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Abstract
Tensor eigenvectors naturally generalize matrix eigenvectors to multi-way arrays:
eigenvectors of symmetric tensors of order k and dimension p are stationary points
of polynomials of degree k in p variables on the unit sphere. Dominant eigenvectors
of symmetric tensors maximize polynomials in several variables on the unit sphere,
while base eigenvectors are roots of polynomials in several variables. In this paper,
we focus on skewness-based projection pursuit and on third-order tensor eigenvectors,
which provide the simplest, yet relevant connections between tensor eigenvectors and
projection pursuit. Skewness-basedprojection pursuit finds interesting data projections
using the dominant eigenvector of the sample third standardized cumulant tomaximize
skewness. Skewness-based projection pursuit also uses base eigenvectors of the sample
third cumulant to remove skewness and facilitate the search for interesting data features
other than skewness. Our contribution to the literature on tensor eigenvectors and
on projection pursuit is twofold. Firstly, we show how skewness-based projection
pursuit might be helpful in sequential cluster detection. Secondly, we show some
asymptotic results regarding both dominant and base tensor eigenvectors of sample
third cumulants. The practical relevance of the theoretical results is assessed with six
well-known data sets.

Keywords Asymptotics · Data reduction · Model-based clustering · Skewness ·
Symmetrization · Tensor eigenpairs

Mathematics Subject Classification 15A69 · 58C40 · 62E20 · 62H05

1 Introduction

Skewness-based projection pursuit looks for interesting data projections by means of
skewness maximization, where the skewness of a data projection is measured by its
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454 N. Loperfido

third standardized moment. Skewness maximization is often paired with skewness
removal, to ease the search for interesting structures. Skewness-based projection pur-
suit has been used in normality testing (Malkovich and Afifi 1973), point estimation
(Loperfido 2010), cluster analysis (Loperfido 2019) and stochastic ordering (Arevalillo
and Navarro 2019).

There has been a renewed interest in skewness-based projection pursuit, with focus
on its parametric interpretation when the sampled distribution is either a finite mix-
ture (Loperfido 2013, 2015, 2019), a skew-normal (Loperfido 2010; Balakrishnan
and Scarpa 2012; Tarpey and Loperfido 2015), or a scale mixture of skew-normal
distributions (Kim andKim 2017; Arevalillo and Navarro 2015, 2020, 2021a, b). Lop-
erfido (2018) used a generalized skew-normal distribution to illustrate the connection
between skewness maximization and tensor eigenvectors.

A tensor is symmetric if it remains unchanged when permuting its subscripts. Its
dimension is the number of distinct values that a subscript can take. The third moment
M3,x = {

E
(
Xi X j Xk

)} ∈ R
p × R

p × R
p of a p-dimensional random vector x =

(
X1, ..., X p

)� satisfying E
(∣∣X3

i

∣∣) < ∞ for i ∈ {1, ..., p} is a symmetric third order
tensor with dimension p. The third cumulant K3,x of x is the third moment of x − μ,
where μ is the mean of x. The third standardized moment M3,z of x is the third
moment of z = �−1/2 (x − μ), where � is the positive definite covariance matrix of
x.

Tensor unfolding is the process which rearranges the tensor’s elements into amatrix
according to the index which is most meaningful for the problem at hand. Each row
of the resulting matrix contains the tensor elements identified by the same value of
the unfolding index. Within each row, tensor’s elements are arranged beginning with
those identified by smallest values of the first other indices. More formally, letA(u) be
the matrix whose i−th row contains all elements of the tensor A with the i-th value
of the u-th index, while the elements of A(u) in the same row are ordered according
to the reflected lexicographic ordering of their indices. For example, the third-order
tensorA = {

ai jk
} ∈ R

3 ×R
4 ×R

2 can be unfolded in three different ways, to obtain
the matrices A(1),A(2) and A(3). They are represented below, with the index of the
unfoldingmode in bold and the other indices in smaller font, to emphasize the different
unfoldings:

A(1) =
⎛

⎝
a111 a121 a131 a141 a112 a122 a132 a142
a211 a221 a231 a241 a212 a222 a232 a242
a311 a321 a331 a341 a312 a322 a332 a342

⎞

⎠ ,

A(2) =

⎛

⎜⎜
⎝

a111 a211 a311 a112 a212 a312
a121 a221 a321 a122 a222 a322
a131 a231 a331 a132 a232 a332
a141 a241 a341 a142 a242 a342

⎞

⎟⎟
⎠

and A(3) =
(
a111 a211 a311 a121 a221 a321 a131 a231 a331 a141 a241 a341
a112 a212 a312 a122 a222 a322 a132 a232 a332 a142 a242 a342

)
.

The unfolding of a symmetric tensor does not depend on the unfolding index.
We therefore denote with A the unfolding of the symmetric tensor A, without men-
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tioning the unfolding index. The coskewness of a p -dimensional random vector x
with finite third moments and mean μ is the unfolding of the third cumulant of x:
� = E

{
(x − μ) ⊗ (x − μ)� ⊗ (x − μ)�

} ∈ R
p × R

p2 , where“⊗" denotes the Kro-
necker product. Similarly, the standardized coskewness of x is the unfolding of the
third standardized cumulant of x: � = E

(
z ⊗ z� ⊗ z�) ∈ R

p × R
p2 .

There are other ways to denote and arrange multivariate moments and cumulants
(De Luca and Loperfido 2015; Doss et al. 2023; Rao Jammalamadaka et al. 2021;
Pereira et al. 2022). In this paper, we favor the coskewness due to its close connection
with the eigenpairs of third-order tensors.

Consider now the problem of finding the stationary points of a homogeneous poly-
nomial of degree k in p variables, under the constraint that the squared sum of the
variables themselves is one. When k equals 2 the polynomial is a quadratic form and
the problem reduces to the derivation of the eigenpairs of the symmetric matrix which
characterizes the polynomial itself. Eigenvalues and eigenvectors of symmetric ten-
sors generalize eigenvectors and eigenvalues of symmetric matrices to polynomials of
degree greater than 2.

More formally, let A be a symmetric tensor of order k and dimension p. Also, let
A be the matrix obtained by unfolding A along one of its modes. A scalar λ and a p
-dimensional, nonnull vector x are an eigenvalue and the corresponding eigenvector
ofA if they satisfyAx⊗(k−1) = λx, where x⊗(k−1) denotes the product x⊗· · ·⊗ x, in
which the symbol “⊗" appears k − 1 times. In particular, if A is a third-order tensor,
λ and v satisfy A ( x ⊗ x) = λx. The eigenvectors of a tensor are the stationary points
of the homogeneous polynomial uniquely associated to the tensor itself.

Lim (2005) and Qi (2005) independently introduced tensor eigenvalues and tensor
eigenvectors. Sturmfels (2016) thoroughly reviews the topic and states some open
problems. Eigenvalues and eigenvectors are defined for any real tensor, including the
asymmetric ones. In such cases, however, tensor eigenvalues and eigenvectors depend
on the choice of the unfolding index and may not be real. Moreover, such cases are
not directly connected to skewness-based projection pursuit and are therefore ignored
in the rest of the paper.

The tensor eigenvalue with the greatest norm is the dominant tensor eigenvalue,
while the associated tensor eigenvector of unit length is the dominant tensor eigenvec-
tor. The constraint on the eigenvector’s norm is necessary because ifA is a symmetric
tensor of order k and λ is an eigenvalue ofA then λck−2 is the eigenvalue ofA associ-
ated with the eigenvector cx, where c is a nonnull scalar. Clearly, this constraint is not
necessary for ordinary matrix eigenvectors and for base eigenvectors, that is tensor
eigenvectors associated with null eigenvalues. As an example, let A = {

ai jk
}
be a

tensor of order 3 and dimension 3 such that ai jk equals one when the indices i , j and
k differ from each other, and zero otherwise. Its unfolding is

A =
⎛

⎝
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0

⎞

⎠ .

As shown in Loperfido (2018), the dominant eigenvector and the dominant eigenvalue
of A are
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v = 1√
3

⎛

⎝
1
1
1

⎞

⎠ and λ = 2√
3
.

Other, nondominant eigenvectors are proportional to one of the following vectors:

⎛

⎝
1

−1
1

⎞

⎠ ,

⎛

⎝
−1
1
1

⎞

⎠ ,

⎛

⎝
1
1

−1

⎞

⎠ .

Base eigenvectors, that is tensor eigenvectors associated with null tensor eigenvalues,
are proportional to one of the following vectors:

⎛

⎝
1
0
0

⎞

⎠ ,

⎛

⎝
0
1
0

⎞

⎠ ,

⎛

⎝
0
0
1

⎞

⎠ .

The connection between dominant tensor eigenpairs and skewness-based projection
pursuit becomes apparent when considering the directional skewness of a random
vector, that is the maximal skewness achievable by a linear projection of the random
vector itself:

γD (x) = max
a∈Sp−1

E
{(
a�x − a�μ

)3}

(
a��a

)3/2 ,

whereSp−1 is the p-dimensional unit hypersphere. As shown in Section 3 of Loperfido
(2018), the projection achieving maximal skewness is an affine function of v��−1/2x,
where v is the dominant eigenvector of the third standardized cumulant M3,z of
x, while the skewness of v��−1/2x is the dominant tensor eigenvalue λ of M3,z:
� (v ⊗ v) = λv. On the other hand, the third cumulant of u�x is zero, if u is base
eigenvector of the third cumulant of x :� (u ⊗ u) = 0p, where 0p is the p-dimensional
null vector.

The present paper contributes to the literature on projection pursuit by using tensor
concepts to investigate the statistical properties of skewness maximization related to
model-based clustering and large sample inference. The results in the paper support a
tensor approach to projection pursuit both in the exploratory and the inferential steps of
the statistical analysis. The paper is interdisciplinary in nature, since it bridges tensor
algebra and projection pursuit. The rest of the paper is organized as follows: Section2
applies skewness maximization, and therefore dominant tensor eigenvectors, to clus-
ter separation. Section3 investigates the asymptotic properties of dominant and base
eigenvectors of sample third-order cumulants. Section 4 illustrates the results of the
previous sections with six well-known data sets. Section 5 contains some concluding
remarks and hints for future research. The Appendix contains the proofs.
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2 Clustering

Friedman and Tukey (1974) proposed to use projection pursuit to isolate a cluster
and then to repeat the procedure on the remaining data. Independently, Hennig (2004)
proposed a similar approach, aimed to cluster data where one cluster is homogeneous
and well separated from the remaining, possibly more scattered, clusters. The theo-
retical results in this section support both proposals, when projection pursuit is based
on skewness maximization.

The following proposition states that a function of a finitely supported random
variable maximizes skewness if it maps every outcome of the random variable itself
which has not minimal probability onto the same value, thus obtaining a dichotomous
distribution.

Proposition 1 Let X be a random variable with finite support X = {x1, ..., xk}. Also,
let Y = g(X) be a real, nondegenerate function of X: var(Y ) > 0. Finally, let x j
be the unique element of X occurring with minimal probability: 0 < Pr

(
X = x j

)
<

Pr (X = xi ) : i �= j . Then the third standardized cumulant of Y attains its maximum
absolute value if and only if Y is dichotomous with Pr

{
Y = g

(
x j

)} = Pr
(
X = x j

)
.

Proposition 1 is instrumental in proving Theorem 2, but it is also of interest by
itself. As seen in the proof of Proposition 1 in the Appendix, the third standardized
cumulant of Y is

γ1 (Y ) = 1 − 2p1√
p1 (1 − p1)

, where p1 = min
i

Pr (X = xi ) .

Consider now a (not necessarily random) sample X1,..., Xn , whose mean, variance
and skewness are

X = 1

n

n∑

i=1

Xi , S
2 = 1

n

n∑

i=1

(
Xi − X

)2
and G1 = 1

n

n∑

i=1

(
Xi − X

S

)3

.

Theorem 1 implies that G1 achieves its maximum value when all but one observations
equal each other, that is when p1 = 1/n and G1 = (n − 2)/

√
n − 1.

Since the third sample standardized cumulant is a continuous function of the obser-
vations, it tends to be close to (n − 2) /

√
n − 1 when one oservation is very different

from the remaning ones, while the latter are very close to each other. This reasoning
motivates the use of skewness when testing for the presence of outliers, as argued by
Ferguson (1961) under the more restrictive normality assumption.

A weakly symmetric distribution is a distribution whose third cumulant is a null
matrix (Loperfido 2014). Symmetric distributionswith finite thirdmoments areweakly
symmetric but the opposite is not necessarily true. Loperfido (2013), Loperfido (2015)
and Loperfido (2019), uses skewness-based projection pursuit for cluster detection,
when data come from finite mixtures of weakly symmetric distributions. In particular,
Loperfido (2013) and Loperfido (2015) dealt with finite weakly symmetric location
mixtures, that is finite mixtures of weakly symmetric distributions only differing in
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458 N. Loperfido

their means. The following theorem shows that, for finite weakly symmetric location
mixtures, the component with the smallest weight is best separated from the remaining
ones by the projections attaining maximal skewness, when the component’s mean is
far away from the other components’ means. The theorem supports skewness maxi-
mization as a tool for the iterative detection and removal of clusters, as suggested in
Friedman and Tukey (1974).

Theorem 1 Let the distribution of the random vector x be a finite location mixture of
weakly symmetric distributions with linearly independent means. Also, let the mean
of the component with the smallest weight have norm c > 0. Finally, let u�x and v�x
be the best discriminating projection of x and the projection of x which maximizes
skewness. Then

lim
c→+∞ρ2

(
u�x,v�x

)
= 1.

Theorem 2 provides the mathematical background for the following sequential
clustering procedure. Data are projected onto the direction whichmaximizes skewness
in order to separate a cluster from the others. The detected cluster is then removed
from the data and the procedure is repeated until no clusters are left. Theorem 2 might
also be used for detecting outliers, which might be regarded as limiting cases of small-
sized, well-separated clusters (Hou and Wentzell 2014) and have been modelled by
means of finite normal location mixtures (Archimbaud et al. 2018). We illustrate the
use of skewness maximization for the iterative detection and removal of clusters with
a mixture of three normal distributions with identical covariance matrices. Let C be
the random variable representing the cluster memberships. It takes the values 1, 2 and
3 with probabilities 0.1, 0.4 and 0.5: P (C = 1) = 0.1, P (C = 2) = 0.4, P (C = 3) =
0.5. Also, let x|C = i ∼ N

(
μi , I2

)
be the distribution of x in the i-th cluster, where

I2 is the bivariate identity matrix and

μ1 =
(
10
10

)
, μ2 =

(
5

−5

)
, μ3 =

(−4
4

)
.

The distribution of x is then a location normal mixture with three components, where
the mean of the component with the smallest weight has a norm much greater than the
other ones: x ∼ 0.1 · N (μ1, I2) + 0.4 · N (μ2, I2) + 0.5 · N (μ3, I2) . The mean, the
within-group covariance, the between-group covariance and the total covariance are

μ =
(
1
1

)
,W =

(
1 0
0 1

)
, B =

(
27 −9
−9 27

)
and � =

(
28 −9
−9 28

)
.

The Fisher’s discriminating direction is the dominant eigenvector of the matrix

�−1B =
(
28 −9
−9 28

)−1 (
27 −9
−9 27

)
= 1

703

(
675 −9
−9 675

)
≈

(
0.960 −0.013

−0.013 0.960

)
,

which is proportional to the bidimensional vector of ones 12. The Fisher linear
discriminant projection is 1�

2 x, and it is also the linear projection which best sep-
arates Cluster 1 from Cluster 2 and Cluster 3, which are merged together: 1�

2 x ∼
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0.1 · N (20, 2) + 0.9 · N (0, 2) . The coskewness of x and the positive definite square
root of the concentration matrix �−1 are

cos (x) =
(−29. 61 6. 39 6. 39 42. 39

6. 39 42. 39 42. 39 −65. 61

)
and �−1/2 =

(
0.197 0.033
0.033 0.197

)
.

The standardized coskewness of x is

cos (z) = �−1/2cos (x)
(
�−1/2 ⊗ �−1/2

)
=

(−0.174 0.110 0.110 0.274
0.110 0.274 0.274 −0.338

)
.

The bidimensional vector of ones is the dominant eigenvector of the third standardized
cumulant of x:

cos (z) (12 ⊗ 12) =
(−0.174 0.110 0.110 0.274

0.110 0.274 0.274 −0.338

)
⎛

⎜⎜
⎝

1
1
1
1

⎞

⎟⎟
⎠ = 0.32 · 12.

As remarked in the Introduction, the projection of x with maximal skewness is
1�
2 �−1/2x. Since 12 is an eigenvector of �, it is also an eigenvector of �−1/2. The
projection of x with maximal skewness is then 1�

2 x, which coincides with the Fisher
linear discriminant function.

In order to separate Cluster 2 from Cluster 3 we assume that we can take out
Cluster 1, so we obtain the distribution x|C �= 1 ∼ (4/9) · N (μ2, I2) + (5/9) ·
N (μ3, I2) , which is a mixture with unequal weights of two normal distributions with
the same covariance matrices. As shown in Loperfido (2013), the linear projection
which maximizes skewness is (μ2 − μ3)

� cov (x|C �= 1) x ∝ μ�
2 x ∝ X1 − X2,

where X1 and X2 are the first and the second component of x. The projection X1 −
X2 coincides, up to location and scale changes, with the Fisher linear discriminant
projection. We used the projection X1 + X2 to separate the first cluster from the other
two, and then the projection X1− X2 to separate the second cluster from the third one.
The example suggests that Theorem 2 might hold under more general assumptions,
since μ2 and μ3 are proportional to each other (−0.2μ2 = 0.25μ3), thus violating
the assumptions of Theorem 2.

3 Asymptotics

Letx�
i be the i-th rowofX, i ∈ {1, ..., n}. Themean, the covariance and the coskewness

of X are

m = 1

n

n∑

i=1

xi , S = 1

n

n∑

i=1

(xi − m) (xi − m)� and

G = 1

n

n∑

i=1

(xi − m) ⊗ (xi − m)� ⊗ (xi − m)� .
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460 N. Loperfido

Let z�
i be the i-th row of the standardized data Z = HnXS−1/2, i ∈ {1, ..., n}, where

Hn = In−1n1�
n /n is the n×n centringmatrix, 1n is the n− dimensional vector of ones,

In is the n−dimensional identity matrix, and S−1/2 is the symmetric, positive definite
square root of the sample concentration matrix S−1. The standardized coskewness of
X is just the coskewnness of Z:

Q = 1

n

n∑

i=1

zi ⊗ z�
i ⊗ z�

i .

The dominant eigenvalue l1 ofQ is also themaximal skewness achievable by a linear
projection of X. Inferential projection pursuit investigates the connections between l1
and its population counterpart, that is the dominant tensor eigenvalue of the third stan-
dardized moment of the underlying distribution. As mentioned in the Introduction,
the first inferential use of moment optimizing projections dates back to Malkovich
and Afifi (1973), within a multivariate normality testing framework. Machado (1983)
shows that these statistics have an asymptotic distribution, under normality. Baring-
haus and Henze (1991) relates the asymptotic distribution of the same statistics to the
maximum of a gaussian process, under the assumption of elliptical symmetry. Naito
(1997) uses the results in Baringhaus and Henze (1991) and Sun (1993) for approx-
imating the tail probabilities of a generalized moment index which includes the one
proposed by Jones and Sibson (1987). Kuriki and Takemura (2008) uses a geometric
approach to derive exact formulae for the tail probabilities of Malkovich and Afifi
(1973) statistics and other maxima of multilinear forms. Loperfido (2018), supported
by both theoretical and empirical arguments, conjectures that the asymptotic distri-
bution of maximal skewness might be conveniently approximated by a skew-normal
distribution, under the null hypothesis of normality.

All of the above papers deal with hypothesis testing, and none of them with point
estimation. We address the latter inferential issue by showing that the dominant eigen-
pair of the third sample moment converges almost surely to its population counterpart,
under mild assumptions.

Theorem 2 Let λ and v be the simple, dominant tensor eigenvalue and its tensor
eigenvector of the third moment of the p-dimensional random vector x. Also, let the n-
th elements of the sequences {Xn}, {Mn}, {λn} and {vn}, be the n× p datamatrix whose
rows are independent outcomes of x, the third moment of Xn, the dominant tensor
eigenvalues of Mn and the tensor eigenvector of λn. Then {λn} and {vn} converge
almost surely to λ and v as n tends to infinity: λn

a.s.−→ λ and vn
a.s.−→ v.

Skewness-based projection pursuit is also concerned with base tensor eigenvectors,
given their close connection with weakly symmetric projections, that is projections
whose coskewnesses are null matrices. Weakly symmetric projections may be used
before skewness-based projection pursuit as tools for data reduction, following the
approach in Jones and Sibson (1987), Hui and Lindsay (2010), Ray (2010), Lindsay
and Yao (2012) and Loperfido (2023). Weakly symmetric projections may also be
used after skewness-based projection pursuit, to facilitate the search for interesting
structures other than skewness, as proposed byHuber (1985) andDaszykowski (2007).
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Statistical applications of weakly symmetric projections are not limited to projection
pursuit. For example, they may also be useful in multivariate mean testing (Loperfido
2014, 2019).

Weakly symmetric sampled distributions and weakly symmetric data projections
are characterized by having null Mardia’s skewnesses (Mardia 1970). Let x and y two
p−dimensional, independent and identically distributed random vectors with mean
μ, nonsingular variance � and finite third moments. The Mardia’s skewness of x (y)
is

βM
1,M (x) = E

[{
(x − μ)� �−1 (y − μ)

}3]
.

Its sample counterpart is

b1,M (X) = 1

n2

n∑

i=1

n∑

j=1

{[
(xi − m)� S−1 (

x j − m
)]}3

.

The Mardia’s skewness equals the squared norm of the standardized coskewness, so
that theMardia’s skewness equal zero if and only if the coskewness is a nullmatrix, that
is under weak symmetry. In particular, a projection onto the direction of a base eigen-
vector of the coskewness is weakly symmetric. However, due to sampling variability,
the sample coskewness might not have base eigenvectors while the coskewness of the
underlying distribution does. In such situations, almost weakly symmetric projections,
that is projections having the smallest Mardia’s skewness, are intuitively appealing.
The following theorem supports this approach.

Theorem 3 Let the third cumulant of the p-dimensional random vector x have base
eigenvectors constituting a linear space of dimension q < p. Also, let the elements
of the sequences {Xn} and {Bn} be n × p data matrices whose rows are independent
outcomes of x and p × q matrices of full rank minimizing the Mardia’s skewness
of XnBn. Then each row of {XnBn} converges almost surely to a weakly symmetric
random vector.

Base matrix eigenvectors constitute a linear space, but the same does not neces-
sarily happens for base tensor eigenvectors. As an example, consider the generalized
skew-normal distribution 2φ (z1) φ (z2) φ (z3)� (θ z1z2z3), where φ (·) is the pdf of
a standard normal random distribution, �(·) is the cdf of a standard normal random
distribution and θ is a nonnull, real value. As shown in Loperfido (2018, 2019), the
distribution is standardized and its only nonnull third moment is E (Z1Z2Z3) = γ =
γ (θ) (a function of θ ), so that its coskewness is

� =
⎛

⎝
0 0 0 0 0 γ 0 γ 0
0 0 γ 0 0 0 γ 0 0
0 γ 0 γ 0 0 0 0 0

⎞

⎠ .

123



462 N. Loperfido

Table 1 The first and the second row of the table contain the percentages of correctly classified units by
linear discrimination and skewness maximization

Athletes Crabs Breast Returns Banknotes Sparrows

Linear discrimination 92.6% 100% 97.4% 57.3% 78% 65.3%

Skewness maximization 74.8% 80% 77.5% 55.7% 63% 55%

The columns refers to the six datasets

The base eigenvectors of � are

⎛

⎝
1
0
0

⎞

⎠ ,

⎛

⎝
0
1
0

⎞

⎠ and

⎛

⎝
0
0
1

⎞

⎠ .

However, no nontrivial linear combination of them is a base eigenvector of �.

4 Examples

In this section we use six well-known data sets to assess the practical usefulness of
skewness-based projection pursuit as a clustering method. Each of them is divided
into two groups, so the group membership of each sample unit is known. The data
sets differ with respect to the skewnesses of their groups and the performance of the
linear discriminant fuction in separating the groups themselves. We first classified the
observations using the linear discriminant function, which relies on the knowledge of
groupmemberships. Then we classified the same data with skewness-based projection
pursuit, which does not rely on the knowledge of group memberships. The classifica-
tion procedure based on projection pursuit articulates into two steps. First, the data are
projected onto the direction which maximizes their skewness. Second, the projected
data are classified into two groups using k-means clustering, which is quite efficient
when applied to univariate data. As expected, the formermethod outperforms the latter,
since it uses more information. However, the difference is small enough to encourage
the use of skewness-based projection pursuit for classifying data when group mem-
berships are unknown. We also visually inspected the data with scatterplots of the two
most skewed projections, which revealed further insight into the clustering structure
of data. Table 1 summarizes the performances of the two classification methods.

Next, we give a more detailed description of the data and the classification results.
Australian athletes. The Australian Institute of Sports collected several body mea-

surements from 202 elite athletes of both genders competing in different disciplines.
Since the seminal paper by Azzalini and Dalla Valle (1996) the data are known to
be skewed. We aim at classifying the 100 female athletes and the 102 male athletes
by means of their body fat and lean body mass indices. The linear discriminant func-
tion correctly classifies 187 athletes, that is about 92.6% of them. Skewness-based
projection pursuit correctly classifies 151 athletes, that is about 74.8% of them. The
scatterplot of the two most skewed projections (Fig. 1a) shows a clear separation of
the two groups, together with their marked non-elliptical shapes.
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Fig. 1 a Australian athletes (dots represent female athletes, pluses represent male athletes); b Australian
crabs (dots represent blue crabs, pluses represent orange crabs); c Breast cancer (dots represent benign
tumors, pluses represent malignant tumors); d Female sparrows (dots represent deceased sparrows, pluses
represent survived sparrows); e Financial returns (dots represent negative signs, pluses represent positive
signs); f Swiss banknotes (dots represent forged bills, pluses represent genuine bills) (colour figure online)
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Australian crabs. Campbell and Mahon (1974) collected 5 morphological mea-
surements (frontal lobe size, rear width, carapace length, carapace width, and body
depth) of the blue and orange species of crabs living in Fremantle, Western Australia.
More precisely, there are 100 specimen of blue crabs and 100 specimen of orange
crabs. Measurements in both groups are often modelled by normal mixtures with
equal or proportional covariances. The linear discriminant function correctly classi-
fies all crabs. Skewness-based projection pursuit correctly classifies 160 crabs, that
is exactly 80% of them. The separation between the two groups becomes even more
apparent from the scatterplot of the two most skewed projections (Fig. 1b), which also
shows a much smaller scatter in the blue crabs group.

Breast cancer. Street et al. (1993) computed ten integer-valued features from dig-
itized images of fine needle aspirates of breast masses belonging to 699 women
diagnosed with breast cancer. The features describe characteristics of the cell nuclei
present in the image. The tumor was benign for 458 women in the sample, and malig-
nant for 241. We found data in both groups to be significantly skewed. The linear
discriminant function correctly classifies 681 women, that is about 97.4% of them.
Skewness-based projection pursuit correctly classifies 542women, that is about 77.5%
of them. The difference in performances between the methods might be due to the
presence of potential outliers, as hinted by the scatterplot of the two most skewed
projections (Fig. 1c).

Female sparrows.Manly and Navarro Alberto (2016) considered total length, alar
extent, length of beak and head, length of humerous, and length of keel of sternum of
49 female sparrows. Data were collected after a severe storm, after which 21 of them
survived.The sample sizes of bothgroups are too small to test the symmetryhypothesis.
However, an exploratory data analysis (not reported here) hint that skewness may
be negligible. The linear discriminant function correctly classifies 32 sparrows, that
is about 65.3% of them. Skewness-based projection pursuit correctly classifies 27
sparrows, that is about 55% of them. The poor performance of both methods, and
especially of the latter, could have been anticipated by looking at the scatterplot of the
two most skewed projections (Fig. 1d), where the groups are not well separated.

Financial returns. Morgan Stanley Capital International Inc. recorded 1291 per-
centage logarithmic daily returns (simply returns, henceforth) in the financial markets
of France, Netherlands and Spain. De Luca and Loperfido (2015) clustered the returns
according to the sign of the previous dayU.S. return, obtaining twogroupswith 597 and
694 returns each, whichwere found to be significantly skewed. The linear discriminant
function correctly classifies 740 returns, that is about 57.3% of them. Skewness-based
projection pursuit correctly classifies 719 returns, that is about 55.7% of them. As in
the previous data set, the two groups are very poorly separated in the scatterplot of the
two most skewed projections (Fig. 1e), with the exceptions of a few outliers, which
constitute a well-known stylized fact of financial returns.

Swiss banknotes. Flury (1988) reported several measurements from 100 genuine
and 100 forged old Swiss 1000 franc bills. Greselin et al. (2011) focused on their width,
measured on both sides, and found them to be bivariate normal in the forged group,
but not in the genuine one. They also rejected the homoscedastic hypothesis. Other
statistical analyses, not shown here, clearly suggest that some skewness is present in
the genuine group, but not in the forged one. The linear discriminant function correctly
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classifies 156 bills, that is 78% of them. Skewness-based projection pursuit correctly
classifies 126 bills, that is about 63% of them. The two groups appear to be even better
separated in the scatterplot of the two most skewed projections (Fig. 1f), which also
hints the presence of some possible outliers in the genuine group.

5 Conclusions

This paper investigated some connections between third-order tensor eigenvectors and
skewness-based projection pursuit. The former concept belongs tomultilinear algebra,
while the latter concept belongs to multivariate analysis. The theoretical results in the
paper support the use of skewness-based projection pursuit both in the exploratory and
in the inferential stages of statistical analysis. The practical usefulness of the method
is illustrated with six dataset which already appeared in the statistical literature: the
Australian Athletes dataset, the Australian Crabs dataset, the Breast Cancer dataset,
the Female Sparrows dataset, the Financial Returns dataset and the Swiss Banknotes
dataset. They all suggest that skewness-based projection pursuit might be used to
recover the linear discriminant function when the group memberships are unknown.

On the other hand, the above examples are limited in several ways. Firstly, they
only consider two clusters, while the theorem and the example in Section 2 support the
use of skewness-based projection pursuit in the presence of more clusters. Secondly,
the optimal discriminant function might not be linear, as it happens when there are
two multivariate normal distributions with different means and covariances (see, e.g.,
Mardia et al. 1979, page 312). Thirdly, the comparison between the performances
of the two approaches should not rely on the misclassification rate only, but should
include other performance measures, as for example the receiving operating curve
(ROC) and the area under the ROC curve (AUC). Space constraints prevented us from
investigating these issues in the present paper, but we are planning to address them in
the future by means of both real and synthetic data.

Maximally skewed projections of some well-known distributions admit simple and
insightful interpretations (Arevalillo and Navarro 2019, 2020). It is then worth asking
which widely used multivariate probability distributions have third-order cumulants
whose eigenvectors admit a simple tractable analytical form. This would simplify
both their computation and their interpretation. It would also give more insight into
the asymptotic properties of skewness-based projection pursuit. Similar remarks also
hold for kurtosis-based projection pursuit, which relies on kurtosis optimization and
is closely related to the eigenvectors of fourth-order symmetric tensors (Loperfido
2017). Moreover, the joint use of skewness and kurtosis optimization might lead to
some additional insight into data features (Arevalillo and Navarro 2021a). We are
currently investigating these topics.
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Appendix A Proofs

Proof of Proposition 1 Let μ and σ 2 > 0 be the mean and the variance of Y , and let
Z = (Y − μ) /σ be the standardized version of Y . Since Y is a function of X , whose
support contains k elements, the support of Z contains at most k elements, denoted
as z1,..., zh with h ≤ k. Let us put Pr(Z = zi ) = pi , for i = 1,..., h. Maximizing
the third standardized cumulant of Y is equivalent to maximizing E

(
Z3

)
under the

constraints E (Z) = 0 and E
(
Z2

) = 1. We can then write the Lagrangian equation

L (z1, ..., zh, λ, η) =
h∑

i=1

z3i pi − λ

(
h∑

i=1

z2i pi − 1

)

− η

h∑

i=1

zi pi .

By differentiating the Lagrangian equation with respect to zi we obtain

∂

∂zi
L (z1, ..., zk, λ, η) = 3z2i pi − 2λzi pi − ηpi = 0,

which can be simplified into 3z2i − 2λzi −η = 0 by recalling that pi > 0. The second
degree equation 3x2 − 2λx − η = 0 has at most two distinct real roots, which means
that Z is a dichotomous random variable. As such, Z may be represented either as

p = Pr

(

Z = −
√
1 − p

p

)

= 1 − Pr

(
Z =

√
p

1 − p

)
or as

p = Pr

(

Z =
√
1 − p

p

)

= 1 − Pr

(
Z = −

√
p

1 − p

)
, where p ∈ {p1, ..., ph} .

Let z1 and z2 be the outcomes of Z associated with the probabilities p and 1 − p:
Pr (Z = z1) = p and Pr (Z = z2) = 1 − p. The squared third moment of Z is

E2
(
Z3

)
=

{(
1 − p

p

)1.5

p −
(

p

1 − p

)1.5

(1 − p)

}2

= (1 − 2p)2

p (1 − p)
.

Without loss of generality we can assume that p �= 0.5: when p = 0.5 the squared
thirdmoment E2

(
Z3

)
attains itsminimumvalue, that is zero.We first consider the case

p < 0.5, where E2
(
Z3

)
increases as p decreases. By definition, p is the probability

of an outcome of Z and by assumption there is a unique pi which is smaller than any
p j , with i �= j and i, j = 1, ..., h. Hence the absolute skewness of Z is maximized
if the probability of z1 is the smallest probability associated with an element in the
support of X : Pr (Z = z1) = min

i=1,...,h
pi .
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We now consider the case p > 0.5, where E2
(
Z3

)
increases as 1 − p increases.

By an argument similar to the one above, the absolute skewness of Z is maximized if

Pr (Z = z2) = max
i=1,...,h

(1 − pi ) = 1 − min
i=1,...,h

pi , so that Pr (Z = z1) = 1

−Pr (Z = z2) = min
i=1,...,h

pi .

Therefore, either when p < 0.5 or when p > 0.5, the absolute skewness is maximized
when there is an outcome of the dicothomous random variable Y which coincides with
the outcome of X with minimal probability. 
�

Proof of Theorem 1 Let�, πi andμi be the components’ covariance, the weight of the
i -th mixture’s component and the mean vector of the i-th mixture’s component, for
i = 1,..., g. Also, let y be the random vector taking the value μi with probability πi :
P

(
y = μi

) = πi . Finally, let the mean of the component with the smallest weight be
c · m, where m is a unit norm vector. Without loss of generality we can assume that
that the component with the smallest weight is the last one: μg = c · m.

By assumption, the vectormeans of the components are linearly independent.With-
out loss of generality, we can also assume that m is orthogonal to all other mixture’s
components. If it were not so, there would be a linear transformation of the random
vector x, based on the Gram–Schmidt orthogonalization, which would be a location
mixture of g weakly symmetric components and where the mean of the g-th compo-
nent is orthogonal to the remaining ones. Then the projection m�y is a dichotomous
random variable placing the smallest mixture’s weight on the nonnull outcome. By
Proposition 1, m�y is the projection of y maximizing skewness. The covariance of y
is

cov (y) =
g∑

i=1

(
μi − μ

) (
μi − μ

)�
πi , where μ = E (y) =

g∑

i=1

μiπi .

Ordinary properties of covariance decomposition, the identity μg = c · m and some
straightforward, but tedious matrix algebra, imply

cov (y) = c2πg
(
1 − πg

) (
m − μ−

c

) (
m − μ−

c

)�

+
g−1∑

i=1

(
μi − μ−

) (
μi − μ−

)�
πi , μ− =

g−1∑

i=1

μiπi

1 − πg
.

The ratio of the varianceσ 2
(
m�y

)
ofm�y to the varianceσ 2

(
m�x

)
ofm�x converges

to its maximum value one as c increases:

lim
c→+∞

σ 2
(
m�y

)

σ 2
(
m�x

) = lim
c→+∞

c2m�m
c2m�m+m��m

= 1.
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As a direct consequence, the best linear discriminant projection u�x of x converges
tom�x as c increases, up to location and scale changes:

lim
c→+∞ρ2

(
u�x,m�x

)
= 1.

By assumption, the mixture’s components are weakly symmetric and have the same
covariance matrices. We can then apply Theorem 1 in Loperfido (2019) and show that
the third cumulant of m�x and m�y coincide. The skewness ofm�x is then

γ1

(
m�x

)
= κ3

(
m�y

)

{
σ 2

(
m�y

) + m��m
}1.5 = γ1

(
m�y

)

{
1 + (

m��m
)
/σ 2

(
m�y

)}1.5 ,

where κ3
(
m�y

)
and γ1

(
m�y

)
are the third cumulant and the third standardized cumu-

lant (i.e. the skewness) of m�y. As c increases, the covariance of the components’
means, that is the covariance of y, increases, while the mean of the covariances’ com-
ponents remains unchanged, so that we have

lim
c→+∞

m��m

σ 2
(
m�y

) = 0 and lim
c→+∞γ1

(
m�x

)
= γ1

(
m�y

)
.

Therefore, as c tends to infinity,m�x becomes the projection of x achieving maximal
skewness. We conclude that, as c tends to infinity, the best linear discriminant projec-
tion and the skewness-maximizing projection converges to each other, up to location
and scale changes. 
�

Proof of Theorem 2 Let Mn and M be the unfoldings of Mn and M. By ordinary
properties of sample moments, the sequence {Mn} converges almost surely to M:
Mn

a.s.−→ M. The cubic form a�Mn ( a ⊗ a), where a is any vector of the same
dimension of v and vn , is a continuous function of the third-order tensor Mn and
therefore converges almost surely to the cubic form a�M (a ⊗ a):

v�Mn (v ⊗ v)
a.s.−→ v�M (v ⊗ v) and v�

n Mn (vn ⊗ vn)
a.s.−→ v�

n M (vn ⊗ vn) .

Taking into account that v is the dominant eigenvector ofM we can put

Pr
{
λ = v�M (v ⊗ v) ≥ lim

n−→∞v�
n M (vn ⊗ vn) = lim

n−→∞v�
n M (vn ⊗ vn)

}
= 1.

Taking into account that vn is the dominant eigenvector ofMn we can put

Pr
{

lim
n−→∞v�

n Mn (vn ⊗ vn) ≥ lim
n−→∞v�Mn (v ⊗ v) = v�M (v ⊗ v)

}
= 1.
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Taking into account that λn and λ are the dominant eigenvalues of Mn and M, the
above probability inequalities may be restated as

Pr
{

lim
n−→∞λn ≤ λ

}
= 1 and Pr

{
lim

n−→∞λn ≥ λ
}

= 1,

which are mutually consistent if and only if {λn} converges almost surely to λ:
λn

a.s.−→ λ. We recall again that λn is a tensor eigenvalue ofMn associated to the tensor
eigenvector vn :Mn

(
v�
n ⊗ v�

n

) = λnvn . We also recall again that the sequences {Mn}
and {λn} converges almost surely to M and λ: M

(
v�
n ⊗ v�

n

) a.s.−→ λvn . The sequence
{vn} therefore converges almost surely to a tensor eigenvector of M associated to the
tensor eigenvalue λ, which is simple by assumption. As a direct consequence, the
sequence {vn} converges almost surely to v: vn

a.s.−→ v. 
�
Proof of Theorem 3 Let Ch,k be the hk × hk commutation matrix (Magnus and
Neudecker 1979), that is the matrix rearranging the elements of the vectorized h × k
matrix M into its vectorized transpose: Ch,kvec (M) = vec

(
M�)

. As a special case,
the commutation matrix Cp,p rearranges the elements of the tensor product v1 ⊗ v2
into the tensor product v2 ⊗ v1, where v1 and v2 are p-dimensional real vectors:
Cp,p (v1 ⊗ v2) = v2 ⊗ v1: v1, v2 ∈ R

p. By definition, any tensor eigenvector of the
third cumulant of x is a nonnull p -dimensional vector satisfying

K3,x (v ⊗ v) = λv, λ ∈ C, v ∈ C
p
0 , K3,x = E

{
(x − μ) ⊗ (x − μ)� ⊗ (x − μ)�

}

and E (x) = μ,

where C is the set of complex numbers and C
p
0 is the set of non-null p-dimensional

complex vectors. As shown in Loperfido (2015a), the p × p2 matrix K3,x, that is the
coskewness of x, is invariant to multiplication by a symmetric commutation matrix:
K3,x = K3,xCp,p and thereforeK3,x (v2 ⊗ v1) = K3,x (v1 ⊗ v2). By assumption, the
third cumulant of the p-dimensional random vector x has base eigenvectors constitut-
ing a linear space of dimension q < p. Let A be a full rank q × p matrix whose rows
span the linear space A of the base eigenvectors of K3,x:

A ∈ R
q × R

p , rank (A) = q , A =
⎛

⎝
a�
1

...

a�
q

⎞

⎠ , K3,x (ai ⊗ ai ) = 0p , span
(
a1, ...aq

) = A.

Since A is a linear space, any nonnull linear combination of two base eigenvectors
of K3,x is a base eigenvector, too: K3,x

{(
ciai + c ja j

) ⊗ (
ciai + c ja j

)} = 0p, with
ci c j �= 0.The assumption of ai and a j being base eigenvectors of K3,x, together with
the above mentioned identity K3,x = K3,xCp,p, leads to

0p = K3,x
{(
ciai + c ja j

) ⊗ (
ciai + c ja j

)}

= K3,x

(
c2i ai ⊗ ai + ci c ja j ⊗ ai + ci c jai ⊗ a j + c2ja j ⊗ a j

)

= K3,x
(
ci c ja j ⊗ ai + ci c jai ⊗ a j

) = ci c jK3,x
(
a j ⊗ ai

) + ci c jK3,xCp,p
(
ai ⊗ a j

)

= 2ci c jK3,x
(
ai ⊗ a j

)
.
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The coskewness ofAxmay be derived using multilinear properties of third cumulants
(see, e.g., Loperfido 2015a): K3,Ax = AK3,x

(
A� ⊗ A�) = {

a�
i K3,x

(
a j ⊗ ak

)}
,

i, j, k ∈ {1, ..., q}. The identities K3,x
(
ai ⊗ a j

) = 0p imply that the coskewness of
Ax is a q × q2 null matrix, which in turn implies that the Mardia’s skewness of Ax
equals zero: β1 (Ax) = 0.

We prove the theorem by contradiction, assuming that the sequence {b1 (XnBn)}
of Mardia’s skewnesses of {XnBn} does not converge almost surely to zero. Let
b1

(
XnA�)

be the Mardia’s skewness of XnA�. By ordinary properties of sample

cumulants, b1
(
XnA�)

converges almost surely to zero: b1
(
XnA�) a.s.−→ 0. Since

{b1 (XnBn)} does not converge almost surely to zero there is, almost surely, a number
of sample sizes for which b1 (XnBn) is greater than any preassigned positive value,
and therefore some sample sizes for which b1 (XnBn) is greater than b1

(
XnA�)

:

P

( ∞⋃
n=1

{b1(Xn AT ) < b1(XnBn)}
)

= 1. On the other hand, XnBn minimizes Mar-

dia’s skewness among all q-dimensional projections of Xn : b1 (XnBn) ≤ b1
(
XnA�)

.
The two inequalities above are mutually inconsistent, unless the sequence of skew-
nesses {b1 (XnBn)} converges almost surely to zero. Since Mardia’s skewness attains
its minimum value, that is zero, only if all third-order cumulants equal zero, the
sequence {XnBn} converges to a random vector with null third-order cumulants, that
is a weakly symmetric random vector. 
�
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