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Abstract Costa et al. (Oper. Res. Lett. 31:21–27, 2003) presented a quadratic
O(min(Kn,n2)) greedy algorithm to solve the integer multicut and multiflow prob-
lems in a rooted tree. (n is the number of nodes of the tree, and K is the number
of commodities). Their algorithm is a special case of the greedy type algorithm of
Kolen (Location problems on trees and in the rectilinear plane. Ph.D. dissertation,
1982) to solve weighted covering and packing problems defined by general totally
balanced (greedy) matrices. In this communication we improve the complexity bound
in Costa et al. (Oper. Res. Lett. 31:21–27, 2003) and show that in the case of the in-
teger multicut and multiflow problems in a rooted tree the greedy algorithm of Kolen
can be implemented in subquadratic O(K +n+min(K,n) logn) time. The improve-
ment is obtained by identifying additional properties of this model which lead to a
subquadratic transformation to greedy form and using more sophisticated data struc-
tures.

Keywords Maximum integral multiflows · Minimum multicuts · Totally balanced
matrices · Greedy matrices · Rooted trees
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1 Introduction

Let T = (V ,E) be a tree with node set V = {v1, . . . , vn} and edge set E. Each edge
e ∈ E has a positive integer capacity (weight) ue . Let {(sk, tk) : sk �= tk, k = 1, . . . ,K}
be a list of K distinct pairs of nodes. Associate a commodity k with the pair (sk, tk)
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and designate sk as the source and tk as the sink of this commodity. The integral mul-
tiflow problem is to maximize the sum of the integral simultaneous flows correspond-
ing to the K commodities, subject to the capacity and flow conservation constraints.
The respective multicut problem is to find a minimum weight set of edges whose
removal separates each pair (sk, tk), k = 1, . . . ,K .

Consider the formulation of the integral multiflow problem as a packing problem
(Costa et al. 2003). For k = 1, . . . ,K , let pk be the unique path from sk to tk , and
let fk denote the integral flow on pk . For k = 1, . . . ,K and e ∈ E, define aek = 1 if
e ∈ pk and aek = 0 if e /∈ pk . Let N denote the set of all nonnegative integer numbers.
The problem is to find

max
K∑

k=1

fk,

subject to

K∑

k=1

aekfk ≤ ue, ∀e ∈ E,

(1)
fk ∈ N, ∀k = 1, . . . ,K.

Similarly, the formulation of the integral multicut problem as a covering problem
is

min
∑

e∈E

uexe,

subject to

∑

e∈E

aekxe ≥ 1, ∀k = 1, . . . ,K,

(2)
xe ∈ {0,1}, ∀e ∈ E.

For general undirected trees, both the multicut and the integral multiflow problems
are NP-hard, as shown respectively by Kolen and Tamir (1990) and Garg et al. (1997).
When T is directed and for each k = 1, . . . ,K , the path pk is directed from sk to
tk , using total unimodularity properties, the above pair of packing-covering integer
programs have been shown to be a pair of primal-dual linear programs (see Costa et
al. 2003 and the references therein). They are both polynomially solvable by using
standard network flow algorithms.

Costa et al. (2003) focused on the case where the tree T is rooted. In this case there
is a distinguished root, say v1, and the edges are directed so that there is a unique
directed path from v1 to any other node. In this model, for each k = 1, . . . ,K , sk is
an ancestor of tk on the rooted tree, and pk is a directed path from the source sk to the
sink tk . They present a greedy procedure to find an optimal multiflow and use duality
properties to obtain an optimal multicut. In fact, their algorithm is a specialization
of the quadratic time greedy type algorithm of Kolen (1982) (see also Kolen 1986;
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Hoffman et al. 1985; Kolen and Tamir 1990) to solve weighted covering and packing
problems defined by general totally balanced and greedy matrices. (Exact definitions
of these and related concepts are given in the next section.) The complexity of the
algorithm in Costa et al. (2003) is O(min(Kn,n2)).

In this note we also concentrate on the multicut and multiflow problems in rooted
trees. Our main objective is to show that this model can be solved in subquadratic
time. We identify additional properties of this model which lead to a subquadratic
transformation into greedy form, and apply more sophisticated data structures, to
show that the above greedy algorithm of Kolen can be implemented in subquadratic
O(K + n + min(K,n) logn) time. Since K ≤ n(n − 1)/2 for any rooted tree, we
conclude that our modified complexity bound coincides with the quadratic bound in
Costa et al. (2003) if and only if K = O(1) or K = θ(n2). Our modified bound strictly
improves upon the bound in Costa et al. (2003) in all other cases. For example, when
K = θ(nδ), the improvement is from O(n1+δ) to O(n) if 0 < δ < 1, from O(n2) to
O(n logn) if δ = 1, and from O(n2) to O(nδ) if 1 < δ < 2.

In the next section we identify specific properties of the totally balanced matrix
defining the above multiflow and multicut problems for rooted trees. We then present
the subquadratic algorithm transforming this matrix into greedy form. In Sects. 3
and 4 we describe the algorithms for the multiflow and multicut problems, respec-
tively. Section 5 is devoted to some related flow and cut problems.

2 Totally balanced and greedy matrices

To facilitate the discussion we first recall several relevant general definitions and
results from Hoffman et al. (1985), Kolen and Tamir (1990).

Let A be an n × m {0,1} matrix. A is balanced if it does not contain a square
submatrix of odd size with row and column sums equal to 2. A is totally balanced if
it does not contain a square submatrix with row and column sums equal to 2 and no
identical columns. (Note that a {0,1} totally unimodular matrix is balanced but not
necessarily totally balanced.)

A has the nest ordering property for columns if for i = 1, . . . , n, the following
holds: the supports of all columns containing a 1 in row i can be totally ordered by
inclusion when they are restricted to rows with index greater than or equal to i.

A is in standard greedy form (greedy, in short) if it does not contain a 2 × 2
submatrix of the form

(
1 1
1 0

)
.

Given a pair of {0,1} vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in R
n, we say

that x is lexical larger than y if x �= y, and there is an index i = 1, . . . , n such that
xi = 1, yi = 0, and xq = yq for all q = i +1, . . . , n. We say that a set of {0,1} vectors
{x1, . . . , xm} in R

n is in lexical nondecreasing order if for any j = 1, . . . ,m − 1,
xj = xj+1 or xj+1 is lexical larger than xj .

The following results on general totally balanced matrices are proven in Hoffman
et al. (1985), Kolen and Tamir (1990).
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Theorem 2.1 If A is a greedy matrix, it is totally balanced.
If A is totally balanced, there is a permutation of its rows such that the permuted

matrix has the nest ordering property for columns.
If A has the nest ordering property for columns and if its columns are ordered in

a lexical nondecreasing order, then A is in greedy form.

The (n−1)×K edge-path incidence matrix A = (aek), defining the above integral
multiflow and multicut problems for the rooted tree case, was shown to be totally
balanced by Frank (1977). See Tamir (1987) for generalizations of the results in Frank
(1977). (Note that Frank considers only a node-path incidence matrix. However, an
edge can be represented by an auxiliary node located at its midpoint. Hence, an edge-
path incidence matrix can be converted to a node-path matrix in case of trees.) In
particular, the integrality constraints on the flows fk in the above formulation can be
replaced by nonnegativity constraints.

When a totally balanced matrix is in greedy form, the packing problem can be
solved by the greedy algorithm in Hoffman et al. (1985), Kolen (1982, 1986), Kolen
and Tamir (1990). (The solution to the dual covering problem can then easily be
derived.) Thus, our first computational task is to transform a given totally balanced
matrix into greedy form. By the above theorem, it is sufficient to find a row permu-
tation which induces the nest ordering property and then permute the columns in a
lexical nondecreasing order.

The most efficient algorithms to transform a general totally balanced matrix into
standard greedy form appear in Lubiw (1987), Paige and Tarjan (1987), Spinard
(1993). All these algorithms, as well as the original algorithm in Hoffman et al.
(1985), assume that the matrix A is given explicitly. As a result, in the worst case,
their complexity is bounded below by Ω(nm), where n and m are the number of
rows and columns of A, respectively. The implementation of the greedy algorithm
will then take O(nm) extra time. Hence, to obtain subquadratic time algorithms for
special cases like the multicut and multiflow problems in rooted trees, discussed in
this note, we first need to have more efficient subquadratic algorithms for the trans-
formation.

We will show that in our case, where A is the incidence matrix of a family of
m directed paths of a rooted tree versus the edges of the tree, the row and column
permutations transforming the matrix into greedy form can be obtained in O(n +
m logm) time. This is the crucial part of our procedure to solve problems (1, 2), and
it will then lead to an improved O(K +n+min(K,n) logn) algorithm for the integer
multiflow and multicut problems on rooted trees.

2.1 Permuting the incidence matrix of a family of paths in a rooted tree into greedy
form

The transformation into greedy form is based on the following theorem.

Theorem 2.2 Let T be a rooted tree, and let A = (aek) be the (n − 1) × K edge-
path incidence edge-path incidence matrix of a family of K distinct directed paths
on T . There is an O(n + K logK) time algorithm to obtain the row and column
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permutations, transforming A to greedy form. If T is a rooted path, the running time
reduces to O(n + K).

Proof Assume that the rooted tree T is embedded in the plane. Starting with the
root v1, reindex (label) the nodes by their depth (level), where in each level nodes are
indexed consecutively, following the left right order. If v1 has i children (these are the
nodes of depth 1), they are reindexed as v2, . . . , vi+1, from “left to right.” If there are
j nodes of depth 2, they will then be reindexed as vi+2, . . . , vi+1+j , etc. Each edge
of T is now assigned the index (label) of its deeper node.

We define the row permutation by decreasingly ordered the edges (rows) by their
label. The first edge according to this ordering is the one incident to the deepest
rightmost leaf node vn. If vn−1 is a leaf, the second edge (row) is the one incident to
vn−1, otherwise, the second edge is the unique edge having vn−1 as its deeper node,
etc. The last edge (row) is the unique edge having v2 as its deeper node. We show
that the nest ordering property for columns is achieved with this row permutation.

Consider the ith edge (row) according to the above ordering. It is incident to node
vn+1−i . (Note that each edge which is a descendant of vn+1−i is some j th edge
(row) with j < i.) Let P(v1, vn+1−i ) denote the path connecting vn+1−i with the
root v1. Let pk and pu be two directed paths containing the ith edge. Then, either pk ∩
P(v1, vn+1−i ) ⊆ pu ∩ P(v1, vn+1−i ) or pu ∩ P(v1, vn+1−i ) ⊆ pk ∩ P(v1, vn+1−i ).
This proves the nest ordering property of A. The effort to obtain the above row per-
mutation is clearly O(n).

Next, we need to permute the columns in lexical nondecreasing order. Consider a
pair of distinct paths (sk, tk) and (sq, tq). If the label of the node sk is smaller than that
of the node sq , the column of the matrix corresponding to the path (sk, tk) is lexical
larger than the respective column of (sq, tq). Hence, suppose that sk = sq . Let vj be
the lowest common ancestor of the nodes tk and tq . If tq = vj , then the path (sq, tq) is
a subpath of (sk, tk), and the column of the matrix corresponding to the path (sk, tk) is
lexical larger than the respective column of (sq, tq). Hence, suppose that both tk and tq
are proper descendants of vj . Let vk(j) and vq(j) be the two children of vj on the paths
connecting vj to tk and tq , respectively. The column of the matrix corresponding to
the path (sk, tk) is lexical larger than the respective column of (sq, tq) if and only if
k(j) < q(j).

We claim that after spending O(n) effort on preprocessing, it takes constant time
to compare two columns (paths) by the lexical ordering. First, to find vj , the lowest
common ancestor of a pair of nodes tk and tq , we can use the data structures in Harel
(1980), Harel and Tarjan (1984) (see also Bender and Farach-Colton 2000, Berkman
and Vishkin 1993). Next, to find the two children of vj , vk(j) and vq(j), we can use
the data structure in Berkman and Vishkin (1994).

With the above machinery it will take O(n + K logK) time to sort the columns
of the matrix and obtain the nondecreasing lexical ordering. Observe that K ≤
n(n − 1)/2.

We note that in the special case where T itself is a rooted path, the transformation
to greedy form takes O(n+K) time. Given a pair of distinct paths (sk, tk) and (sq, tq),
the former is lexical larger than the latter if and only if the label of sk is smaller
than that of sq , or sk = sq and the label of tk is larger than that of tq . Hence, the
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nondecreasing lexical ordering of the columns can be obtained in O(n + K) time by
using a standard radix sort procedure. This completes the proof. �

3 Solving the multiflow problem on a rooted tree

We consider the following generalization of the multiflow problem on a rooted tree,
where we introduce integer upper bounds {bk} on the flow variables {fk}. We refer to
this generalization as the bounded multiflow problem,

max
K∑

k=1

fk,

subject to

K∑

k=1

aekfk ≤ ue, ∀e ∈ E,

(3)
0 ≤ fk ≤ bk, fk ∈ N, ∀k = 1, . . . ,K.

For k = 1, . . . ,K , let ak denote the kth column of A. Suppose that the matrix A =
(aek) is already in standard greedy form, i.e., for k = 1, . . . ,K − 1, either ak+1 = ak

or ak+1 is lexical larger than ak .
From Hoffman et al. (1985), Kolen (1982, 1986), Kolen and Tamir (1990) we

conclude that an optimal solution to the above packing problem is defined by the
following recursive greedy scheme:

f1 = min
{
b1; min{e:ae1=1}ue

}

and for k = 2, . . . ,K ,

fk = min

{
bk; min{e:aek=1}

{
ue −

k−1∑

j=1

aejfj

}}
.

We now show that this algorithm can be implemented in O(n + K logn) time.
Throughout the algorithm, each edge e ∈ E of the rooted tree is associated with a

nonnegative integer u′
e reflecting the residual remaining capacity of the edge. Initially

u′
e = ue.

The Multiflow Greedy Algorithm:
For k = 1, . . . ,K ,

Step 1. Compute ck = mine∈pk
u′

e . Set fk = min{bk, c
k}.

Step 2. For each e ∈ pk , subtract fk from u′
e.

Theorem 3.1 The integer bounded multiflow problem (3) defined on a rooted tree T

is solvable in O(n + K logn) time.
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Proof In the first phase we use the result stated in Theorem 2.2 and find the row
and column permutations converting the matrix into greedy form. The computational
effort of this phase is O(n + K logK). Since K ≤ n(n − 1)/2, the latter bound is
O(n + K logn).

Next we apply the above Multiflow Greedy Algorithm. In the first step we compute
the minimum of the residual capacities of the edges along a given directed path, while
in the second step we subtract some constant from these residual capacities. Hence,
to implement this greedy algorithm we can use the dynamic trees data structures
in Sleator and Tarjan (1983, 1985), Tarjan (1997). (In particular, see page 677 in
Sleator and Tarjan 1985.) With these data structures, after spending O(n) time on
preprocessing, each one of the K iterations of the algorithm can be implemented in
O(logn) time. Thus, the total time to solve the integer multiflow problem with upper
bounds on rooted trees is O(n + K logn). This completes the proof. �

An improved bound can be attained for problem (1), where no explicit upper
bounds on {fk} are stated (this is the model in Costa et al. 2003).

Theorem 3.2 The integer multiflow problem (1) defined on a rooted tree T is solvable
in O(K + n + min(K,n) logn) time.

Proof If K < n, the result follows directly from the previous theorem. Suppose that
K ≥ n. In this case we perform a preprocessing phase which reduces the multiflow
problem into an equivalent problem with at most n commodities (directed paths). This
phase takes O(K + n) time. Specifically, we show that in the equivalent problem for
each node vi , there is at most one path pk such that tk = vi .

Let K(i) = {k ∈ {1, . . . ,K} : tk = vi} denote the index set of all directed paths
having vi as their sink. Let pk(i) denote the shortest path in {pk : k ∈ K(i)}. Consider
{fk : k = 1, . . . ,K}, an optimal solution to the multiflow problem (1). Then it is easy
to see that the multiflow {f ′

k : k = 1, . . . ,K} defined by f ′
k = fk for k /∈ K(i), f ′

k = 0
for k ∈ K(i), k �= k(i), and f ′

k(i)
= ∑

k∈K(i) fk is also optimal.
From the above it follows that for each node vi we can omit all paths in {pk :

k ∈ K(i)}, except the shortest one, pk(i). The effort needed for this phase is clearly
O(K + n). After the elimination phase we are left with K ′ < n paths.

Finally, we apply the previous theorem to the equivalent multiflow problem with
K ′ directed paths. Hence, when K ≥ n, the total effort to solve problem (1) is O(K +
n logn). This completes the proof. �

We observe that to apply the above greedy algorithm we do not need to obtain
the complete lexical ordering of the columns and transform the incidence matrix into
greedy form. The following partial ordering will suffice. After the reindexing of the
nodes, find a node vj with the highest index such that there exists a path pk with
sk = vj . Let P j = {pq : sq = vj }. Apply Step 1 and Step 2 of the greedy algorithm
to the paths in P j in arbitrary order. Continue with a node, say vm, with the sec-
ond highest index such that there exists a path pk with sk = vm, etc. (Note that the
O(min(Kn,n2)) algorithm in Costa et al. (2003) to solve the multiflow problem (1)
uses only the above partial ordering).
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In spite of the fact that we do not need the complete lexical ordering, the overall
complexity of the greedy algorithm will still be as stated in the above theorem.

The implementation of the greedy algorithm to a matrix with a complete lexical
ordering of the columns is required in order to solve the dual multicut problem in the
next section.

4 Solving the multicut problem on a rooted tree

To solve the multicut problem (2) defined in the introduction, we use the optimal
solution {fk} of the multiflow problem (1) from the last section (with bk = ∞ for
k = 1, . . . ,K) and apply the general algorithm in Hoffman et al. (1985), Kolen (1982,
1986), Kolen and Tamir (1990) (specifically, we follow the presentation on page 272
in Kolen and Tamir 1990). From the last section we assume that at this stage there are
only K ′ ≤ min(K,n) relevant paths left and we relabel them as {pk : k = 1, . . . ,K ′}.

For k = 1, . . . ,K ′ and e ∈ E, if fk is such that
∑k−1

j=1 aejfj < ue and
∑k

j=1 aejfj = ue , we say that the edge e is saturated by fk . An edge e is binding if
∑K ′

j=1 aejfj = ue.
Let E′′ be the subset of all binding edges, and let F ′′ be the index set of all flow

variables {fk} which saturate an edge. By definition each edge in E′′ is saturated by
exactly one flow variable with index in F ′′, and each flow variable with index in F ′′
saturates at least one edge in E′′. Both sets E′′ and F ′′ can be generated during the
implementation of the Multiflow Greedy Algorithm. An edge e is saturated by fk if
and only if, in Step 2 of the algorithm, u′

e > 0 and u′
e − fk = 0.

Define E∗ ⊆ E′′ as follows (initiating with E∗ = ∅):
Add the edge e′ ∈ E′′ with largest row index to E∗ and delete all edges e ∈ E′′ for

which aek = ae′k = 1 for some k ∈ F ′′. (Recall that the underlying matrix is in stan-
dard greedy form, and the rows (edges) and columns (paths) are properly indexed.)

Repeat until E′′ = ∅.
It follows from Hoffman et al. (1985), Kolen (1982, 1986), Kolen and Tamir

(1990) that an optimal solution to the multicut problem is given by setting xe = 1
for e ∈ E∗ and xe = 0 for e /∈ E∗.

We show how to implement the above scheme to find E∗ in O(n) time.

Lemma 4.1 Assume that the sets E′′ and F ′′ are given. Then, the optimal solution to
the multicut problem can be found in O(n) time.

Proof We mark the edges in E′′ as special and the rest as regular. To each node
vj of the rooted tree T , we add a new leaf edge (vj , v

′
j ) with a new leaf node v′

j .
We label these leaf edges as special. Let T ′ denote the augmented tree with the 2n

nodes, {v1, . . . , vn} and {v′
1, . . . , v

′
n}. There is a partial order induced on the set of

special edges by the original rooted tree T . This partial order can be represented by
a rooted tree, say T ′′, whose root is the node v′

1 or the edge (v′
1, v1). Specifically, T ′′

is obtained from T ′ by contracting all the regular edges. (The edge set of T ′′ consists
of E′′ and of the n leaf edges (vj , v

′
j ), j = 1, . . . , n.)
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The implementation of the algorithm is as follows:

The Multicut Algorithm:

Step 1. Let E+ be the subset of all edges in T ′′ which are children of the root edge
(v1, v

′
1). Augment the edges in E+ to E∗. Let T + be the subtree of T ′ in-

duced by the root and E+.
Step 2. Select a path pk with sk in T + and sk not a leaf of T +. If tk is in T + or

k /∈ F ′′, discard pk . Otherwise, consider the special leaf edge attached to the
node tk . Moving along the path in T ′′, from this leaf edge to the root of T ′′,
contract all the (non-leaf) special edges along this path in T ′′. Also, in T ′
convert each one of the contracted edges to a regular status, i.e., delete it
from E′′. Discard pk .

Step 3. If there is still a path pk with sk in T + and sk not a leaf of T +, go to Step 2.
Otherwise, go to Step 4.

Step 4. Contract all the non-leaf edges of T + in T ′. If T ′′ contains non-leaf edges,
go to Step 1. Otherwise, stop. (E′′ = ∅.)

Throughout the implementation of the algorithm, each special edge (with the ex-
ception of the special leaf edges that we have augmented) is visited and converted to a
regular edge exactly once, and each path pk is considered exactly once. For example,
if a path pk , k ∈ F ′′, is selected in some iteration of Step 2, and pk contains m spe-
cial edges, then the effort to contract these edges and delete them from E′′ is O(m).
Therefore, the total effort spent to find E∗ is O(n + K ′). Since K ′ ≤ min(K,n), the
total computational effort is O(n). �

In the case where T itself is a directed path, there are recursive algorithms which
solve the multicut problem directly and do not rely on a solution to the multiflow
problem. See Hassin and Tamir (1991) for an O(n + K ′) algorithm.

The next theorem summarizes the above algorithmic results.

Theorem 4.1 The integer multicut problem (2) defined on a rooted tree T is solvable
in O(K + n + min(K,n) logn) time. If T is a rooted path, the running time reduces
to O(n + K).

Proof We first solve the integer multiflow problem (1) and find the sets E′′ and F ′′.
From Theorem 3.2 the total effort of this phase is O(K + n + min(K,n) logn). To
find the solution to the integer multicut problem we then apply the O(n) algorithm in
the above lemma.

In the case where T itself is a directed path, there are recursive algorithms which
solve the multicut problem directly and do not rely on a solution to the multiflow
problem. See Hassin and Tamir (1991) for an O(n + K) algorithm. �

5 Related problems

We note that in addition to the multicut and multiflow problems, there are other re-
lated optimization problems defined by the edge-path incidence matrix A = (aek) on
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rooted trees. We briefly discuss two such examples in the literature and note their
relations to problems (1), (2).

5.1 The network improvement problem on a tree

In the network improvement problem the goal is to modify the lengths of the edges so
that after the modification the distances from a root node to all other nodes are within
given bounds, and the total modification cost is minimized. The problem is NP-hard
on general graphs but polynomially solvable on rooted trees. See Zhang et al. (2004)
and the references therein.

Using the above notation for rooted trees, the improvement problem can be formu-
lated as the following weighted multicut (multicover) problem with n − 1 paths, all
rooted at v1, the root of the underlying tree. Specifically, each node vk , k = 2, . . . , n,
is associated with the path pk connecting the root v1 to vk and with a nonnegative
real number rk representing the required decrement of the length of pk . For each edge
e ∈ E, ce denotes the per unit cost of decrementing the length of e, and de denotes an
upper bound on this decrement.

min
∑

e∈E

cexe,

subject to
∑

e∈E

aekxe ≥ rk, ∀k = 2, . . . , n,

0 ≤ xe ≤ de, ∀e ∈ E.

The above multicovering problem is solved in O(n logn) time (Zhang et al. 2004).
We note that when rk = 1 for k = 2, . . . , n and de = 1 for each e ∈ E, the above model
reduces to a special case of problem (2) with K = n − 1 and (sk, tk) = (v1, vk) for
k = 2, . . . , n.

5.2 The 2-edge-connectivity augmentation problem

The second example is the minimum weighted covering problem of the edges of
the rooted tree by paths considered in Conforti et al. (2004), Galluccio and Proietti
(2003). This problem arises from 2-edge-connectivity augmentation problems. (In
comparison, the multicut problem (2) asks for a minimum weighted covering of the
paths by edges). Using the above notation, the problem is formulated as ({wk} are
nonnegative)

min
K∑

k=1

wkzk,

subject to

K∑

k=1

aekzk ≥ 1, ∀e ∈ E,

(4)
zk ∈ {0,1}, ∀k = 1, . . . ,K.
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Again, since the underlying matrix A = (aek) is totally balanced, the problem can
be solved by Kolen’s greedy algorithm. In fact, the algorithm in Galluccio and Proi-
etti (2003) is also a special case of Kolen’s general algorithm. Its implementation in
Galluccio and Proietti (2003) has an O(n + Kα(K,n)α(Kα(K,n),n)) complexity.
(α is the inverse of the Ackermann’s function Sharir and Agarwal 1995). In spite of
the similarity in formulation between problem (4) of covering edges by paths and the
multicut problem (2), in which we cover paths by edges, it is not yet clear whether the
solution procedures in Galluccio and Proietti (2003) for the former are also applicable
to solve the latter.

In the case where T itself is a rooted path, the complexity of the algorithm in
Galluccio and Proietti (2003) to solve the above augmentation problem reduces to
O(n + Kα(K,n)). In this case the incidence matrix has the column consecutive 1’s
property, i.e., in each column, the 1’s appear consecutively. The dual of the augmen-
tation problem (4) is the following packing problem of edges into paths:

max
∑

e∈E

xe,

subject to

∑

e∈E

aekxe ≤ wk, ∀k = 1, . . . ,K,

xe ≥ 0, ∀e ∈ E.

The constraints of this packing problem have the row consecutive 1’s property. There-
fore, the problem can be solved as a shortest path problem on a directed network with
n nodes and K edges (Hochbaum and Levin 2006). Since the edge lengths {wk} are
nonnegative, the time to solve the problem is O(K + n logn). The latter bound im-
proves upon the O(n+Kα(K,n)) bound in Galluccio and Proietti (2003), whenever
K = Ω(n logn).

5.3 Open problems

We have shown in Sect. 2.1 how to find the row and column permutations which
transform the edge-path incidence matrix on a rooted tree into greedy form in O(n +
K logK) time. It is not known whether this complexity bound is optimal.

It is an open question whether the O(n+K logn) complexity bound for the greedy
algorithm in Sect. 3 is best possible for solving the integer bounded multiflow prob-
lem (3) on rooted trees. Our implementation relies on data structures that can execute
Step 1 and Step 2 in O(logn) time for each given value of k. We note that the data
structures described in Alon and Schieber (1989), Chazelle and Rosenberg (1991),
Tarjan (1978) can execute Step 1 in O(α(n)). We are unaware of any data structure
that can perform both Step 1 and Step 2 in O(α(n)) time or even o(logn) time, after
spending O(n) effort on preprocessing.
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