping each subset of variables to their combined (adjusted)
attributable risk as a coalitional n-person game (Land and Gefeller 1997). According
to Gefeller et al. (1998) and Land and Gefeller (1997), the Shapley value φ(AR) of
this game, quantifies the shares of probability of diseases that can be attributed to
having being exposed to the respective risk factors.

Example 2 Land and Gefeller (2000) show an example of application aimed at quan-
tifying the influence of smoking and three types of cholesterol levels (namely, LDL,
HDL, and VLDL) on a certain heart disease: myocardial infarction. The occurrence
of infarction was related to cholesterol levels and smoking habits so that four binary
exposure variables s, l, h, and v of primary interest are defined as follows:

• s = 0 for nonsmokers, s = 1 otherwise;
• l = 0 for LDL-cholesterol < 160mg/dl, l = 1 otherwise;
• h = 0 for HDL-cholesterol > 35mg/dl, h = 1 otherwise;
• v = 0 for VLDL-cholesterol < 30mg/dl, v = 1 otherwise.

From estimates from epidemiological data of 6029 male industrial workers aged 40-
60 years, who were observed for myocardial infarction during a five year follow-
up period in Gottingen, the game ({s, l, h, v},AR) was computed (see Table 2). For
instance, it has been calculated that when all four factors are absent, the incidence rate
of the disease is about 77 percent lower than the incidence rate in the total population.
The Shapley attribution for the game AR is about 0.211, 0.405, 0.074, and 0.08 for
smoking, LDL-, HDL-, and VLDL-cholesterol, respectively.

To justify the use of the Shapley value in risk attribution, Gefeller et al. (1998) pro-
posed an interpretation of SMON, ANON, EFF in an epidemiological context, which
axiomatically characterize the Shapley value (see Sect. 4). It should be mandatory
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Table 2 The Gottingen game

S: ∅ {s} {l} {h} {v} {s, l} {s, h} {s, v}

AR(S): 0 0.3697 0.5773 0.1722 0.1669 0.7109 0.4380 0.4414

S: {l, h} {l, v} {h,v} {s, l, h} {s, l, v} {s, h, v} {l, h, v} {s, l, h, v}

AR(S): 0.6397 0.6272 0.2619 0.7496 0.7432 0.4918 0.6715 0.7698

Table 3 Urban and rural
combined attributable risks in
Hordaland county

S ARurban ARrural

∅ 0 0

{s} 0.3621 0.4871

{o} 0.2104 0.1627

{s, o} 0.4851 0.5584

that a method to assess those shares of the disease in the population that can be at-
tributed to each one of several exposure of interest (i.e., the exposure-specific values)
is not influenced by the enumeration of exposure variables or by any ordering among
them, which is exactly the property required by ANON. Now, consider two combined
attributable risks ARI and ARII on the same set {E1, . . . ,En} of exposure variables,
but with the difference that ARI is evaluated on subpopulation I , and ARII is evalu-
ated on subpopulation II (for instance, I means urban population and II means rural
population). Then, the interpretation of SMON is the following: whenever the addi-
tional effect of eliminating a specific exposure is at least as high in subpopulation I

as in subpopulation II (independently from choice of exposures that have been elim-
inated before), the assigned exposure-specific value ought to be also at least as high
in I as in II. Finally, EFF means that the sum of all exposure-specific values equals
the combined attributable risk AR(N) of all n factors.

Example 3 Gefeller et al. (1998) show an example of study from the literature where
the relationship between several exposure variables and the presence of asthma and
respiratory disorders was investigated based on a sample of 4469 persons from the
general population of the Norwegian Hordaland county. To illustrate SMON on a
numerical example, we consider only the following two binary exposure variables:
smoking (s), i.e., ever daily smoking vs. never daily smoking; occupational expo-
sure (o), i.e., ever being exposed to gas or dust vs. never being exposed. In addition,
the combined attributable risks on this set of two variables N = {s, o} was evalu-
ated on two sub-populations, urban (ARurban) vs. rural (ARrural). Table 3 represents
the estimates of the two combined attributable risks. Table 4 summarizes the es-
timates of proportionate reductions of the chronic cough prevalence achievable by
eliminating smoking according to two different scenarios: eliminating smoking first
(ARRegion({s})) or eradicating smoking after the elimination of occupational expo-
sure (ARRegion({s, o}) − ARRegion({o})). It is clear that the maximum potential ef-
fect of eradicating smoking is higher in the rural than in the urban region of Horda-
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Table 4 Marginal contribution
of variable smoking under two
different sub-populations

Region ARRegion({s}) ARRegion({s, o}) − ARRegion({o})

Urban 0.3621 0.2747

Rural 0.4871 0.3957

land, no matter whether occupational exposure has previously been eliminated or not.
A method used to assess the exposure-specific values which satisfies SMON is re-
quired to assign to variable s in ARrural not less than the share assigned to s in ARurban.

In Land and Gefeller (2000), a new parameter based on a multiplicative analogue
of the Shapley value is introduced and its application and the interpretation of the
results are illustrated by epidemiologic data. An interesting question about the sta-
tistical significance of the Shapley value in risk attributions has been proposed by
Kargin (2005), where a measure of the uncertainty of the Shapley value based on its
probabilistic interpretation is given.

9.2 Molecular biology and genetics

An example of application in molecular biology is related with microarray technol-
ogy, which is a relatively new experimental methodology allowing for the simulta-
neous quantification of the expression (i.e., the amount of mRNA10) of thousands of
genes. By means of gene expression microarrays it is possible to consistently gen-
erate a matrix of gene expression data, in which the rows index the genes (i.e., the
variable) and the columns index the study samples/experiments (e.g., several patients
with a genetic disease), which are the observations or effects.

A method based on coalitional games and the Shapley value has been proposed in
Moretti et al. (2007) for inferring, from a matrix of gene expression data, the rele-
vance of genes keeping into account their individual behaviors and their interactions
when the biological system is studied under a condition of interest (e.g., a disease
state, the exposure to environmental or therapeutic agents, etc.). According to this
method, the frequency of associations of all of the subsets of genes with a condition
of interest has been described by means of a coalitional game (namely, a microarray
game) where players are genes. The relevance of genes is assessed by means of a
relevance index, that is a solution F defined on the class of microarray games with
N as a set of genes, assigning a number to each gene in a given microarray game:
the higher the number attributed by the relevance index to a certain gene in a given
microarray game, the higher the relevance of that gene for the mechanisms governing
the genomic effects of the condition under study.

Going into more details, a microarray game has been introduced as a coalitional
game (N,v) where N is the set of analyzed genes and the characteristic function

10Proteins are the structural constituents of cells and tissues and may act as necessary enzymes for bio-
chemical reactions in biological systems. Most genes contain the information for making a specific protein.
This information is coded in genes by means of the deoxyribonucleic acid (DNA). Gene expression occurs
when genetic information contained within DNA is transcripted into messenger ribonucleic acid (mRNA)
molecules and then translated into the proteins.



26 S. Moretti, F. Patrone

v assigns to each coalition S ⊆ N the frequency of associations between a given
condition and a given expression property of genes realized in the coalition S. Dif-
ferent expression properties for genes might be considered like, e.g., under- or over-
expression, strong variation, etc. A key issue for the definition of a microarray game
(N,v) is the notion of association between a condition and a gene expression prop-
erty inside a coalition S ∈ P (N). On a single microarray experiment, a sufficient
requirement to realize in a coalition S ⊆ N the association between a condition and
an expression property is that all the genes which present such expression property
belongs to the coalition S (sufficiency principle for groups of genes). In other words,
a group of genes S ⊆ N which contains all the genes showing the expression prop-
erty coded by “1” (e.g., over expression) under a certain condition y (e.g., a specific
cancer disease) is said to realize the association between “1” and y. We will call the
coalitions which realize the association between the expression property “1” and the
condition y a winning coalition. For example, consider a microarray experiment on a
set of genes N = {1,2, . . . ,10} under condition y and suppose that only genes 1,3,
and 7 show the expression property “1”. Then, all set of genes S ⊆ N with 1,3,7 ∈ S

are winning coalitions.
Moving to k ≥ 1 microarray experiments on N , we refer to a Boolean matrix B ∈

{0,1}n×k , where the Boolean values 0 − 1 represent two complementary expression
properties, for example the property of normal expression (coded by “0”) and the
property of abnormal expression (coded by “1”). Let B·j be the j th column of B. We
define the support of B·j , denoted by sp(B·j ), as the set sp(B·j ) = {i ∈ N | Bij = 1}.
The microarray game corresponding to B is the coalitional game (N,v), where v :
2N → R is such that v(T ) is the rate of occurrences of the coalition T as a winning
coalition in B; in formula, we define v(T ), for each T ∈ 2N \ {∅}, as the value

v(T ) = c(Θ(T ))

k
, (10)

where Θ(T ) = {j ∈ K | sp(B·j ) ⊆ T , sp(B·j ) �= ∅}, with K = {1, . . . , k}, and where
c(Θ(T )) is the cardinality of Θ(T ), with the convention that v(∅) = 0. The class of
microarray games with N as a set of players is denoted by MN .

Example 4 Consider three hypothetical microarray experiments under condition y

performed on four genes whose expression property 1 (e.g., over expression) is de-
tected and shown in Table 5 (value 0 means that property 1 is not detected).

The microarray game ({1,2,3,4}, v) is defined associating to each coalition S the
average of the values obtained in each experiment. For example, v({1,2,3}) = 2

3 ,
since the coalition {1,2,3} contains all of the genes for which 1 is detected for the

Table 5 An hypothetical
collection of three microarray
experiments with four genes

Gene Microarray 1 Microarray 2 Microarray 3

1 1 0 1

2 0 1 1

3 1 1 0

4 0 0 1
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cases of microarray 1 and 2, but not for microarray 3: hence, it is a winning coalition
in two cases over three.

So, v(∅) = v({1}) = v({2}) = v({3}) = v({4}) = v({1,4}) = v({2,4}) =
v({1,2}) = v({3,4}) = 0; v({1,3}) = v({2,3}) = v({1,3,4}) = v({2,3,4}) =
v({1,2,4}) = 1

3 ; v({1,2,3}) = 2
3 , v({1,2,3,4}) = 1. The relevance of each gene, ac-

cording to the Shapley value of the microarray game ({1,2,3,4}, v) is ( 5
18 , 5

18 , 1
3 , 1

9 ).

In Moretti et al. (2007), the Shapley value has been axiomatically characterized
on the class of microarray games using properties with a biological interpretation.
A property used in that characterization is the NP property, i.e., a relevance index
should attribute null relevance to genes that do not contribute to increase or decrease
the frequency of association in any coalition.

A special version of ADD, namely the Equal Splitting (ES) property, is used with
a natural interpretation of giving the same reliability to different microarray experi-
ments. Formally, this axiom is defined as follows.

Property 14 (Equal Splitting, ES) Let v1, . . . , vk ∈ MN , k > 1. The solution F has
the Equal Splitting (ES) property, if

F

(∑k
i=1 vi

k

)

=
∑k

i=1 F(vi)

k
.

The ES property requires that the average relevance index of genes in two or more
different microarray games v1, . . . , vr ∈MN with the same set of genes, even arising
from experiments provided by different laboratories, must be equal to the relevance

index of genes in the average game
∑r

i=1 vi

r
. There is no reference in the definition

of the ES property neither to the accuracy of the relevance index in each different
microarray game vi , i ∈ {1, . . . , r}, nor to the accuracy of the relevance index in the

average microarray game
∑r

i=1 vi

r
.

Other axioms used to characterize the Shapley value on the class of microarray
games are based on the definition of partnership, which was introduced in Kalai and
Samet (1988) in a general context not involving genes. A partnership represents a
coalition in a coalitional game that behaves like one individual, since all its sub-
coalitions are powerless.

Definition 4 (Partnership of genes) Let v ∈ MN . A coalition S ∈ P (N) such that
for each T � S and each R ⊆ N \ S

v(R ∪ T ) = v(R) (11)

is a partnership of genes in the microarray game v.

In Moretti et al. (2007), the notion of partnership of genes is used as a good repre-
sentation in the microarray game context of a Gene Regulatory Pathway (GRP), i.e.,
a collection of genes in a cell which interact with each other, dynamically orchestrat-
ing the level of expression of the genes in the collection. An interesting axiom used
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to bring smaller GRPs into prominence is that if two disjoint partnerships of genes
have the same frequency of associations, then genes in the smaller partnership should
receive a higher relevance index than genes in the bigger one (this property is called
partnership monotonicity).

Property 15 (Partnership Monotonicity, PM) Let v ∈ MN . The solution F has the
Partnership Monotonicity (PM) property, if

Fi(v) ≥ Fj (v)

for each i ∈ S and each j ∈ T , where S,T ∈ P (N) are partnerships of genes in v

such that S ∩ T = ∅, v(S) = v(T ), v(S ∪ T ) = v(N), |S| ≤ |T |.

The PM property is very intuitive: consider two disjoint partnerships of genes
enforcing the same average number of cases of tumor in the set of samples. If the
genes outside the union of those two partnerships are irrelevant, that is, they do not
contribute in increasing the average number of tumors, then genes in the smaller
partnership should receive a higher relevance index than genes in the bigger one.

Finally, two properties for relevance indices, related to the concept of partnership
of genes, are the following.

Property 16 (Partnership Rationality, PR) Let v ∈MN . The solution F has the Part-
nership Rationality (PR) property, if

∑

i∈S

Fi(v) ≥ v(S)

for each S ∈P (N) such that S is a partnership of genes in the game v.

The PR property determines a lower bound of the power of a partnership, i.e., the
total relevance of a partnership of genes in determining the onset of the tumor in the
individuals should not be lower than the average number of cases of tumor enforced
by the partnership itself.

Property 17 (Partnership Feasibility, PF) Let v ∈ MN . The solution F has the Part-
nership Feasibility (PF) property, if

∑

i∈S

Fi(v) ≤ v(N)

for each S ∈P (N) such that S is a partnership of genes in the game v.

On the contrary of PR, the PF property determines an upper bound of the power
of a partnership, i.e., the total relevance of a partnership of genes in determining the
tumor onset in the individuals should not be greater than the average number of cases
of tumor enforced by the grand coalition.
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Theorem 4 (Moretti et al. 2007) Let be given a finite set N . There is a unique solution
Ψ defined on MN that satisfies the properties PR, PF, PM, ES, and NP. Such a Ψ

coincides with the Shapley value.

The Shapley value has been used in molecular applications also in the works by
Kaufman (2004a, 2004b) as an application of the Multi-perturbation Shapley value
Analysis (MSA) Keinan et al. (2004), a novel method for causal function localization.
Kaufman et al. (2004a, 2004b) applied MSA to identify the importance in terms of
causal responsibility of some genes in performing a certain function in yeast cells.
In their approach, the value of each coalition of genes is a measure of the biological
system’s performance for a certain function (e.g., the ability of the system to sur-
vive the UV irradiation). In order to obtain such a value for each coalition, Kaufman
et al. carried out a series of experiments where genes of each different subset of n

genes were perturbed concomitantly; on each experiment the performance score was
also measured and the score assigned to the corresponding subset of perturbed genes,
finally obtaining a coalitional game. Since 2n experiments were needed to obtain a
coalitional game, implying the impossibility to deal with the complete structure of
the game both for practical and computational reasons, the authors suggested to use
mathematical predictors on the available data set to predict the missing performance
scores.

Using a predictor, the outcomes of all multi-perturbation experiments may be ex-
tracted, and a predicted Shapley value can be calculated on these data according to
(1). When the space of multi-perturbations is too large to enumerate all configurations
in a tractable manner, according to MSA one can sample orderings and calculate an
unbiased estimator of each gene’s contribution as its average marginal contribution
over all sampled orderings. Additionally, an estimator of the standard deviation of
this Shapley value estimator can be obtained, allowing the construction of confidence
intervals for the contribution of each of the elements, as well as the testing of statisti-
cal hypotheses on whether the contribution of a certain element equals a given value
(e.g., zero or 1/n).

An extension of the MSA method to the analysis of perturbations in networks
where the importance of an element strongly depends on the state (perturbed or in-
tact) of other elements is also introduced in Keinan et al. (2004). For example, when
two genes exhibit a high degree of functional overlap, that is, redundancy, it is neces-
sary to capture this interaction, aside from the average importance of each element.
The Shapley interaction index (Grabisch and Roubens 1999; Grabisch 2000) may be
useful to describe this two-dimensional interaction (Kaufman et al. 2004a, 2004b).
Given a game G = (N,v), the Interaction index takes into account not only the mar-
ginal contributions of players i, j ∈ N but correlates them with the marginal contribu-
tion of the coalition {i, j}. More precisely, it considers the increasing (or decreasing)
of the marginal contribution of the coalition of the two players w.r.t. the sum of the
marginal contributions of the two players. For each coalition S ⊆ N \ {i, j}, the In-
teraction index takes into account the quantity [v(S ∪ {i, j}) − v(S)] − [v(S ∪ {i}) −
v(S)]− [v(S ∪{j})−v(S)] = v(S ∪{i, j})−v(S ∪{i})−v(S ∪{j})+v(S). In doing
this, it is possible to consider all the possible orderings of the players in N in which
i and j are neighbors, obtaining the Interaction index à la Shapley, or to consider
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the 2n−2 coalitions included in S ⊆ N \ {i, j}, obtaining the interaction index à la
Banzhaf (Banzhaf 1965).

On the framework of MSA is also based the Contribution-Selection algorithm
(CSA) introduced in Cohen et al. (2005) which estimates the usefulness of features
and selects them accordingly, using either forward selection or backward elimination.
A coalitional game on a set of features (e.g., genes) is constructed, where the players
are mapped to the features of a dataset and the payoff is represented by a real-valued
function v(S), which measures the performance of a classifier generated using the
set of features S. The Shapley value of such a game is used for feature selection,
selecting input variables, otherwise called features, that are relevant to predicting a
target value for each instance in a dataset. Again, the MSA approach by Keinan et
al. (2004) is used to build an unbiased estimator for the Shapley value by uniformly
sampling permutations of features. Such an estimator of the Shapley value is then
used heuristically to estimate the contribution value of a feature for the task of feature
selection.

An interesting interpretation of the ADD property in the feature selection frame-
work introduced by Cohen et al. (2005)is given in the following terms: ADD allows
for applications to a combination of two different payoffs based on the same set of
features. For a classification task these may be, for example, accuracy and area under
the receiver operator characteristic (ROC) curve or false positive rate and false nega-
tive rate. In such case, the Shapley value of a feature which measures its contribution
to the combined performance measure is just the sum of the corresponding Shapley
values.

We conclude this section with a reference to a recent application of the Shapley
value to the economic theory of biodiversity preservation. The Noah’s ark problem
(NAP) introduced by Weitzman (1998) asks how to prioritize species in a population
if only some limited number can be saved. Given a set of taxa, each of which has
a particular survival probability that can be increased at some cost, the NAP seeks
to allocate limited funds to conserving these taxa so that the future expected biodi-
versity is maximized (Hartmann and Steel 2006). Various simple indices have been
developed that give an indication of the distinctiveness of a taxon or of its importance
to the future conservation of biodiversity.

In this context, evolutionary relationships between species are frequently repre-
sented by a phylogenetic tree. Phylogenetic trees are usually binary trees in which
each internal node represents a bifurcation in some characteristic and the leaves are
the species. Each edge has a weight that represents some unit of distance between the
nodes at its endpoints (for instance, it could be the time between speciation events).

Given a phylogenetic tree constructed on a set of species N , Haake et al. (2005)
define an associated coalitional game (N,v) called a phylogenetic tree game, where
players are the n species on the leaves and v(S) represents a measure of the diversity
within S. More precisely, for any coalition S ⊆ N , the minimal spanning subtree
containing the members in S is considered and v(S) is computed as the sum of the
edge weights of such a spanning tree on S. The Shapley value of a phylogenetic tree
game is suggested to provide a natural ranking criterion to prioritize species in the
NAP problem.
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10 Reliability theory and the Shapley value as importance measure
for components in a complex device

Consider a complex structure, for instance, an electronic circuit which is made of sev-
eral components. Components may fail due to causes which are hard to anticipate and
practically impossible to prevent. Failure of component may lead to the failure of the
entire structure itself. We refer to the probability that a structure will perform the task
for which it was designed as the reliability of the structure. This definition of reliabil-
ity is based on the simplifying assumption that a structure can either perform or fail.
In order to study the relationship between the reliability of the components of a struc-
ture and the reliability of the structure itself, one has to know how the performance
or failure of various components affect the performance or failure of the structure.
A measure of the extent to which the functioning or non-functioning of a certain
component affects the functioning or non-functioning of the system is provided by
the Shapley–Shubik power index of a particular simple game to be introduced in
the following. An exhaustive discussion of the connections between the analysis of
simple games and the reliability theory is presented in Ramamurthy (1990); Freixas
and Puente (2002) analyze some extensions, discussing the appropriate probabilistic
models to be used. Here we summarize the essential framework of reliability theory
directly dealing with the application of the Shapley value.

A system or structure is assumed to consist of n components that we denote
throughout this section by N = {1, . . . , n}, i.e., the set of components. To indicate
the state of the ith component, we assign a binary indicator variable xi to component
i and define

xi =
{

1, if component i is in the functioning state;

0, if component i is in failed state.

Similarly, the binary variable y indicates the state of the structure, that is,

y =
{

1, if the structure is functioning;

0, if the structure is failed.

The assumption that the state of the system is completely determined by the states of
its components implies the existence of a Boolean function f : {0,1}n → {0,1} such
that y = f (x) for each x ∈ {0,1}n. Such a function in the terminology of reliability
theory is called a structure function.

In the following xS ∈ {0,1}n, for each S ∈ 2N , is such that xi = 1 for each i ∈ S

and xi = 0 for each i ∈ N \ S (if S = {i} we will simply denote it as xi ). Moreover,
for any x ∈ Rn and i ∈ N , we define the vectors (1i ,x) and (0i ,x) by

(1i ,x) = (x1, x2, . . . , xi−1,1, xi+1, . . . , xn),

(0i ,x) = (x1, x2, . . . , xi−1,0, xi+1, . . . , xn).

Example 5 One of the frequently encountered systems in practice is the so-called
series structure. Figure 1 represents a series structure of n components. Here the
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Fig. 1 Series structure

Fig. 2 Parallel structure

Fig. 3 Semi-coherent structure
of Example 7

structure function is 1 if and only if every component function is 1. We note that the
structure function is given by

f (x) =
n∏

i=1

xi for all x ∈ {0,1}n.

Example 6 A parallel structure function is 1 if and only if at least one component
function is 1: see Fig. 2. We note the structure function is given by

f (x) = 1 −
n∏

i=1

(1 − xi) for all x ∈ {0,1}n.

Let f be a structure on N . We say that f is monotonic if x,y ∈ {0,1}n and x ≥ y
imply f (x) ≥ f (y). A monotonic structure f is called semi-coherent if f (0) = 0
and f (1) = 1. It is easy to check that the game (N,λ), where f is a semi-coherent
structure on N and λ(S) = f (xS) for each S ∈ 2N , is a monotonic simple game.

Example 7 Consider the semi-coherent structure f on {1,2,3} defined by

f (x1, x2, x3) = (1 − (1 − x1)(1 − x2))x3
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for all (x1, x2, x3) ∈ {0,1}3. Figure 3 represents the corresponding semi-coherent
structure f . The following table gives the values of f for all possible 23 Boolean
vectors in {0,1}3.

x1 x2 x3 f (x1, x2, x3)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

The corresponding simple game ({1,2,3}, λ) is shown in the following table.

S ∅ {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
λ 0 0 0 0 0 1 1 1

Now, let Gi denote the distribution function of the lifetime of component i ∈ N .
At a given instant of time t , component i has the probability pi = 1 − Gi(t) of being
in the functioning state and the complementary probability 1 − pi of having failed.
We also note that pi = E(Xi), where E(Xi) is the expected value of the random
variable Xi defined below. We call the pi ’s the component reliabilities and let p =
(p1, . . . , pn). Let Xi(t) be the random variable representing the state of component i

at given instant of time t , that is,

Xi(t) =
{

1, if the component i is in the functioning state;

0, if the component i is in failed state,

and also let X(t) = (X1(t), . . . ,Xn(t)) (in the following, we omit time variable t and
simply denote it as X = (X1, . . . ,Xn)). The random variable f (X) represents the
state of the system at a given instant of time t , that is,

f (X) =
{

1, if the structure is in the functioning state;

0m, if the structure is in the failed state.

The reliability function of a structure f on N is the function f̂ : [0,1]n → [0,1]
defined by

f̂ (p) = Prob
{
f (X) = 1

} = E
(
f (X)

)
. (12)

Example 8 It is easy to verify the expressions for the reliability functions for the
following structures.
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(1) Series structure: f̂ (p) = p1 · p2 · · · pn.
(2) Parallel structure: f̂ (p) = 1 − (1 − p1)(1 − p2) · · · (1 − pn).
(3) Semi-coherent structure of Example 7: f̂ (p) = (1 − (1 − p1)(1 − p2))p3.

Let f be a semi-coherent structure on N . An index of relative importance of a
component is a measure of the extent to which the functioning or non-functioning
of the component affects the functioning or non-functioning of the system. Let X =
(X1,X2, . . . ,Xn) be the random vector representing the states of the components.
For any i ∈ N we define the index πi(f ) by

πi(f ) = Prob
{
f (1i ,X) = 1 and f (0i ,X) = 0

}

= Prob
{
f (1i ,X) − f (0i ,X) = 1

}

= E
(
f (1i ,X) − f (0i ,X)

)
. (13)

Example 9 If f is a series structure on N , then it is easy to verify that

f (1i ,x) = x1x2 · · ·xi−1xi+1 · · ·xn,

and f (0i ,x) = 0 for all x ∈ {0,1}n and i ∈ N . It follows, therefore, that in this case

πi = E(X1X2 · · ·Xi−1Xi+1 · · ·Xn).

We note that πi(f ) is the probability that a system function is 1 when the ith
component function is 1 and is failed otherwise. This index was introduced by Straffin
(1976) in the context of voting (simple) games, where πi(f ) is the probability that
the vote of player i makes a difference in the outcome of the game.

Obviously, the value of πi(f ) depends on how we specify the joint probability
distribution of X1,X2, . . . ,Xn. This problem was also considered by Straffin in the
context of simple games, who proposed the following assumption of general homo-
geneity.

Definition 5 (General homogeneity) The joint probability distribution of the binary
random variables X1,X2, . . . ,Xn is said to satisfy the general homogeneity assump-
tion if there exists a random variable P with a distribution function F on [0,1] such
that X1,X2, . . . ,Xn can be considered as independent and identically distributed
Bernoulli variables with parameter p, conditionally given P = p.

Straffin gave the following interpretation in the context of voting games. Suppose a
voting body which is represented by a simple game must decide to pass or reject a se-
quence of bills. Let each bill be characterized by a probability vector (p1,p2, . . . , pn)

where pi is to be interpreted as the probability that the ith player will vote “yes” on
the given bill. For different bills, the pi ’s are to be selected from some distribution F

over [0,1] and pi = p for all i ∈ N . The number p could then be interpreted as the
“level of acceptability” of the bill. Some bills are highly acceptable (p near 1), some
are highly unacceptable (p near 0) and some are controversial (p near 1

2 ).
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No such simple and appealing interpretation is possible in the context of reliabil-
ity. However, we shall now show that the general homogeneity assumption can be
derived as a logical consequence of certain desirable properties of the indices. To be
specific, we observe that it is possible to prove that the general homogeneity assump-
tion for the binary random variables X1,X2, . . . ,Xn is equivalent to the following
two requirements:

R1: For any given nonempty subset S ⊆ N , we shall denote by fS the series structure
on S. For any S ∈P (N) and i, j ∈ S, we have πi(fS) = πj (fS).

R2: Suppose we increase the number of components by an arbitrary positive number
k and also let Xn+1, . . . ,Xn+k be the corresponding binary random variables
representing the states of the newly introduced components n + 1, . . . , n + k.
If N ′ = {1,2, . . . , n, n + 1, . . . , n + k}, then it should be possible to extend the
joint probability distribution of X1,X2, . . . ,Xn,Xn+1, . . . ,Xn+k so that R1 still
holds true when we replace N by N ′.

The following proposition makes clear the connection between reliability function
and power indices.

Proposition 1 Let f be a semi-coherent structure on N and let f̂ be its reliability
function. Under the assumption of general homogeneity, we have for all i ∈ N

πi(f ) =
∫ 1

0

(
f̂ (1i , p) − f̂ (0i , p)

)
dF(p) (14)

where F is the prior distribution of the parameter P .

Proof Let X = (X1,X2, . . . ,Xn). Simply note that

πi(f ) = E
(
f (1i ,X) − f (0i ,X)

)

=
∫ 1

0
E

(
f (1i ,X) − f (0i ,X)|P = p

)
dF(p)

=
∫ 1

0

(
f̂ (1i , p) − f̂ (0i , p)

)
dF(p). �

Barlow and Proschan (1975) considered the problem of a priori quantification of
relative importance of component of reliability systems. They referred to this as the
problem of measurement of structural importance of components. They prove that if
F(p) = p, for each p ∈ [0,1], then by Relation (14) we have

πi(f ) =
∫ 1

0

(
f̂ (1i , p) − f̂ (0i , p)

)
dp = φi(λ), (15)

where φ(λ) is the Shapley–Shubik index of the game (N,λ). From this result it fol-
lows that the Shapley–Shubik index φi is the probability that component i caused
system failure under the assumption that the lives of the components are independent
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and identically distributed Bernoulli random variables with common reliability p. In
fact, Barlow and Proschan rediscovered the Shapley–Shubik index in 1975. Note also
that if F(p) = 0 for p < 1

2 and F(p) = 1 for p ≥ 1
2 , then by relation (14) it is possible

to prove that π(f ) coincides with Banzhaf value (Birnbaum 1969).

Example 10 Consider the semi-coherent structure f of Example 7. Using relation
(15) we can compute the Shapley–Shubik index of the game (N,λ) of Example 7.
Written in formulas,

π1(f ) = π2(f ) =
∫ 1

0

(
f̂ (11,p) − f̂ (01,p)

)
dp =

∫ 1

0
p − p2 dp = 1

2
− 1

3
= 1

6
,

and

π3(f ) =
∫ 1

0

(
f̂ (11,p) − f̂ (01,p)

)
dp =

∫ 1

0

(
2p − p2) − 0 dp = 1 − 1

3
= 2

3
.

11 Theory of belief functions

The theory of belief functions provides a non-Bayesian way of using mathematical
probability to quantify subjective judgements. Whereas a Bayesian assesses probabil-
ities directly for the answer to a question of interest, a belief-function user assesses
probabilities for related questions and then considers the implications of these prob-
abilities for the question of interest. For a comprehensive single reference for the
mathematical theory of belief functions see the book by Shafer (1976).

The Transferable Belief Model (TBM) (Smets and Kennes 1994) is a model for
the representation of quantified beliefs held by a belief holder. In this framework one
proposes the existence of a two-level mental model: the credal level, where beliefs
are held and represented by belief functions, and the pignistic11 level, where deci-
sions are made by maximizing expected utilities. Hence, in order to compute such
expectations, it is necessary to build a probability measure at the pignistic level. This
probability measure is based on the agents beliefs, but should not be understood as
representing the agents beliefs. It is just a probability function derived from the belief
function. Such probability function is called a pignistic probability function and de-
noted as BetP to enhance its real nature, a probability measure for decision-making,
for betting. Of course, BetP is just a probability measure. The problem is to derive
and justify the transformation between belief functions and pignistic probabilities.

Consider beliefs held by an agent on what is the actual value of a variable ranging
on a set Ω , called the frame of discernment. It is assumed that such beliefs can be
represented by a belief function. A basic belief assignment (bba), or basic belief
function, on Ω is a mapping m : P(Ω) → [0,1] that satisfies:

ΣA⊆Ωm(A) = 1. (16)

11‘Pignistic’ is from the Latin pignus, meaning to bet.
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The degree m(A) is understood as the weight given to the fact that the agent knows
only that the value of the variable of interest lies somewhere in set A, and nothing
else. In other words, the probability allocation m(A) is potentially shared between
elements of A, but remains suspended for lack of knowledge. In the absence of con-
flicting information it is generally assumed that m(∅) = 0. This is what is assumed
in the following. A belief function Bel attached to each event (or each proposition of
interest) can be bijectively associated with the basic mass function m (Shafer 1976).
They are related by

Bel(A) = Σ∅�=E⊆Am(A), (17)

for each A ⊆ Ω . The belief function evaluates to what extent events are logically
implied by the available evidence.

As we already said, Smets (1990) proposed one particular transformation of be-
lief functions, called the pignistic transformation. Its justification was based on an
intuitive argument that is rephrased in the following example. To be consistent with
the original example in Smets (2005), the belief holder is called You. Moreover, we
use intuitively the notion of conditional bba (for a formal definition of this notion see
Smets 2005).

Example 11 (Buying a drink for Your friend Smets 2005) Suppose You have two
friends, Glenn (G) and Judea (J). You know they will toss a fair coin and the winner
will visit You tonight. You want to buy the drink Your friend would like to receive
tonight: coke, wine, or beer. You can only buy one drink. Let D = {coke,wine,beer}.
Let m[G] be the conditional bba that represents Your belief about the drink Glenn
will ask for, should You know he will come. From m[G], You build the pignistic
probability function BetP [G] about the drink Glenn will ask by applying the (still
to be defined) pignistic transformation. Similarly, You build the pignistic probabil-
ity function BetP [J ] based on the conditional bba m[J ] that represents Your belief
about the drink Judea will ask for, should You know he will come. The two pignistic
probability functions BetP [G] and BetP [J ] are the conditional probability functions
about the drink that will be asked for, given You know which of Glenn or Judea will
come, respectively. Before knowing who the visitor will be, the pignistic probability
function BetP about the drink that Your visitor will ask for is derived from classical
probability theory

BetP(d) = 1

2
BetP [G](d) + 1

2
BetP [J ](d),

for each d ∈ D and where 1
2 is the probability that the visitor is Glenn and the prob-

ability that the visitor is Judea, respectively. You will use the pignistic probability
function BetP to decide which drink to buy. But You might as well reconsider the
whole problem and first compute m that represents Your belief about the drink Your
visitor will ask for. It is possible to show that m is given by (see Smets 1997):

m(d) = 1

2
m[G](d) + 1

2
m[J ](d),
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where the 1
2 is the basic belief mass given to the fact that the visitor is Glenn or

that the visitor is Judea, respectively. These basic belief masses result from the coin
tossing experiment, and the accepted assumption that the belief that results from an
aleatory experiment is equal to the probability measure associated with the aleatory
experiment. Given m, You could then build the pignistic probability BetP You should
use to decide which drink to buy. It seems reasonable to assume that both solutions
must be equal. This requirement implies that BetP must satisfy the linearity prop-
erty defined in the following. It is the major requirement that will lead to the unique
solution for the pignistic transformation.

In what follows, let Φ be a transformation that maps a belief function Bel over
Ω into a probability function F Bel = Φ(Bel) over Ω (in the following, we will
think to F Bel as a function which assigns probability values F Bel

ω to each element
ω of Ω ; the probability assigned to nonempty subsets S ⊆ Ω is then given by
F Bel

S = ∑
ω∈S F Bel

ω ).

Property 18 (Linearity, LIN) Let Bel1 and Bel2 be two belief functions on the frame
of discernment Ω . Then F is said to satisfy the linearity property iff, for any α ∈
[0,1],

FαBel1+(1−α)Bel2
ω = αF Bel1

ω + (1 − α)F Bel2
ω

for each ω ∈ Ω .

Other assumptions used by Smets (1990) to derive the pignistic transformation
are the following, assumed to hold for every F = F Bel. The EFF property, i.e., the
probabilities given by F to the elements of Ω add to one; the ANON property, which
states that renaming the elements of Ω does not change the probabilities F ; the NP
property, which requires that the probability F given to the impossible event is zero.

For the class of belief functions on the frame of discernment Ω , we have that
the unique transformation Φ which satisfies LIN, EFF, ANON, and NP properties
is the Shapley value. Differently stated, the pignistic transformation BetP of a belief
function Bel on the frame of discernment Ω is the Shapley value of game (Ω,Bel).12

In Smets (2005), a formal justification of the linearity axiom for pignistic transfor-
mation is given. For connections with possibility theory see also Dubois and Prade
(1982, 2002).

12 Conclusions

We hope that the reader has taken some advantage from our efforts. Our goal was
mainly to provide some nice examples of the diverse and clever ideas that lie behind

12In Smets (2005) the pignistic transformation BetP is associated to a bba m and is simply introduced as

BetP(ω) = ∑
S⊆Ω,ω∈S

m(S)
s

1
1−m(∅)

for each ω ∈ Ω . We note that by Relations (16) and (17) we have

Bel(A) = ∑
S⊆Ω m(S)uS(A) for each A ⊆ Ω , where uS is the unanimity game on S. So, if we assume

that m(∅) = 0, by relation (3), BetP(ω) is, in fact, the Shapley value of player ω in game (Ω,Bel).
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so many applications and adaptations of the Shapley value. This latitude of applica-
tions should not be surprising, since, after all, the Shapley value isn’t anything more
than a reasonable way to transform a (superadditive?) map defined on P (N) into an
additive map.

So, the variety of applications derives from the strength of mathematics in analyz-
ing and proving properties that have (hopefully . . .) universal validity. In principle, it
is just a standard situation of the relationship between mathematics and the remain-
ing (?) world, including the different various interpretations than can be given to the
axioms. De facto, it is far from being easy to see mathematical structures behind the
veil of sensible experience, so the bunch of examples seen here can possibly help to
train our sight.
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