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Abstract
This paper considers the problem of inferring the causal effect of a variable Z on a
dependently censored survival time T . We allow for unobserved confounding vari-
ables, such that the error term of the regression model for T is dependent on the
confounded variable Z . Moreover, T is subject to dependent censoring. This means
that T is right censored by a censoring time C , which is dependent on T (even after
conditioning out the effects of the measured covariates). A control function approach,
relying on an instrumental variable, is leveraged to tackle the confounding issue. Fur-
ther, it is assumed that T andC follow a joint regressionmodel with bivariate Gaussian
error terms and an unspecified covariance matrix, such that the dependent censoring
can be handled in a flexible manner. Conditions under which the model is identifiable
are given, a two-step estimation procedure is proposed, and it is shown that the result-
ing estimator is consistent and asymptotically normal. Simulations are used to confirm
the validity and finite-sample performance of the estimation procedure. Finally, the
proposed method is used to estimate the causal effect of job training programs on
unemployment duration.

Keywords Dependent censoring · Causal inference · Instrumental variable · Control
function · Survival analysis

Mathematics Subject Classification 62N02 · 62F12 · 62D20

B Gilles Crommen
gilles.crommen@kuleuven.be

Jad Beyhum
jad.beyhum@gmail.com

Ingrid Van Keilegom
ingrid.vankeilegom@kuleuven.be

1 ORSTAT, KU Leuven, Naamsestraat 69, 3000 Leuven, Belgium

2 Department of Economics, KU Leuven, Naamsestraat 69, 3000 Leuven, Belgium

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11749-023-00903-9&domain=pdf
http://orcid.org/0000-0001-8380-1900


474 G. Crommen et al.

1 Introduction

When estimating the effect of a variable Z on a censored survival time T , unmeasured
confounding can be a possible source of bias. A common approach to address this bias
without actually having to observe the unmeasured confounders is to use methods
based on an instrumental variable (IV). Within survival analysis, IV methods have
recently been receiving increased attention to estimate causal effects on censored
outcomes. However, almost all of these approaches assume that the censoring time is
(conditionally) independent of the survival time. In thiswork,wepropose an IVmethod
that can identify causal effects while allowing for dependent censoring. Precisely, let T
depend log-linearly on a vector of observed covariates X , a confounded variable Z and
some error term, denoted by uT , which represents unobserved heterogeneity. There is a
confounding issue when Z and uT are dependent on each other. A common example is
when Z is a non-randomized binary treatment variable, even after conditioning on the
covariates X . This dependence of Z on the error term implies that the causal effect of
Z on T cannot be identified from the conditional distribution of T on (X , Z). Further,
we introduce a right censoring mechanism by way of the censoring time C , such that
only the minimum of T andC is observed through the follow-up time Y = min{T ,C}
and the censoring indicator � = 1(T ≤ C). We do not assume that T and C are
independent, even after conditioning on (X , Z). This possible dependence creates an
additional statistical issue since the distribution of T cannot be recovered from that of
(Y ,�) without further assumptions.

1.1 Approach

The confounding issue is tackled by utilizing a control function approach. Thismethod
uses an instrumental variable W̃ , the observed covariates X and the confounded vari-
able Z to split uT into two parts: one which is dependent on Z , and one which is not.
The exact conditions that W̃ has to satisfy to be a valid instrument are described in
Sect. 2.1 of the paper. The part of uT that is dependent on Z is the control function
V , for which it is assumed that uT is linear in V . This control function (also denoted
by g) is a function of (Z , X , W̃ ) and a parameter γ that captures all unmeasured con-
founding. Note that the mapping g follows from the reduced form (which is specified
by the analyst), but the parameter γ is unknown and will need to be estimated. In this
work, we propose two possible control functions for which the expressions depend
on the support of Z . Moreover, the control function allows us to estimate the causal
effect of Z on T from the conditional distribution of T on (X , Z , V ). To allow for
dependent censoring, we introduce a joint Gaussian regression model with an unspec-
ified covariance matrix. The specific need for this assumption is explained in Sect. 2.1,
where it is formally introduced.

In addition, it is shown that our model is identifiable, which means that we can
identify not only the causal effect of Z on T but also the association parameter between
T and C . This can be seen as surprising, since we only observe the minimum of T and
C through the follow-up time Y and the censoring indicator�. In order to estimate the
model parameters, a two-step estimation method is proposed. The first step estimates

123



An instrumental variable approach... 475

the parameter γ , which is required to construct the regressor V . Therefore, this control
function V can also be seen as a generated regressor. The second step uses maximum
likelihood to estimate parameters of interest such as the correlation between T and C
and the causal effect of Z on T . Note that the second step uses the generated regressor
V , such that a correction for the randomness coming from the first step needs to be
applied to get asymptotically valid standard errors. To implement this correction, we
treat the two steps as a joint generalized method of moments estimator with their
moment conditions stacked in one vector. This allows us to prove consistency and
asymptotic normality of the parameter estimates. Using various simulation settings,
we show that the estimator demonstrates excellent finite sample performances. We
illustrate the procedure by evaluating the effect of federally funded job training services
on unemployment duration in the USA.

1.2 Related literature

This paper is firstly related to the literature on dependent censoring. In the survival
analysis literature, it is usually assumed that the survival time T is independent of the
right censoring time C , which is called independent censoring. However, it is easy to
think of situations where this assumption is not a reasonable one to make. A common
example of the independent censoring assumption being doubtful can be found in
transplant studies. The survival time (time to death) is likely dependent on the cen-
soring time (time to transplant), since selection for transplant is based on the patient’s
medical condition. In this case we would expect a positive dependence between T
and C , as usually the most ill patients are selected for transplant (Staplin et al 2015).
In the literature, many methods have been proposed to handle dependent censoring.
An important result comes from Tsiatis (1975), who proved that it is impossible to
identify the joint distribution of two failure times by their minimum in a fully nonpara-
metric way. Because of this, more information about the dependence and/or marginal
distributions of T and C is needed to identify their joint distribution. The most pop-
ular approaches are based on copulas, and Zheng and Klein (1995) were the first to
apply this idea. Under the assumption of a fully known copula for the joint distri-
bution of T and C , a nonparametric estimator of the marginals was proposed. This
estimator is called the copula-graphic estimator, which extends the Kaplan and Meier
(1958) estimator to the dependent censoring case. Rivest and Wells (2001) further
investigated the copula-graphic estimator for Archimedean copulas. Note that both of
these methods rely on a completely known copula. In particular, this means that the
association parameter specifying the dependence between T and C is assumed to be
known, which is often not the case in practice. The copula methods were extended
to include covariates by Braekers and Veraverbeke (2005), Huang and Zhang (2008)
and Sujica and Van Keilegom (2018) among others. Nevertheless, these methods still
rely on a fully known copula. More recently a new method was proposed by Czado
and Van Keilegom (2023), which does not require the association parameter to be
known. As a trade-off, this requires the marginals to be fully parametric for the associ-
ation parameter to be identifiable. Deresa and Van Keilegom (2020c) and Deresa and
Van Keilegom (2020a) propose a semiparametric and parametric transformed joint
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regression model, respectively, where the transformed variables T and C follow a
bivariate normal distribution after adjusting for covariates. Deresa and Van Keilegom
(2020b) extends the parametric transformed joint regression model to allow for dif-
ferent types of censoring. The present paper relies on a similar Gaussian model as
Deresa and Van Keilegom (2020a), but nevertheless differs from it as we allow for
confounding. Therefore, our method can be seen as a generalization of the one pro-
posed by Deresa and Van Keilegom (2020a). The added complication comes from the
generated regressor that is introduced by the control function.

Secondly, the present work falls within the instrumental variable and control func-
tion literature. A confounding issue could occur due to a multitude of reasons such as
noncompliance (Angrist et al 1996), sample selection (Heckman 1979), measurement
error or omitting relevant variables. The control function approach used in this work
has been discussed extensively in the literature on confounding and endogeneity byLee
(2007), Navarro (2010) and Wooldridge (2015) among others. The idea is that adding
an appropriate parametric control function to the regression, which is estimated in the
first stage using a valid instrument, solves the confounding issue. The advantages of
this approach are that it is computationally simple and that it can handle complicated
models that are nonlinear in the confounded variable in a parsimonious manner. It is
interesting to note that using the control function method creates a generated regres-
sor problem. See Pagan (1984), Oxley and McAleer (1993) and Sperlich (2009) for
an overview of possible methods and issues raised when using generated regressors.
Moreover, Escanciano et al (2016) look at a general framework for two-step estimators
with a non-parametric first step. In this work, they consider the example of a control
function estimator for a binary choice model with an endogenous regressor.

Finally, the last string of research linked to this paper is that of instrumental vari-
able methods for right censored data. We first discuss methods assuming that the
censoring mechanism is independent. Some papers follow a nonparametric approach
assuming that both Z and W̃ are categorical: Frandsen (2015), Sant’Anna (2016) and
Beyhum et al (2022a). Other approaches are semiparametric, such as Bijwaard and
Ridder (2005), Li et al (2015), Tchetgen Tchetgen et al (2015), Chernozhukov et al
(2015) and Beyhum et al (2022b) among others. Note that Tchetgen Tchetgen et al
(2015) also propose a control function approach. Centorrino and Florens (2021) study
nonparametric estimation with continuous regressors. Confounding has also been dis-
cussed in a competing risks framework by Richardson et al (2017), Zheng et al (2017),
Martinussen and Vansteelandt (2020) and Beyhum et al (2023). However, research on
confounding within a dependent censoring framework is sparse. Firstly, Robins and
Finkelstein (2000) look at a correction for noncompliance and dependent censoring.
However, they make the strong assumption that conditional on the treatment arm and
the recorded history of six time-dependent covariates, C does not further depend on
T . It is clear that this assumption is violated if there is a variable affecting both T and
C that is not observed. Secondly, Khan and Tamer (2009) discuss an endogenously
censored regression model, but they make a strong assumption (IV2, page 110 in
Khan and Tamer (2009)) regarding the relationship between the instruments and the
covariates. An example of this assumption being violated is when the support of the
natural logarithm of C given Z and X is the whole real line, which is allowed for in
our model. Finally, Blanco et al (2020) look at treatment effects on duration outcomes
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under censoring, selection, and noncompliance. However, they derive bounds on the
causal effect instead of point estimates.

1.3 Outline

In Sect. 2, we specify the model to be studied and describe some distributions such that
the expected conditional log-likelihood can be defined. Section3.1 derives the iden-
tification results and Sect. 3.2 outlines the estimation procedure. Section3.3 shows
consistency and asymptotic normality for the estimator described in Sect. 3.2. Sec-
tion3.4 describes how the asymptotic variance can be estimated. The technical details
for the three theorems outlined in Sect. 3 can be found in Sections B and C of the
supplementary information. Simulation results and an empirical application regarding
the impact of Job Training Partnership Act (JTPA) programs on time until employment
are described in Sects. 4 and 5, respectively. The R code used for both of these sections
can be found on https://github.com/GillesCrommen.

2 Themodel

2.1 Model specification

Let T and C be the natural logarithm of the survival and censoring time, respectively.
Because T and C censor each other, only one of them is observed through the follow-
up time Y = min{T ,C} and the censoring indicator � = 1(T ≤ C). The measured
covariates that have a direct effect on both T and C are given by X = (1, X̃�)� and
Z , where X̃ and Z are of dimension m and 1, respectively. More precisely, suppose
we have the following structural equation system:

{
T = X�βT + ZαT + VλT + εT
C = X�βC + ZαC + VλC + εC

, (1)

where (εT , εC ) are unobserved error terms and V an unobserved confounder of Z .
Note that if V were to be observed, we could directly estimate the causal effect αT

by applying the method of Deresa and Van Keilegom (2020a) to model (1). However,
since V is not observed, using this method would lead to biased estimates of αT . To
resolve this issue, we use an instrumental variable W̃ that is sufficiently dependent on
Z (conditionally on X ). In addition, if we were to construct V such that E[V | W ] =
E[V ], we can think of V as the part of Z that does not depend on W , where W =
(X�, W̃ )�. Note that all the V ’s proposed in Sect. 2.2 satisfy this mean independence
property.

More precisely, we let V = gγ (Z ,W ) for which the control function g is known
up to the parameter γ . Note that this control function follows from the reduced form,
which is specified by the analyst. Further, it is assumed that:
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(A1)

(
εT
εC

)
∼ N2

((
0
0

)
, �ε =

(
σ 2
T ρσT σC

ρσT σC σ 2
C

))
, with �ε positive definite

(σT , σC > 0 and |ρ| < 1).
(A2) (εT , εC ) ⊥⊥ (W , Z), where ⊥⊥ denotes statistical independence.
(A3) The covariance matrix of (X̃�, Z , V ) is full rank and Var(W̃ ) > 0.
(A4) The probabilities P(Y = T | W , Z) and P(Y = C | W , Z) are both strictly

positive almost surely.

Assumption (A1) implies that, conditional on (W , Z), both T and C are normally
distributed and allowed to be dependent on each other due to the correlation param-
eter ρ. As mentioned in the introduction, Tsiatis (1975) showed that it is impossible
to identify the joint distribution of two failure times by their minimum in a fully non-
parametric way. Because of this result, we need to make some assumptions regarding
the dependence and/or marginal distributions of T and C in order to identify their
joint distribution. When dependent censoring is still present after conditioning on the
covariates, there are two common approaches that can be considered. The first one
consists of specifying a fully known copula for the joint distribution of T andC , while
leaving the marginals unspecified (see Emura and Chen (2018) for more details). This
means that the association parameter, which describes the dependence between T and
C , is assumed to be known. As this is often not the case in practice, we opt to use a
different method. At the cost of using the fully parametric model that follows from
Assumption (A1), it will later be shown by Theorem 1 that we can actually identify
the association parameter ρ. We deem this to be an acceptable price to pay, as there
is no good way of choosing the association parameter in practice. The possible relax-
ation of this assumption is discussed in the Future research section at the end of the
paper. Secondly, Assumption (A2) tells us that V is the only unobserved confounder
of Z . Lastly, Assumptions (A3) and (A4) are commonly made in a survival analysis
context, except for the second part of Assumption (A3), which can be interpreted as a
nontrivial assignment assumption when W̃ is binary.

2.2 The control function

In the literature, different control functions have been proposed. FollowingWooldridge
(2010) and Navarro (2010), we give two examples of possible control functions that
will be used throughout the paper. Consider first the case where Z is a continuous
random variable and the relation between Z and W follows a linear model, that is

Z = W�γ + ν with E[ν | W ] = 0, (2)

where ν is an unobserved error term and γ ∈ R
m+2. In this setting it is natural to set

V = gγ (Z ,W ) = Z −W�γ such that V is the confounded part of Z , that is, the part
that does not depend on W . Another, more involved, example follows from Z being a
binary random variable where the relation between Z ,W and ν is specified as

Z = 1(W�γ − ν > 0) with ν ⊥⊥ W . (3)
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Since we cannot directly separate ν from Z and W , we let

V = gγ (Z ,W ) = Z E[ν | W�γ > ν] + (1 − Z)E[ν | W�γ < ν]. (4)

Then, the function g is known, up to γ , when the distribution of ν is known. This
specification of the control function is discussed and justified in Section 19.6.1 and
Section 21.4.2 by Wooldridge (2010). If ν ∼ N (0, 1) or ν follows a standard logistic
distribution, we have a probit or logit model for Z , respectively. Specific expressions
of g for the probit and logit model can be found in Section A of the supplementary
material. Moreover, when Z is binary, Tchetgen Tchetgen et al (2015) give another
example of a possible control function:

V = Z − P(Z = 1 | W ).

2.3 Useful distributions and definitions

Using the assumptions that have been made so far, some conditional distributions and
densities are derived. They are useful in proving the identification theorem and to
define the estimator in Sect. 3. The expected log-likelihood function is also defined.
For a given θ = (βT , αT , λT , βC , αC , λC , σT , σC , ρ)� and γ , we define FT |W ,Z (· |
w, z, γ ; θ) and FC|W ,Z (· | w, z, γ ; θ) as the conditional distribution function of T
and C given W = w = (x�, w̃)� and Z = z, respectively. Thanks to Assumptions
(A1) and (A2), we have that:

FT |W ,Z (t | w, z, γ ; θ) = 


(
t − x�βT − zαT − gγ (z, w)λT

σT

)
,

FC|W ,Z (c | w, z, γ ; θ) = 


(
c − x�βC − zαC − gγ (z, w)λC

σC

)
,

with 
 the cumulative distribution function of a standard normal variable. It follows
that for a given γ and θ , the conditional density functions of T and C given W = w

and Z = z are, respectively:

fT |W ,Z (t | w, z, γ ; θ) = σT
−1φ

(
t − x�βT − zαT − gγ (z, w)λT

σT

)
,

fC|W ,Z (c | w, z, γ ; θ) = σC
−1φ

(
c − x�βC − zαC − gγ (z, w)λC

σC

)
,

where φ is the density function of a standard normal variable. For ease of notation,
define bC = y−x�βC −zαC −gγ (z, w)λC and bT = y−x�βT −zαT −gγ (z, w)λT .
The sub-distribution function FY ,�|W ,Z (·, 1 | w, z, γ ; θ) of (Y ,�) given (W , Z) and
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(γ, θ) can be derived as follows:

FY ,�|W ,Z (y, 1 | w, z, γ ; θ) = P(Y ≤ y,� = 1 | W = w, Z = z)

= P(Y ≤ y, T ≤ C | W = w, Z = z)

= P(εT ≤ bT , bC − bT + εT ≤ εC ).

This expression is equivalent to

∫ bT

−∞
P(εC ≥ bC − bT + e | εT = e) fεT (e)de.

Since (εC | εT = e) ∼ N
(
ρ

σC
σT

e, σ 2
C (1 − ρ2)

)
and εT ∼ N (0, σ 2

T ), it follows that

fY ,�|W ,Z (y, 1 | w, z, γ ; θ) = 1

σT

[
1 − 


(
bC − ρ

σC
σT

bT

σC (1 − ρ2)
1
2

)]
φ

(
bT
σT

)
.

Using the same arguments, it can be shown that

fY ,�|W ,Z (y, 0 | w, z, γ ; θ) = 1

σC

[
1 − 


(
bT − ρ σT

σC
bC

σT (1 − ρ2)
1
2

)]
φ

(
bC
σC

)
.

Since P(Y ≤ y) = P(T ≤ y) + P(C ≤ y) − P(T ≤ y,C ≤ y), we have that:

FY |W ,Z (y | w, z, γ ; θ) = 


(
bT
σT

)
+ 


(
bC
σC

)
− 


(
bT
σT

,
bC
σC

; ρ

)
, (5)

where 
(·, ·, ρ) is the distribution function of a bivariate normal distribution with

covariancematrix

(
1 ρ

ρ 1

)
. Further, let S = (Y ,�, X̃ , W̃ , Z)with distribution function

G onG = R×{0, 1}×R
m×R×R and � : G×�×� → R : (s, γ, θ) 
→ �(s, γ, θ) =

log fY ,�|W ,Z (y, δ | w, z, γ ; θ), where � ⊂ {θ : (βT , αT , λT , βC , αC , λC ) ∈
R
2m+6, (σT , σC ) ∈ R

2
>0, ρ ∈ (−1, 1)} is the parameter space of θ and � the param-

eter space of γ (usually � ⊂ R
m+2). The expected conditional log-likelihood (given

W , Z ) can be defined as follows:

L(γ, θ) = E
[
�(S, γ, θ)

] =
∫
G

�(s, γ, θ)dG(s).

3 Model identification and estimation

3.1 Identification of themodel

We will start by showing that model (1) is identifiable in the sense that two different
values of the parameter vector (γ, θ) result in two different distributions of S. Let
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(γ ∗, θ∗) denote the true parameter vector. In order to prove the identifiability of the
model, it will be assumed that:

(A5) γ ∗ is identified.

Considering again the examples from Sect. 2.2, when Z is a continuous random vari-
able for which (2) holds, it is well known that the assumption that the covariance
matrix of (X̃ , W̃ ) is full rank implies Assumption (A5). When Z is a binary random
variable for which (3) holds, the assumption that the covariance matrix of (X̃ , W̃ ) is
full rank together with a known distributional assumption on ν (e.g., ν ∼ N (0, 1) or
ν ∼ Logistic(0, 1)) implies Assumption (A5) as shown by Manski (1988).

Theorem 1 Under Assumptions (A1)–(A5), suppose that (T1,C1) and (T2,C2)

satisfy model (1) with (γ, θ1) and (γ, θ2) as parameter vectors, respectively. If
fY1,�1|W ,Z (·, k | w, z, γ ; θ1) ≡ fY2,�2|W ,Z (·, k | w, z, γ ; θ2) for almost every (w, z),
then

θ1 = θ2.

The proof of the theorem can be found in Section C.1 of the supplementary material,
and is based on the proof of Theorem 1 by Deresa and Van Keilegom (2020a). The
fact that the proposed joint regression model is identifiable can be seen as surprising,
since this means that we can identify the relationship between T and C while only
observing their minimum through the follow-up time Y and the censoring indicator
�.

3.2 Estimation of themodel parameters

Weconsider estimationwhen thedata consist of an i.i.d. sample {Yi ,�i ,Wi , Zi }i=1,...,n .
Further, it is assumed that:

(A6) There exists a known function m : (w, z, γ ) ∈ R
m+2 × R × � 
→ m(w, z, γ )

twice continuously differentiable with respect to γ such that the estimator

γ̂ ∈ argmax
γ∈�

n−1
n∑

i=1

m(Wi , Zi , γ ), (6)

is consistent for the true parameter γ ∗.

Using the first-order conditions of program (6), we obtain that n−1 ∑n
i=1 ∇γm(Wi , Zi ,

γ̂ ) = 0. Hence, Assumption (A6) implies that we possess a consistent Z -estimator
of γ . The theory on M-estimators (Newey and McFadden 1994) allows us to find
sufficient conditions for the assumption that γ̂ is consistent. Assumption (A6) will
hold when (i) the true parameter γ ∗ belongs to the interior of �, which is com-
pact, (ii) L(γ ) = E

[
m(W , Z , γ )

]
is continuous and uniquely maximized at γ ∗ and

(iii) L̂(γ ) = n−1 ∑n
i=1 m(Wi , Zi , γ ) converges uniformly (in γ ∈ �) in probabil-

ity to L(γ ). In the case where L̂(·) is concave, (i) can be weakened to γ ∗ being an
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element of the interior of a convex set �, while (iii) is only required to hold point-
wise rather than uniformly. Returning again to the examples given in Sect. 2.2, when
Z is a continuous random variable for which (2) holds, it is well known that ordi-
nary least squares is an extremum estimation method that consistently estimates γ

under the assumption that the covariance matrix of (X̃ , W̃ ) is full rank. In this case,
we can define m(W , Z , γ ) = −(Z − W�γ )2. When Z is a binary random vari-
able for which (3) holds and the distribution of ν is known, maximum likelihood
estimation can be used to consistently estimate γ under weak regularity condi-
tions that can be found in Aldrich and Nelson (1991). In this case, we can define
m(W , Z , γ ) = Z logP(W�γ > ν | W ) + (1 − Z) logP(W�γ < ν | W ).

After obtaining γ̂ from (6), the parameters from model (1) can be estimated using
maximum likelihood with the estimates given by the second-step estimator:

θ̂ = (β̂T , α̂T , λ̂T , β̂C , α̂C , λ̂C , σ̂T , σ̂C , ρ̂) = argmax
θ∈�

L̂(γ̂ , θ), (7)

with � the parameter space as defined before and

L̂(γ̂ , θ) = 1

n

n∑
i=1

log fY ,�|W ,Z (Yi ,�i | Wi , Zi , γ̂ ; θ)

= 1

n

n∑
i=1

{
�i

(
−log(σT ) + log

[
1 − 


(
bCi − ρ

σC
σT

bTi

σC (1 − ρ2)
1
2

)]

+log

[
φ

(
bTi
σT

)])

+ (1 − �i )

(
−log(σC ) + log

[
1 − 


(
bTi − ρ σT

σC
bCi

σT (1 − ρ2)
1
2

)]

+log

[
φ

(
bCi

σC

)])}
,

with bCi = Yi − X�
i βC − ZiαC − gγ̂ (Wi , Zi )λC and bTi = Yi − X�

i βT − ZiαT −
gγ̂ (Wi , Zi )λT .

3.3 Consistency and asymptotic normality

In this section, it will be shown that the parameter estimates θ̂ , as defined in (7),
are consistent and asymptotically normal. Theorems 2 and 3 show consistency and
asymptotic normality, respectively. The proofs can be found in Section C of the sup-
plementary material. We start by providing some definitions and assumptions that will
be useful in stating these theorems. Let

h�(S, γ ∗, θ∗) = ∇θ �(S, γ ∗, θ∗), Hθ = E
[∇θh�(S, γ ∗, θ∗)

]
,

hm(W , Z , γ ∗) = ∇γm(W , Z , γ ∗), Hγ = E
[∇γ h�(S, γ ∗, θ∗)

]
,

123



An instrumental variable approach... 483

M = E
[∇γ hm(W , Z , γ ∗)

]
, � = −M−1hm(W , Z , γ ∗),

h̃(S, γ ∗, θ∗) = (
hm(W , Z , γ ∗)�, h�(S, γ ∗, θ∗)�

)�
, H = E

[
∇γ,θ h̃(S, γ ∗, θ∗)

]
.

The following assumptions will be used in the proofs of Theorems 2 and 3:

(A7) The parameter space � is compact and θ∗ belongs to the interior of �.
(A8) There exists a functionD(s) integrable with respect to G and a compact neigh-

borhood Nγ ⊆ � of γ ∗ such that |�(s, γ, θ)| ≤ D(s) for all γ ∈ Nγ and
θ ∈ �.

(A9) E

[
‖h̃(S, γ ∗, θ∗)‖2

]
< ∞ and E

[
sup

(γ,θ)∈Nγ,θ

‖∇γ,θ h̃(S, γ, θ)‖
]

< ∞, with

Nγ,θ a neighborhood of (γ ∗, θ∗) in � × �.
(A10) H�H is nonsingular.

Note that ‖·‖ represents the Euclidean norm. Assumption (A8) is necessary to show
the consistency and asymptotic normality of the parameter estimates. Sufficient con-
ditions for this assumption are that the support of S is bounded, � being compact
and Assumption (A7). Assumptions (A7), (A9) and (A10) are regularity conditions
that are commonly made in a maximum likelihood context. We have the following
consistency theorem.

Theorem 2 Under Assumptions (A1)–(A8), suppose that θ̂ is a parameter estimate as
described in (7), then

θ̂
p−→ θ∗.

The challenge in proving this theorem comes from the fact that we are using a two-step
estimation method, meaning that the results from the first step are used in the second
step. To ensure consistency of θ̂ , in the proofs, we show uniform convergence (in
θ ∈ �) in probability of the empirical likelihood function L̂(γ̂ , θ) in (7) to the true
likelihood of the model at γ ∗. We also have the following asymptotic normality result:

Theorem 3 Under Assumptions (A1)–(A10), suppose that θ̂ is a parameter estimate
as described in (7), then

√
n(θ̂ − θ∗) d−→ N (0, �θ ),

with

�θ = H−1
θ E

[{h�(S, γ ∗, θ∗) + Hγ �}{h�(S, γ ∗, θ∗) + Hγ �}�](
H−1

θ

)�
.

The difficulty in proving this theorem is related to the fact that the randomness coming
from the first step inflates the asymptotic variance of θ̂ . Hence, ignoring the first
step would lead to inconsistent standard errors and confidence intervals that are not
asymptotically valid. To obtain correct standard errors, we treat the two steps as a
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joint generalized method of moments (GMM) estimator with their moment conditions
stacked in one vector (Newey and McFadden 1994). Indeed, given that γ̂ and θ̂ are
consistent by Theorem 2, they are the unique solutions to the first-order conditions of
their respective objective functions in a neighborhood of γ ∗ and θ∗ (with probability
going to 1). Therefore, the two-step estimator is asymptotically equivalent to theGMM
estimator corresponding to the following moments:

E[hm(W , Z , γ )] = 0 and E[h�(S, γ, θ)] = 0, (8)

for the first and second step, respectively. Because of this theoretical equivalence, we
could also jointly minimize some norm of the sample version of (8), with respect to
(γ, θ), in a single step. However, we opt for the two-step estimation procedure as it
is most natural in this context and is less computational complex as the joint mini-
mization. This is because the joint GMM estimator would require solving a system of
3m+11 equations of first-order derivatives that would have to be derived analytically
or approximated numerically. Moreover, it is important to note that the results from
Theorem 2 and 3 also hold for the maximum likelihood estimation of alternative mod-
els, as long as they are identified. This implies that Assumption (A1) is a sufficient, but
not a necessary condition for both of these theorems to hold. Other possible models
could include different parametric copulas for the dependence structure of the error
terms (e.g., Frank, Clayton or Joe) and different marginal distributions for each of the
error terms (e.g. Gumbel, exponential or logistic distribution). The possible identifi-
cation of these models is further discussed in the Future research section at the end
of the paper. As a last remark, if we were to remove the correction Hγ � for the first
step, the covariance matrix simplifies to the inverse of Fisher’s information matrix
(assuming the model is correctly specified).

3.4 Estimation of the asymptotic variance

Using the result from Theorem 3, we can construct a consistent estimator �̂θ for the
covariance matrix of the parameters in θ in the following way:

�̂θ = Ĥ−1
θ

[
n−1

n∑
i=1

{h�(Si , γ̂ , θ̂ ) + Ĥγ �̂i }{h�(Si , γ̂ , θ̂ ) + Ĥγ �̂i }�
](

Ĥ−1
θ

)�
,

where Si = (
Yi ,�i , X̃i , W̃i , Zi

)
and

h�(Si , γ̂ , θ̂ ) = ∇θ �(Si , γ̂ , θ̂ ), hm(Wi , Zi , γ̂ ) = ∇γm(Wi , Zi , γ̂ ),

Ĥθ = n−1
n∑

i=1

∇θh�(Si , γ̂ , θ̂ ), Ĥγ = n−1
n∑

i=1

∇γ h�(Si , γ̂ , θ̂ ),

M̂ = n−1
n∑

i=1

∇γ hm(Wi , Zi , γ̂ ), �̂i = −M̂−1hm(Wi , Zi , γ̂ ).
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Thanks to the asymptotic normality and the consistent estimator for the variance of the
estimators, confidence intervals can easily be constructed. Note that since σT , σC > 0
and ρ ∈ (−1, 1), their confidence intervals will be constructed using a logarithm and a
Fisher’s z-transformation, respectively. These transformations project the estimates on
the real line, after which the delta method can be used to obtain their standard errors.
The confidence intervals can then be constructed and transformed back to the original
scale. This procedure makes sure that our confidence intervals are reasonable (e.g. no
negative values for the confidence limits of the standard deviation estimates). Also note
that instead of calculating h�(Si , γ̂ , θ̂ ), Ĥθ and Ĥγ using their analytical expressions,
they are approximated. This is due to the complexity of these expressions and the
amount of them that would have to be derived. For example, Ĥθ is already a (2m +
9)× (2m+9)matrix of derivatives wherem is the dimension of X̃ . The calculation of
these approximations is donebymakinguse ofRichardson’s extrapolation (Richardson
1911), resulting in more accurate estimates. A general description of the method to
approximate the Jacobian matrix can be given as repeated calculations of the central
difference approximation of the first derivative with respect to each component of θ ,
using a successively smaller step size. Richardson’s extrapolation uses this information
to estimate what happens when the step size goes to zero. A similar description can
be given for the approximation of the Hessian matrices. Note that these calculations
can be quite time consuming depending on the required level of accuracy.

4 Simulation study

In this section, a simulation study is performed to investigate the finite sample perfor-
mance of the proposed two-step estimator. Further, we look at the impact of model
misspecification. In particular, we investigate what happens when Assumption (A1)
does not hold and when the control function is misspecified.

4.1 Comparison of estimators

Weconsider the four possible combinations of the caseswhere Z and W̃ are continuous
or binary random variables. It is assumed that when Z is binary, it follows a logit
model. The proposed estimator is compared to three other estimators: one which does
not account for the confounding issue, one which assumes T and C are independent
and one which uses the proposed method but treats V as observed. The parameters
are estimated for samples of 250, 500 and 1000 observations. The first step of the data
generating process (DGP) is as follows:

X̃ ∼ N (0, 1),(
εT
εC

)
∼ N2

((
0
0

)
, � =

(
1.12 0.75 · 1.1 · 1.4
0.75 · 1.1 · 1.4 1.42

))
.

We have 4 different designs depending on whether Z and W̃ are assumed to be a
continuous or binary random variable:
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Design 1: W̃ ∼ U [0, 2], ν ∼ N (0, 2) Z = W�γcont + ν,

Design 2: W̃ ∼ Bernoulli(0.5), ν ∼ N (0, 2)
Design 3: W̃ ∼ U [0, 2], ν ∼ Logistic(0, 1) Z = 1(W�γbin − ν > 0),
Design 4: W̃ ∼ Bernoulli(0.5), ν ∼ Logistic(0, 1)

with W = (1, X̃ , W̃ )�, γcont = (0.5,−0.4, 1)� and γbin = (−1, 0.6, 2.3)�. Further,
it is assumed that

(εT , εC ) ⊥⊥ (X̃ , W̃ , ν), W̃ ⊥⊥ (X̃ , ν) and X̃ ⊥⊥ ν.

From this, we have that:

Design 1-2: V = Z − W�γcont .

Design 3-4: V = (1 − Z)
[(
1 + exp{W�γbin }) log (

1 + exp{W�γbin }) − W�γbin exp{W�γbin }
]

−Z
[(
1 + exp{−W�γbin }) log (

1 + exp{−W�γbin }) + W�γbin exp{−W�γbin }
]
.

Finally, T and C can be constructed for each design in the following way:

{
T = βT ,0 + X̃βT ,1 + ZαT + VλT + εT

C = βC,0 + X̃βC,1 + ZαC + VλC + εC
,

where (βT ,0, βT ,1, αT , λT ) = (1.5, 0.6, 0.4, 0.3) and (βC,0, βC,1, αC , λC ) =
(1.6, 0.4,−0.3,−0.2). It follows that Y = min{T ,C} and � = 1(T ≤ C). It is
important to remember that V is not observed and therefore can only be used as a
benchmark to compare our estimation results to, which we will introduce in the next
paragraph as the oracle estimator.

This data generating process was repeated 1000 times for the four possible designs.
The parameter values were chosen such that there is between 55% and 60% censoring
for each design. For each sample size, there are four different estimators. The first,
which we call the naive estimator, ignores the confounding issue and therefore does
not include estimates for λT and λC . The second, which we call the independent
estimator, assumes that T and C are independent from each other (no estimates for
ρ as it is assumed to be zero). The third, which we call the oracle estimator, uses the
control function approach to handle the confounding issue but treats V as if it were
observed. The fourth and last, which we call the two-step estimator, uses the two-step
estimation method proposed in this article. This means that V is estimated using γ̂

from the first step. The estimation is performed in R and uses the package nloptr to
maximize certain functions and the package numDeriv for computing the necessary
Hessian and Jacobian matrices. The package MASS is used to generate the bivariate
normal variables.

For each estimator, the bias of each parameter estimate is given together with the
empirical standard deviation (ESD) and the root mean squared error (RMSE). Note
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that, as the bias decreases, these last 2 statistics should converge to the same value. To
better explain how these statistics are calculated, we give the formulas for αT as an
example. Let N represent the total amount of simulations with j = 1, ..., N and (α̂T ) j
the estimate of αT for the j’th simulation. The ESD and RMSE for αT are given as
follows:

ESD =
√√√√(N − 1)−1

N∑
j=1

[
(α̂T ) j − ᾱT

]2
, with ᾱT = N−1

N∑
j=1

(α̂T ) j .

RMSE =
√√√√N−1

N∑
j=1

[
(α̂T ) j − α∗

T

]2
, with α∗

T the true parameter value.

Lastly, the coverage rate (CR) shows in which percentage of the simulations the true
parameter value is included in the estimated 95% confidence interval that follows from
Theorem 3 and the estimator �̂θ given in Sect. 3.4.

Table 1 shows the results for design 4, meaning that both Z and W are binary.
The naive estimates show a very noticeable bias for almost each parameter, especially
αT . Note that this bias remains the same as the sample size increases. The table also
shows that the estimated standard errors are not asymptotically valid as the CR is
inconsistent and does not converge to the expected 95%. Moreover, we find similar
results when looking at the independent estimator. As with the naive estimator, the
bias does not seem to decrease when the sample size increases. Next, the bias for the
proposed two-step estimation method is very close to 0 and is clearly an improvement
over the naive and independent estimator. It is also very close to that of the oracle
estimator, which treats V as observed. This implies that the error from estimating V
is negligible compared to the one from the second step. This makes sense, as V is
much simpler to estimate. The RMSE decreases when the sample size increases and
the ESD and RMSE converge to the same value, which also decreases as the sample
size increases. The CR is mostly around 95%, meaning that we have asymptotically
valid standard errors and confidence intervals. Nevertheless, the CR seems to behave
particularly poorly for αC . However, when we increased the number of simulations,
the CR converged to the nominal level such that this can be attributed to random
noise. From these results, it is clear that the two-step estimator performs well, even
for small sample sizes. The results for the other designs can be found in Section D of
the supplementary material.

4.2 Misspecification of themodel

In this subsection, we consider four different types of misspecification. More specif-
ically, we investigate what happens for design 4 (Z and W̃ both binary). For each
scenario, we generated 1000 data sets with a sample size of 500 each. The exact
results of these simulations can be found in Tables 7–0 from Section D of the supple-
mentary material. To fix ideas, let P(εT ≤ u, εC ≤ v) = C (

FεT (u), FεC (v)
)
, where
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FεT and FεC are the cumulative distribution functions of εT and εC , respectively, and
C a parametric copula.

Scenario 1 In this first scenario, let εT and εC be Gumbel distributed random vari-
ables (instead of them being normally distributed). The location and scale parameters
are chosen such that both random variables have a mean of 0 and a standard deviation
of 1.1 and 1.4, respectively. Moreover, C is still a Gaussian copula with correlation
parameter ρ = 0.75.

Scenario 2 Next, let εT and εC be normally distributed with location and scale
parameters as before. However, C is now a Frank copula. The dependence parameter
for the Frank copula is chosen such that it is equal to the same Kendall’s tau as a
correlation parameter ρ = 0.75 (τ ≈ 0.54) for the Gaussian copula.

Scenario 3 Thirdly, we look at a misspecification of the control function V . More
precisely, instead of ν ∼ Logistic(0, 1), we let ν ∼ N (0, 1).

Scenario 4 The final scenario looks at the case where V is identically equal to zero,
such that there is no unmeasured confounding.

Overall, misspecifying the model seems to have little impact on the bias of the
main parameter of interest αT , which remains small. However, it is to be noticed that
the ESD of αT more than doubles in both Scenario 1 and 2. Moreover, the coverage
rates behave poorly for all scenarios, but this is to be expected when misspecifying the
model. For most of the other parameters, the first and second scenario give rise to a
lot of bias. However, both the third and fourth scenario (where the control function is
misspecified) seem to have little influence on the proposed estimator for all parameters
except λT and λC . From these results, we can conclude that for estimating the main
parameter of interest, αT , our proposed method seems to be fairly robust to these types
of misspecification.

5 Data application

In this section,we apply the outlinedmethodology to estimate the effect of JobTraining
Partnership Act (JTPA) services on time until employment. The data come from a
large-scale randomized experiment known as the National JTPA Study and have been
analyzed extensively by Bloom et al (1997), Abadie et al (2002) and Frandsen (2015)
among others. The data and problem investigated is the same as in Frandsen (2015),
but the method used nevertheless differs as we allow for dependent censoring. Later
in this section, we give our reasoning as to why there could be dependent censoring
present in the data.

This study was performed to evaluate the effectiveness of more than 600 federally
funded services, established by the Job Training Partnership Act of 1982, that were
intended to increase the employability of eligible adults and out-of-school youths.
These services included classroom training, on-the-job training and job search assis-
tance. The JTPA started to fund these programs in October of 1983 and continued
funding up until the late 1990’s. Between 1987 and 1989, a little over 20,000 adults
and out-of-school youths who applied for JTPAwere randomly assigned to be in either
a treatment or a control group. Treatment groupmemberswere eligible to receive JTPA
services, while control group members were not eligible for 18 months. However, due
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to local program staff not always following the randomization rules closely, about 3%
of the control group members were able to participate in JTPA services. It is important
to note that we are not comparing JTPA services to no services but rather JTPA ser-
vices versus no and other services, since control group members were still eligible for
non-JTPA training. Between 12 and 36months after randomization, with an average of
21 months, the participants were surveyed by data collection officers. Next, a subset of
5468 subjects participated in a second follow-up survey, which focused on the period
between the two surveys. The second survey took place between 23 and 48 months
after randomization. See Figure 1 in Section D of the supplementary information for
a graphical representation of the interview process.

In this application, we will focus our attention on the effect of JTPA programs on
the sample of 1298 fathers who reported having no job at the time of randomization,
for which participation data is available. The outcome of interest is the time between
randomization and employment. For the individuals that were only invited to the first
interview, the outcome is measured completely if an individual is employed by the
time of the survey and censored at the time of the interview otherwise. For the fathers
that were invited to the second follow-up interview and participated, the outcome is
measured completely if an individual is employed by the time of the second follow-up
interview, but is otherwise censored at the second interview date. If the individual does
not participate in the second survey after being invited, they will be censored at the
time of the first interview. It follows that there could be some dependence between
T and C when this decision to go to the second follow-up interview is influenced by
them having found a job between the two interview dates. This possible dependence
combined with the fact that the data suffer from two-sided noncompliance makes it
an appropriate application of the proposed methodology.

The instrument W̃ will be a binary variable indicating whether an individual is in
the control or treatment group (0 and 1, respectively). The confounded variable Z
indicates whether they actually participated in a JTPA program (0 for no participa-
tion and 1 otherwise). This participation variable is confounded due to individuals
moving themselves between the treatment and control group in a non-random way.
The covariates include the participant’s age, race (white or non-white), marital status
and whether they have a high school diploma or GED. We expect W̃ to be a valid
instrument because it is randomly assigned, correlated with JTPA participation and
should have no impact on time until employment other than through participation in
a JTPA funded program. Rows 2 through 5 from Table 3 in Section D of the sup-
plementary information show that the individual characteristics are balanced across
the control and treatment group. This indicates satisfactory random assignment. The
first row shows that about 31% of the total sample was assigned to the control group.
The last 3 rows show summary statistics for variables observed after randomization.
It is interesting to note that 13% of the fathers in the control group were nevertheless
able to participate in JTPA services compared to 3% for the entire control group. The
mean time to employment also seems to be about 30 days shorter for the individuals
assigned to the treatment group compared to the control group. The censoring rate is
similar for both groups. Figure 2 in Section D of the supplementary information plots
a histogram of the observed follow-up time Y , where darker shading indicates a higher
censoring rate. A lot of the censored observations are around the 600 days mark, at
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which time most of the first follow-up interviews took place. Since everyone in the
sample participated in the first follow-up interview, an observation before the date of
the first follow-up survey cannot be censored.

The results of applying the two-step estimator (using a logitmodel for Z ), compared
to other estimators, can be found in Table 2. The naive estimator, which does not treat
Z as a confounded variable, seems to underestimate the effect of JTPA services on time
until employment compared to the proposed two-step estimator. At a 5% significance
level, both of these estimators find a significant effect of JTPA training reducing time
until employment. However, the two-step estimate is almost twice the naive estimate
which indicates that the individuals participating in the treatment are thosewith a lower
ability to find employment. The independent estimator, which assumes independent
censoring, seems to only slightly overestimate αT compared to the proposed two-step
estimator. However, looking at the p-values, we notice that the effect estimated by
the independent estimator is not significantly different from zero at a 5% significance
level. On the contrary, the estimated effect is deemed to be significant for the proposed
two-step estimator. Age seems to be (borderline) significant across the estimators as
does marriage status and having a high school diploma or GED. Being older seems to
increase time until employment, while being married and having a diploma reduces
it. Both the naive and the two-step estimator seem to agree that there is a quite strong
negative correlation of about −0.43 between T and C .

Future research

It is important to note that this work is only a first step toward a set of models that
will allow for the estimation of causal effects under dependent censoring and unob-
served confounding. A first extension could be to select different parametric marginals
and copulas by making use of an information criterion. Up until now, the association
parameter has been shown to be identified only for certain combinations of parametric
copulas and marginals without confounding or covariates (see Czado and Van Keile-
gom (2023)). Implementing this would therefore complicate the identifiability proof.
However, it is to be noted that the consistency and asymptotic normality results would
still hold for the alternative maximum likelihood estimator, provided that the model
is identified. Another line of research is to allow for semi-parametric marginals (see
Deresa and Van Keilegom (2020c) and Deresa and Van Keilegom (2023) for examples
without unmeasured confounding). These lines of research would greatly increase the
flexibility of the model and are currently being investigated. Lastly, a goodness-of-fit
test could be developed. Under the null hypothesis, we would have that the distribution
function of Y is equal to the marginal version of (5) for some (γ, θ). An Anderson-
Darling type test statistic could be developed, where we look at the distance between
the empirical distribution function (EDF) of Y and the proposed parametric estimate of
the distribution of Y . Note that we use the variable Y , as the EDF cannot be computed
for T or C (only one of them is observed). Large values of this test statistic would
therefore indicate a possible misspecification. The distribution of this test statistic
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could be approximated by using parametric bootstrap or one could try to obtain an
expression for the limiting distribution of the test statistic.
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org/10.1007/s11749-023-00903-9.
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