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Abstract
This discussion paper applauds the authors for their impactful contribution to func-
tional data analysis (FDA). Their primary insight lies in a formal mathematical
definition of the “shape” of a curve, which they connect to familiar intuitive notions
through a number of examples. Notably, the paper highlights the pitfalls of less well-
thought-out curve registration approaches. The authors’ application of COVID-19 data
enriches the discussion, highlighting the work’s practical relevance. We discuss con-
nections of this work with object-oriented data analysis and propose enhancements to
the authors’ shape-based functional principal component analysis. Additionally, we
illustrate the practical significance of adaptive alignment with an example from our
own research.

Keywords Functional data analysis · Functional PCA · Object oriented data
analysis · Scale space

1 Overview

The authors are congratulated on a well-crafted and thought-provoking contribution to
the field of functional data analysis (FDA). The fundamental contribution, relative to
strong past work by the same group, is the formal definition of the “shape” of a curve in
FDA. A number of interesting examples convey how the mathematical definition cor-
responds well with familiar intuitive notions. These examples also further demonstrate
the shortcomings of less carefully devised approaches to curve registration.

Of particular relevance is the authors’ application of various forms of COVID-19
data to exemplify key points. This timely use of real-world data adds a layer of impact
to their work, emphasizing its relevance and practical utility. In essence, this paper
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represents a crucial addition to the literature, comprising significant strides in the realm
of FDA.

In Section 2, we delve into the connections between this work and concepts from
object-oriented data analysis. Section 3 presents a proposal for enhancing the authors’
shape-based functional principal component analysis (fPCA). In the final section, we
emphasize the practical significance of adaptive alignment, illustrating its application
within our own work.

2 Connection to OODA

The authors formalize a novel perspective of functional data analysis (FDA) centered
on the idea that the shape of a curve is often the fundamental object of interest in an
analysis of functional data. This perspective aligns with object-oriented data analysis
(OODA) (Marron and Dryden 2021), a framework for interdisciplinary research that
provides new terminology to discuss the oftenmanypossible approaches to the analysis
of complex data. OODA emphasizes the significance of selecting appropriate data
objects relevant to a specific scientific inquiry and utilizing methods intrinsic to the
corresponding object space.

From an OODA standpoint, the authors’ advocacy for shape-based approaches
appeals to the concept of object choice. As demonstrated in their COVID-19 data
example in Section 3.1, the shape of a function often proves to be amore suitable choice
in many applications. Their precise definition of shape relies on an equivalence class
induced by time warpings of a function. These warpings capture horizontal variation
within the set of functions,whilewarp-equivalent classes distinguish vertical variation.
Such variation is discussed in Sections 2.1 and 9.1 ofMarron andDryden (2021)where
the terminologyphase andamplitudevariation are used, respectively. This shape-based
approach not only yieldsmoremeaningful data objects but the definitions of amplitude
and phase provide collections of curves that are notably richer data objects.

Another aspect to consider regarding data objects is their representation. This con-
cept is mirrored in Section 3.5, where the authors explore the use of mode count as an
insightful summary of shape. The elastic shape analysis framework defines shape as an
equivalence class of functions that are within time warpings of each other. However,
an alternative mathematical representation of this class can be extended to a more
abstract notion of shape, which focuses on the number of modes in a function while
ignoring their heights. In this context, the shape of a function can be characterized
by its extreme values in various ways. One definition includes geometric features,
such as the heights and counts of peaks and valleys, while ignoring their placements.
In another definition, only the extremal points are counted, with heights disregarded.
This aligns with OODA insights, highlighting the numerous potential choices for data
objects in a shape analysis of functional data.

While the authors primarily treat phase as a nuisance component, this choice
depends on the specific context. In some scenarios, phase may be the primary data
object of interest, with amplitude as the nuisance component. In other cases, neither
amplitude nor phase is treated as a nuisance, and bothmay be of interest. These various
scenarios are detailed in Section 2.1 of Marron et al. (2015).
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Fig. 1 Left: original data curves depicting the vertical ground reaction force. Middle-left: amplitude objects
resulting from fully elastic alignment of the data shown in the left panel. Middle-right: phase objects,
represented as warping functions, corresponding to the alignment of the curves in the leftmost panel. Right:
an intuitive visualization of phase variation achieved by applying the warping functions from themiddle-left
panel to the Karcher mean of the amplitude objects. All panels are color-coded based on subjects’ walking
speed (color figure online)

The careful selection of data objects in an object-oriented data analysis necessitates
the use of statistical methodologies that respect the underlying geometry of the chosen
object space. A characteristic example of such intrinsic methodology is the elastic
shape analysis approach that the authors introduce in Section 3.2. This approach
provides an elegant solution to the well-known challenges presented by L2-based
methods detailed in Marron et al. (2015).

In Section 4.1, the authors mention a recently developed geometric representation
known as the peak persistence diagram (PPD) for estimating the number of peaks in
functional data. This diagram is based on an adaptive approach aimed at mitigating
the issue of aligning noise artifacts often introduced by fully elastic alignment. The
approach involves adjusting a roughness penalty (or elasticity) parameter, denoted as
λ, which induces shape changes in the average function. As λ increases, the method
smooths geometric features. The optimal λ is determined by analyzing the persistence
of internal peaks in the estimated signal function using the PPD. This adaptive peak
detection technique follows a scale space approach.

As detailed by Lindeberg (1994), scale space was originally a concept explored
in the field of computer vision. An approach related to PPDs, developing statistical
inference in scale space, is the SiZer (SIgnificance of ZERo crossings) method for
smoothing (Chaudhuri andMarron 1999). SiZer overcomes bandwidth selection chal-
lenges in kernel density estimation by studying the family of Gaussian kernel smooths
that is the scale space. This method visualizes both coarse-scale macroscopic features
and fine-scale details, rendering the choice of a single bandwidth irrelevant. In par-
ticular, SiZer incorporates statistical inference identifying peaks as regions where the
density estimates exhibit increasing followed by decreasing trends, assessed through
zero crossings in the derivative of the density estimate. Both the PPD approach and
SiZer incorporate scale space visualization tools that graphically represent data fea-
tures against the resolution.

3 Improving shape fPCA

An important concept of this work is shape fPCA, involving a tangent plane approach
to the SRVF data objects lying on a unit sphere. In the case of warping functions,
these SRVFs must also lie on the positive orthant. Yu et al. (2017) have shown that
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Fig. 2 Alignment results over various values of the elasticity parameter (lambda). Left column: amplitude
objects. Middle-left column: warping functions. Middle-right column: warpings of the Karcher mean. Right
column: scatter plot of the first principal component score from PCA of amplitude objects versus walking
speed. Again, color scheme corresponds to walking speed (color figure online)

in particularly noisy cases, this tangent plane PCA gives a distorted analysis which
actually leaves the positive orthant, resulting in invalid warping functions. Similar
phenomenawere also observed in the data set discussed in the next section.We propose
generally adopting in shape fPCA the methodology of Yu et al. (2017), which is based
on an improved PCA analog for spheres, Principal Nested Spheres(PNS) (Jung et al.
2012). Chapter 8 of Marron and Dryden (2021) provides further review of PNS and
other geodesic-based methods.

4 Elastic shape analysis of biomechanical force data

An interesting application of shape analysis is a functional data analysis of human
movement data obtained from a study of patients with knee osteoarthritis (OA). Knee
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OA is a leading cause of disability among older adults. Biomechanical factors during
walking, such as forces, play a central role in the development and progression of knee
OA. Ground reaction force (GRF) data collected continuously during gait analysis are
often in the form of curves as a function of time. An important observation of the GRF
data is that they exhibit phase variation, which motivated the application of elastic
shape analysis to this data.

Figure 1 illustrates fully elastic shape analysis applied to a set of GRF curves.
The color scheme represents the subject’s walking speed (red for faster, purple for
slower). In that figure, the leftmost panel displays the original vertical GRF curves,
which represent the force normal to the ground. The subsequent panel shows aligned
curves from a fully elastic registration, capturing amplitude variation. The third panel
displays the warping functions, while the rightmost panel provides an intuitive view of
phase variation by applying the warps to the Karcher mean. The staircase-like pattern
in the warping functions and the difficulty in interpreting the phase variation in the
rightmost panel suggest potential over-alignment, prompting the need for adjustment
with a roughness penalty.

This example highlights the usefulness of an adaptive approach in choosing the
penalty parameter. While peak persistence diagrams were not employed in this analy-
sis, as our objective was not signal recovery, we adopted a similar adaptive approach
by varying the elasticity parameter and selecting an optimal alignment based on the
interpretability of the phase variation.

The first three columns of Fig. 2 present alignment results for various values of the
elasticity parameter (lambda). As lambda increases, the staircase effect smooths out,
and interpretable patterns in the phase variation become discernible. In the rightmost
column of the same figure, a scatter plot displays the first principal component score
from PCA of amplitude objects versus walking speed. Notably, relaxing the alignment
results in a stronger association with walking speed, indicating more clinically inter-
pretable amplitude objects. After a detailed exploration of different lambda values, we
selected a parameter value of 0.03 for this analysis.
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