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Abstract The quickest path problem is related to the classical shortest path problem,
but its objective function concerns the transmission time of a given amount of data
throughout a path, which involves both cost and capacity. The K-quickest simple
paths problem generalises the latter, by looking for a given number K of simple
paths in non-decreasing order of transmission time.

Two categories of algorithms are known for ranking simple paths according to the
transmission time. One is the adaptation of deviation algorithms for ranking shortest
simple paths (Pascoal et al. in Comput. Oper. Res. 32(3):509–520, 2005; Rosen et
al. in Comput. Oper. Res. 18(6):571–584, 1991), and another is based on ranking
shortest simple paths in a sequence of networks with fixed capacity lower bounds
(Chen in Inf. Process. Lett. 50:89–92, 1994), and afterwards selecting the K quickest
ones.

After reviewing the quickest path and the K-quickest simple paths problems we
describe a recent algorithm for ranking quickest simple paths (Pascoal et al. in Ann.
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Oper. Res. 147(1):5–21, 2006). This is a lazy version of Chen’s algorithm, able to
interchange the calculation of new simple paths and the output of each k-quickest
simple path.

Finally, the described algorithm is computationally compared to its former version,
as well as to deviation algorithms.

Keywords Graph algorithms · Networks · Quickest path · Ranking

Mathematics Subject Classification (2000) 90C27 · 90C35

1 Introduction

The quickest path problem (QPP) is an optimal path problem, with an objective
function that represents the total transmission time of σ ∈ R

+ data units along each
path, and which is intended to be minimised. This problem was introduced in Moore
(1976), and later algorithms were proposed to solve it, based on the relation with the
shortest path problem (SPP) (Chen and Chin 1990; Rosen et al. 1991), or viewing it
as a bicriteria problem (Martins and Santos 1997).

The generalisation of the QPP that computes K ∈ N loopless paths ordered by the
total transmission time is called the quickest simple paths ranking or the K quick-
est simple paths problem (KQSPP). The procedures to solve this problem are either
inspired by quickest path algorithms (Chen 1994), or adaptations of ranking shortest
simple path algorithms (Pascoal et al. 2005; Rosen et al. 1991). The two types of
methods cannot be compared, but recently a lazy version of Chen’s algorithm com-
parable with both has been suggested (Pascoal et al. 2006) (or Pascoal et al. 2004 in
an earlier version). The purpose of this work is to evaluate the performance of the
variant of Chen’s algorithm and to compare it with the existent methods.

The paper is organised as follows. Section 2 introduces notation and states the
problem. Section 3 is devoted to a brief review of K quickest simple path algorithms,
with special emphasis on the lazy version of Chen’s algorithm. Finally, Sect. 4 reports
and discusses the computational efficiency of the different algorithms.

2 The quickest path problem

Let (N ,A) be a network with a set N of n nodes and a set A of m arcs, and let
s, t ∈ N (with s �= t) be the initial and terminal nodes of (N ,A), respectively. The
set of paths (simple paths) from s to t in (N ,A) will be denoted by P (P̄). Two
values are assigned to each arc (i, j), cij ∈ R

+
0 and uij ∈ R

+, which represent the
cost for traversing (i, j) and its capacity, respectively. Thus, the cost and the capacity
of a path p are given by c(p) = ∑

(i,j)∈p cij and u(p) = min(i,j)∈p{uij }, and the
total transmission time for sending σ ∈ R

+ data units from s to t throughout path p

is expressed by T (p) = c(p) + σ
u(p)

. The QPP, firstly formulated by Moore (1976),
is defined as minp∈P {T (p)}.

Although the QPP resembles the widely-known SPP, its objective function is not
additive and does not satisfy the Optimality Principle. This means that the optimal



374 M. Pascoal et al.

Table 1 Worst-case
complexities for quickest path
algorithms

Time Space

Chen & Chin O(r(m + n logn)) O(r(n + m))

Rosen, Sun & Xue O(r(m + n logn)) O(n + m)

Martins & Santos O(r(m + n logn)) O(n + m)

path may contain non-optimal subpaths, and thus the quickest path cannot be found
by a labelling algorithm like the ones used for finding shortest paths. Still, the first
idea for solving the QPP is motivated by the facts that when the capacity is constant
it coincides with the SPP, and that the number of possible path capacities is also
the number of arc capacities. In fact, if u1, . . . , ur are the distinct arc capacities, in
increasing order, and pi denotes the shortest path such that u(pi) ≥ ui , i = 1, . . . , r ,
then the quickest path is p∗ such that T (p∗) = min1≤i≤r {T (pi)}.

In Chen and Chin (1990) used this result to duplicate (N ,A) into r levels, each
one corresponding to a subnetwork of (N ,A) where the capacity lower bound is
fixed as ui , for any i = 1, . . . , r . Then, they calculated the tree of the shortest paths in
the enlarged network and chose the quickest path among the shortest ones obtained.
One year later Rosen et al. (1991) noted that the storage space can be reduced if
considering each previous level as a subnetwork of (N ,A) where the higher capacity
arcs are successively deleted as new shortest paths are calculated. Like in Chen and
Chin’s proposal the quickest path is selected among the computed shortest paths.
Martins and Santos (1997) had a different motivation and interpreted the QPP as
a bicriteria problem where c is minimised and u is maximised. Their proposal is
very close to the algorithm by Rosen et al., although fewer subproblems are solved
because Martins and Santos determine the shortest path with maximum capacity in
each subnetwork.

Table 1 summarises the theoretical complexity bounds of the mentioned quickest
path algorithms.

3 K quickest simple path algorithms

In this paper we deal with the KQSPP, which consists of the determination of K > 1
simple paths in P̄ in non-decreasing order of T . In the following, pi denotes the ith
quickest simple path from s to t in (N ,A).

The solution approaches for this problem can be grouped into two categories: de-
viation algorithms—adaptations of deviation algorithms for ranking shortest simple
paths—and Chen’s algorithm—adaptation of Rosen et al.’s algorithm for the QPP.
Recently a lazy version of the latter algorithm was also suggested, that allows the
methods in both categories to be compared. These methods, as well as the recent
variant of Chen’s algorithm, are now summarised.

3.1 Deviation algorithms

As mentioned above, deviation algorithms are adaptations of K shortest simple path
algorithms (also known as deviation algorithms themselves) and are characterised by
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using a set X of candidates for the next kth simple path. A general deviation method
can be schemed as:

Algoritm 1 Deviation algorithms to rank K quickest simple paths
X ← {p1}
For k = 1, . . . ,K Do

pk ← best path in X

X ← X − {pk}
Generate new simple paths (pk deviations) and store them in X

EndFor

The main algorithms of this type, by Yen (1971) and by Katoh et al. (1982) (this one
only for undirected networks), use distinct partitions of the set P̄ , which reflect on
the deviation simple paths generated while analysing a given pk .

Shortly one can say that Yen analyses every node (in the worst-case) of each pk ,
which consists of solving a SPP in order to obtain a new deviation simple path. On
the contrary, using undirected network properties Katoh et al. manage to compute the
second shortest simple path by finding the trees of the shortest paths rooted at s and
rooted at t (thus with the SPP theoretical complexity order), and therefore they are
able to generate only at most 3 new deviations for each pk .

Rosen et al. (1991) formulated the KQSPP, and proved that the partition intro-
duced by Yen doesn’t depend on the objective function and adapted his algorithm
for ranking paths by total transmission time. Later, Pascoal et al. (2005) developed a
method that uses the partition by Katoh, Ibaraki and Mine for the same problem.

3.2 Chen’s algorithm

Chen (1994) looked at the problem from a different perspective. His method is anal-
ogous to the one used by Rosen et al. in the QPP, since it ranks the K shortest simple
paths in a sequence of (N ,A) subnetworks, with a fixed capacity lower bound. After
these Kr simple paths have been computed and stored, the K quickest simple paths
are selected by order among them. Any shortest simple path ranking algorithm can
be applied for this purpose and this may modify the theoretical and computational
behaviour. It should be noted that a path may belong to several networks; therefore,
it can be computed more than once.

As mentioned before, this is a rather different approach from the ones described
above since the computation is separated into the calculation phase and the K quick-
est simple paths output. This type of approach can be useful if the algorithm appli-
cation allows the computational paths to be stored, and then output as needed. Some
disadvantages can also be pointed out, like:

– A high number of simple paths has to be determined, always Kr .
– Still as a consequence of the previous point, the computation phase is usually long;

therefore, the output of the quickest path can take a long time.
– K has to be known in advance.

In terms of the execution time, this results in a sharp increase in the phase of de-
termining the Kr simple paths, and it becomes almost irrelevant when selecting the
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K best ones. Thus, the comparison of Chen’s algorithm with deviation algorithms is
difficult, since the latter alternate the determination of each pk and the computation
of new candidates.

3.3 A variant of Chen’s algorithm

A new variant of Chen’s algorithm was recently suggested by Pascoal et al. (2006)
(or Pascoal et al. 2004). The motivation for developing this variant was to design a
Chen-like method, based on ranking simple paths by order of cost in a sequence of
networks, able to alternate paths computation and paths output, and thus closer to
deviation algorithms. The resulting method is named “lazy version” of the former
algorithm, in the sense that it should generate new simple paths only as they are
needed.

Assume pk has been determined by the algorithm. Then pk+1 is the shortest sim-
ple path Pi in (N ,A(ui)), i = 1, . . . , r , with the least total transmission time, which
has not been selected as p1, . . . , pk . The selected simple path, for instance Pj , is
replaced by another simple path in (N ,A(uj )), which should be the one following
Pj in (N ,A(uj )) in terms of cost. The variant of Chen’s algorithm is summarised
below.

Algoritm 2 Variant of Chen’s algorithm to rank K quickest simple paths
(u1, . . . , ur ) ← arc capacity values in increasing order
A′ ←A
For (i ∈ {1, . . . , r}) Do

A′ ← {(x, y) ∈A′ : uxy ≥ ui}
Pi ← the shortest path in (N ,A′)

EndFor

k ← 0
While (k < K and {P1, . . . ,Pr } �= ∅) Do

p ← Pi such that T (Pi) = min{T (Pj ) : 1 ≤ j ≤ r}
A′ ← {(x, y) ∈A : uxy ≥ ui}
Pi ← the next shortest simple path in (N ,A′)
If (p �∈ {p1, . . . , pk}) Then

k ← k + 1
pk ← p

EndIf

EndWhile

4 Algorithms comparison

4.1 Theoretical comparison

The computational order of Chen’s algorithm depends on the method used for rank-
ing shortest simple paths, since it solves that problem in r networks. As Yen’s algo-
rithm has worst-case complexity order of O(Kn(m + n logn)) and Katoh et al.’s of
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Table 2 Worst-case
complexities for K-quickest
simple path algorithms

Time Space

Rosen, Sun & Xue O(Knr(m + n logn)) O(Kn + m)

Pascoal, Captivo & Clímaco O(Kr(m + n logn)) O(Kn + m)

Chen (with Yen) O(Knr(m + n logn)) O(Krn + m)

Chen (with Katoh et al.) O(Kr(m + n logn)) O(Krn + m)

O(K(m + n logn)), then Chen’s algorithm may be of O(Krn(m + n logn)) if using
the first one as a subprocedure, or of O(Kr(m + n logn)) if using the second one.
These time complexity bounds are analogous for Rosen et al.’s and for Pascoal et
al.’s methods, respectively. The differences in the two types of algorithms become
evident in the memory space complexity bound of O(m + Krn) for the original ver-
sion of Chen’s algorithm, since this method always demands that Kr simple paths
are generated. As for deviation algorithms, only K simple paths need to be com-
puted; therefore, its worst-case space order is O(m + Kn). Table 2 summarises these
theoretical complexity bounds.

In general, the described variant for the KQSPP should determine fewer simple
paths than the original Chen’s algorithm. In fact, optimistically the number of simple
paths generated is K , so the best-case theoretical space complexity is Ω(Kn + m).
However, the number of simple paths obtained by Chen’s algorithm upper bounds its
variant, so the worst-case complexity in terms of memory space is still O(Krn+m).
In an average case it is expected that this bound is rarely achieved, as the empirical ex-
periments in the next section show. Because the theoretical worst-case for this variant
coincides with Chen’s original algorithm its time complexity is O(Knr(m+n logn))

or O(Kr(m + n logn)), when using Yen’s or Katoh et al.’s algorithm, respectively,
as the original algorithm.

It seems clear that the new variant outperforms the former version of Chen’s al-
gorithm. It is more difficult, though, to predict what its behaviour will be in compar-
ison with deviation algorithms. In fact, the first one maintains r shortest simple path
rankings, while the second ranks quickest simple paths using a partition for ranking
shortest simple paths. Hence, on the one hand this second approach only has to con-
sider one ranking (easier than using r), but on the other hand, the subproblems it has
to solve are quickest path problems (harder than shortest path problems).

The initialisation phase of the first method consists in computing and storing r

shortest paths, while with the second r paths are computed, at most, and only 1 is
stored. After the initialisation the first method selects the best path among P1, . . . ,Pr

and replaces it by the next shortest simple path, which seems easier than choosing
the best among all candidate simple paths generated so far and replacing it by the
next quickest path (after calculating at most r shortest paths). This phase seems more
simple for the variant of Chen’s algorithm, but it should be noted that repeated paths
may be obtained; therefore, the cycle can be repeated more than K times. Besides, it
is harder to manipulate the data structure that maintains several rankings at the same
time.
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Table 3 Mean values for random networks, n = 1000

d = 2 d = 10

CA RA NA CA RA NA

Computed deviations 23036 1057 8470 47901 470 14412

Heap/p1 time (s) 3.712 0.001 0.105 22.596 0.004 0.345

Total time (s) 3.718 0.328 1.460 22.627 1.394 7.412

4.2 Empirical experiments

For an empirical evaluation of the recent algorithm in comparison with the older ones,
several tests were performed on connected networks. Two different sets of test prob-
lems were used. For both sets the costs and the capacities were uniformly generated
in {1, . . . ,100}, but in the second the number of distinct capacities was previously
set to r = 5,10, . . . ,25,30. Moreover, Set 1 was formed by the following network
classes:

– Random, with n = 1000, 5000 and average node degree d = m/n = 2, 10
– Complete, with n = 100, 200, 300
– Grid, with p × 50 and p = 50, 100, 150, 200

while Set 2 consisted of random networks with n = 1000,5000 and d = 2,10. In
every problem σ = 100 data units to transmit from s to t were considered and K =
100 simple paths were ranked between those two nodes. The following results are
average values obtained in 10 networks of each type and size.

The three types of algorithm were expected to perform identically either when
based on Yen’s procedure or when based on Katoh et al.’s procedure. For that reason,
and also for simplicity, we chose to code only Yen’s versions of those algorithms,
namely: the original Chen’s algorithm (CA), the deviation algorithm by Rosen et al.
(RA), and the lazy version of Chen’s algorithm (NA). The codes were written in C
language and the tests were performed on a Pentium 4 at 2.4 GHz, with 1 GB of
RAM, running Linux.

In the study that follows we analyse several aspects of the CPU times needed
by the coded algorithms. First, we consider the time demanded until the algorithm
can output simple path p1, which in CA corresponds to the time for constructing
a heap with the Kr computed simple paths, while for the remaining algorithms it
represents the time for computing p1. Second, the execution time until pK is known.
With the aim of comparing RA and NA the partial times are also analysed, that is, the
time to output pi after pi−1 has been listed, for any i = 2, . . . ,K = 100. In CA this
corresponds only to the time to select pi after pi−1, while in the other two codes it is
the time to select and analyse pi .

Tables 3 and 4 present some of these values for the tests on random networks: the
number of computed simple paths, phase 1 time, and the total time (both in seconds).
As it has been said, the differences between Chen’s algorithm and deviation algo-
rithms are obvious in the time for phase 1, where RA clearly outperforms CA. The
lazy variant takes advantage of the simplified phase 1 and the CPU times show a big
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Table 4 Mean values for random networks, n = 5000

d = 2 d = 10

CA RA NA CA RA NA

Computed deviations 28310 1143 11268 45810 498 10665

Heap/p1 time (s) 22.225 0.005 0.112 144.947 0.033 0.648

Total time (s) 22.236 2.501 9.468 144.978 11.529 34.717

Fig. 1 Partial times on random networks, Set 1

improvement when comparing it to CA, although these results are still worse than the
ones presented by RA. In terms of the total CPU times the results are analogous, CA
being the worst code, followed by NA, and only then by RA.

Figure 1 presents the partial times of the 3 coded algorithms in random networks
of Set 1, while Figs. 2 and 3 only show some results for RA and NA in the remaining
networks of the same set, as these values are worthless for CA.

In the remaining networks of Set 1 these results appear to indicate that the partial
times increase linearly with the number K of listed simple paths and that the lazy
implementation of Chen’s algorithm behaves worse than deviation algorithms. The
partial times for NA grow faster than RA in Figs. 1 and 2, and the difference among
these values on grid networks is even more obvious—see Fig. 3. In fact, the behaviour
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Fig. 2 Partial times on complete networks, Set 1

Fig. 3 Partial times on grid networks, Set 1

of both codes depends on the size of the network (in terms of n as well as for m) but
NA was more sensitive to the variation of those factors.

Based on the results presented for Set 1 it seems that the proposed version of
Chen’s algorithm indeed improves the former version, although deviation algorithms
are still those with the best performance. As said in the previous section this might
be due to the difficulty in maintaining r simple path rankings at the same time. This
suggested to run a second set of experiments where the number r of capacities is fixed
a priori as a small value, in order to evaluate the weight of r on the lazy algorithm’s
performance.
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Table 5 Mean total CPU time (seconds) for random networks, n = 1000

d = 2 d = 10

CA RA NA CA RA NA

r = 10 0.512 0.213 0.233 2.604 1.081 0.648

r = 20 0.802 0.253 0.443 5.020 1.223 1.344

r = 30 1.174 0.300 0.454 7.622 1.340 2.129

Table 6 Mean total CPU time (seconds) for random networks, n = 5000

d = 2 d = 10

CA RA NA CA RA NA

r = 10 4.053 1.397 0.951 18.367 9.074 3.708

r = 20 5.054 1.758 1.970 34.375 12.139 7.748

r = 30 13.137 2.159 2.682 48.635 12.327 9.962

Fig. 4 Partial times on random networks, Set 2

Tables 5 and 6 summarise the total CPU times for the three coded algorithms on
this second set of networks. Once again CA was the code with the worst results, but
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now the total times of RA and NA are closer, and NA even performed better than RA
for networks where r was small and also when the networks were bigger.

Figure 4 shows the quotient NA partial times
RA partial times for the networks in Set 2, which should

be greater than 1 when RA outperforms NA. The results are not always consistent but it
seems that the conclusions drawn for the total times are still valid for the partial ones,
that is, NA is better than RA when there are few distinct capacities and the density of
the network increases.

5 Conclusions

A recent algorithm for ranking K quickest simple paths was discussed, and computa-
tional experience on several types of networks comparing it with the former version
and with deviation algorithms was presented.

The lazy version of Chen’s algorithm obtained CPU times that grow linearly with
K and increase with n, depending also on the type of network. This new procedure
behaved better than the former version of Chen’s algorithm. However, it still spends
a lot of time in the initialisation phase, to determine p1 and to keep r simple paths
rankings at a time. Moreover, for high values of r deviation algorithms outperformed
the lazy variant, but for small r’s the lazy algorithm was more efficient.
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